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squared displacement (MSD) plotted as a function of time for: (D) ControlcKO
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and (I) DMSO-treated (gray) and 4 µM Yoda1-treated keratinocytes, plotted
as a function of time (* denotes p value<0.0001 as calculated via Kolmogorov–
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of view) and 4 µM Yoda1-treated (n=31 unique fields of view) keratinocyte
data plotted in C, F, I, images taken from three independent experiments.
Plotted n denotes the number of individual cell trajectories. See also Fig A.9. 47
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ABSTRACT OF THE DISSERTATION

Mathematical modeling of collective cell migration in wound healing

By

Jinghao Chen

Doctor of Philosophy in Mathematics

University of California, Irvine, 2024

Chancellor’s Professor John S. Lowengrub, Chair

The collective migration of keratinocytes during wound healing requires both the generation

and transmission of mechanical forces for individual cellular locomotion and the coordina-

tion of movement across cells. Leader cells along the wound edge transmit mechanical and

biochemical cues to ensuing follower cells, ensuring their coordinated direction of migration

across multiple cells. Despite the observed importance of mechanical cues in leader cell forma-

tion and in controlling coordinated directionality of cell migration, the underlying biophysical

mechanisms remain elusive. The mechanically-activated ion channel PIEZO1 was recently

identified to play an inhibitory role during the reepithelialization of wounds. Here, through

an integrative experimental and mathematical modeling approach, we elucidate PIEZO1’s

contributions to collective migration. Time-lapse microscopy reveals that PIEZO1 activity

inhibits leader cell formation at the wound edge. To probe the relationship between PIEZO1

activity, leader cell formation and inhibition of reepithelialization, we developed an inte-

grative 2D continuum model of wound closure that links observations at the single cell and

collective cell migration scales. Through numerical simulations and subsequent experimental

validation, we found that coordinated directionality plays a key role during wound closure

and is inhibited by upregulated PIEZO1 activity. We propose that PIEZO1-mediated re-

traction suppresses leader cell formation which inhibits coordinated directionality between

cells during collective migration. We also extended the model to include two distinct cell

xv



types, each governed by its own set of equations and parameters, interacting through cell-

cell adhesion, volume-filling effects, and wound edge retraction. Simulations with various

cell mixtures reveal that mutually repulsive cells promote wound closure more effectively

than homogeneous populations, with the promotion level amplified by mixture heterogene-

ity. Additionally, simulations show that cells with higher PIEZO1 activity are generally less

represented among edge cells, correlating with wound edge retraction. Through the study

of this extended model, we comprehensively explored the roles of cell-cell interactions and

heterogeneity in collective cell migration involving PIEZO1 mixtures.
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Chapter 1

Introduction

Cell migration plays an essential role in driving a diverse range of physiological processes

including embryonic morphogenesis, tissue formation, repair and regeneration [25, 26]. This

multistep process of cellular locomotion relies upon the coordination between several cellular

processes including: actin polymerization, exertion of actomyosin-based contractile forces,

and the dynamics of adhesion complexes [73]. During single cell migration, cells migrate

directionally by becoming polarized. Located at the front of polarized cells, the leading

edge drives forward locomotion while the rear, or retracting region, underlies the physical

translocation of the cell body [76, 77, 86]. Under many physiological contexts, cells increase

their migration efficiency by migrating together as a multicellular unit. During this collec-

tive form of cell migration, cells locomote while maintaining cell-cell contacts thus enabling

subpopulations of cells to move interdependently [62, 90]. In addition to each cell polariz-

ing individually, collectively migrating populations of cells become uniformly polarized due

to the communication of mechanical and biochemical information through cell-cell contacts

[14, 85]. This multicellular polarization is initiated by the highly specialized leader cells

which are located at the front of groups of collectively migrating cells [69]. Leader cells are

located at the tip of cellular outgrowths that develop along the wound edge and these cells
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are distinct from neighboring cells, as they display increased polarity and large lamellipodial

protrusions [88]. Through the local coordination of intercellular mechanical forces, leader

cells dictate the speed and the directional migration of individual follower cells located be-

hind them [2, 17, 19, 20, 48, 80, 83]. Here, we use the term ”coordinated directionality” to

refer to how cohesively cells migrate in a direction similar to neighboring cells. This large-

scale polarization and coordination of motion by leader cells is able to span across multiple

cells, covering hundreds of micrometers in length [68, 69]. Thus the collective behaviors and

dynamics of migrating sheets of cells are largely dependent upon the formation and dynamics

of leader cells, and the transduction of guidance cues to the ensuing followers.

The collective movements of cells during epithelial sheet migration play a central role in

guiding keratinocyte migration during reepithelialization, an essential component under-

lying the repair of wounded skin, wherein the cutaneous epidermal barrier is reinstated

[44]. Recent research led by Holt et al. identified the mechanically activated ion channel,

PIEZO1, as a key regulator of the reepithelialization process [35]. Wounds generated in

skin-specific Piezo1 knockout mice (Krt14Cre;Piezo1fl/fl; hereafter Piezo1 -cKO) were found

to close faster than those in littermate Control (ControlcKO) mice. On the other hand,

Krt14Cre;Piezo1cx/+ and Krt14Cre;Piezo1cx/cx mice (hereafter Piezo1 -GoF) which express a

skin-specific Piezo1 gain-of-function mutation exhibited slower wound closure relative to

littermate Control (ControlGoF) mice (Fig 1.1A; [35]). Scratch wound assays performed

in monolayers of keratinocytes isolated from these mice recapitulate the in vivo results,

confirming that PIEZO1 activity inhibits keratinocyte reepithelialization (Fig 1.1B; [35]).

Moreover, treatment of monolayers with Yoda1, a chemical agonist of PIEZO1, also resulted

in delayed wound closure further indicating the channel’s involvement in regulating wound

closure (Fig 1.1B) [47, 79]. Given the different genetic backgrounds between conditions (i.e.,

Piezo1 -cKO, Piezo1-GoF, Yoda1-treated) and the differences observed in migration proper-

ties across the Control samples of these different backgrounds [35], keratinocytes are only

compared to control conditions of the same genetic background for all analyses. Through a
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combined series of in vitro experimentation and bioimage analyses, PIEZO1 channel activity

was found to increase localized cell retraction along the wound edge during in vitro wound

closure assays, inhibiting advancement of cells and thus slowing wound closure. The finding

that PIEZO1 enhances retraction provided a working mechanism for how PIEZO1 activation

slows wound closure, while the absence of the channel accelerates wound closure.

Efficient collective migration is driven by the formation of leader cells [8, 29, 71]. These

highly specialized cells are distinct from their surrounding follower cells and play a key role

in dictating collective dynamics [88]. In a recent investigation conducted by Chen et al., it

was discovered that PIEZO1 activity inhibits wound edge dynamics and leader cell formation

[37]. Using differential interference contrast (DIC) time-lapse imaging, the study examined

the evolution of wound margins in scratch wounds generated in Piezo1 -cKO, Piezo1 -GoF,

and Yoda1-treated keratinocyte monolayers, alongside their respective controls (Fig 1.1C-E).

During reepithelialization, multicellular finger-like protrusions often form along the wound

margin as cells work together to close the wound area [93]. At the front of these cellular

outgrowths, leader cells can be identified by their specialized phenotypic morphology in which

they display a larger size, increased polarity, and prominent lamellipodia (Figs 1.1F and A.1)

[69, 71]. Leader cells were manually identified in time-lapse images of wound closure, similar

to methods other groups have used for leader cell quantification within migrating collectives

[72]. In Piezo1 -cKO monolayers, the monolayer edge shows an increase in the number of

leader cells compared to those from ControlcKO keratinocyte monolayers (Figs 1.1C, 1.1G

and A.1A). On the other hand in both Piezo1 -GoF and Yoda1-treated monolayer conditions,

where PIEZO1 activity is increased, the wound edge remains relatively flat throughout the

imaging period due to a decrease in the formation of leader cells at the wound edge compared

to respective control monolayers (Figs 1.1D, 1.1E, 1.1G, A.1B and A.1C).

To quantify the effect that PIEZO1 activity has on wound edge dynamics and leader cell

protrusions, Chen et al. also measured the change in the length of the wound edge within
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Figure 1.1: PIEZO1 activity inhibits wound edge dynamics and leader cell for-
mation. (A) Summary schematic depicting PIEZO1's effect on keratinocyte reepithelial-
ization reported in Holt et al., 2021 [35]. (B) Reproduced from Fig 1L in [35] under a
Creative Commons Attribution license, Cumming plot illustrating wound closure during
in vitro scratch assays utilizing keratinocytes isolated from: ControlcKO and Piezo1 -cKO
mice (left ; p value calculated via two-sample t-test; Cohen’s d = 1.19; images from three
independent experiments), ControlGoF and Piezo1 -GoF mice (middle; p value calculated
via two-sample t-test; Cohen’s d = -1.13; images from four independent experiments), and
DMSO-treated and 4 µM Yoda1-treated keratinocytes (right ; p value calculated via
Figure 1.1 continued on next page
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Figure 1.1 continued
Mann-Whitney test; Cohen’s d = -2.28; images from three independent experiments). n
in B denotes the number of unique fields of view imaged. (C) Representative overlay of
the leading edge detected and segmented from DIC time-lapse images taken during in vitro
scratch assay experiments in ControlcKO (left) and Piezo1 -cKO (right) monolayers. Color
of the cell boundary outline indicates passage of time. Scale bar = 100 µm. The data in C
are representative of three independent experiments. (D) Similar to C but for scratch assay
experiments performed in ControlGoF (left) and Piezo1 -GoF (right) monolayers. The data in
D are representative of four independent experiments. (E) Similar to C but for scratch assay
experiments performed in DMSO-treated (left) and 4 µM Yoda1-treated (right) monolayers.
The data in E are representative of three independent experiments. (F) Representative DIC
image of wound closure during an in vitro scratch assay showing the appearance of finger-like
protrusions led by leader cells (shown by white arrows). Scale bar = 100 µm. See also Fig
A.1. (G) Cumming plot showing the number of leader cells per 100 µm which were manually
identified from DIC time-lapse images along the wound margin in monolayers of: ControlcKO

vs. Piezo1 -cKO keratinocytes (left ; p value calculated via two-sided permutation t-test;
Cohen’s d = 1.26), ControlGoF vs. Piezo1 -GoF keratinocytes (middle; p value calculated via
Mann Whitney test; Cohen’s d = -1), DMSO-treated vs. 4 µM Yoda1-treated keratinocytes
(right ; p value calculated via Mann Whitney test; Cohen’s d = -1.65). (H) Cumming
plot showing quantification of the normalized edge length in monolayers of: ControlcKO vs.
Piezo1 -cKO keratinocytes (left ; p value calculated via two-sided permutation t-test; Cohen’s
d= 0.6), ControlGoF vs. Piezo1 -GoF keratinocytes (middle; p value calculated via two-sided
permutation t-test; Cohen’s d= -0.8), DMSO-treated vs. 4 µM Yoda1-treated keratinocytes
(right ; p value calculated via two-sided permutation t-test; Cohen’s d= -0.9). To account
for differences in the starting edge length which might occur when scratching monolayers
in H, data are normalized by dividing the scratch length at either the end of the imaging
period, or at the moment the wound edges touch, by the starting scratch length. A higher
normalized edge length indicates a more featured wound edge, corresponding to the presence
of more leader cells. n in G & H denotes the number of monolayer sheets imaged. See also
Table 3.2.
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a field of view over the course of the imaging period [37], similar to methods employed by

other groups [50]. The presence of leader cells, which are located at the front of cellular

outgrowths, increases the length of the wound edge. Therefore, a shorter wound edge length

would indicate fewer leader cells while a longer wound edge would indicate an increase in

leader cells along the wound margin. It was found that Piezo1 -cKO monolayers have a

longer wound edge length relative to ControlcKO monolayers, which further supports the

observation that the absence of PIEZO1 results in increased leader cells along the wound

edge (Fig 1.1H, left). Conversely, in both Piezo1 -GoF and Yoda1-treated monolayers it was

discovered that edge lengths are significantly shorter than the respective control monolayers

(Fig 1.1H, middle, right). Thus, PIEZO1 inhibits the formation of leader cells, resulting in

a shorter and flatter wound edge, while the absence of the channel results in a longer and

more featured wound edge due to an increase in leader cell protrusions.

Mathematical modeling has emerged as a powerful technique to systematically probe how

biological factors contribute to the complex orchestration of collective migration [3, 5, 10, 81].

Here, we build upon these previous works and develop a novel two-dimensional continuum

model of reepithelialization. This model is derived by upscaling from a discrete model, in-

corporating key factors such as cell motility, retraction, cell-cell adhesion, and coordinated

directionality. While motility and retraction are determined by single cell behaviors, cell-cell

adhesion and coordinated directionality are influenced by the presence of neighboring cells.

An upscaling procedure enables us to identify the contributions of these components to cell

migration at the monolayer scale. We calibrated the cell-scale parameters in the model using

data from experiments on single cells and performed parameter studies to investigate the

influence of cell-cell adhesion and coordinated directionality, which are harder to measure

experimentally. Our numerical simulations revealed that coordinated directionality is a crit-

ical factor in recapitulating the influence of PIEZO1 on wound closure and that elevated

PIEZO1 activity leads to the inhibition of coordinated directionality. These predictions of

the model were experimentally validated. Experiments also revealed that PIEZO1 activity
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suppresses the formation of leader cells, contributing further to the inhibition of collective

migration during keratinocyte reepithelialization.

By extending the mathematical model with the upscaled framework, we construct a new

framework for studying collective cell migration during wound healing, focusing on scenar-

ios where two PIEZO1 genotypes are present. Each cell type is governed by its own set of

equations with unique parameters while interacting through cell-cell adhesion, volume-filling

effects, and wound edge retraction. Building on the parameters inherited from the previous

upscaled model, this new model emphasizes the interactions between the different cell types

and the heterogeneity of their mixtures. Through simulations with various combinations

of cell mixtures, we observe that mutually repelling cells can promote wound closure more

effectively than a homogeneous population of a single cell type. Moreover, the level of pro-

motion is positively correlated with the heterogeneity of the mixture. Near the wound edge,

simulations show that higher PIEZO1 activity correlates with a lower representation of edge

cells. By enforcing additional model assumptions, we find that cells with higher PIEZO1

activity are more likely to be found among the backward edge cells compared to the forward

edge cells, suggesting that PIEZO1 activity promotes wound edge retraction. This obser-

vation aligns with prior experimental findings that link wound edge retraction to PIEZO1

enrichment [35]. Furthermore, using this extended model, we explore parameter inference

by integrating appropriate experimental data. This approach enhances our understanding

of the dynamic interactions and provides deeper insights into the roles of PIEZO1 activity

and cell heterogeneity in the wound healing process.

This dissertation is organized as follows. Chapter 2 provides a mathematical model of col-

lective cell migration with an upscaled framework, along with an alternative fully continuum

model, designed to study the role of PIEZO1 in wound healing. Chapter 3 details the use of

this model to derive predictions and subsequent experimental validation. Chapters 2 and 3

are based on a published research article coauthored with Jesse Holt, Elizabeth Evans, John
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Lowengrub, and Medha Pathak. Chapter 4 extends the model presented in Chapter 2 to

study collective cell migration involving two cell types with distinct PIEZO1 activity, which

is part of a paper in preparation with Medha Pathak and John Lowengrub. Appendix A

includes supplementary materials for Chapters 2 and 3, Appendix B includes supplementary

materials for Chapter 4, and Appendix C summarizes experimental methods and materials.
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Chapter 2

Modeling PIEZO1’s influence on

keratinocyte collective dynamics

2.1 Introduction

To address the complexities inherent in the biological phenomena of collective cell migra-

tion, we adopted a theoretical approach to characterize the biophysical relationship between

PIEZO1 activity, leader cell initiation, and wound closure. By designing a mathematical

model of keratinocyte reepithelialization, we aimed to study how PIEZO1 activity influences

this critical healing process. We first separated reepithelialization into essential phenomeno-

logical components which could be incorporated into the design of the model as manipulable

variables. As such we accounted for cell motility, and cellular retraction, a process central

to the migration process and one which is promoted by PIEZO1 activity [35].

In our experimental data, we found that retraction varied in intensity such that in some

instances it led to small regions of individual cells retracting while in other cases it led to

the entire cell body pulling back away from the wound area [35]. Therefore we modeled
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retraction as a stochastic process at the leading edge associated with backward cell motion.

We incorporated into our model design: (1) the average duration of retraction events at

the monolayer edge, (2) the interval of time between sequential edge retractions, and (3)

the strength of retraction. We also incorporated two hallmarks of collective cell migration:

cell-cell adhesion and the coordination of keratinocyte migration direction, or coordinated

directionality, both of which have been central to mathematical models proposed by other

groups [40, 81, 33, 45]. Instead of modeling the mechanical forces involved in adhesion and

retraction explicitly, we encoded the mechanistic effects such as cell motility, coordinated

directionality, cell-cell adhesion, and retraction into model parameters. We then system-

atically manipulate these biological components of wound closure within our models and

compare simulation results to experimental data garnered from scratch assays of PIEZO1

mutant keratinocytes (Table 3.2).

Due to the inherent multivariate nature of our system, we utilized a partial differential equa-

tion (PDE) model to describe the spatiotemporal effects of PIEZO1 on reepithelialization.

The PDE governing collective cell migration, which captures behavior at the monolayer scale,

is derived by upscaling a discrete model from the single-cell level. This upscaled model, in-

troduced in Section 2.2.1, is our primary tool for studying PIEZO1’s role in regulating wound

closure. Additionally, a fully continuum model, built directly on a PDE, is presented as an

alternative approach to reaffirm the results obtained from the upscaled model, as detailed

in Section 2.2.2.

We present a dimensionless version of our models here. We rescale the cell density by its

maximal value, which can be quantified by counting the maximum number of cells in squares

of a grid in the monolayer region away from the wound edge, where we expect cell density to

exhibit spatial and temporal uniformity. The characteristic length scale l is defined as the

distance from the wound edge to the region where the cells reach the maximal density in the

monolayer (typically ∼10 cell lengths). Hence, our computational domain is a small region
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around the wound edge. From the experimental data, we can extract a characteristic wound

edge velocity v, which allows us to derive a characteristic time λ−1 = l/v. See Section 2.3.6

for additional details.

2.2 Model frameworks

2.2.1 From discrete to continuum: an upscaled model

The two-dimensional spatial discretization of a field of view containing a monolayer covered

by a uniform grid of size h allows the labeling of indices (i, j) in space as x = xi,j =

(ih, jh), and cell density, ρ = ρ(x, t) = ρ(x, y, t), a function of space, x = (x, y)T , and

time, t, can be represented by ρi,j = ρ(xi,j, t) at time t (Fig 2.1A). The dimensionless

experimental field of view is a unit square domain: [0, 1]× [0, 1] ∈ R2 (see Section 2.3.6 for

the details of nondimensionalization). By incorporating the essential biological components

of reepithelialization (Table 3.2, bottom), we construct the following discrete master equation

(Fig 2.1A, left ; Eq. 2.1), which demonstrates the change rate of cell density over time (Eq.

2.1; left hand side) in response to the net flux of cells (Eq. 2.1; right hand side):

∂ρi,j
∂t

=T→i−1,jρi−1,j + T←i+1,jρi+1,j + T ↑i,j−1ρi,j−1 + T ↓i,j+1ρi,j+1

− (T→i,j + T←i,j + T ↑i,j + T ↓i,j) · ρi,j.
(2.1)

Here, the T ’s are transitional probabilities per unit time associated with given directions of

movement (i.e., T→i,j , T
←
i,j , T

↑
i,j and T ↓i,j) for cells migrating between adjacent grid points (e.g.,

from xi,j to xi+1,j for T
→
i,j ). Each transitional probability accounts for cell motility, cell-cell

adhesion, coordinated directionality, retraction events, and volume filling limitations.

11



Figure 2.1: Coordinated directionality is the key model parameter which repli-
cates PIEZO1 reepithelialization phenotypes. (A) Schematic showing a simplified
visual of the modeling approach and visualization of the simulation domain. In the semi-
discrete master equation (left ; Eq. 2.1), transitional probabilities associated with cell influx
are highlighted in blue, while cell efflux related transitional probabilities are in red. Cor-
responding arrows depict this process on the grid (middle), indicating that the net flux is
equal to the change in cell density over time at grid point (i, j). D represents coordinated
directionality, and R represents retraction. (B) Simulation snapshots taken at equidistant
time intervals depicting the evolution of the wound edge until wound closure (the moment
interfaces touched) under low (top), Control (middle) and increased (bottom) levels of
Figure 2.1 continued on next page
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Figure 2.1 continued
retraction strength. Shaded areas represent cell monolayers, while unshaded areas denote the
cell-free space. (C) Plots showing quantification of the normalized edge length of simulated
wounds, a measurement indicative of the number of leader cells, under different levels of
retraction strength as a function of time. Shorter lines indicate simulation ending earlier
due to faster wound closure. (D, E) Same as for (B) and (C), but under different levels
of coordinated directionality. (F) The proportion of wound closure cases under different
retraction magnitudes. The proportion of open wound closure cases start to decline after
increasing retraction strength to 40, and almost no closure cases occur as retraction strength
approaches 60. See also Fig A.2. (G) Line graphs showing the mean of 100 simulation results
depicting the effect of retraction strength on normalized wound closure (red; left axes) and
normalized edge length (blue; right axes). Error bars depict the standard error of mean.
(H) Similar to (G) but for coordinated directionality. In C, E, F-H, all numbers have no
unit because the model is dimensionless. See also Fig A.3 and Table 3.2.

In the discrete master equation (Eq. 2.1), T→i,j the transitional probability for cells traveling

from xi,j to xi+1,j is defined as the following:

T→i,j = (1− ρi+1,j)(1− αρi−1,j)(1− αρi,j+1)(1− αρi,j−1)(f
→
i,j + b→i,j). (2.2)

The term (1 − ρi+1,j) models the effects of volume filling, e.g., if the cell density at xi+1,j

has reached its maximal value, it restricts further cell movement into that point. The term

(1 − αρi−1,j)(1 − αρi,j+1)(1 − αρi,j−1) models cell-cell adhesion from three directions that

hinder the cell migration, where α ∈ [0, 1] is the adhesion coefficient, which is assumed to

be the same in each direction [3]. In the last term f→i,j + b→i,j, the vector f→i,j = d↔ρi,j/h
2

models diffusive cell motion while b→i,j = r→i,j/h models cell movement due to retraction. The

dependence on h reflects diffusive (O(1/h2)) and advective (O(1/h)) scaling of the equations,

respectively. The diffusive component f→i,j , scaled as O(1/h2), generates a diffusion flux that

depends on the gradient of cell density. The advective component b→i,j, scaled as O(1/h),

results in an advection velocity independent of cell density that mimics the influence of

retraction events (see Section 2.3.4 for details). Further, d↔ represents the magnitude of
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movement in the horizontal coordinate direction, while r→i,j accounts for cell retraction. Note

that the cell density term ρi,j in f→i,j models the moving front that connects a region of zero

cell density (wound) with a region of non-zero density (monolayer), e.g., [91]. The other

transitional probabilities, T←i,j , T
↑
i,j and T ↓i,j are defined analogously. Hence, Eq. 2.2 can be

rewritten as

T→i,j =
(1− ρi+1,j)(1− αρi−1,j)(1− αρi,j+1)(1− αρi,j−1)d

↔ρi,j
h2

+
(1− ρi+1,j)(1− αρi−1,j)(1− αρi,j+1)(1− αρi,j−1)r

→
i,j

h
.

(2.3)

A continuum limit can be obtained by taking h → 0 in the discrete master equation (Eq.

2.1) to yield the partial differential equation

∂ρ

∂t
= ∇ · (D∇ρ+Rρ) (2.4)

which is a diffusion-advection equation where the diffusion, D, models cellular locomotion

and coordinated directionality, whereas the advection velocity, R, models retraction of the

leading edge. The diffusion coefficient, or diffusivity, D, is a 2 × 2 positive definite matrix

given by

D = d · (wII + wAA) · D̂α(ρ) (2.5)

where d > 0 models cell motility during collective migration. The diffusion decomposition
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wII + wAA combines the diffusion isotropy, where the identity matrix I = I2 models the

randomness of cellular migration, and diffusion anisotropy, where the matrix A models

directed cellular migration. During wound closure, directional cues received from leader

cells promote the migration of followers into the cell-free space to close the wound, thus

promoting cells to have a higher probability of moving into the wound area and resulting in

an anisotropic direction of diffusion.

The information regarding coordinated directionality is transmitted from the discrete level

through the incorporation of distinct magnitudes of movement in the coordinate directions

(d↔ and d↕ in Eq. 2.2, 2.3) that influence the transitional probabilities in two directions.

Considering that cells receive signals to migrate towards the wound gap, we assume a larger

magnitude of movement in the vertical direction (d↕ ≥ d↔) based on our experimental

configuration (Fig 2.1A, right). This assumption facilitates the following decomposition:

d↔ 0

0 d↕

 = d↕ ·

d↔

d↕
0

0 1

 = d↕ ·

d↔

d↕
0

0 d↔

d↕
+ d↕−d↔

d↕


= d↕ ·


d↔

d↕
0

0 d↔

d↕

+

0 0

0 d↕−d↔
d↕




= d↕ ·

d↔

d↕
·

1 0

0 1

+
d↕ − d↔

d↕
·

0 0

0 1




= d · (wII + wAA)

(2.6)

where the continuous coefficients of cell motility d, isotropic strength wI , and anisotropic

strength wA (representing coordinated directionality) are derived from the discrete coeffi-

cients of the magnitudes of movement in the coordinate directions d↔ and d↕ through the

following relation:

15



d = d↕,

wI =
d↔

d↕
,

wA =
d↕ − d↔

d↕
.

(2.7)

Here, the directionality assumption d↕ ≥ d↔ guarantees the weights wI and wA are non-

negative and bounded by 1, and the convex weighting relation wI + wA = 1 naturally holds

from the derivation of wI and wA. From these relations, we can observe how wA measures

coordinated directionality. Systems with stronger coordinated directionality, e.g., larger wA

that results from large relative differences between between d↕ and d↔, are more likely to

migrate towards the direction of closure.

The scalar diffusion coefficient D̂α(ρ) in Eq. 2.5 is a polynomial of cell density ρ:

D̂α(ρ) = 2ρ− (1 + 11α)ρ2 + (8α + 16α2)ρ3 − (13α2 + 7α3)ρ4 + 6α3ρ5, (2.8)

which is derived through a multi-scale modeling process from the scaled cell density ρi,j/h
2,

cell-cell adhesion (e.g., (1−αρi−1,j)(1−αρi,j+1)(1−αρi,j−1) in T→i,j ) and volume filling (e.g.,

1 − ρi+1,j in T→i,j ). The adhesion coefficient, α, which lies in the range [0, 1], models the

adhesion forces between adjacent cells, with a larger α corresponding to larger adhesion

forces. Volume-filling limitations to cell movement are also modeled in D̂α(ρ) to hinder cells

from migrating into a cell-dense area. In order to maintain a positive diffusivity, the value

of α is bounded by ∼ 0.66 from above (see the detailed derivation in Section 2.3.3).

Analogous to the derivation of diffusion, retraction, R (Fig 2.1A, right), is derived from
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the O(1/h) component of the discrete transitional probability (Eq. 2.3) by taking the limit

h → 0:

R = (1− ρ)(1− αρ)3 · (∆r↔,∆r↕)T ∈ R2 (2.9)

where 1−ρ and (1−αρ)3 model the effects of volume filling and cell-cell adhesion respectively.

The retraction magnitude and directions are modeled phenomenologically in ∆r↔ and ∆r↕

as being localized in space and time, motivated by prior studies [35]. In particular, we

assume:

1. Retraction occurs locally along the wound edge. This means only a part of

wound edge cells are involved in retraction events at each time, while the

rest of the cells on the edge and cells within the monolayer away from the

edge just migrate by diffusion.

2. Retraction occurs intermittently in time. This means no retraction event is

endless, i.e., no regions retract indefinitely. Hence at a wound edge point,

there is a finite interval of duration time for each retraction event, and there

is also a finite interval of time between two consecutive retraction events.

Because the computational domain is a small region around the wound edge ( ∼10 cell

lengths, see Section 2.3.6), we assume there is one localized retraction region of fixed width

that occurs at random times and locations on each side of the wound edge.

Following the localization assumptions (1) and (2), a choice for ∆r↔ and ∆r↕ is
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∆r↔ = ∆r↕ = H̃(γ − ρ) ·
∞∑
i=1

si · 1̃[τi,τi+T r
i )(t) · 1̃Ωi

(x), (2.10)

where H is a Heaviside function

H(γ − ρ) =


1 , ρ < γ

0 , ρ ≥ γ

(2.11)

with threshold γ, which localizes the retraction to the wound edge (γ = 0.4 was adapted

in the simulation). In particular, H(γ − ρ) = 0 turns off the retraction for ρ > γ, which is

the high cell density region far away from the wound edge, while H(γ − ρ) = 1 turns on the

retraction for ρ < γ, which is the low cell density region near the wound edge.

By labeling retraction events in chronological order with positive integers i = 1, 2, 3, ...,

indicator functions 1[τi,τi+T r
i )(t) and 1Ωi

(x) localize the regions where the edge retracts in

time and space, respectively. We take the retraction to be localized in a region Ωi :=

[ci − ωr/2, ci + ωr/2]× [0, 1] about a line segment x = ci with width ωr (ωr = 0.2 was used

in the simulation):

1Ωi
(x) = 1[ci−ωr/2,ci+ωr/2](x) =


1 , |x− ci| ≤ ωr/2

0 , otherwise

(2.12)

where we account for randomness by taking the uniform distribution ci ∼ U(0, 1). This

allows the region Ωi to randomly slide around [0, 1] to localize the retraction events.
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The retractions are assumed to occur at particular times τi with durations T r
i . Accordingly,

we take

si · 1[τi,τi+T r
i )(t) =


si , τi ≤ t < τi + T r

i

0 , otherwise

(2.13)

where si is the speed (or strength) of the retraction, and the next retraction occurs at

τi+1 = τi+ T r
i + T nr

i where T nr
i is the inter-retraction duration. To account for randomness,

we assume:

T r
i

iid∼ N (µr, σ
2
r) |= T nr

i
iid∼ N (µnr, σ

2
nr) |= si

iid∼ N (µs, σ
2
s) (2.14)

where N (µ, σ2) denotes the normal distribution with mean µ and standard deviation σ,

and all random variables are independent and identically distributed (iid). Thus, the mean

strength of the retraction forces is µs and a single retraction event is sustained for a random

duration with mean µr. Any subsequent retraction will only start after a random idle

duration with mean µnr. The corresponding variances are σ2
s , σ

2
r , and σ2

nr, respectively. To

ensure that our model incorporates only physically meaningful events, any negative duration

or strength values that arise during the simulation are promptly discarded.

In summary, ∆r↔ and ∆r↕ are designed to model retractions such that cell movement would

be governed by a diffusion-advection equation that guides the migrating cells in the retraction

region near the wound edge:
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∂ρ

∂t
= ∇ · (D∇ρ) +∇ · (s(1− ρ)(1− αρ)3ρ) near wound edge (2.15)

where D is the diffusivity (Eq. 2.5) and s = (s, s)T/
√
2 where the retraction strength, s,

regulates the magnitude of advection velocity. On the other hand, cells far from the wound

edge (e.g., interior of the monolayer) migrate following a simple diffusion equation

∂ρ

∂t
= ∇ · (D∇ρ) away from wound edge (2.16)

with the same diffusivity (Eq. 2.5). In fact, our model passes retraction information from

the discrete to the continuous level. For example, if r←i,j = r→i,j = r̄ then there is no retraction

at xi,j, e.g., monolayer region far away behind the wound edge. In this case, the governing

equation is a pure diffusion equation without advection (Eq. 2.16) since ∆r↔ = r← − r→ =

0, which appears in the continuum limit. In the retraction region, r←i,j increases and r→i,j

decreases, so ∆r↔ = r←−r→ ̸= 0 and the governing equation turns into a diffusion-advection

equation (Eq. 2.15).

Note that both Heaviside function H(γ − ρ) and characteristic functions 1[τi,τi+T r
i )(t) and

1Ωi
(x) are discontinuous. To preserve differentiability, we smooth H using a hyperbolic

tangent function H̃ (Eq. 2.28 in Section 2.3.5) and smooth 1[τi,τi+T r
i )(t) and 1Ωi

(x) using

generalized bell-shaped functions 1̃[τi,τi+T r
i )(t) and 1̃Ωi

(x) (Eq. 2.29 in Section 2.3.5). In

addition to the definition of ∆r↔ and ∆r↕ (Eq. 2.10) given above, there are alternative

choices that can be adapted to interpolate the advection velocity between the retraction and

non-retraction regions. However, the qualitative results of the model are not sensitive to the

choice of ∆r↔ and ∆r↕ under assumptions (1) and (2) and the model reduces to Eq. 2.15
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near the wound edge and to Eq. 2.16 far from the wound edge.

Since we only model a subset of the observation domain in the experiment, e.g., the region

close to the wound edges as opposed to the whole experimental domain, we impose the

following conditions at the boundaries of the computational domain:

ρ(x, 0, t) = g0(x, t), ρ(x, 1, t) = g1(x, t),

∂ρ(0, y, t)

∂x
=

∂ρ(1, y, t)

∂x
= 0.

(2.17)

Horizontally on the top and bottom of the domain, time-dependent Dirichlet boundary

conditions at x = (x, 0) and x = (x, 1) assign cell densities to the boundary points by

functions g0 and g1, which mimic the effect of cells that flow into the observation domain

area from the monolayer roughly perpendicular to the wound edge. The functions g0 and

g1 are random functions of space and time (See Section 2.3.1 for the definitions of g0 and

g1). Whilst vertically on the left and right sides of the domain, no-flux (Neumann) boundary

conditions are used to approximate a net balance of cell influx and efflux into the observation

domain roughly parallel to the wound edge, as suggested by the experiments.

The initial condition is generated by solving the PDE without retraction events for a short

time period, which produces a banded heterogeneous monolayer with a cell-free region in the

middle mimicking the initial wound (see Section 2.3.2 for details).

Summarizing, the model depends on the following biological parameters: (1) the mean re-

traction duration, µr, (2) the mean inter-retraction duration, µnr, (3) the mean retraction

strength, µs, (4) cell motility, d, in the absence of retraction (pure diffusion context), (5)

cell-cell adhesion, α, and (6) the strength of coordinated directionality, wA. The governing

equation (Eq. 2.4) is a nonlinear stochastic PDE, where stochasticity arises from the random
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coefficients. We solve the equations numerically using a finite difference method to obtain

the cell density ρ(x, t) on the simulation domain over time until wound closure. Multiple

simulations are performed under each condition to quantify the variability for the subsequent

data analysis (See Methods Section Numerical scheme for details), from which we investigate

how each model parameter influences collective migration during reepithelialization.

2.2.2 Alternative approach: a fully continuum model

Recall that our model was initially formulated at the discrete level and subsequently upscaled

into a continuous PDE. Alternatively, we also present a phenomenological continuum model

in which cell-cell adhesion is postulated at the continuum level rather than being obtained

by upscaling.

In this new model, the governing equation is still a diffusion-advection equation in the

same form as Eq. 2.4, but the hindering effect of cell-cell adhesion on collective migration is

modeled by reducing the overall diffusion coefficient as adhesion increases, which is consistent

with the approach used by Amereh et al. in [1]. While still accounting for coordinated

directionality, volume filling effects and the advancing front connecting the wound and the

monolayer, the diffusion coefficient in this new continuum model can be specifically expressed

as

D = d · (wII + wAA) · D̂(ρ), (2.18)

where the overall structure mirrors the diffusion coefficient in our original model (Eq. 2.5).

However, the scalar diffusion coefficient, denoted as D̂(ρ), becomes a quadratic polynomial

of cell density without depending on any additional parameters:

D̂(ρ) = 2ρ− ρ2. (2.19)

22



Compared with the original model, d in Eq. 2.18 now contains the combined effects of cell

motility and cell-cell adhesion.

Analogously, we assume that the advection velocity would now model the combined effects

of retraction strength and cell-cell adhesion. In particular, the advection term in Eq. 2.4

now becomes

R = (1− ρ) · (∆r↔,∆r↕)T (2.20)

where ∆r↔ and ∆r↕ are defined in the same way as in Eq. 2.10 but incorporating the

combined effects of retraction strength and cell-cell adhesion.

This fully continuum model serves as an alternative framework, primarily designed to test

the robustness of the model predictions by examining the sensitivity of the results to different

modeling approaches (detailed in Section 3.4.1). Henceforth, unless otherwise specified, the

term ”model” refers to our primary upscaled model (described in Section 2.2.1) without

ambiguity.

2.3 Model components

2.3.1 Boundary conditions of governing equation

On the Dirichlet boundaries y = 0 and y = 1 (Eq. 2.17), the cell density is determined by

functions g1(x, t) and g2(x, t) which are continuous on [0, 1] × [0,+∞). Since both of these

are randomly generated from the same approach, without loss of generality, let’s say g(x, t).

Covering [0, 1] × [0,+∞) with a grid, taking mesh sizes hx and ht and labeling grid nodes

(x, t) = (xi, tj) = (ihx, jht) by indices (i, j), the function values at grid points gi,j = g(xi, tj)

are taken to follow a normal distribution
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gi,j
iid∼ N (µ0, σ

2
0) (2.21)

with mean µ0 and standard deviation σ0 (µ0 = 0.6 and σ0 = 0.3 were adapted in the

simulation). This models the variability of the influx of cells from the monolayer moving

into the wound region. Thereafter, the function g(x, t) is given by an interpolation on gi,j.

Specifically, the boundary conditions on y = 0 and y = 1 are classical Dirichlet boundary

conditions with a constant influx µ0 if σ0 is set to be 0.

2.3.2 Initial condition of governing equation

Assume u(x, y, t) is a function defined on [0, 1]× [0, 1]× [0,+∞) and satisfies the following

diffusion equation

∂u

∂t
= ∇ · (D∇u) (2.22)

with the same diffusivity D as in Eq. 2.5 and the same boundary conditions as in Eq. 2.17:

u(x, 0, t) = g0(x, t), u(x, 1, t) = g1(x, t),

∂u(0, y, t)

∂x
=

∂u(1, y, t)

∂x
= 0,

(2.23)

while the initial condition is globally zero:
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u(x, y, 0) ≡ 0. (2.24)

With this setting, the wound region (u = 0) is narrowing down from the whole square

domain [0, 1]×[0, 1] to a heterogeneous horizontal banded region in the middle of the domain,

before finally shrinking to zero area and disappearing at t = tend. At a certain time point

t = t0 ∈ (0, tend) during this process,we set ρ(x, y, 0) = u(x, y, t0) as the initial condition of

our governing equation Eq. 2.4.

In other words, this initial condition is generated by the governing equation (Eq. 2.4) but

without retraction, starting from zero initial values and diffusing cells without any retraction

for a period of time, until retractions were introduced. At the moment right before the first

retraction, cell densities across the domain [0, 1]×[0, 1] are the initial values for the governing

equation. This enables us to start with a variable, and more physiological, initial condition

compared to taking a constant values at the wound edge.

2.3.3 Positive definite diffusivity

The matrix d·(wII+wAA) is diagonal and has a positive spectrum. Therefore, the diffusivity

D = d·(wII+wAA)·D̂α(ρ) of the governing equation (Eq. 2.4) is positive definite if and only

if the scalar diffusion coefficient D̂α(ρ) > 0, which depends on the value of adhesion coefficient

α. By inspecting this 5-th degree polynomial, we see that D̂α(ρ) > 0 unconditionally holds

for all levels of cell density ρ ∈ (0, 1) as long as

α < α̂ :=
1

17− 4
√
15

≈ 2

3
(2.25)
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with a critical value α̂. When α ≥ α̂, there exists an interval

Iα =

(
1 + 7α−

√
1− 34α + 49α2

12α
,
1 + 7α +

√
1− 34α + 49α2

12α

)
(2.26)

such that D̂α(ρ) < 0 if and only if ρ ∈ Iα. That is, the diffusivity is negative definite when

cell density ρ ∈ Iα, which results in the ill-posedness of the initial value PDE problem. As

α → 1, the interval Iα expands from a single point 17 + 4
√
15 ≈ 1.5 to I1 = (1/3, 1).

2.3.4 Retraction is modeled by advection

Performing a Taylor expansion on the cell density ρ, centered at x = xi,j, in the discrete

master equation (Eq. 2.1) without specifying b→i,j, we have

∂ρ

∂t
=∇ · (D∇ρ+ h · (1− ρ)(1− αρ)3 · (b← − b→, b↑ − b↓)T ) +O(h2) (2.27)

where D is the same diffusivity as in Eq. 2.5. By taking h → 0, the continuum limit would

be a simple diffusion equation ∂ρ/∂t = ∇ · (D∇ρ) without an advection term, unless both

∆b↔ = b← − b→ and ∆b↕ = b↑ − b↓ are O(1/h), the advection scaling. Therefore, we define

b→i,j := r→i,j/h with r→i,j ∈ O(1). By taking h → 0 under this setting, Eq. 2.27 turns into our

continuum limit (Eq. 2.4), where the retraction is modeled by advection.
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2.3.5 Function smoothing

To localize the retraction region (Eq. 2.10), we smooth the Heaviside function H(γ−ρ) (Eq.

2.11) using a hyperbolic tangent function

H̃(γ − ρ) =
1

2
· (1 + tanh(k · (γ − ρ))), (2.28)

where k is the steepness level at transition point ρ = γ (k = 10 was adapted in the simula-

tions). On the other hand, the indicator function 1Ωi
(x) is smoothed using a 2D generalized

bell-shaped function:

1̃Ωi
(x) =

1

1 + (dist(x,Ωi)
k1

)2k2
, (2.29)

where k1 and k2 are parameters determining the width and steepness of the transition region

in the smoothing process. The distance between a point x and a set Ωi in 2D Euclidean

space is induced by a natural 2-norm ∥ · ∥:

dist(x,Ωi) := inf
y∈Ωi

∥x− y∥. (2.30)

Since the region Ωi is banded, the indicator function 1Ωi
(x) is equivalent to its 1D form

1[ci−ωr/2,ci+ωr/2](x) (Eq. 2.12). Therefore, the 2D generalized bell-shaped function 1̃Ωi
(x)

(Eq. 2.29) can be simplified into a 1D version:
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1̃[ci−ωr/2,ci+ωr/2](x) =
1

1 +
∣∣∣x−cik1ωr

∣∣∣2k2 . (2.31)

By adjusting the center and the width of the characteristic interval, the generalized bell-

shaped function given above can be applied to smooth the indicator function in time 1[τi,τi+Ti)(t)

as the following:

1̃[τi,τi+Ti)(t) =
1

1 +
∣∣∣ t−τi− 1

2
Ti

k1Ti

∣∣∣2k2 . (2.32)

Since the spatial regions of retractions decay away before the next retraction event occurs,

shifts in the retraction region ci ∼ U(0, 1) do not introduce discontinuities. Note that the

selection of width and steepness parameters (k1 and k2) for smoothing indicator functions

are different for the spatial and temporal localizations of retraction (Fig A.4).

2.3.6 Model dimensionalization

Recall that Eq. 2.1 is our non-dimensional master equation with the transitional probability

Eq. 2.2. In order to relate the dimensions in the model to the experiments, we take the

dimensional variables to be (1) ρ̂i,j := ρmax · ρi,j (ρmax is the maximal cell density), (2)

ĥ := l · h (l is the characteristic length) and (3) t̂ := λ−1 · t (λ−1 is the characteristic time).

Hence, the dimensional transitional probability becomes

T̂→i,j = (1− ρ̂i+1,j

ρmax
)(1− α

ρ̂i−1,j

ρmax
)(1− α

ρ̂i,j+1

ρmax
)(1− α

ρ̂i,j−1

ρmax
)(d↔ · ρ̂i,j

ρmax
· l2

ĥ2
+ r→i,j · l

ĥ
), (2.33)
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which can be taken into the master equation (Eq. 2.1) with the dimensional time derivative

∂ρ

∂t
=

∂( ρ̂
ρmax

)

λt̂
=

1

λρmax

· ∂ρ̂
∂t̂

(2.34)

and obtain the continuum limit by taking ĥ → 0:

∂ρ̂

∂t̂
= ∇ · (D̃∇ρ̂) +∇ · (R̃ρ̂). (2.35)

Here, D̃ is the dimensional diffusivity (diffusion coefficient) given by

D̃ =
λl2

ρ5max

· d · (wII + wAA) · D̃α(ρ̂) (2.36)

with

D̃α(ρ̂) =2ρ4maxρ̂− (1 + 11α)ρ3maxρ̂
2 + (8α + 16α2)ρ2maxρ̂

3

− (13α2 + 7α3)ρmaxρ̂
4 + 6α3ρ̂5,

(2.37)

and I = I2, A = diag(0, 1) are defined as before in Eq. 2.5. On the other hand, R̃ is the

dimensionalized retraction (advection velocity) given by
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R̃ =
λl

ρ4max

· (ρmax − ρ̂)(ρmax − αρ̂)3 · (∆r↔,∆r↕)T ∈ R2 (2.38)

where ∆r↔ and ∆r↕ are defined as in Eq. 2.10.

In order to connect the model with the experiments and to calculate the effective cell diffusion

coefficient as well as the advection velocity, we need to know 3 parameters: λ, l and ρmax.

We notice that λl2 = v · l, where v := λl is actually the characteristic velocity (length over

time). Hence, if we have a measurement of the characteristic velocity and the length scale,

we can determine the characteristic time by λ = v/l. In conclusion, we can connect our

theory and numerical parameters with the biological experiments in the following way:

• Maximal cell density ρmax and dimensional cell density ρ̂: here ρ̂ is inter-

preted as a number density, i.e., ρ̂ dxdy is the number of individuals with

the position in the phase area dxdy centered at (x, y). We can quantify this

from the experimental results: put down a grid, count the number of cells

in each single square and get a spatial representation of the cell density. In

the monolayer region away from the front edge, we expect the cell density

should be nearly uniform spatially and temporally, and that value could be

used for ρmax.

• Characteristic length l: we define the characteristic length scale to be the

distance from the wound edge to the region where the cells reach the maximal

density in the monolayer. In our numerical tests, we did not simulate the

whole experimental domain, instead, our simulation focused on the region

of transition, that is, the region in which the cell density transits from the

front to the maximum. Hence, our computational domain is a small region

30



around the wound edge (∼10 cell lengths).

• Characteristic velocity v: the velocity of the moving front can be used for

this, by averaging the front advancing speed measured by cell shape analysis.

• Characteristic time λ−1: since we already have the way to determine the

characteristic length l and velocity v, the characteristic time can be derived

directly by λ−1 = l/v.

With the measurements mentioned above, we are able to calculate ρmax, l, v, λ and hence

the diffusion coefficient and retraction velocity. At this point, we do not have a direct

measurement for the adhesion coefficient α. A direct measurement for the cell-cell adhesion

is being considered in our future work.

2.4 Discussion

We developed our mathematical model to describe the dynamics of a straight scratch assay,

which was the type of wound used in our experiments. However, for other wound geometries,

the directional components of the model, such as the diffusion anisotropy, would need to be

modified. In a circular wound, for example, the diffusion anisotropy would tend to be oriented

in the radial direction corresponding to the alignment of cells moving radially inward toward

the wound region. Furthermore, as a circular wound heals, the length of the wound would

decrease over time. However, the roughness of the wound edge would increase, similar to the

linear scratch assay considered here. In such a situation, rather than using the raw wound

edge length as we do for simplicity, it would be necessary to normalize it, for instance by the

perimeter of the circle.
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Chapter 3

Generating model predictions through

experimental data calibration

3.1 Introduction

Simulations of wound closure, obtained by numerically solving the nonlinear PDEs from

the models presented in the previous chapter, offer a deeper understanding of how each

model parameter contributes at both the single-cell and monolayer levels. Additionally,

integrating experimental data from these scales allows for precise calibration of the model.

In this chapter, we calibrate the model for each PIEZO1 phenotype and derive predictions by

comparing the modeling outcomes with experimental observations. We uncover the distinct

role that coordinated directionality plays in replicating experimental observations and find

that PIEZO1 activity down-regulates this directionality during collective cell migration in

wound healing.

To assess the robustness of our model predictions, we conduct a comprehensive sensitivity

analysis. We examine the impact of different modeling frameworks on the results by repeating
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all simulations using our fully continuum model of adhesion. The outcomes are qualitatively

consistent with those obtained from the upscaled adhesion model (see Figs A.14 and A.15),

suggesting that the hindering effect of cell-cell adhesion can be effectively modeled in various

ways without altering the qualitative results. Furthermore, we test the sensitivity of our

conclusions regarding the role of PIEZO1 in coordinated directionality with respect to the

details of the mathematical models of cell motility and retraction processes. Our findings

confirm the robustness of our predictions.

The subsequent experiments, conducted by Jesse Holt and described in Section 3.5, con-

sistently validate our model predictions, highlighting the robustness and reliability of our

theoretical framework.

3.2 Methods

3.2.1 Numerical implementation

In order to solve the governing equation (Eq. 2.4), we firstly carry out a forward time

discretization (with size ∆t) on the left hand side ∂ρ/∂t by (ρ(xi,j, t+∆t)− ρ(xi,j, t))/∆t.

In terms of space discretization (right hand side), the transitional probability is proved to be

separable (Eq. 2.3) in the discrete model, which allows us to work on the diffusion part and

advection part separately: for the diffusion part, a natural discretization is directly given

by the discrete model (e.g., centered finite differences); for the advection part, we apply a

2nd order weighted essentially non-oscillatory (WENO) method [38, 57] to discretize the

equation. Hence, an explicit finite difference scheme was used to update the cell density at

the nth time step ρni,j iteratively on the simulation domain [0, 1]× [0, 1] until wound closure.
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3.2.2 Model parameter study

Through a parameter study with model simulation, we can explore the effects of model

parameters on two experimentally-measured phenotypes affected by PIEZO1 activity during

keratinocyte reepithelialization: (1) the rate of normalized wound closure and (2) normalized

wound edge length, a measurement to characterize the degree of cellular protrusions and

retractions during wound healing, which is correlated with leader cell presence (Fig 1.1G and

1.1H; [87]). These metrics were chosen because they can be directly measured and compared

to experimental data. The method of our parameter study involves altering individual model

parameters one at a time while holding the remaining parameters at their base values (Fig

A.4) to observe how such variations affect wound closure and edge roughness.

3.2.3 Model calibration with experimental data

We utilized and expanded upon analyses performed on single migrating keratinocytes in the

prior study [35], to compile an experimental dataset characterizing PIEZO1’s effect on: cell

motility, retraction duration, inter-retraction duration and cell retraction strength (Figs 3.1A

and A.5; Table 3.1). Cell motility parameters were calculated by extracting cell speed

information from single cell tracking experiments which were previously performed using

single Piezo1 -cKO and Piezo1 -GoF keratinocytes [35] (Figs 3.1A, left and A.5; Table 3.1).

We expanded upon this work by also tracking individually migrating Yoda1-treated and

DMSO-treated keratinocytes to incorporate the effect of Yoda1 on cell motility into our model

predictions. Similar to our observations in Piezo1 -GoF keratinocytes, Yoda1 treatment had

no effect on the motility of single migrating keratinocytes compared to DMSO-treated control

cells (Fig A.6). To find the average duration of retractions and intervals between successive

retractions for all experimental conditions (Piezo1 -cKO, Piezo1 -GoF, Yoda1-treatment and

the respective controls), we utilized two analysis methods performed in the prior study
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Experimental Observations Retraction Duration Inter-retraction Duration Retraction Strength Cell Motility
Piezo1 -cKO relative to ControlcKO + + + +
Piezo1 -GoF relative to ControlGoF + − + ∼

Yoda1-treated relative to DMSO-treated − − + ∼

Table 3.1: PIEZO1 activity affects single cell migration. Summary table presenting
experimental results obtained from quantitative analysis of single cell migration experiments
(e.g., kymograph, cell protrusion analyses, single cell tracking assays). A ”+” indicates
an increase, ”−” indicates a decrease, and ”∼” indicates no statistically significant change
between Control and Test condition. All data aside from DMSO-treated and Yoda1-treated
cell motility (Fig A.6) was initially published in [35]. Actual data values for each condition
can be found listed in Fig A.5.

[35]: (1) kymographs (Fig 3.1A, right), which graphically depict the retraction and inter-

retraction durations of the leading edge of migrating keratinocytes, and (2) a cell protrusion

quantification software, ADAPT [6], which quantifies the strength of retraction events at

the leading edge. Thus, from these measurements (Figs 3.1A and A.5; Table 3.1), we can

calibrate our model parameters based on experimental measurements, enabling us to make

experimentally relevant predictions regarding PIEZO1’s influence on wound closure behavior.

To calibrate our model, we created a respective simulation control for each experimental

condition (Piezo1 -cKO, Piezo1 -GoF and Yoda1-treated) by fixing the values of model pa-

rameters to a basecase, where the frequency of retraction was set to be the same as the

corresponding experimental control (see Fig A.4 for the full list of model parameters and

their base values). For a given experimental condition, the model parameters related to re-

traction (retraction duration, inter-retraction duration, retraction strength) and cell motility

were adjusted from the control condition by the same proportions as their experimentally-

measured changes relative to the control condition (Figs 3.1A and A.5; Table 3.1). In

particular, the mean retraction and inter-retraction durations µr and µnr, the cell motility

d and the mean retraction strength µs are changed proportionally in the model.

In our model calibration, the experimentally derived ”Single Cell Migration” dataset guides

the changes in model parameters of retraction strength, retraction duration, inter-retraction

duration and cell motility when PIEZO1 activity is altered. However, cell-cell adhesion and
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Figure 3.1: PIEZO1 activity is predicted to regulate wound closure by hindering
coordinated directionality. (A) Schematic depicting experimentally measured features
used to generate the single cell migration dataset. Left, representative still image of migrating
keratinocyte with overlaid cell trajectory. Trajectory is derived from tracking cell motility
during time-lapse experiments. Color denotes passage of time such that yellow is the starting
position and purple denotes track end position. Cell boundary is in white. Scale bar =
100 µm. Kymographs (right) taken at the leading edge of migrating cells (e.g., similar
to black box in the left image) are used to obtain information regarding inter-retraction
duration and retraction duration. The cell protrusion quantification software, ADAPT [6]
was used to gain information regarding retraction strength. Scale bar = 10 µm, Time
bar = 5 min. (B) Cumming plots showing simulation results using the calibrated model
(CM) to predict how PIEZO1 affects normalized wound closure (left plots) and wound edge
length (right plots) in simulated ControlGoF monolayers (dark gray), Piezo1 -GoF monolayers
without altered coordinated directionality parameters (white), and Piezo1 -GoF monolayers
with coordinated directionality decreased (green). See Methods Section Model parameter
adjustment for the details. (C) Similar to B but using simulation results from DMSO-treated
monolayers (black), Yoda1-treated monolayers without altered coordinated directionality
parameters (white), and Yoda1-treated monolayers with coordinated directionality decreased
(red). (D) Similar to B but using simulation results from ControlcKO monolayers (light gray),
Piezo1 -cKO monolayers without altered coordinated directionality parameters (white), and
Piezo1 -cKO monolayers with coordinated directionality increased (purple). In B-D, n = 100
simulation results for each condition, and CM denotes ”Calibrated Model”. To account for
Figure 3.1 continued on next page
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Figure 3.1 continued
differences between control cases, data are normalized by rescaling to the mean of the cor-
responding control, while the adhesion coefficient is fixed at the base value 0.2. Larger
normalized wound closure indicates faster wound closure, while a smaller normalized wound
closure indicates slower wound closure. Similarly, a larger normalized edge length indicates
a more featured wound while a smaller normalized edge length indicates a flatter or less fea-
tured wound. Black check marks at the top of each plot condition indicate that simulation
results match experimental trends while a red cross indicates simulation fails to match the
experiment trends. See also Table 3.3, Figs A.7 and A.8. For comparison with experimental
data see Fig 1.1B, 1.1G and 1.1H.

coordinated directionality were not measured directly in the experiments and instead are

inferred by trying to match model and experimental results. While both cell-cell adhesion

and coordinated directionality are designed to range from 0 to 1 in our model, the feasible

adhesion coefficient actually needs to be bounded above by 0.66 in order for the diffusivity

to be positive definite (see Section 2.3.3 for detailed derivation). Since the dependence of

wound closure rate and wound edge length with respect to individual model parameters was

already numerically shown to be a monotonic function of these parameters (Figs 2.1G, 2.1H

and A.3), it is sufficient to directly use the extrema of the model parameters: 1 for increased

coordinated directionality, 0.66 for an increased adhesion, and 0 in the case that coordinated

directionality and/or adhesion is decreased. For example, when matching experiments and

simulations requires an increased coordinated directionality, we take wA = 1. Because of the

dependency of the outcomes (wound closure rate and edge lengths), if increasing a model

parameter to its maxima fails to match the experimental trends, it would be impossible to

match with smaller values.
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3.3 Results

3.3.1 Coordinated directionality is the key model parameter which

replicates PIEZO1 reepithelialization phenotypes

Simulations of wound closure provide insight into how individual model parameters affect

the wound closure process (Fig 2.1B-E). During simulations we found that wounds would

fail to close if parameters exceed a reasonable range (Figs 2.1F and A.2). For instance, when

retraction strength is set over a certain critical value, cells are unable to overcome retractions

of the wound edge which causes wounds to remain open indefinitely (Fig 2.1F). This model

prediction is consistent with experimental results where Yoda1 treatment sometimes resulted

in an increase in wound area during wound closure assays (Fig 1.1B; [35]).

By plotting the average rate of wound closure and edge length across multiple simulations we

can see how the setting of individual model parameters compares to experimental trends we

observe (Figs 2.1G, 2.1H and A.3). We find that increasing the retraction strength param-

eter hinders wound closure, a result which is in line with the mechanism proposed by Holt

et al. [35] (Fig 2.1G). However, our parameter study also shows that increased retraction

strength results in a longer wound edge length, suggesting an increase in leader cell-like pro-

trusions along the simulated wound margin. This contradicts our experimental observations

in which a shorter wound edge length with fewer leader cells accompanies delayed wound

closure (Fig 2.1G; Table 3.2). Similarly, we find that lower retraction strength elicited faster

wound closure with shorter edge lengths due to fewer leader cell-like protrusions which also

contradicts our experimental results (Fig 2.1G). Together, these results indicate that there

is more to PIEZO1’s role in cell migration than retraction alone.

To identify possible contributors of wound closure regulation influenced by PIEZO1 activity,

we performed an extensive parameter study in which we made adjustments to the model
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Experimental Observations Norm. Wound Closure Norm. Edge Length
Piezo1 -cKO relative to ControlcKO + +
Piezo1 -GoF relative to ControlGoF − −

Yoda1-treated relative to DMSO-treated − −
Model Parameter Norm. Wound Closure Norm. Edge Length
retraction strength − +
retraction duration − +

inter-retraction duration + −
cell motility + −

cell-cell adhesion − +
coordinated directionality

Table 3.2: Coordinated directionality is the key model parameter which replicates
PIEZO1 reepithelialization phenotypes. Top: Summary table of monolayer experimen-
tal results on normalized wound closure and wound edge length. See also Fig 1.1. Bottom:
Summary table of simulation results, depicting the effect of model parameters on normalized
wound closure and wound edge length. For model parameters, single cell parameters (retrac-
tion strength, retraction duration, inter-retraction duration and cell motility) are separated
from parameters which come from collective cell settings (cell-cell adhesion and coordinated
directionality). A ”+” indicates the wound feature is positively correlated with the model
parameter, e.g., wound edge length increases with increased retraction strength, whereas ”−”
indicates a negative correlation, e.g., normalized wound closure is reduced with increasing
retraction strength. Bolded italicized text denotes model parameters which correspond with
experimental trends. See also Figs 2.1G, 2.1H and A.3.

parameters of: cell-cell adhesion, retraction duration, inter-retraction duration, cell motility

and coordinated directionality. We found that manipulation of all parameters aside from co-

ordinated directionality fail to replicate the observed experimental results, i.e., faster wound

closure accompanying a longer edge length, or conversely, delayed closure occurring with a

shorter edge length (Table 3.2; Fig A.3). By increasing the coordinated directionality pa-

rameter within our model, wounds close faster with longer edge lengths due to the presence

of more leader cell-like protrusions, replicating experimental observations in Piezo1 -cKO

monolayers (Fig 2.1H). On the other hand, under low coordinated directionality parameter

conditions cells migrate more aimlessly, with formation of fewer leader-cell like protrusions

along the wound edge and with inhibited closure, similar to observations from Piezo1 -GoF

and Yoda1-treated wounds (Fig 2.1H). Taken together, our parameter study predicts that

while other model parameters, including retraction strength, affect keratinocyte migration,
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coordinated directionality plays a key role in modeling PIEZO1 inhibition of keratinocyte

reepithelialization.

3.3.2 PIEZO1 activity is predicted to regulate wound closure by

hindering coordinated directionality

Through numerical simulation, our modeling parameter study reveals how altering individual

model parameters one at a time while keeping the remaining parameters at their base values

(Fig A.4) affects wound closure. However, experimental results reveal that PIEZO1 activity

may alter more than one model parameter, which may generate compensating effects that

reduce the contribution of coordinated directionality in the experimental setting. Therefore,

we sought to further constrain the mathematical model by incorporating model parameters

derived from experimental data. To this end, we utilized the experimental dataset (Figs 3.1A

and A.5; Table 3.1) to calibrate the model (detailed in Section 3.2.3).

With cell-cell adhesion and coordinated directionality unchanged compared to ControlGoF,

we find that while we can replicate simulated monolayers of Piezo1 -GoF keratinocytes having

slower wound closure compared to simulated ControlGoF monolayers, we fail to observe the

expected decreasing change in leader cell-like protrusions as indicated by a smaller simulated

monolayer edge length (Fig 3.1B). However, by lowering the collective migration parameter

of coordinated directionality, we recapitulate the experimental phenotype of both a shorter

edge length and slower wound closure in simulated Piezo1 -GoF monolayers (Fig 3.1B). On

the other hand, we see that model simulations calibrated by the single cell migration dataset

for both Piezo1 -cKO and Yoda1-treated keratinocytes reproduce the expected experimen-

tal trends; however, by incorporating changes to coordinated directionality we observe a

stronger effect (Fig 3.1C and 3.1D). Notably, we observe that adjustment of cell-cell adhe-

sion parameters, another model parameter integral to collective migration, fails to replicate
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Model Parameter Sets Norm. Wound Closure Norm. Edge Length Experimental Match
CMControlGoF to CMGoF − + ✗

CMControlGoF to CMGoF + cell-cell adhesion ↑ −− + ✗
CMControlGoF to CMGoF + cell-cell adhesion ↓ + + ✗

CMControlGoF to CMGoF + coordinated directionality ↓ −− − ✓
CMDMSO to CMYoda1 − − ✓

CMDMSO to CMYoda1 + cell-cell adhesion ↑ −− −− ✓
CMDMSO to CMYoda1 + cell-cell adhesion ↓ − − ✓

CMDMSO to CMYoda1 + coordinated directionality ↓ −− −− ✓
CMControlcKO to CMcKO + + ✓

CMControlcKO to CMcKO + cell-cell adhesion ↑ − ++ ✗
CMControlcKO to CMcKO + cell-cell adhesion ↓ ++ + ✓

CMControlcKO to CMcKO + coordinated directionality ↑ ++ ++ ✓

Table 3.3: Coordinated directionality recovers monolayer closure behavior from
single cell data. Summary table depicting simulation results using the calibrated model
(CM) to predict how PIEZO1 affects normalized wound closure and normalized edge length
with altered adhesion and coordinated directionality parameters. A “+” indicates a pa-
rameter set has a predicted increase upon an experimental measure while a “−” indicates
a predicted decrease. Double signs (++/−−) represent a stronger observed effect on the
simulated measure than single signs (+/−). Red font and cross mark ✗ indicate that model
predictions calibrated by the “Single Cell Migration” dataset do not match experimental
trends (Table 3.2), while a check mark ✓indicates that model predictions are consistent with
experimental results. See also Figs 3.1, A.7 and A.8.

all experimental results, reinforcing that coordinated directionality plays a primary role in

PIEZO1’s effect on reepithelialization (Table 3.3; Fig A.7). The more retraction regions

generated, the slower the wound healing process and the longer the wound edge length.

Matching the experimental results when PIEZO1 signaling is upregulated still required a

decrease in coordinated directionality. Taken together, these studies demonstrate that only

by including alterations to coordinated directionality are we able to mimic all experimental

phenotypes.

In sum, our model predicts that PIEZO1 activity affects coordinated directionality within

monolayers such that increased PIEZO1 activity inhibits the cells ability to move cohe-

sively during collective migration, ultimately delaying wound closure. On the other hand, in

monolayers which lack PIEZO1 expression, cells are predicted to have stronger directionality

signals and recruit more follower cells to close the wound faster.
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3.4 Sensitivity analysis of model predictions

3.4.1 Selection of modeling frameworks

To determine whether the effect of higher PIEZO1 activity hindering coordinated direction-

ality is sensitive to the specifics of the mathematical model of cell-cell adhesion, we test

our phenomenological continuum modeling framework (presented in Section 2.2.2). In this

approach, the diffusion coefficient is assumed to be a decreasing function of cell-cell adhe-

sion, following the methodology of Amereh et al., 2021 [1], rather than being derived from

upscaling a discrete model.

We replicated all the previous simulations related to Piezo1 -cKO, Piezo1 -GoF, and Yoda1

using this new phenomenological model to compare the predictions with our upscaled model.

Similar to the calibration process for the upscaled model, we adjusted model parameters

based on experimental data (Fig A.5). This involved varying model parameters from a

wild type (e.g., ControlGoF) to a PIEZO1 phenotype (e.g., Piezo1 -GoF), and measuring

changes of wound healing metrics (wound closure and edge length) from repeated simu-

lations. In line with our previous findings, we observed that the simulation results from

the ControlGoF to Piezo1 -GoF case are only able to replicate experimental observations if

coordinated directionality is reduced. That is, by reducing the parameter of coordinated

directionality, we recapitulated the experimental phenotype of both a shorter edge length

and slower wound closure in simulated Piezo1 -GoF monolayers (Fig A.14A). Importantly,

we noted that changes to the diffusion coefficient, according to changes in cell-cell adhe-

sion, alone failed to replicate all experimental results (Fig A.15), consistent with the results

obtained using the upscaled model of adhesion. This underscores the primary role of co-

ordinated directionality in PIEZO1’s impact on reepithelialization and reaffirms our main

conclusion that PIEZO1 activity hinders coordinated directionality. Because the dependence

of the diffusion coefficient and the retraction strength on cell-cell adhesion could be quite
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different quantitatively, as suggested by our upscaled model (see Eq. 2.8 and Eq. 2.9), for

simplicity, here we focused only on the changes in d and not on ∆r↔ and ∆r↕. However, we

varied the retraction strengths and durations in the context of the original upscaled model

(see Section 3.4.2 for details) and reached the same conclusion.

3.4.2 Robustness of model calibration

The experimental data used for model calibration can be categorized into two main compo-

nents: cell motility and retraction processes (including retraction duration, inter-retraction

duration, and retraction strength). In the process of model calibration, we utilized ex-

perimental data at the single-cell level from Table 3.1 and Fig A.5. To test whether our

conclusions depend on the quantitative single cell data, we varied the magnitudes of the

motility and retraction processes.

For cell motility, we used experimental data from the monolayers (Fig A.9), which shows

that cell motility within the monolayer increased in Piezo1 -cKO and decreased in Piezo1 -

GoF and Yoda1-treatment compared to their respective experimental controls. Calibrating

our original model using motility measured from monolayers, together with the original

magnitudes of the retraction processes, and maintaining cell-cell adhesion and coordinated

directionality as observed in ControlGoF, we found that while we could replicate simulated

monolayers of Piezo1 -GoF keratinocytes exhibiting slower wound closure compared to sim-

ulated ControlGoF monolayers, but we failed to observe the decrease in simulated monolayer

edge length seen in experiments (Fig A.16A). However, by reducing the parameter of coor-

dinated directionality, we recapitulated the experimental phenotype of both a shorter edge

length and slower wound closure in simulated Piezo1 -GoF monolayers (Fig A.16A). On the

other hand, our model simulations, calibrated using the monolayer cell motility dataset along

with original retraction processes for both Piezo1 -cKO and Yoda1-treated keratinocytes, re-
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produced the observed experimental trends. However, with adjustments to coordinated

directionality, we observed a more pronounced effect (Fig A.16B-C). Importantly, we noted

that changes to cell-cell adhesion parameters alone failed to replicate all experimental re-

sults, underscoring the primary role of coordinated directionality in PIEZO1’s impact on

reepithelialization (Fig A.17).

For retraction processes (retraction duration, inter-retraction duration and retraction strength),

the prior work [35] indicated qualitative consistency in between single cell data and mono-

layer experiments. For example, in both single cell and monolayer experiments, retractions

in the presence of Yoda1 consistently exhibit shorter durations and larger magnitude re-

tractions compared to DMSO, albeit with variations in the degree of change. Building upon

this qualitative observation from experiments, we conducted additional simulations. In these

simulations, we recalibrated our original model based on general qualitative trends rather

than specific quantitative values for retraction. For instance, Yoda1-treated cells exhibit sig-

nificantly stronger retraction, with a strength approximately three times (around 2.87) that

of its control DMSO-treated cells (Fig A.5). Instead of adhering strictly to this specific ratio

of 2.87, we performed simulations using two additional ratios, one larger and and one smaller,

while maintaining the qualitative trend in which the retraction strength in Yoda1-treated

cells is greater than in DMSO-treated cells. This approach was also applied to the calibra-

tion of the retraction duration and the inter-retraction duration, with adjustments made in

various ratios rather than relying on specific quantitative values derived from experimental

statistics (Fig A.5). Again, two additional values of the durations were used.

Applying this recalibration to simulated monolayers of Piezo1 -GoF keratinocytes, we ob-

served slower wound closure compared to ControlGoF monolayers; however, the expected

decrease in simulated monolayer edge length was not observed (Fig A.18). Consistent with

our previous findings, simulations from the ControlGoF to Piezo1 -GoF case could replicate

experimental observations only when coordinated directionality was reduced. Specifically,
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by lowering the parameter of coordinated directionality, we recapitulated the experimental

phenotype of both a shorter edge length and slower wound closure in simulated Piezo1 -GoF

monolayers, while changes to cell-cell adhesion parameters failed to replicate all experimental

results (Fig A.18). The results from this recalibrated model reaffirm the role of coordinated

directionality, leading to the same fundamental conclusion that PIEZO1 activity hinders

coordinated directionality.

3.5 Experimental validation of model predictions

3.5.1 PIEZO1 activity inhibits persistence of direction during ker-

atinocyte collective migration

To test our model’s prediction we first utilized a cell tracking assay to examine the motility of

individual cells during collective migration. To track the movement of individual cells within

monolayers we utilized the live-cell DNA stain SiR-Hoechst to label individual nuclei within

monolayers [58]. After imaging collective cell migration over the course of several hours,

we tracked the movement of individual nuclei and analyzed the resulting cell trajectories

(Fig 3.2A-C). The mean squared displacement (MSD) is a common metric for analyzing cell

displacement as a function of time. Replicating our single cell migration observations [35],

we observe that individual tracked nuclei within Piezo1-cKO monolayers have MSDs that

are greater than that of ControlcKO cells, demonstrating a larger area explored (Fig 3.2D).

Measurement of the instantaneous cellular speed reveals that, similar to our previous obser-

vations, Piezo1 -cKO cells migrate faster relative to littermate ControlcKO cells (Fig A.9A).

On the other hand, cells from both Piezo1 -GoF and Yoda1-treated monolayers have MSDs

that are significantly smaller (Fig 3.2E and 3.2F). This effect is distinct from our obser-

vation in single migrating cells, where we observed that Piezo1 -GoF keratinocytes migrate
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farther than ControlGoF cells [35], and that Yoda1-treatment has no difference relative to

DMSO-treated control cells (Fig A.6A). Moreover, in both Piezo1 -GoF and Yoda1-treated

monolayers we observe that increased PIEZO1 activity inhibits migration speed (Fig A.9B-

C). This observation also differs from our single cell migration observations in which both

Piezo1 -GoF and Yoda1-treated keratinocytes have no difference in migration speed com-

pared to respective control cells. Our observed differences for PIEZO1’s effect on speed

and MSD between single cell and collective migration results may be attributed to addi-

tional mechanical information from cell-cell interactions during collective migration affecting

activation of PIEZO1.

Since coordinated directionality can, in part, be inferred by how straight the trajectories

of cells in a collectively migrating group are, we measured the directional persistence of

individual cell trajectories. While coordinated directionality refers to how cohesively cells

migrate in a similar direction, directional persistence refers to the directed migration of indi-

vidual cells or, more simply, how straight individual cell trajectories are. Notably, these two

elements are often seen to co-occur in monolayers which show increased wound closure effi-

ciency [42]. The directional persistence of a cell can be quantified by measuring the velocity

autocorrelation of cell trajectories [28]. The randomness in direction of a cell's trajectory is

indicated by how rapidly its velocity autocorrelation function decays: autocorrelation curves

which decay slower indicate cells that have straighter migration trajectories. Measurement

of the velocity autocorrelation shows that Piezo1 -cKO keratinocytes migrating in cell mono-

layers move straighter than ControlcKO cells (Fig 3.2G), similar to the previous findings in

single migrating cells. In both Piezo1 -GoF and Yoda1-treated keratinocytes, cells move less

straight than their respective controls (Fig 3.2H and 3.2I). This finding also differs from

findings in single cell migration results wherein Yoda1-treatment does not change directional

persistence (Fig A.6C) while the Piezo1 -GoF mutation induces straighter trajectories during

single cell migration [35].
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Figure 3.2: PIEZO1 activity inhibits persistence of direction during keratinocyte
collective migration. (A-C) Representative field of view depicting individual cell trajec-
tories derived from tracking (A) ControlcKO (left) and Piezo1 -cKO (right) keratinocytes,
(B) ControlGoF (left) and Piezo1 -GoF (right) keratinocytes, and (C) DMSO-treated (left)
and 4 µM Yoda1-treated (right) keratinocytes during collective migration experiments. Tra-
jectory color depicts individual cell trajectories. Scale bar=100 µm. (D-F) Average mean
squared displacement (MSD) plotted as a function of time for: (D) ControlcKO (gray) and
Piezo1 -cKO (purple) keratinocytes, (E) ControlGoF (gray) and Piezo1 -GoF (green) ker-
atinocytes, and (F) DMSO-treated (gray) and 4 µM Yoda1-treated (red) keratinocytes. All
error bars plotted as SEM, in some instances error bars are smaller than symbols. (G-I)
Average velocity autocorrelation measurement of: (G) ControlcKO (gray) and Piezo1 -cKO
(purple) keratinocytes, (H) ControlGoF (gray) and Piezo1 -GoF (green) keratinocytes, and
(I) DMSO-treated (gray) and 4 µM Yoda1-treated keratinocytes, plotted as a function of
time (* denotes p value<0.0001 as calculated via Kolmogorov–Smirnov test). For ControlcKO

(n=66 unique fields of view) and Piezo1 -cKO (n=85 unique fields of view) data plotted in A,
D, G, images taken from three independent experiments. For ControlGoF (n=56 unique fields
of view) and Piezo1 -GoF (n=51 unique fields of view) data plotted in B, E, H, images taken
from four independent experiments. For DMSO-treated (n=32 unique fields of view) and 4
µM Yoda1-treated (n=31 unique fields of view) keratinocyte data plotted in C, F, I, images
taken from three independent experiments. Plotted n denotes the number of individual cell
trajectories. See also Fig A.9.
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Taken together, our results show that PIEZO1 activity inversely correlates with both cell

speed and the persistence of migration direction during keratinocyte collective migration.

Our observation that the directional persistence of individual keratinocytes within a mono-

layer is inhibited by PIEZO1 activity during collective cell migration provides initial support

for our model's prediction that coordinated directionality is affected by PIEZO1 activity.

3.5.2 Increased PIEZO1 activity inhibits the coordination of cel-

lular motion

The coordinated movement of keratinocytes during wound reepithelialization depends on the

large-scale interactions of multiple cells as they work together to close wounds. While track-

ing individual cells in a monolayer provides useful information regarding the locomotion of

individual cells, it does not fully describe the dynamics of collectively migrating cells. To fur-

ther validate our model’s prediction that PIEZO1 activity inhibits coordinated directionality

and to characterize the effect of PIEZO1 on large scale cellular interactions during wound

closure we utilized particle image velocimetry (PIV). PIV is an optical method of flow visu-

alization which allows us to dynamically map the velocity fields of migrating keratinocytes

within a monolayer during wound closure [49, 68, 84]. By isolating the individual velocity

vectors comprising a monolayer’s vector field and mapping the frequency of vector directions

for samples from different conditions (e.g., Piezo1-cKO, Piezo1-GoF, and Yoda1-treatment),

we can visualize how PIEZO1 affects the coordinated directionality and overall coordination

of motion between cells during wound closure (Fig 3.3A-C). Probability density distribu-

tions of velocity directions from Fig 3.3A-C illustrate that Piezo1 -cKO cells flow towards

the wound margin (denoted by 0 degrees) to a greater extent than littermate ControlcKO

cells (Fig 3.3D). Conversely, Piezo1-GoF and Yoda1-treated cells flow towards the wound

margin to a lesser extent than their corresponding Controls (Fig 3.3E and 3.3F).
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Figure 3.3: Increased PIEZO1 activity inhibits coordinated cellular motion. (A-C)
Representative mean Particle Image Velocimetry (PIV) flow fields derived from time-lapse
images of labeled nuclei from collectively migrating monolayers of: (A) ControlcKO (Top)
and Piezo1 -cKO (Bottom) keratinocytes, (B) ControlGoF (Top) and Piezo1 -GoF (Bottom)
keratinocytes, and (C)DMSO-treated (top) and 4 µMYoda1-treated keratinocytes (Bottom)
during time-lapse scratch assay experiments. An individual flow field comprises either the
upper or lower monolayer sheet of a scratch assay. Flow fields are oriented such that for the
Y-direction, 0 µm is positioned within the cell free region. (D-F) Distribution plots showing
the probability density of velocity vector direction for: (D) ControlcKO (gray ; κ = 0.51) and
Figure 3.3 continued on next page
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Figure 3.3 continued
Piezo1 -cKO (purple; κ = 0.71) monolayers, (E) ControlGoF (gray ; κ = 1.01) and Piezo1 -
GoF (green; κ = 0.71) monolayers, and (F) DMSO-treated (gray ; κ = 0.61) and Yoda1-
treated (red ; κ = 0.30) monolayers. The curves depicted in the figure represent the fitting of
von Mises distributions, where a smaller reported κ corresponds to less directed migration
while a larger κ indicates an increase in directed migration. For D-F, p value calculated
by Chi-squared test. (G) Cummings plot showing the mean angular deviation, or the vari-
ability in velocity direction isolated from PIV flow fields in: ControlcKO vs. Piezo1 -cKO
monolayers (left ; p value calculated via two-sample t-test; Cohen’s d = -0.7), ControlGoF

vs. Piezo1 -GoF monolayers (middle; p value calculated via two-sample t-test; Cohen’s d
= 0.43) or DMSO-treated vs. 4 µM Yoda1-treated monolayers (right ; p value calculated
via two-sample t-test; Cohen’s d = 1.14). Data are normalized such that 1 indicates highly
random velocity directions and 0 indicates highly uniform velocity directions. (H-J) Spatial
autocorrelation, C(∆r), of the radial velocity component, which is a measure of the spatial
coordination of neighboring cells in monolayers, plotted as a function of increasing length
scales of: (H) ControlcKO (gray) and Piezo1 -cKO (purple) keratinocytes, (I) ControlGoF

(gray) and Piezo1 -GoF (green) keratinocytes, and (J) DMSO-treated (gray) and Yoda1-
treated (red) keratinocytes. For H, I, J * denotes a statistically significant difference, and
ns denotes not statistically significant as determined by one way ANOVA test. Specific p
values for plotted points can be found in Fig A.11. See also Fig A.10. (K) Local spatial
coordination, C(∆r = 150 µm), of keratinocytes where the correlation value is set at 150 µm
to measure the coordination of motion with neighboring cells in: ControlcKO vs. Piezo1 -cKO
monolayers (left ; p value calculated via two-sample t-test; Cohen’s d = 0.62), ControlGoF

vs. Piezo1 -GoF monolayers (middle; p value calculated via two-sample t-test; Cohen’s d =
-0.7) or DMSO-treated vs. 4 µM Yoda1-treated monolayers (right ; p value calculated via
Mann-Whitney test; Cohen’s d = -1.4). n in B, C, E, F, H, I, J and K denotes the number
of monolayer sheets imaged. For ControlcKO and Piezo1 -cKO data plotted in A, D, G (left),
H, and K (left), images are taken from three independent experiments. For ControlGoF and
Piezo1 -GoF data plotted in B, E, H (middle), I, and K (middle), images are taken from
four independent experiments. For DMSO-treated and 4 µM Yoda1-treated keratinocyte
data plotted in C, F, H (right), J, and K (right), images are taken from two independent
experiments.
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To fit our vector direction datasets, we employed the von Mises distribution by minimizing

the mean squared error with the von Mises probability density function (Eq. C.4 in the

Methods Section). The resulting fitted curves (Fig 3.3D-F) provide the best approximation

of the data by adjusting the distribution parameters, including the mean (µ) and the con-

centration (κ, indicating the strength of directed migration in our experimental context).

A smaller κ value corresponds to a flatter bell curve and a distribution closer to uniform,

indicating less directed migration. Conversely, a larger κ value results in a sharper bump in

the probability density function, indicating an increase in directed migration. We find that

Piezo1 -cKO cells show a higher κ (κ = 0.71) than ControlcKO (κ = 0.51) indicating that

Piezo1 -cKO cells move with increased coordination relative to ControlcKO cells (Fig 3.3D).

On the other hand, we find that both Piezo1 -GoF and Yoda1-treated monolayers show a

loss in directed migration as illustrated by the broader distribution of isolated vector direc-

tions and a lower calculated κ value for experimental conditions (κ = 0.71 for Piezo1 -GoF,

κ = 0.30 for Yoda1-treated) relative to the respective control populations (κ = 1.01 for

ControlGoF, κ = 0.61 for DMSO-treated; Fig 3.3E and 3.3F).

PIEZO1’s effect on coordinated directionality can be further parameterized by measuring the

angular deviation, or the variability in velocity direction for all vectors within a PIV vector

field. Thus, the range of the angular deviation indicates how coordinated the direction of cel-

lular motion is within an entire monolayer field of view such that a higher angular deviation

indicates less coordination. We observe that Piezo1 -cKO monolayers have a lower aver-

age angular deviation value relative to ControlcKO monolayers, indicating a smaller spread

in velocity direction (Fig 3.3G, left). This is opposed to Piezo1 -GoF and Yoda1-treated

monolayers which both show a higher angular deviation than the respective controls, fur-

ther signifying that PIEZO1 activity promotes less directional migration (Fig 3.3G, middle,

right). We note that any difference in the angular deviation between control conditions can

likely be attributed to different genetic backgrounds between control conditions.
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Recognizing that the synchronized movement of groups of cells during collective migration

relies upon the coordination of migration direction across individual cells, we next looked at

how PIEZO1 activity affects the distance over which cells align, or correlate, their motion

within a monolayer. To do this, we determine how alike the velocity of nearby cells is by

calculating the average spatial autocorrelation of velocity vectors, (C(∆r)), which measures

the degree of correlation between velocity vectors of cells at increasing length scales within

a monolayer (Fig 3.3H-K). If keratinocytes within a monolayer are migrating together with

high directional uniformity we expect a higher autocorrelation value, while a lower auto-

correlation value indicates that individual keratinocytes are moving more independently of

one another. Therefore, the decay rate of the average spatial autocorrelation curve indi-

cates how coordinated a given cell's direction of motion is to that of another cell located

at iteratively increasing distances away (Fig 3.3H-J). Measurement of the spatial autocor-

relation in Piezo1 -cKO and ControlcKO monolayers illustrate that Piezo1 -cKO cells show

an increase in coordination with cells at greater distances relative to ControlcKO cells, as

indicated by a slower decay of the average Piezo1 -cKO autocorrelation curve (Fig 3.3H).

The length constant, or distance at which the spatial autocorrelation reaches a value of 0.37,

was estimated by fitting an exponential curve to our experimental dataset. Calculations

of the length constant for Piezo1 -cKO cells show an increase in coordination by 21.47 µm

farther than ControlcKO (Figs 3.3H and A.10). To further quantify the coordination between

nearby cells we measure the spatial autocorrelation values at 150 µm, the distance of a few

cell-lengths away. Measurement of local autocorrelation values in Piezo1-cKO keratinocytes

cells show an increased level of coordination of locomotion with neighboring cells compared

to cells in ControlcKO monolayers (Fig 3.3H and 3.3K). In contrast, both Piezo1 -GoF and

Yoda1-treated monolayers exhibit less coordinated movement with neighboring cells when

compared to control cells (Fig 3.3I-K). Length constants in Yoda1-treated and Piezo1 -GoF

cells show a 58.560 µm and 85.54 µm decrease, respectively, in their coordination of motion

relative to the respective control monolayers (Figs 3.3I, 3.3J and A.10). Therefore, we find
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that PIEZO1 activity disrupts the distance over which cells coordinate their motion during

wound closure which inhibits the efficiency of collective migration.

Taken together, our experimental findings support our model predictions that PIEZO1 in-

hibits coordinated directionality during collective migration. Moreover, we identify that

PIEZO1 activity negatively contributes to leader cell formation and the distance by which

keratinocytes can coordinate their migration during 2D epithelial sheet migration.

3.6 Discussion

When experimentally measuring persistence during single cell migration assays, we found

that both Piezo1 -GoF and Piezo1 -cKO keratinocytes have increased persistence (Figure 2

& Figure 2—Figure Supplement 3, [35]), while Yoda1-treatment shows no effect on persis-

tence (Fig A.6). On the other hand, measurement of persistence within collectively migrating

cells shows that cells within both Piezo1 -GoF and Yoda1-treated monolayers show less per-

sistence while cells within Piezo1 -cKO monolayers show an increase in persistence (Fig 3.2).

Taken together, our experimental data indicates that PIEZO1’s effect on cell migration per-

sistence is impacted by the contribution of neighboring cells on cell motion. Given that

coordinated directionality is the result of cell-cell interactions, while persistence is an inher-

ent characteristic of single cell migration it appears that coordinated directionality plays a

key role in contributing towards the efficiency of collective migration experimentally.

During collective migration, the multicellular movement and corresponding polarization of

cell clusters is dependent on signal transduction from leader cells to the ensuing follower

cells [29, 30, 48]. Leader cells located at the front of these collectives transmit directional

cues to follower cells through intercellular mechanical forces and biochemical cues which

are communicated via cell adhesion molecules such as E-cadherin [9, 11, 31, 41, 54, 65, 78].
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Both theoretical [4, 33] and experimental studies [52] have highlighted the role that cell-cell

adhesions play in determining polarization dynamics and motility in multicellular systems.

Given our finding that PIEZO1 activity inhibits leader cell formation and coordinated direc-

tionality it is possible that PIEZO1 coordinates mechanical forces communicated at cell-cell

junctions during the collective migration of keratinocytes; however, further studies would be

needed to elucidate this relationship. Consistent with this idea, recent work demonstrates

interactions between cadherins and PIEZO1 at cell-cell junctions [89, 16].

The prior work identified that PIEZO1 enrichment and activity induces cell retraction in

single keratinocytes as well as along the wound edge of monolayers during in vitro scratch

assays [35]. Building on these findings, we demonstrate here that monolayer conditions with

elevated PIEZO1 activity lack leader cell formations and display reduced coordinated move-

ment of cells. Interestingly, retraction forces generated by follower cells have been seen to

promote the formation of leader cells along the wound edge [87]. Thus, it appears that collec-

tive migration requires carefully-regulated and coordinated levels of retraction. Consistent

with this, Vishwakarma et al. found that pharmacologically adjusting the level of actomyosin

contractility within monolayers affected the length-scale by which leader cells can correlate

their forces such that actomyosin contractility levels inversely correlate with the frequency

of leader cell formations [87]. We propose that altered patterns of PIEZO1-induced retrac-

tions within a monolayer may inhibit normal signal transduction by leader cells and disrupt

cells from moving cohesively during collective migration. Given that these contractile forces

could be communicated through cell-cell adhesions, patterns of cell contractility within the

monolayer could be modeled to explore this by incorporating a variable adhesion coefficient

in a PDE model or using a discrete approach such as a Vertex Model [27, 92].

The identity of downstreammolecules underlying PIEZO1-mediated inhibition of keratinocyte

migration during reepithelialization remains an open question. The Rho family of small GT-

Pases, which includes the small molecules Rac1 and RhoA, play several roles during collective
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migration – regulating cell polarization, intercellular coordination of cellular movement, and

leader cell initiation [17, 66, 71, 97]. Previous work has linked PIEZO1-mediated Ca2+

influx to impacting both focal adhesion dynamics [63, 53, 94] as well as Rac1 and RhoA

levels. PIEZO1’s effect on small GTPases has been shown to affect migration in both neural

crest cells [13] and cancer cells [43], Cadherin remodeling in lymphatic endothelial cells [64],

and macrophage mechanotransduction in iron metabolism [59]. We also observed that total

levels of Rac1 and RhoA in healing monolayers are reduced in Yoda1-treated compared to

DMSO-treated samples (Fig A.12). While the downregulation of Rho GTPases provides

an initial insight into the mechanism underlying PIEZO1-mediated inhibition of leader cells

in collective migration, a detailed characterization of this relationship surpasses the scope

of work covered within this paper. In future work, we can use mathematical modeling to

investigate the relationship between PIEZO1 and Rho GTPases in keratinocyte collective

migration by incorporating activator-inhibitor systems for Rho GTPase feedback networks

[39] and spatial dynamics [34] into our modeling framework.

Since faster wound healing provides several physiological advantages to an organism, the role

of PIEZO1 expression in keratinocytes may seem counterintuitive; however, other groups

have reported that too many leader cells results in a disorganized epithelial sheet which

affects the quality of wound closure [66]. Recent work examining wound healing in Drosophila

found that knockout of the Piezo1 orthologue, Piezo, resulted in poorer epithelial patterning

and although wounds closed faster, they did so at the expense of epidermal integrity [96].

Therefore, it appears that effective wound healing may require a delicate balance of PIEZO1

activity.

PIEZO1 has been found to influence migration in other cell types, but whether channel activ-

ity inhibits or promotes cell migration has been seen to vary [15, 36, 51, 60, 61, 63, 95, 98].

Interestingly, recent studies found that PIEZO1 inhibition suppresses collective migration

and results in a decrease in the coordinated directionality of migrating Xenopus neural crest
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cells [13, 61]. We note that the tissue-context of collective migration is known to engage

distinct spatiotemporal signal transduction pathways [26, 29, 48]. Therefore, our seemingly

contradictory findings to the observations in neural crest cells could reflect the inherent

differences between the migration of neural crest cells and that of keratinocytes during reep-

ithelialization. This highlights the need for studying PIEZO1 mechanotransduction under

different biological contexts of cell migration.
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Chapter 4

Modeling the impact of heterogeneous

PIEZO1 on cell mixtures

4.1 Introduction

In the previous chapter, we have uncovered the inhibitory impact of PIEZO1 activity on

coordinated cell directionality within a monolayer. This discovery naturally raises addi-

tional questions about the consequences of heterogeneous PIEZO1 activity, for instance

within monolayers comprising cells with high and low PIEZO1 activity. To explore this,

we expanded the mathematical model presented in Section 2.2.1 to explore the influence of

PIEZO1 activity in mixed populations.

In this study, we develop a model considering two distinct cell types, each governed by its

own set of equations and parameters, while maintaining effective interaction in the collec-

tive migration. We refer to the previously introduced upscaled model (the main model in

Section 2.2.1) as the ”homogeneous model,” and the new model developed in this chapter

as the ”heterogeneous model.” This heterogeneous model is calibrated using experimental
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data (Figs 3.1A and A.5; Table 3.1) and numerically simulated to answer several primary

questions: Does the presence of heterogeneous populations affect wound healing? Do cells

with low PIEZO1 activity always become the leader cells in the mixture? Specifically, we are

interested in the roles played by mixture heterogeneity and the interaction between different

cell types in wound healing and cell representation at the wound edge. We will also explore

whether any predictions from the heterogeneous model can be validated by experiments,

and conversely, whether experimental data can inform the model to infer information that

is challenging to measure experimentally.

4.2 Model

To develop the model, a monolayer within a field of view (experiments in Fig 1.1C-1.1F)

is discretized in two dimensions using a uniform grid of size h. This discretization enables

the spatial indices (i, j) to be denoted as x = xi,j = (ih, jh). The cell density of the

first cell type, denoted as u cells and represented by the function u = u(x, t) = u(x, y, t),

where x = (x, y)T , varies in space and time. At a specific time t, the cell density can

be expressed as ui,j = u(xi,j, t). Analogously, the cell density of the second cell type,

denoted as v cells, is introduced following the same spatial and temporal representation as

vi,j = v(xi,j, t). The experimental field of view is dimensionless and corresponds to a unit

square domain: [0, 1]× [0, 1] ∈ R2. By incorporating essential biological components related

to reepithelialization (Table 3.2, we formulate discrete master equations for both u cells (Eq.

4.1) and v cells (Eq. 4.2). These equations illustrate the rate of change of cell density over

time (Eq. 4.1, 4.2; left hand side) in response to the net flux of cells (Eq. 4.1, 4.2; right-hand

side):
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∂ui,j

∂t
=T→u,i−1,jui−1,j + T←u,i+1,jui+1,j + T ↑u,i,j−1ui,j−1 + T ↓u,i,j+1ui,j+1

− (T→u,i,j + T←u,i,j + T ↑u,i,j + T ↓u,i,j) · ui,j,

(4.1)

∂vi,j
∂t

=T→v,i−1,jvi−1,j + T←v,i+1,jvi+1,j + T ↑v,i,j−1vi,j−1 + T ↓v,i,j+1vi,j+1

− (T→v,i,j + T←v,i,j + T ↑v,i,j + T ↓v,i,j) · vi,j.
(4.2)

The transitional probabilities per unit time (T ’s) in this context correspond to probabilities

associated with specific directions of cell movement. Specifically, we have T→u,i,j, T
←
u,i,j, T

↑
u,i,j,

T ↓u,i,j for u cells, and similarly, T→v,i,j, T
←
v,i,j, T

↑
v,i,j, T

↓
v,i,j for v cells. These probabilities are

associated with the transition of cells between adjacent grid points, such as moving from xi,j

to xi+1,j for T→u,i,j or T→v,i,j. Each transitional probability takes into account various factors

influencing cell behavior, including cell motility, cell-cell adhesion, coordinated directionality,

retraction events, and volume filling limitations.

In the discrete master equation governing u cells (refer to Eq. 4.1), the specific transitional

probability T→u,i,j, representing the likelihood of u cells transitioning from xi,j to xi+1,j, is

defined as the following:

T→u,i,j = (1− ui+1,j − vi+1,j)(1− αuuui−1,j − αuvvi−1,j)

· (1− αuuui,j+1 − αuvvi,j+1)(1− αuuui,j−1 − αuvvi,j−1)(f
→
u,i,j + b→u,i,j).

(4.3)

The term (1− ui+1,j − vi+1,j) accounts for volume filling effects, representing a constraint on

further cell movement into xi+1,j when the cell density at that point has reached its maximum

59



value. Additionally, the term (1−αuuui−1,j−αuvvi−1,j)(1−αuuui,j+1−αuvvi,j+1)(1−αuuui,j−1−

αuvvi,j−1) models cell-cell adhesion from three directions that hinder cell migration [3]. Here,

αuu and αuv are adhesion coefficients within the range of [0, 1], where αuu represents cell-cell

adhesion between u cells, and αuv represents cell-cell adhesion between u cells and v cells.

In the last term f→u,i,j + b→u,i,j, the vector f→u,i,j = d↔u (ui,j + vi,j)/h
2 models diffusive cell

motion for u cells, with d↔u representing the magnitude of u cell movement in the horizontal

coordinate direction, and h reflecting the diffusive scaling (O(1/h2)). The term b→u,i,j =

r→u,i,j/hmodels u cell movement due to retraction, where r→u,i,j accounts for cell retraction, and

h reflects the advective scaling (O(1/h)). The diffusive component f→u,i,j generates a diffusion

flux dependent on the gradient of cell densities u and v, while the advective component b→u,i,j

results in an advection velocity independent of cell densities, mimicking the influence of

retraction events (see Section B.1.1 for details). It’s important to note that the total cell

density term (ui,j + vi,j) in f→u,i,j represents the moving front connecting a region of zero cell

density (wound) to a region of non-zero density (monolayer), e.g., [91]. Thus, the transitional

probability for u cells (Eq. 4.3) can be rewritten as:

T→u,i,j =
d↔u
h2

(ui,j + vi,j)(1− ui+1,j − vi+1,j)

· (1− αuuui−1,j − αuvvi−1,j)(1− αuuui,j+1 − αuvvi,j+1)(1− αuuui,j−1 − αuvvi,j−1)

+
r→u,i,j
h

(1− ui+1,j − vi+1,j)

· (1− αuuui−1,j − αuvvi−1,j)(1− αuuui,j+1 − αuvvi,j+1)(1− αuuui,j−1 − αuvvi,j−1)

(4.4)

and analogously the corresponding transitional probability for v cells is defined as the fol-

lowing:
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T→v,i,j =
d↔v
h2

(ui,j + vi,j)(1− ui+1,j − vi+1,j)

· (1− αvvvi−1,j − αuvui−1,j)(1− αvvvi,j+1 − αuvui,j+1)(1− αvvvi,j−1 − αuvui,j−1)

+
r→v,i,j
h

(1− ui+1,j − vi+1,j)

· (1− αvvvi−1,j − αuvui−1,j)(1− αvvvi,j+1 − αuvui,j+1)(1− αvvvi,j−1 − αuvui,j−1).

(4.5)

The other transitional probabilities for u cells and v cells, namely T←u,i,j, T
↑
u,i,j, T

↓
u,i,j and T←v,i,j,

T ↑v,i,j, T
↓
v,i,j, follow analogous definitions. Consequently, the continuum limits can be derived

by letting h → 0 in the discrete master equations (Eq. 4.1, 4.2), leading to the following

system of partial differential equations:

∂tu = ∇ · (D11∇u+D12∇v +R1u),

∂tv = ∇ · (D21∇u+D22∇v +R2v),

(4.6)

which are diffusion-advection equations where the diffusion, represented by the matrices

D11, D12, D21 and D22, accounts for cellular locomotion and coordinated directionality.

Meanwhile, the advection velocities, denoted as R1 and R2, model the retraction of the

leading edge. The diffusion coefficients, or diffusivities, are 2 × 2 positive definite matrices

given by

D11 = du · (wI,uI + wA,uA) ·D11,

D12 = du · (wI,uI + wA,uA) ·D12,

D21 = dv · (wI,vI + wA,vA) ·D21,

D21 = dv · (wI,vI + wA,vA) ·D21,

(4.7)
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where non-negative parameters du and dv model cell motilities of u cells and v cells during

collective migration. The diffusion decomposition for u cells is expressed as wI,uI + wA,uA,

and for v cells, it is represented as wI,vI + wA,vA. This decomposition combines diffusion

isotropy and diffusion anisotropy. In this context, the identity matrix I = I2 captures the

randomness in cellular migration, while the matrix A models directed cellular migration.

The continuous coefficients related to cell motility (du for u cells, dv for v cells), isotropic

strength (wI,u for u cells, wI,v for v cells), and anisotropic strength (wA,u for u cells, wA,v

for v cells, representing coordinated directionality) are derived from the discrete level in the

following way:

du = d↕u, wI,u =
d↔u

d
↕
u

, wA,u =
d
↕
u − d↔u

d
↕
u

,

dv = d↕v, wI,v =
d↔v

d
↕
v

, wA,v =
d
↕
v − d↔v

d
↕
v

.

(4.8)

During wound closure, directional cues received from leader cells promote the migration of

follower cells into the cell-free space, thus enhancing the probability of cells moving into

the wound area. This results in anisotropic diffusion, where cells are more likely to migrate

towards the wound gap. Given that cells are directed to migrate towards the wound gap,

we assume a larger magnitude of movement in the vertical direction (d
↕
u ≥ d↔u and d

↕
v ≥ d↔v )

based on our experimental setup, where the scratch wound was created horizontally in the

middle of the experimental domain (Fig 1.1C-1.1F). Therefore, the coordinated directional-

ities wA,u and wA,v are guaranteed to be non-negative and bounded by 1, and the convex

weighting relation wI,u + wA,u = wI,v + wA,v = 1 naturally holds (Eq. 4.8).

The scalar diffusion coefficients D11, D12, D21 and D22 in Eq. 4.7 are polynomials of cell

densities u and v:
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D11 =(1− αuuu− αuvv)
2 · (2u+ v − (2 + 6αuu + 2αuv)uv − (1 + 7αuu)u

2 − (1 + αuv)v
2

+ (12αuu + αuv)u
2v + (6αuu + 2αuv)uv

2 + 6αuuu
3 + αuvv

3),

D12 =(1− αuuu− αuvv)
2 · (1− (αuu + 5αuv)u− 6αuvv + 10αuvuv + 5αuvu

2 + 5αuvv
2) · u,

D21 =(1− αuvu− αvvv)
2 · (1− (αvv + 5αuv)v − 6αuvu+ 10αuvuv + 5αuvu

2 + 5αuvv
2) · v,

D22 =(1− αuvu− αvvv)
2 · (u+ 2v − (2 + 6αvv + 2αuv)uv − (1 + 7αvv)v

2 − (1 + αuv)u
2

+ (12αvv + αuv)uv
2 + (6αvv + 2αuv)u

2v + 6αvvv
3 + αuvu

3),

(4.9)

which are derived through a multi-scale modeling process from the scaled cell density (ui,j +

vi,j)/h
2, cell-cell adhesion (e.g., (1 − αuuui−1,j − αuvvi−1,j)(1 − αuuui,j+1 − αuvvi,j+1)(1 −

αuuui,j−1 − αuvvi,j−1) in T→u,i,j) and volume filling (e.g., (1 − ui+1,j − vi+1,j) in T→u,i,j). The

adhesion coefficients (αuu and αvv), which lie in the range [0, 1], models the adhesion forces

between adjacent cells, with a larger value corresponding to larger adhesion forces. In our

study, we generalize the parameter αuv to include negative values, thereby accounting for

possible repulsive interactions in additional to cell-cell adhesion between different cell types

(detailed in Section 4.3.2). Volume-filling limitations to cell movement are also modeled in

scalar diffusivities (Eq. 4.9) to hinder cells from migrating into a cell-dense area.

Similar to the derivation of diffusion, the retraction vectors R1 for u cells and R2 for v cells

are derived from the O(1/h) components of the discrete transitional probabilities (Eq. 4.4

for u cells and Eq. 4.5 for v cells) by taking the limit h → 0:

R1 = (1− u− v)(1− αuuu− αuvv)
3 · (∆r↔1 ,∆r

↕
1)

T ,

R2 = (1− u− v)(1− αuvu− αvvv)
3 · (∆r↔2 ,∆r

↕
2)

T ,

(4.10)
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where (1− u− v) and (1− αuuu− αuvv)
3 represent the effects of volume filling and cell-cell

adhesion, respectively. The retraction magnitude and directions are modeled phenomeno-

logically in ∆r’s (∆r↔1 , ∆r
↕
1, ∆r↔2 , and ∆r

↕
2) as being localized in space and time, motivated

by prior experimental studies [35]. In particular, we assume:

1. Retraction occurs locally along the wound edge. This means only a part of

wound edge cells are involved in retraction events at each time, while the

rest of the cells on the edge and cells within the monolayer away from the

edge just migrate by diffusion.

2. Retraction occurs intermittently in time. This means no retraction event is

endless, i.e., no regions retract indefinitely. Hence at a wound edge point,

there is a finite interval of duration time for each retraction event, and there

is also a finite interval of time between two consecutive retraction events.

Following the localization assumptions (1) and (2), a choice for ∆r’s is given in the following

form to simulate retraction that occurs at random times and locations on each side of the

wound edge:

∆r↔1 = ∆r
↕
1 = ∆r↔2 = ∆r

↕
2 = H̃(γ − u− v) ·

∞∑
i=1

si · 1̃[τi,τi+T r
i )(t) · 1̃Ωi

(x), (4.11)

where the smoothed Heaviside function H̃, smoothed indicator function 1̃, strength for the

ith retraction si, starting moment for the ith retraction τi, duration for the ith retraction

T r
i and region for the ith retraction Ωi are all inherited from our previous model, defined in

the same way as in Eq. 2.10. In such construction, ∆r’s are designed to model retractions

such that cell movement would be governed by a diffusion-advection equation that guides

the migrating cells in the retraction region near the wound edge:
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∂tu = ∇ · (D11∇u+D12∇v) +∇ · (su(1− u− v)(1− αuuu− αuvv)
3u),

∂tv = ∇ · (D21∇u+D22∇v) +∇ · (sv(1− u− v)(1− αuvu− αvvv)
3v),

(4.12)

where diffusivities (D11, D12, D21 and D22) are given in Eq. 4.7. In su = (su, su)
T/

√
2 and

sv = (sv, sv)
T/

√
2, the retraction strengths su and sv regulate the magnitude of advection

velocities for u cells and v cells, respectively. On the other hand, cells far from the wound

edge (i.e., interior of the monolayer) migrate following a simple diffusion equation

∂tu = ∇ · (D11∇u+D12∇v),

∂tv = ∇ · (D21∇u+D22∇v)

(4.13)

with the same diffusivities (Eq. 4.7). In such construction of ∆r↔1 and ∆r
↕
1, three key

parameters related to retraction are involved: (1) µs,u denotes the mean strength of retraction

forces on u cells, (2) µr,u represents the mean duration for a retraction event to occur on

u cells, and (3) µnr,u indicates the mean idle duration between two consecutive retraction

events on u cells. Similarly, µs,v, µr,v, and µnr,v are defined analogously in ∆r↔2 and ∆r
↕
2 to

characterize retraction on v cells.

As we focus on modeling a specific subset of the observation domain in the experiment, e.g.,

the region near the wound edges instead of the entire experimental domain, we establish the

following boundary conditions at the computational domain boundaries:
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u(x, 0, t) = p̃u · g0(x, t), u(x, 1, t) = p̃u · g1(x, t),

v(x, 0, t) = p̃v · g0(x, t), v(x, 1, t) = p̃v · g1(x, t),
∂u(0, y, t)

∂x
=

∂u(1, y, t)

∂x
=

∂v(0, y, t)

∂x
=

∂v(1, y, t)

∂x
= 0.

(4.14)

Horizontally, at the top and bottom of the domain, time-dependent Dirichlet boundary

conditions at x = (x, 0) and x = (x, 1) allocate total cell densities to the boundary points

based on functions g0 and g1 (the same as Eq. 2.17, detailed in Section 2.3.1). These functions

simulate the mixing of cells flowing into the observation domain from the monolayer, roughly

perpendicular to the wound edge. The random variable p̃v represents the percentage of v

cells, while p̃u = 1− p̃v represents the percentage of u cells. To incorporate randomness, we

assume:

p̃v ∼ N (pv, σ
2
v), (4.15)

where N (pv, σ
2
v) denotes a normal distribution with mean pv and standard deviation σv.

Vertically, on the left and right sides of the domain, no-flux (Neumann) boundary conditions

are employed to approximate a net balance of cell influx and efflux into the observation

domain, aligning with the experimental setup. Thereafter, model parameter pv is referred

to as the source cell percentage for v cells.

The initial condition for the governing equations (Eq. 4.6) is generated by setting the total

cell density u+ v at t = 0 to be the same as ρ(x, 0), which is the initial condition from our

previous model (detailed in Section 2.3.2). This initial monolayer consists of pu percentage

of u cells and pv percentage of v cells:
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u(x, 0) = pu · ρ(x, 0), v(x, 0) = pv · ρ(x, 0). (4.16)

Summarizing, this new model builds on parameters inherited from the upscaled model in Sec-

tion 2.2.1, emphasizing the interactions between different cell types (αuv) and the mixture

heterogeneity characterized by the percentage of v source cells (pv). The derived govern-

ing equations (Eq. 4.6) are nonlinear stochastic PDEs, with stochasticity arising from the

random coefficients.

4.3 Methods

4.3.1 Numerical implementation

Following the same framework as our previous model with homogeneous cell type (Fig 2.1A,

right), the heterogeneous collective cell migration is also simulated within a square domain,

which is defined by two opposite sides with zero-flux Neumann boundaries (left and right)

and two opposite sides with randomized Dirichlet boundaries (up and down). Initially, cells

are uniformly mixed within the simulation domain, consisting of a pv percentage of v cells

and consequently, a pu = 1− pv percentage of u cells. When the simulations begin (t > 0),

source cells migrate into the domain from the randomized Dirichlet boundaries, exhibiting

stochastic influx and stochastic proportions of cells (Eq. 4.14).

To solve the governing equations (Eq. 4.6), we first perform a forward time discretization

(with size ∆t) on the left-hand side of each equation. Here, ∂tu and ∂tv are discretized using

the schemes (u(xi,j, t+∆t)− u(xi,j, t))/∆t and (v(xi,j, t+∆t)− v(xi,j, t))/∆t, respectively.

For the spatial discretization (right-hand side), the transitional probabilities for u cells and v
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cells are shown to be separable in the discrete model (Eq. 4.4 and Eq. 4.5). This allows us to

address the diffusion part and advection part separately for each equation. For the diffusion

part, a natural discretization is directly given by the discrete model (e.g., centered finite

differences). Meanwhile, for the advection part, we employ a 2nd order weighted essentially

non-oscillatory (WENO) method [38, 57] to discretize the equation. Therefore, we utilize

this explicit finite difference scheme to iteratively update the cell density of u cells and v

cells at the nth time step (un
i,j and vni,j) over the simulation domain [0, 1] × [0, 1] until the

total cell mixture u+ v closes the wound.

In the numerical implementation, the governing equations for u and v cells (Eq. 4.6) must

be solved synchronously at each time step to update the cell density values because of their

mutual dependency. In the diffusion part, the volume filling effect for each cell type depends

on the total cell density u+ v, and the interaction between u cells and v cells is determined

by their respective counterparts in their own equations. While the mutual dependency in

the advection parts of the governing equations for u and v cells may not be as obvious as in

the diffusion part, since retraction is modeled to be applied independently to each cell type,

it is important to note that the retraction region near the wound edge, where each type of

cell experiences retraction, is determined by the total cell density u+ v (Eq. 4.11 in Section

B.1.1).

4.3.2 Model parameter study

Simulations of wound closure provide insight into how individual model parameters affect

the wound closure process. Through a parameter study, we can explore the effects of model

parameters on the rate of normalized wound closure, which is influenced by PIEZO1 activ-

ity during keratinocyte reepithelialization and can be directly measured and compared to

experimental data. Our parameter study involves altering individual model parameters one
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at a time while holding the remaining parameters at their base values (Fig B.11) to observe

how such variations affect wound closure and edge roughness.

Since the scope of this paper is on heterogeneity, and our previous chapters have extensively

explored model parameters among cells of the same type, we primarily focus on two model

parameters: interaction coefficient αuv, which captures the interaction between different

types of cells, and the source percentage for v cells pv, which captures the heterogeneity of

the mixture. Specifically, while αuv was originally defined alongside αuu and αvv to model

the adhesion between u and v cells, we can extend its definition. By allowing αuv to take

negative values, it can more broadly represent cell-cell interactions between u and v cells, with

αuv > 0 indicating adhesion and αuv < 0 indicating repulsion. The parameter pv represents

the percentage of v cells in the source cells, indicating that the initial cell population consists

of v cells in the proportion of pv at t = 0, and that cells entering the observation domain

from the inner monolayer maintain this proportion in average when t > 0. Thus, pv models

the heterogeneity of the mixture, where pv = 0.5 results in the most heterogeneous mixture,

and higher values of pv indicate a greater proportion of v cells compared to u cells, and vice

versa.

4.3.3 Model calibration with experimental data

By integrating model parameters derived from experimental data, we can calibrate the math-

ematical model used in simulations. To achieve this, we expanded upon analyses conducted

on single migrating keratinocytes in previous studies [35, 37]. This allowed us to compile

an experimental dataset characterizing PIEZO1’s impact on cell motility and retraction pro-

cesses, including retraction duration, inter-retraction duration, and cell retraction strength,

across all experimental conditions (Piezo1 -cKO, Piezo1 -GoF, Yoda1-treatment, and their

respective controls). Cell motility parameters were determined by extracting cell speed in-
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formation from single-cell tracking experiments conducted previously [35, 37]. On the other

hand, parameters related to retraction processes were obtained by combining two experi-

mental analysis methods employed in previous studies [35]: (1) kymographs, which visually

represent retraction and inter-retraction durations of the leading edge of migrating ker-

atinocytes, and (2) a cell protrusion quantification software, ADAPT [6], which quantifies

the strength of retraction events at the leading edge. This dataset, referred to as the ”Single

Cell Migration” dataset (Figs 3.1A and A.5; Table 3.1), allowed us to calibrate our model pa-

rameters based on experimental measurements, enabling us to make experimentally relevant

predictions regarding PIEZO1’s influence on wound closure behavior.

To calibrate our model, we established a respective simulation control for each experimen-

tal condition (Piezo1 -cKO, Piezo1 -GoF, and Yoda1-treated) by setting the values of model

parameters to baseline values. This baseline configuration ensured that the frequency of re-

traction matched that of the corresponding experimental control condition (see Fig B.11 for

the full list of model parameters and their baseline values). For each experimental condition,

the model parameters related to retraction (retraction duration, inter-retraction duration,

and retraction strength) and cell motility were adjusted relative to the control condition

based on the same proportions observed experimentally. Specifically, changes in mean re-

traction and inter-retraction durations (µr,u, µnr,u for u cells or µr,v, µnr,v for v cells), cell

motility (du or dv), and mean retraction strength (µs,u or µs,v) were adjusted proportionally

in the model based on experimentally observed alterations relative to the control condition.

As established in the previous chapter, coordinated directionality in Piezo1 -GoF cells must

be increased compared to ControlGoF to align with experimental observations. We main-

tained this essential calibration and kept other parameters fixed at their baseline values (Fig

B.11), unless specific further variations were required to study their effects.

In collective cell migration with heterogeneous PIEZO1 activity, mixing scenarios include:

(1) ControlcKO and Piezo1 -cKO, (2) ControlGoF and Piezo1 -GoF, and (3) Piezo1 -cKO and
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Yoda1-treated cells. To simulate the collective migration of cells in each PIEZO1 phenotype,

we calibrate model parameters using experimental data correspondingly (detailed in Section

4.3.3). Once the PIEZO1 phenotypes for u and v cells are specified in the model, the values

for these parameters are designated and remain unchanged throughout the simulation.

It is legitimate to consider the mixture of Piezo1 -cKO and Yoda1-treated cells, which does

not involve any wild-type control, because their respective control cases (ControlcKO and

DMSO-treated) are exactly the same type of cells in experiments [35]. Moreover, this mixture

is experimentally feasible by simply treating Yoda1 on a mixture of ControlcKO and Piezo1 -

cKO cells. Since Piezo1 -cKO cells lack PIEZO1 channels, they remain unaffected by Yoda1

treatment, while their wild-type control counterparts in the mixture convert into Yoda1-

treated samples. In our study, Piezo1 -GoF is not considered for mixing with any other cell

types except its own control. This is because ControlGoF utilizes different experimental data

for model calibration compared to other controls, as ControlGoF cells are experimentally

distinct from other control cell types. The mixture of DMSO-treated and Yoda1-treated

cells is experimentally unattainable, thus we only present the relevant results concerning

this mixture in the appendix (Fig B.10).

4.4 Results

4.4.1 The impact of cell-cell interaction on wound closure is am-

plified by the mixture heterogeneity

When mixing u and v cells, if the interaction coefficient αuv < 0, the cell-cell interaction

between u and v cells shifts from adhering to expelling, indicating a tendency to avoid

attachment. To enforce this repelling interaction between u and v cells, we set αuv = −0.4

and observe the simulated wound closure process under equal proportions of u and v cells,
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compared to simulations with solely u cells or solely v cells. This adjustment is achieved

by varying the source cell percentage for v cells pv: pv = 0 represents solely u cells, pv = 1

represents solely v cells, and pv = 0.5 represents a roughly equal mixture of both cell types.

In the case of mixing ControlcKO (u cells) and Piezo1 -cKO (v cells), we observed that solely

Piezo1 -cKO cells (pv = 1) close the wound faster than solely ControlcKO cells (pv = 0),

consistent with experimental results (Fig 4.1A). Interestingly, the wound closure is even

faster when these cell types are mixed, surpassing the closure rate of any individual cell type

(Fig 4.1A). With the expelling cell-cell interaction (αuv = −0.4), this phenomenon persists

across other cell type mixtures (Fig 4.1C and 4.1D), where the mixed cell population closes

the wound more rapidly than any individual cell type.

To comprehensively investigate the impact of cell-cell interactions on normalized wound clo-

sure in cell mixtures, we conducted model simulations across varying proportions of Piezo1 -

cKO source cell percentage pv and different interaction coefficient values αuv. Subsequently,

we plotted the average rate of wound closure obtained from multiple simulations (Fig 4.1B,

4.1D, and 4.1F). Here, we maintained a fixed adhesion between cells of the same type

(αuu = αvv = 0.2), with further details on the parameter study involving changes in αuu

and αvv provided in the appendix (Section B.1.2).

In the mixture of ControlcKO and Piezo1 -cKO cells, the plot exhibits a sloped spindle pat-

tern (Fig 4.1B), with the rate of wound closure appearing higher at the right spindle pole

(pv = 1) compared to the left spindle pole (pv = 0). This observation aligns with experimen-

tal evidence indicating that Piezo1 -cKO cells demonstrate faster wound closure compared

to ControlcKO cells. The plotted lines can be categorized into three types based on their

convexity:

1. When the interaction coefficient is set to αuv = αuu = αvv = 0.2, the adhesion effects

between any cells are indistinguishable. As a result, the wound closure for mixed cell
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Figure 4.1: The impact of cell-cell interaction on wound closure is amplified by the
mixture heterogeneity. (A) Mixing mutually repulsive cells accelerate wound closure.
Snapshot of wound healing progression for a mixture of ControlcKO (u cells) and Piezo1 -
cKO (v cells) captured at equidistant time intervals, under varied source cell conditions
with Piezo1 -cKO (v cells) percentages of 0% (top, i.e., solely ControlcKO), 50% (middle),
and 100% (bottom, i.e., solely Piezo1 -cKO). Colored areas represent cell monolayers, with
colors indicating the spatial distribution of Piezo1 -cKO (v cells) percentage, while plain
white areas denote cell-free space. The interaction coefficient αuv = −0.4. (B) Line graphs
illustrate the mean of 100 simulation results, displaying the normalized wound closure versus
the Piezo1 -cKO source cell percentage. Error bars indicate the standard error of the mean.
The various colored lines denote different interaction coefficient values (αuv). (C) and (D)
Depict similar scenarios to (A) and (B), but involving mixtures of Piezo1 -GoF (v cells) with
their respective wild-type control (u cells). (E) and (F) Also akin to (A) and (B), but
featuring mixtures of Piezo1 -cKO (u cells) and Yoda1-treated cells (v cells). The dashed
line in (F) denotes the unit normalized wound closure, representing the rate of wound closure
of wild-type control.
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migration represents a simple interpolation between pure ControlcKO (left spindle pole

in Fig 4.1B) and pure Piezo1 -cKO (right spindle pole in Fig 4.1B), demonstrating

a monotonic increasing trend from slower closure in ControlcKO to faster closure in

Piezo1 -cKO (the purple line in Fig 4.1B).

2. When the interaction coefficient αuv > 0.2, the hindering adhesion effect between

different cell types αuv becomes stronger than the adhesion effect within the same cell

type (αuu and αvv). In this scenario, when the heterogeneity of the mixture is higher

(e.g., 50% ControlcKO mixed with 50% Piezo1 -cKO), the role played by interaction

coefficient becomes more significant, resulting in slower collective cell migration and

displaying a convex ”U-shaped” line (e.g., the bottom line in light blue in Fig 4.1B).

3. Conversely, when the interaction coefficient αuv < 0.2, cells are more likely to migrate

away from the adhesion between different cell types compared to the adhesion between

the same cell types. The expelling effect occurs when αuv < 0 becomes negative,

causing cell-cell interaction between different cell types to propel cells toward cell-free

regions. Consequently, the faster wound closure rate in the mixture results in a concave

up ”bridge-shaped” line (e.g., the top line in dark blue in Fig 4.1B).

We noticed that the influence of cell-cell interaction on wound closure rate is more pro-

nounced in the mixture with higher heterogeneity, i.e., when the proportion of Piezo1 -cKO

cells (pv) approaches 0.5. This heightened impact arises because the effect of interaction

coefficient (αuv) on one cell type cannot act independently; it also relies on the cell density

of the other cell type in the mixture. In our model (Eq. 4.9 and Eq. 4.10), u cell migration is

impeded by interaction coefficient through the term 1−αuuu−αuvv, and similarly for v cells

through 1− αvvv − αuvu. Consequently, if the percentage of v cells (pv) is large, indicating

that its counterpart pu = 1− pv is too small to effectively transmit interaction coefficient to

influence its migration. Conversely, if the percentage of v cells is small, even though a large

number of u cells can influence its migration through interaction coefficient, the proportion
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of v cells is too small to significantly impact the overall mixture cell migration. Therefore,

when they are mixed in near-equal proportions, the modulation of interaction coefficient αuv

in wound closure reaches its maximal effect.

Similarly, the mixture of ControlGoF and Piezo1 -GoF also displays an inclined spindle pattern

when plotting the normalized wound closure with respect to the Piezo1 -GoF source cell

percentage pv under different interaction coefficient αuv (Fig 4.1D). However, in this case,

the inclination of the spindle is from the higher left spindle pole (ControlGoF) sloping to

the lower right spindle pole (Piezo1 -GoF), consistent with the experimental observation

indicating that Piezo1 -GoF cells close the wound slower than its control. Similarly to Fig

4.1B, the mixture under repulsive cell-cell interaction when αuv < 0 also demonstrates an

acceleration in wound closure, while a slower rate of wound closure is observed in the mixture

under high interaction coefficient (αuv). It’s noteworthy that the fastest and slowest rates of

wound closure do not necessarily occur in the exact even mixture (pv = 0.5), as the extremes

are influenced by both the PIEZO1 phenotype and heterogeneity. By isolating the effect of

the PIEZO1 phenotype through mixing cells with the same set of model parameters (e.g.,

mixing ControlGoF with ControlGoF itself), the spindle would exhibit a symmetric pattern

where the fastest and slowest rates of wound closure are achieved in the even mixture when

pv = 0.5 (Fig B.3A and B.3B, detailed in the appendix in Section B.1.3). The mixture of

Piezo1 -cKO and Yoda1-treated cells resembles the case of mixing ControlGoF and Piezo1 -

GoF, but the spindle pattern shows a stronger inclination (Fig 4.1F).

4.4.2 PIEZO1 activity down-regulates the edge cell representation

Our study in the preceding chapter revealed PIEZO1’s suppression on leader cell formation.

Thus, we hypothesized that in cell mixtures with varying levels of PIEZO1 activity, the cell

type with lower PIEZO1 activity would more likely constitute the leader cells. To isolate the
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influence of cell-cell adhesion, we fix αuv = αuu = αvv = 0.2 at this point. In the mixture

of ControlcKO (u cells) and Piezo1 -cKO (v cells), we varied the Piezo1 -cKO source cell

percentage (pv), and we observed that cases with a higher Piezo1 -cKO percentage displayed

faster wound closure (Fig 4.2A), consistent with the experiment where homogeneous Piezo1 -

cKO monolayers closed wounds faster. Additionally, Piezo1 -cKO cells tended to advance

to the front and aggregate around the wound edge (Fig 4.2A, red color near the wound),

aligning with our hypothesis. Conversely, in mixing Piezo1 -GoF (v cells) with its control

(u cells), a higher percentage of Piezo1 -GoF cells (pv) resulted in slower wound closure (Fig

4.2C), consistent with the experimental results showing slower wound closure for Piezo1 -

GoF compared to its control. Importantly, ControlGoF cells tended to advance to the front

and comprise the wound edge cells (Fig 4.2C, blue color near the wound), in line with our

hypothesis. Similarly, in the mixture of Piezo1 -cKO and Yoda1-treated cells, we observed

that Piezo1 -cKO cells, as the component with lower PIEZO1 activity, tended to advance

and aggregate near the wound (Fig 4.2E, blue color near the wound).

Quantitatively restating our hypothesis, we anticipate a higher proportion of cells with lower

PIEZO1 activity to be located near the wound edge. The term ”wound edge cells” pertains

to cells situated near the wound edge, where the total density satisfies the condition 0 <

u+v < γedge. To determine the threshold γedge for identifying wound edge cells, we conducted

simulations by mixing ControlcKO and ControlcKO rather than mixing ControlcKO and Piezo1 -

cKO. That is, both u and v cells have the identical phenotype and parameters drawn from

the ControlcKO experimental data. In this case, for any fraction of v in the entire monolayer,

we expect to observe the same fraction of v cells in wound edge cells where u+v < γedge. The

minimal γedge that satisfies this condition is the threshold we sought, and it was determined

to be 0.2. For further details regarding this threshold, refer to the appendix in Section B.1.4.

To provide further quantitative evidence supporting our hypothesis, we conducted simula-

tions similar to those in Fig 4.2A, but repeated them 100 times for each pv value (20%,

76



Figure 4.2: The distribution of edge cells correlates with the level of PIEZO1
activity.
Figure 4.2 continued on next page
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Figure 4.2 continued
(A) Snapshot of wound healing progression for a mixture of ControlcKO (u cells) and Piezo1 -
cKO (v cells) captured at equidistant time intervals, under varied Piezo1 -cKO (v cells) source
cell percentage of 20% (top), 50% (middle), and 80% (bottom). Colored areas represent cell
monolayers, with colors indicating the spatial distribution of Piezo1 -cKO (v cells) percent-
age, while plain white areas denote cell-free space. (B) Line graphs within each cluster
represent 100 individual tracks (300 total trajectories in the figure), demonstrating the evo-
lution of Piezo1 -cKO (v cells) percentage in edge cells over simulation time steps during
wound closure. The clusters correspond to distinct source cell conditions, with Piezo1 -cKO
(v cells) percentages set at 20% (bottom cluster), 50% (middle cluster), and 80% (top clus-
ter), aligning with the respective rows of snapshots in (A). These levels are indicated by black
dashed lines. (C) and (D) Depict similar scenarios to (A) and (B), but involving mixtures
of Piezo1 -GoF (v cells) with their respective wild-type control (u cells). (E) and (F) Also
akin to (A) and (B), but featuring mixtures of Piezo1 -cKO (u cells) and Yoda1-treated cells
(v cells). (G) Line graphs illustrate the mean of 100 simulation results, displaying the per-
centage of Piezo1 -cKO (v cells) cells in edge cells versus the percentage in source cells. The
various colored lines denote different interaction coefficient values (αuv), and error bars indi-
cate the standard error of the mean. (H) Same as for (G) but for mixing ControlGoF (u cells)
and Piezo1 -GoF (v cells). (I) Also similar to (G), but in the case of mixing Piezo1 -cKO (u
cells) and Yoda1-treated (v cells).

50%, and 80%). We measured the percentage of Piezo1 -cKO cells in edge cells at every

time step during the wound closure process for each simulation, then plotted all trajectories

together in a single figure (Fig 4.2B). Each trajectory represents an individual simulation,

grouped into three clusters corresponding to pv = 0.2, 0.5, and 0.8. In each cluster, the

majority of trajectories are situated above their respective pv line (black dashed line in Fig

4.2B). This indicates that Piezo1 -cKO cells, with lower PIEZO1 activity in the mixture, are

over-represented at the wound edge. Conversely, when plotting the trajectories of Piezo1 -

GoF cell percentage in edge cells over simulation time steps for mixing with ControlGoF, we

observed a downward trend for each cluster, with the majority of trajectories falling below

their corresponding pv value (Fig 4.2D). This suggests that Piezo1 -GoF cells tend to be

under-represented at the wound edge. A similar under-representative trend of cells with

higher PIEZO1 activity at the wound edge was observed in the mixture of Piezo1 -cKO and

Yoda1-treated cells (Fig 4.2F).
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To gain a more comprehensive understanding of the relationship between the distribution

of edge cells and the level of PIEZO1 activity, we calculated the average percentage of v

cells among all wound edge cells by varying not only pv but also the interaction coefficient

αuv. We then plotted this average value over pv under different values of αuv, as depicted

in Fig 4.2G, 4.2H, and 4.2I. The results confirm that cells with lower PIEZO1 activity in

the mixture (e.g., Piezo1 -cKO) are over-represented at the wound edge, as most lines are

situated above the y = x line (Fig 4.2G). Conversely, cells with higher PIEZO1 activity (e.g.,

Piezo1 -GoF and Yoda1-treated) are under-represented at the wound edge, as indicated by

most lines falling below the y = x line (Fig 4.2H and 4.2I).

It’s worth noting the ”double spindle” pattern observed in Fig 4.2G, 4.2H, and 4.2I, which is

caused by the combined effect of pv and αuv, rather than by the PIEZO1 phenotype itself. For

example, when pv < 0.5 and αuv < 0, the migration of v cells is effectively promoted by the

repulsive cell-cell interaction (αuv < 0) from a large proportion of u cells (pu = 1−pv > 0.5).

This leads to an increase in the percentage of v cells at the wound edge, hence resulting in the

concave bridge observed in the lower left spindle across all plots (Fig 4.2G, 4.2H, and 4.2I).

It’s important to note that the effects of the PIEZO1 phenotype do not directly contribute to

the formation of this ”double spindle” pattern itself; rather, they result in the asymmetry of

the double spindle, either by pulling it upward (e.g., Fig 4.2G) or pushing it downward (e.g.,

Fig 4.2H and 4.2I), thereby causing over-representation or under-representation in edge cell

percentage. By mixing wild-type control cells with themselves, we can isolate the impact

of the PIEZO1 phenotype and gain a better understanding of the double spindle pattern

(Fig B.3C and B.3D). For a detailed analysis of this pattern formation, please refer to the

appendix in Section B.1.3.
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4.4.3 PIEZO1 activity promotes wound edge retraction

In the collective migration of wild-type keratinocytes, PIEZO1 channels display a hetero-

geneous spatial distribution (Fig 4.3A). Experimentally, Piezo1 -cKO cells show complete

suppression of PIEZO1 activity, while Yoda1-treated cells demonstrate full activation of

PIEZO1 channels. Wild-type control cells, conversely, exhibit PIEZO1 activity levels in-

termediate between Piezo1 -cKO and Yoda1-treated cells. Given this context, we assume

that wild-type cells (e.g., ControlcKO and DMSO-treated) function similarly to a mixture of

Piezo1 -cKO cells and Yoda1-treated cells (Fig 4.3B) in collective cell migration. We opt to

use Yoda1-treated cells rather than Piezo1 -GoF to mix with Piezo1 -cKO due to the sub-

stantially higher PIEZO1 activity in Yoda1-treated cells compared to Piezo1 -GoF, thereby

allowing for a broader representation of wild-type control. From a model calibration stand-

point, Piezo1 -cKO and Yoda1-treated are both calibrated from the same control dataset,

because ControlcKO and DMSO-treated cells are experimentally indistinguishable (detailed

in Section 4.3.3). Therefore, in this section, we simulate the model of mixing Piezo1 -cKO

and Yoda1-treated cells to study wound closure in wild-type keratinocytes.

In the preceding section, we examined the distribution of cells at the wound edge under

different levels of PIEZO1 activity. However, considering that the localization of PIEZO1

channels governs wound edge retraction [35], we aim to delve deeper into the distribution of

edge cells in the mixture, taking into account their migrating direction. To achieve this, we

tracked the movement of edge cells in our model simulation by identifying the banded region

of edge cells (shaded area in Fig 4.3C) and labeling the midpoints within this region (white

asterisks in Fig 4.3C). Subsequently, throughout the simulated wound closure process, we

were able to monitor the vertical movement direction (the direction to close the wound) of

these labeled points (pink arrows in Fig 4.3C).

Through repeated simulations of wound closure involving mixtures of Piezo1 -cKO and
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Figure 4.3: Enrichment of PIEZO1-activated cells promotes wound edge retrac-
tion.
Figure 4.3 continued on next page
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Figure 4.3 continued
(A) Total internal reflection fluorescence (TIRF) image illustrating the location of PIEZO1-
tdTomato protein immediately after wounding in a keratinocyte monolayer in an in vitro
scratch assay. The white line denote the cell boundary. This experimental result was orig-
inally presented by Holt et al. [35] in Figure 4 - figure supplement 1. Scale bar = 20 µm.
(B) Schematic showing a visualization of the simulation domain. The red dashed lines
demonstrate the wound edges. (C) Snapshots depict the progression of wound healing for
a mixture of Piezo1 -cKO (u cells) and Yoda1-treated (v cells), captured at evenly spaced
time intervals. Colored areas represent cell monolayers, with colors indicating the spatial
distribution of Yoda1-treated (v cells) percentages, while plain white areas denote cell-free
space. The shaded area near the wound edge indicates the region of edge cells, where the
total cell density is less than 0.2. White asterisks within the shaded area mark midpoints in
the wound closing direction (i.e., in the y direction). Magenta arrows originating from the
asterisks illustrate the migrating direction of edge cells, either forward or backward. (D)
The model involves mixing Piezo-cKO cells (u cells) and Yoda1-treated cells (v cells). Cells
at the wound edge are categorized based on their migrating direction: forward or protrusion
(blue), and backward or retraction (red). The figures depict the mean of 100 simulation
results, displaying the percentage of v cells in forward and backward edge cells relative to its
percentage in source cells, under various interaction coefficient (αuv). Error bars indicate the
standard error of the mean. (E) Representative TIRF images from time-lapse series of heal-
ing monolayers of PIEZO1-tdTomato keratinocytes, highlighting fields of view, demonstrate
an enriched PIEZO1 channel at the monolayer’s retracting edge, serving as a necessary con-
dition for the enrichment of PIEZO1-activated cells at the wound edge. This experimental
observation was originally presented by Holt et al. in [35], Figure 4C. Scale bar = 20 µm.

Yoda1-treated cells, and subsequent averaging, we determine the proportion of Yoda1-treated

cells in both forward and backward edge cells relative to Yoda1 heterogeneity pv under vari-

ous interaction coefficient αuv conditions (Fig 4.3D). The findings reveal a higher proportion

of Yoda1-treated cells among backward edge cells compared to forward edge cells, indicating

that Yoda1-treated cell enrichment correlates with backward events at the wound edge. This

suggests that a larger fraction of PIEZO1-activated cells participate in wound edge retraction

rather than protrusion, aligning with experimental observations where PIEZO1 channels are

predominantly enriched in retraction (Fig 4.3E). Remarkably, our results not only support

the previous experimental finding that the spatial distribution of PIEZO1 channels regulates

wound edge retraction [35], but also predict that these enriched cells associated with wound

edge retraction events exhibit higher PIEZO1 activity levels.
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By relaxing the assumption that wild-type control functions similarly to a mixture of Piezo1 -

cKO cells and Yoda1-treated cells, we further investigated the impact of PIEZO1 activity on

the migration direction of edge cells in general mixture scenarios. Numerical simulations were

conducted for different mixtures following the same process as in Fig 4.3D. As anticipated,

in mixtures with ControlcKO, Piezo1 -cKO cells had a higher percentage in forward edge cells

than in backward edge cells (Fig B.9). Conversely, Yoda1-treated cells exhibited a higher

percentage in backward edge cells compared to forward edge cells, not only when mixed

with Piezo1 -cKO (Fig 4.3D) but also with DMSO-treated cells (Fig B.10D). These findings

from model simulation validate our conclusion regarding the positive correlation between

PIEZO1 activity and wound edge retraction. However, a noteworthy observation emerged

in the mixture of ControlGoF and Piezo1 -GoF: under repulsive interactions between u and

v cells (i.e., αuv < 0), the percentage of Piezo1 -GoF cells in backward edge cells, which

was expected to be lower than in forward edge cells due to the higher PIEZO1 activity of

Piezo1 -GoF compared to ControlGoF, was actually higher than in forward cells (Fig B.7).

Further investigation revealed that this phenomenon primarily stemmed from the longer

and stronger retraction observed in Piezo1 -GoF cells compared to its mixture counterparts,

ControlGoF cells. Additional details are provided in the appendix in Section B.1.5.

4.4.4 Interaction coefficient can be inferred from the mixture het-

erogeneity

While we are interested in the interaction between different cell types, measuring the value of

αuv experimentally is challenging. However, the percentage of each cell type in the mixture

(pu and pv) is relatively accessible from experimental data. Therefore, we aim to use our

model to infer the parameter value of αuv through the heterogeneity pv. Although specific

experimental data regarding PIEZO1 activity in keratinocytes is currently unavailable, rel-

evant information from endothelial cells was recently provided by Bertaccini et al. using
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novel PIEZO1-HaloTag hiPSCs technology [7] (Fig 4.4A). Based on their experiments, the

level of PIEZO1 activity can be characterized by the puncta density in JF646-BAPTA HTL

labeled PIEZO1-HaloTag cells (activity probe), normalized by the puncta density in JF646

HTL treated PIEZO1-HaloTag cells (location probe). Thus,

Atotal = puAu + pvAv, (4.17)

where Atotal represents the PIEZO1 activity level of the mixture cells, while Au and Av de-

note the activity levels for the u and v cells constituting the mixture, respectively. Following

the same model assumption from the preceding section, where wild-type cells function sim-

ilarly to a mixture of Piezo1 -cKO cells and Yoda1-treated cells (Fig 4.3B) in collective cell

migration, we define Atotal as the PIEZO1 activity of wild-type control cells, while Au and

Av represent the PIEZO1 activity of Piezo1 -cKO cells and Yoda1-treated cells, respectively.

Based on the data provided in Fig 4.4A, we can calculate Atotal = 0.212, Au = 0.0564, and

Av = 0.652. Together with the relation pu+ pv = 1, these values can be substituted into Eq.

4.17 to derive that pv = 0.261. Hence, the proportion of PIEZO1-activated cells in the wild

type control is estimated to be around 26%.

Once we have pv = 0.261, the cell-cell interaction between different types of cells in the

mixture can be inferred using our mathematical model. Returning to the analysis of normal-

ized wound closure (Fig 4.1F), we can more comprehensively visualize the normalized wound

closure with respect to pv and αuv using a colormap (Fig 4.4B). The contour line indicat-

ing unit normalized wound closure (white dashed line in Fig 4.4B) represents the wild-type

control. This critical line defines the relationship between pv and αuv in the wild-type con-

trol, meaning that the pairs (pv, αuv) for the wild-type control lie along this line. Therefore,

with the value of pv = 0.261, we can determine the corresponding αuv on this line, which is
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Figure 4.4: Interaction coefficient can be inferred from the mixture heterogeneity.
(A) Reproduced from Figure 3B in [7]. JF646-BAPTA HTL puncta density. All values
are expressed as mean ± standard error of the mean. In the unit of puncta per µm2,
Basal (mean = 0.07 ± 0.004), PIEZO1-HaloTag KO (mean = 0.02 ± 0.002), 2 µM Yoda 1
(mean = 0.22 ± 0.02), and JF646 HTL (mean = 0.34 ± 0.01). Data are from 4 independent
experiments. All groups were significantly different from one another (p-value Mann-Whitney
< 0.005 for all conditions). Cohen’s d effect sizes of PIEZO1-HaloTag treated with 2 µM
Yoda1 compared to PIEZO1-HaloTag (2.28) and of PIEZO1-HaloTag Knockout compared
to PIEZO1-HaloTag (-4.46). (B) Colormap illustrating the normalized wound closure from
model simulations, under various combinations of Yoda1-treated source cell percentage (pv,
x-axis) and interaction coefficient values (αuv, y-axis). The white dashed line represents the
contour of unit normalized wound closure, denoting the wound closure of wild-type control
cells.
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approximately 0.42. Consequently, the interaction between PIEZO1-activated cells (charac-

terized by Yoda1-treated) and PIEZO1-inactivated cells (characterized by Piezo1 -cKO) in

the wild-type is predicted to have stronger adhering effects (αuv ≈ 0.42) than the cell-cell

adhesion between cells with the same PIEZO1 activity level (αuu = αvv = 0.2). Note that

this qualitative result still holds true under different values of αuu and αvv, as elaborated in

the appendix (Fig B.1H, B.1I, B.2H and B.2I).

4.5 Discussion

In this chapter, we develop a new model that considers the migration of two distinct cell

types, each governed by its own set of equations with unique parameters, while interacting

through cell-cell adhesion, volume-filling effects and wound edge retraction. Specifically,

the cell densities are denoted as u and v. Regarding volume-filling effects, the migration

of either u cells or v cells is impeded by the total density of cells (u + v) in their path.

The spatial position of wound edges is determined by the interface between the total cell

population (u+v) and the cell-free region. However, retractions near wound edges are applied

individually to u cells and v cells, each following their respective retraction parameters,

including the duration and strength of retraction, as well as the interval between retractions.

Regarding model parameters in this study, our primary focus is on the interaction between

these two cell types (αuv) and the mixture heterogeneity characterized by the percentage of

v source cells (pv).

Through simulations involving three different mixtures (ControlcKO & Piezo1 -cKO, ControlGoF

& Piezo1 -GoF, and ControlcKO & Yoda1-treated), we observed that mutually repelling cells,

modeled by negative cell-cell interaction (αuv < 0), can promote wound closure more ef-

fectively than individual PIEZO1 phenotypes. Furthermore, the impact of cell-cell interac-

tion on wound healing—whether hindered by adhesion (αuv > 0) or promoted by repulsion
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(αuv < 0)—is amplified by the heterogeneity of the mixture. This implies that wounds in mu-

tually repulsive mixtures can achieve faster closure when u and v cells are present in similar

proportions. Investigating the cell distribution near the wound edge, we observed that higher

PIEZO1 activity correlates with a lower edge cell percentage compared to the overall source

cell percentage, indicating that PIEZO1 down-regulates edge cell representation. Addition-

ally, when we relate wild-type cells to a mixture of Piezo1 -cKO and Yoda1-treated cells, we

find that Yoda1-treated cells have a higher percentage in backward edge cells compared to

forward edge cells, suggesting that PIEZO1 activity promotes wound edge retraction. This

result is consistent with, and even stronger than, prior experimental findings that wound

edge retraction is related to PIEZO1 enrichment [35]. Finally, using endothelial experimen-

tal data to inform the PIEZO1 heterogeneity in wild-type cells, our model infers the value

of the interaction coefficient αuv, predicting that the interaction between cells with different

PIEZO1 activity levels involves stronger adhesion than the cell-cell adhesion between cells

with the same PIEZO1 activity.

Currently, experiments involving PIEZO1 location probes for keratinocyte migration are

available [35], but PIEZO1 activity probes are not yet feasible. This delay in keratinocyte

experiments hinders the validation of our model predictions regarding cell-cell interactions

in Section 4.4.4. Additionally, by using single-cell data from endothelial experiments, we

assumed that cell-cell interactions do not affect PIEZO1 activity. Under this assumption,

the PIEZO1 activity data obtained from single cells (Fig 4.4A) remains applicable in the

context of a monolayer.
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Chapter 5

Discussion

Mechanical cues have been highlighted to play a prominent role in facilitating the coordi-

nated polarization of individual cells within a collective, regulating the speed and coordinated

directionality of collective migration [48]. We recently identified the mechanically activated

ion channel PIEZO1 as being a key regulator of wound healing: keratinocytes with increased

PIEZO1 activity exhibited delayed wound healing while decreased PIEZO1 activity resulted

in faster wound healing [35]. Given PIEZO1’s role in wound healing, we explored PIEZO1’s

effect on leader cell formation and coordinated directionality during collective keratinocyte

migration. By taking a combined integrative mathematical modeling and experimental ap-

proach we identified that PIEZO1 activity suppresses leader cell formation, limits the coor-

dinated directionality of cells during epithelial sheet migration, and reduces the distance by

which keratinocytes can coordinate their directionality (Fig 5.1). This is the first time that

PIEZO1 is seen to contribute to the correlation of cellular motions between neighboring cells

which underlie the collective movements of cells during epithelial sheet migration. Given

that PIEZO1 acts as a key mechanosensor in keratinocytes, this provides further evidence

of the channel acting to couple mechanotransduction with correlated migration.
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Figure 5.1: PIEZO1 activity inhibits spatial coordination and leader cell formation
during collective migration. Summary schematic of collectively migrating monolayer
of keratinocyte cells (gray) with direction of cellular motion overlaid (red arrows) under
Piezo1 -GoF/Yoda1 (left), Control (middle) and Piezo1 -cKO (right) conditions. Note how
as PIEZO1 activity is decreased, the coordinated direction of cells and number of leader cells
increases.

In order to describe the inherent biological complexities underlying keratinocyte reepithe-

lialization we adopted mathematical modeling as a tool to systematically investigate how

aspects of collective cell migration affect wound closure. Through the development of a two-

dimensional continuum model of wound closure derived through upscaling from a discrete

model, we investigated how components of wound closure including cell motility, cell-cell

adhesion, cell-edge retraction and the coordination of migration direction between cells,

i.e., coordinated directionality, change with manipulation of PIEZO1 activity. Through nu-

merical simulations, we incorporated experimental data to calibrate our model and match

keratinocyte monolayer behavior. We examined how model parameters impacted two at-

tributes of wound closure which we experimentally find are affected by PIEZO1 activity:

the rate of wound closure and the edge length of simulated monolayers, which served as a

measure of leader cell formation. From the modeling studies, the coordinated directionality

of cells was identified as a key model parameter predicted to be impaired by PIEZO1 activity

during wound closure.

Our model prediction guided the design of validation experiments and subsequent bioim-

age analyses, in which we confirmed the model prediction and demonstrated that PIEZO1
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activity inhibits the ability of local subpopulations of cells to coordinate their movements

across distances during collective migration. Altogether, we identified that PIEZO1 activity

inversely correlates with the number of leader cells along the wound edge which in turn dic-

tates the directed migration of cell collectives during keratinocyte reepithelialization. Taken

together with the prior work demonstrating that enrichment of PIEZO1 at the wound edge

triggers local retraction [35], we propose that PIEZO1-mediated retraction inhibits leader

cell formation, which disrupts the uniform polarization of groups of cells and underlies the

inhibition of collective migration during wound closure. This proposal is consistent with

findings by other groups where pharmacologically increasing the contractile forces within

monolayers was found to inhibit leader cell formation [18, 72, 87].

The explorations of collective cell migration during wound healing in scenarios where more

than one PIEZO1 genotype is present add an intriguing dimension to our study. We extended

our mathematical model using an upscaled framework to study heterogeneous PIEZO1 activ-

ity, where each cell type operates under its own set of equations and parameters, interacting

through cell-cell adhesion, volume-filling effects, and wound edge retraction. Inheriting the

parameters from the previous model for individual cell type, this new model also character-

izes the interactions between different cell types and the heterogeneity within their mixtures.

Simulations with various combinations of cell mixtures reveal that mutually repulsive cells

facilitate more efficient wound closure compared to a homogeneous population of a single

cell type. The effectiveness of wound closure regulated by cell-cell interaction is positively

correlated with the heterogeneity of the cell mixture. Additionally, simulations indicate that

cells with higher PIEZO1 activity in the mixture correspond to a reduced representation at

wound edge. Under further model assumptions, these cells with higher PIEZO1 activity are

predominantly located at the backward edge, rather than the forward edge, implying the

possibility that PIEZO1 activity enhances wound edge retraction. This finding is consistent

with previous experimental results linking wound edge retraction to PIEZO1 enrichment

[35]. Utilizing this extended model, we also delve into parameter inference by integrating
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relevant experimental data. This extended work suggests future experiments combining cells

of different genotypes to investigate the effects of homotypic and heterotypic interactions on

cell migration and wound healing.

Collective cell migration is an emergent phenomenon occuring at the multicellular level and

stems from the large-scale coordination of individual cellular motions. Mechanical forces

have been highlighted as playing an important role in shaping collective cell behaviors and

influencing the formation and dynamics of both leader and follower cells [17, 48, 88]. Through

this work, we have provided the first identification that the upregulation of PIEZO1 activity

suppresses leader cell formation and inhibits both the coordinated directionality and the

distance by which cells coordinate their cellular motion across length scales during epithelial

sheet migration. Moreover, we develop a novel mathematical model for PIEZO1 regulated

collective cell migration which is generalizable to studying the role of other proteins or cell

types during epithelial sheet migration through analogous simulation and analyses. Specif-

ically, while our model was developed to simulate collective cell migration, the influence

of PIEZO1 was implemented by calibrating the model parameters with experimental data.

Consequently, to study the effects of other proteins on different cell types in collective mi-

gration, we can experimentally measure cell edge retraction for the specific scenario and

calibrate the model using this data, without requiring any structural changes to the model,

either theoretically or numerically. In our work, we propose that elevated PIEZO1-induced

cell retraction inhibits the normal long-range coordination between cells during collective

migration, disrupting typical mechanochemical activity patterns and the coordinated polar-

ization of neighboring cells. Our findings provide a new biophysical mechanism by which

PIEZO1 activity regulates the spatiotemporal dynamics across multiple cells to shape col-

lective migration.
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Figure A.1: PIEZO1 inhibits leader cell formation at wound margins. Representative
DIC images of wounds generated in (A; top) ControlcKO, (A; bottom) Piezo1 -cKO, (B; top)
ControlGoF, (B; bottom) Piezo1 -GoF, (C; top) DMSO-treated and (C; bottom) 4 µMYoda1-
treated monolayers. White arrows indicate leader cell protrusions. Representative images
were taken at the same time point as the respective control field of view. Scale bar = 100
µm. Related to Fig 1.1.
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Figure A.2: Wounds fail to reach closure if parameter values exceed reasonable
ranges. (A) The percentage of wound closure cases under different levels of cell-cell adhe-
sion. (B, C, D, E) Similar to (A) but for inter-retraction duration, cell motility, coordinated
directionality and retraction duration respectively. Related to Fig 2.1F.
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Figure A.3: Coordinated directionality is the only parameter which replicates
all experimental results. (A) The mean of 100 simulation results showing the effect
of retraction duration on normalized wound closure (red; left axes) and edge length (blue;
right axes). Error bars depict the standard error of mean. (B-F) Similar to (A) but for
inter-retraction duration, retraction strength, cell-cell adhesion, cell motility and coordinated
directionality, respectively. The data in C and F are also shown in Fig 2.1G and Fig 2.1H
but are reproduced here for ease of comparison.
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Figure A.4: List of model parameters and their base values.

Figure A.5: PIEZO1 activity affects single cell migration. Mean and standard error of
mean (sem) of single cell migration dataset (retraction duration, inter-retraction duration,
retraction strength and cell motility) under different experimental conditions. Retraction
duration data was derived by kymograph measurements, retraction strength derived from
cell shape analysis and cell motility data from tracking cells during single cell migration
assays [35].
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Figure A.6: Yoda1 has no effect on single cell migration. (A) Mean Squared Displace-
ment (MSD) analysis of Yoda1-treated keratinocytes. Average MSD plotted as a function of
time. (B) Cumming plot illustrating quantification of the average instantaneous speed from
individual Yoda1-treated keratinocytes plotted against DMSO-treated Control (Cohen’s d
= 0.08; p value calculated via two-sample t-test). (C) Average direction autocorrelation of
Yoda1-treated keratinocytes relative to DMSO-treated control cells plotted as a function of
time. n in A-C denotes the number of tracked individually migrating keratinocytes for each
condition. Related to Table 3.1; S5 Fig.
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Figure A.7: Varying cell-cell adhesion fails to match all the experimental trends.
Figure A.7 continued on next page

106



Figure A.7 continued
(A) Cumming plots showing simulation results in which we use our calibrated model (CM)
to predict how PIEZO1 affects wound closure (left column) and wound edge length (right
column) in simulated ControlGoF monolayers (gray), Piezo1 -GoF monolayers without al-
tered adhesion parameters (white), Piezo1 -GoF monolayers with increased cell-cell adhesion
(orange) and decreased cell-cell adhesion (blue). (B) Similar to A but using simulation
results from DMSO-treated monolayers (gray), Yoda1-treated monolayers without altered
adhesion parameters (white), Yoda1-treated monolayers with increased cell-cell adhesion
(orange) and decreased cell-cell adhesion (blue). (C) Similar to C but using simulation re-
sults from ControlcKO monolayers (gray), Piezo1 -cKO monolayers without altered adhesion
parameters (white), and Piezo1 -cKO monolayers with increased cell-cell adhesion (orange)
and decreased cell-cell adhesion (blue). In A-C, n = 100 simulation results for each condi-
tion. To account for differences between control cases, data are normalized by rescaling to
the mean of the corresponding control. Larger normalized wound closure indicates faster
wound closure, while a smaller normalized wound closure indicates slower wound closure.
Similarly, a larger normalized edge length indicates a more featured wound while a smaller
normalized edge length indicates a flatter or less featured wound. Black check marks at
the top of each plot condition indicate that simulation results match experimental trends
while a red cross indicates the simulations fail to match the experiment results. Related to
Table 3.3. For comparison with experimental data see Fig 1.1B, 1.1G and 1.1H.

Figure A.8: Numerical comparisons between simulations and experiments on
wound closure and edge length. The table presents simulation results (in black, see
Table 3.3 for qualitative results) obtained using the calibrated model (CM) to predict the
impact of PIEZO1 on normalized wound closure and normalized edge length, altering ad-
hesion and coordinated directionality parameters. The simulation results are quantitatively
compared with the corresponding experimental results (in blue, see Table 3.2 for qualitative
results). Model predictions are indicated in red font with a cross mark (✗) when they do not
align with the experimental trends of increasing or decreasing values. Conversely, a check
mark (✓) indicates that model predictions are consistent with the experimental trends.
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Figure A.9: PIEZO1 inhibits keratinocyte speed during collective cell migra-
tion. Violin plots quantifying the average instantaneous cell speed of tracked cells in (A)
ControlcKO vs. Piezo1 -cKO, (B) ControlGoF vs. Piezo1 -GoF, and (C) DMSO-treated and 4
µMYoda1-treated keratinocytes monolayers. For A-C, p value calculated via Mann-Whitney
Test. For A-C, plotted n denotes the number of individual cell trajectories. See also Fig 3.2.

Figure A.10: PIEZO1 reduces the length scale of spatial autocorrelation in ker-
atinocytes. Summary table showing the length constant, or the distance at which the
spatial autocorrelation value is estimated to reach 0.37, for each experimental condition.
Length constants were calculated by fitting a curve to the respective experimental dataset.
See also Fig 3.3.
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Figure A.11: Specific p values for plotted points seen in Fig 3.3 H-J.
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Figure A.12: Increased PIEZO1 activity regulates Rho GTPase levels within col-
lectively migrating monolayers. To explore a possible relationship between PIEZO1
and Rho GTPases we performed immunocytochemistry experiments for the Rho GTPases
RhoA and Rac1 within healing monolayers. Scratch wounds were generated in keratinocyte
monolayers and then immediately treated with either 4 µM Yoda1, or the equivalent amount
of solvent DMSO. Keratinocyte monolayers were allowed to collectively migrate for 24 hours
with the respective drug in the bath media before fixing and labeling monolayers. Shown
above, representative images of healing keratinocyte monolayers immuno-labeled with anti-
bodies against Rac1 (blue, left panels), and RhoA (red, right panels) 24 hours after wounding
and treating monolayers with DMSO (top) and 4 µMYoda1 (bottom). Increasing PIEZO1 ac-
tivity through Yoda1-treatment decreases Rac1 and RhoA staining suggesting that PIEZO1
activity regulates Rho GTPase expression during keratinocyte collective migration. Scale
bar=100 µm.
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Figure A.13: Image processing pipeline for nuclei images. Representative images
of processing steps to boost signal-to-noise ratio of (A) raw SiR-Hoechst images by first
performing (B) histogram equalization using Contrast Limited Adaptive Histogram Equal-
ization (CLAHE). (C) For some images, the denoising algorithm Noise2Void was used to
further increase the signal-to-noise ratio of nuclei. Note: all images adjusted to the same
brightness and contrast settings. Scale bar = 20 µm.
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Figure A.14: The phenomenological continuum model is consistent with the origi-
nal prediction that PIEZO1 hinders coordinated directionality in wound closure.
Figure A.14 continued on next page
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Figure A.14 continued
(A) Cumming plots showing simulation results using the calibrated phenomenological con-
tinuum model (denoted as PCM, see Section 2.2.2) to predict how PIEZO1 affects normal-
ized wound closure (left) and wound edge length (right) in simulated ControlGoF monolayers
(blue), Piezo1 -GoF monolayers without altered coordinated directionality parameters (or-
ange), and Piezo1 -GoF monolayers with cell coordinated directionality decreased (green).
See Methods Section for the details on model parameters adjustment. (B) Similar to A but
using simulation results from DMSO-treated monolayers (blue), Yoda1-treated monolayers
without altered coordinated directionality parameters (orange), and Yoda1-treated monolay-
ers with coordinated directionality decreased (green). (C) Similar to A but using simulation
results from ControlcKO monolayers (blue), Piezo1 -cKO monolayers without altered coor-
dinated directionality parameters (orange), and Piezo1 -cKO monolayers with coordinated
directionality increased (green). In A-C, n = 100 simulation results for each condition, and
CM denotes “Calibrated Model”, specifically using the phenomenological continuum model
in Section 2.2.2. To account for differences between control cases, data are normalized by
rescaling to the mean of the corresponding control. Larger normalized wound closure indi-
cates faster wound closure, while a smaller normalized wound closure indicates slower wound
closure. Similarly, a larger normalized edge length indicates a more featured wound edge
while a smaller normalized edge length indicates a flatter or less featured wound edge. Black
check marks at the top of each plot condition indicate that simulation results match exper-
imental trends while a red cross indicates simulation fails to match the experiment trends.
For comparison with experimental data see Fig 1.1B, 1.1G and 1.1H.
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Figure A.15: Varying the diffusion coefficient in response to changes in cell-cell
adhesion fails to match all the experimental trends.
Figure A.15 continued on next page
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Figure A.15 continued
(A) Cumming plots showing simulation results in which we use the phenomenological contin-
uum model (denoted as PCM, see Section 2.2.2) to predict how PIEZO1 affects wound closure
(left) and wound edge length (right) in simulated ControlGoF monolayers (blue), Piezo1 -GoF
monolayers without altered the diffusion coefficient (orange), Piezo1 -GoF monolayers with
increased diffusion coefficient (green) and decreased diffusion coefficient (red). The magni-
tude of diffusion coefficient models the combined effects of cell motility and cell-cell adhe-
sion. (B) Similar to A but using simulation results from DMSO-treated monolayers (blue),
Yoda1-treated monolayers without altered the diffusion coefficient (orange), Yoda1-treated
monolayers with increased diffusion coefficient (green) and decreased diffusion coefficient
(red). (C) Similar to C but using simulation results from ControlcKO monolayers (blue),
Piezo1 -cKO monolayers without altered the diffusion coefficient (orange), and Piezo1 -cKO
monolayers with increased diffusion coefficient (green) and decreased diffusion coefficient
(red). In A-C, n = 100 simulation results for each condition. To account for differences
between control cases, data are normalized by rescaling to the mean of the corresponding
control. Larger normalized wound closure indicates faster wound closure, while a smaller
normalized wound closure indicates slower wound closure. Similarly, a larger normalized edge
length indicates a more featured wound while a smaller normalized edge length indicates a
flatter or less featured wound. Black check marks at the top of each plot condition indicate
that simulation results match experimental trends while a red cross indicates simulation fails
to match the experiment result. Related to Fig A.14. For comparison with experimental
data see Fig 1.1B, 1.1G and 1.1H.
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Figure A.16: Original model calibrated by monolayer cell motilities is consistent
with the original prediction that PIEZO1 hinders coordinated directionality in
wound closure.
Figure A.16 continued on next page
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Figure A.16 continued
(A) Cumming plots showing simulation results from the calibrated model (CM) using cell
motilities from monolayer experiments (for data see S9 Fig, for detailed model calibration see
Section 3.4.2) to predict how PIEZO1 affects normalized wound closure (left) and wound edge
length (right) in simulated ControlGoF monolayers (blue), Piezo1 -GoF monolayers without
altered coordinated directionality parameters (orange), and Piezo1 -GoF monolayers with
coordinated directionality decreased (green). See Methods Section for the details on model
parameters adjustment. (B) Similar to A but using simulation results from DMSO-treated
monolayers (blue), Yoda1-treated monolayers without altered coordinated directionality pa-
rameters (orange), and Yoda1-treated monolayers with coordinated directionality decreased
(green). (C) Similar to A but using simulation results from ControlcKO monolayers (blue),
Piezo1 -cKO monolayers without altered coordinated directionality parameters (orange), and
Piezo1 -cKO monolayers with coordinated directionality increased (green). In A-C, n = 100
simulation results for each condition, and CM denotes “Calibrated Model”, specifically our
original model using cell motilities from monolayer experiments (Section 3.4.2). To account
for differences between control cases, data are normalized by rescaling to the mean of the
corresponding control. Larger normalized wound closure indicates faster wound closure,
while a smaller normalized wound closure indicates slower wound closure. Similarly, a larger
normalized edge length indicates a more featured wound while a smaller normalized edge
length indicates a flatter or less featured wound. Black check marks at the top of each plot
condition indicate that simulation results match experimental trends while a red cross in-
dicates simulation fails to match the experiment trends. For comparison with experimental
data see Fig 1.1B, 1.1G and 1.1H.
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Figure A.17: Varying cell-cell adhesion in the original model, calibrated by the
monolayer cell motilities, fails to match some experimental trends.
Figure A.17 continued on next page
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Figure A.17 continued
(A) Cumming plots showing simulation results in which we use our calibrated model us-
ing cell motilities from monolayer experiments (denoted as CM, see Section 3.4.2) to pre-
dict how PIEZO1 affects wound closure (left) and wound edge length (right) in simulated
ControlGoF monolayers (blue), Piezo1 -GoF monolayers without altered the cell-cell adhe-
sion parameter (orange), Piezo1 -GoF monolayers with increased cell-cell adhesion (green)
and decreased cell-cell adhesion (red). (B) Similar to A but using simulation results from
DMSO-treated monolayers (blue), Yoda1-treated monolayers without altered the cell-cell
adhesion parameter (orange), Yoda1-treated monolayers with increased cell-cell adhesion
(green) and decreased cell-cell adhesion (red). (C) Similar to C but using simulation results
from ControlcKO monolayers (blue), Piezo1 -cKO monolayers without altered the cell-cell ad-
hesion parameter (orange), and Piezo1 -cKO monolayers with increased cell-cell adhesion
(green) and decreased cell-cell adhesion (red). In A-C, n = 100 simulation results for each
condition. To account for differences between control cases, data are normalized by rescaling
to the mean of the corresponding control. Larger normalized wound closure indicates faster
wound closure, while a smaller normalized wound closure indicates slower wound closure.
Similarly, a larger normalized edge length indicates a more featured wound while a smaller
normalized edge length indicates a flatter or less featured wound. Black check marks at the
top of each plot condition indicate that simulation results match experimental trend while
a red cross indicates simulation fails to match the experiment result. Related to Fig A.16.
For comparison with experimental data see Fig 1.1B, 1.1G and 1.1H.
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Figure A.18: Varying the magnitudes of the retraction processes in the original
model (see text) yields results that are consistent with the original prediction
that PIEZO1 hinders coordinated directionality in wound closure. (A) Dot plots
illustrate the mean of 2700 simulation results from the model using three values of the
magnitudes of the retraction processes. They depict how PIEZO1 influences normalized
wound closure in Piezo1 -GoF monolayers compared to simulated ControlGoF monolayers
(blue dashed line). The scenarios include Piezo1 -GoF monolayers without altered coordi-
nated directionality and cell-cell adhesion parameters (first column), Piezo1 -GoF monolayers
with decreased coordinated directionality (second column), Piezo1 -GoF monolayers with de-
creased cell-cell adhesion (third column), and Piezo1 -GoF monolayers with increased cell-cell
adhesion (fourth column). See Section 3.4.2 for the details on the model parameters. Error
bars indicate the standard deviation. (B) Similar to A but measuring the changes in nor-
malized edge length instead of normalized wound closure.
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Appendix B

Supplementary materials for the

heterogeneous model

B.1 Heterogeneous Model

B.1.1 Retraction is modeled by advection

Performing a Taylor expansion on the cell densities u and v, centered at x = xi,j, in the

discrete master equation for u cells (Eq. 4.1) without specifying b→u,i,j, we obtain:

∂tu = ∇ ·
(
D11∇u+D12∇v + h · (1− u− v)(1− αuuu− αuvv)

3 · (b←u − b→u , b↑u − b↓u)
T
)
+O(h2) (B.1)

where D11 and D12 are the same diffusivities as in Eq. 4.7. By taking h → 0, the continuum

limit would be derived to be a simple diffusion equation as in Eq. 4.13 without an advection

term, unless both ∆b↔u = b←u − b→u and ∆b
↕
u = b↑u − b↓u are O(1/h), indicating advection
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scaling. Therefore, we define b→u,i,j := r→u,i,j/h with r→u,i,j ∈ O(1). By taking h → 0 under this

setting, Eq. B.1 turns into our continuum limit for u cells in Eq. 4.6, where the retraction

is modeled by advection. Analogous steps can be applied for v cells, emphasizing the role of

advection in representing cell retraction dynamics.

B.1.2 The effect of cell-cell adhesion between same cell types on

wound closure

In the context of increased adhesion between ControlcKO cells (Fig. B.1B, αuu = 0.3) com-

pared to the baseline value (Fig. B.1A, αuu = 0.2), there is a reduction in wound closure

(Fig. B.1B, left endpoint) compared to the base case (Fig. B.1A, left endpoint), reflecting

the hindering effect of cell-cell adhesion on the wound closure [35, 37]. The mixture (where

0 < pv < 1) is also impacted by the increased αuu, exhibiting varying degrees of reduction in

normalized wound closure (Fig. B.1B) compared to the base case (Fig. B.1A). A smaller pv,

indicating a larger proportion of u cells, results in a greater reduction in normalized wound

closure attributed to u cells (Fig. B.1B) compared to the base case (Fig. B.1A). Based on

Fig. B.1B, we subsequently decrease the adhesion between Piezo1 -cKO cells from αvv = 0.2

to αvv = 0.1, leading to faster wound closure in Fig. B.1C (right endpoint) compared to the

scenario in Fig. B.1B (right endpoint). The higher proportion of v cells (close to the right

endpoint in Fig. B.1C) corresponds to a greater enhancement in the wound closure rate

compared to Fig. B.1B. Similar adjustments to αuu and αvv were applied in other mixtures

(Fig. B.1D-B.1F for mixing ControlGoF and Piezo1 -GoF, and Fig. B.1G-B.1I for mixing

Piezo1 -cKO and Yoda1-treated cells). Consequently, the spindle pattern for normalized

wound closure in these mixtures exhibits similar changes to those observed in the mixture

of ControlcKO and Piezo1 -cKO (Fig. B.1A-B.1C).

Conversely, we also adjusted the cell-cell adhesion by decreasing αuu and increasing αvv in
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Figure B.1: The impact of increased αuu and decreased αvv on wound closure
rate. (A) Line graphs illustrate the mean of 100 simulation results involving mixtures
of ControlcKO (u cells) and Piezo1 -cKO (v cells), displaying the normalized wound closure
versus the Piezo1 -cKO source cell percentage under αuu = αvv = 0.2. Error bars indicate the
standard error of the mean. The various colored lines denote different interaction coefficient
values (αuv). The data are also shown in Fig. 4.1B but are reproduced here for ease of
comparison. (B) Similar to (A) but αuu = 0.3 and αvv = 0.2. (C) Similar to (A) but
αuu = 0.3 and αvv = 0.1. (D-F) Depict similar scenarios to (A-C), but involving mixtures
of Piezo1 -GoF (v cells) with their respective wild-type control (u cells). The data in (D) are
also presented in Fig. 4.1D but are replicated here for ease of comparison. (G-I) Also akin
to (A-C), but featuring mixtures of Piezo1 -cKO (u cells) and Yoda1-treated cells (v cells).
The black dashed lines denote the unit normalized wound closure, representing the rate of
wound closure of wild-type control. The data in (G) are also shown in Fig. 4.1F but are
reproduced here for ease of comparison.
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various mixtures (Fig. B.2). As a result, the normalized wound closure for mixtures with

a higher proportion of u cells slowed down, whereas mixtures with a higher proportion of v

cells closed the wound faster.

B.1.3 Self-mixture of wild-type control cells

To investigate the influence of model parameters (e.g., αuv and pv) on wound closure rate

and wound edge cell distribution, it is beneficial to mix one cell type with another type

that shares the same set of model parameters. For instance, mixing ControlcKO with itself

allows the effects of model parameters to be isolated from PIEZO1 phenotypes, providing a

clearer understanding of their regulation on wound closure. When mixing ControlcKO with

itself in the model simulation and observing the rate of wound closure over pv under various

αuv conditions, we observed a roughly symmetrical horizontal spindle pattern (Fig. B.3A).

Similar to Fig. 4.1B, but more clearly, the lines can be categorized into three groups based

on their convexity:

1. When the interaction coefficient is set to αuv = αuu = αvv = 0.2, the adhesion effects

between any cells are indistinguishable. As a result, the wound closure for mixed cell

migration represents a simple interpolation between solely u cells (left spindle pole

in Fig. B.3A) and solely v cells (right spindle pole in Fig. B.3A), demonstrating a

horizontal line (the purple line in Fig. B.3A).

2. When the interaction coefficient αuv > 0.2, the hindering adhesion effect between

different u and v cells becomes stronger than the adhesion effect within the same cell

types (αuu = αvv = 0.2). In this scenario, when cells are more evenly mixed (e.g.,

50% u cells mixed with 50% v cells), the role played by interaction coefficient becomes

more significant, resulting in slower collective cell migration and displaying a convex

”U-shaped” line (e.g., the bottom line in light blue in Fig. B.3A).
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Figure B.2: The impact of decreased αuu and increased αvv on wound closure
rate. (A) Line graphs illustrate the mean of 100 simulation results involving mixtures
of ControlcKO (u cells) and Piezo1 -cKO (v cells), displaying the normalized wound closure
versus the Piezo1 -cKO source cell percentage under αuu = αvv = 0.2. Error bars indicate the
standard error of the mean. The various colored lines denote different interaction coefficient
values (αuv). The data are also presented in Fig. 4.1B but are replicated here for comparison
convenience. (B) Similar to (A) but αuu = 0.2 and αvv = 0.3. (C) Similar to (A) but
αuu = 0.1 and αvv = 0.3. (D-F) Depict similar scenarios to (A-C), but involving mixtures
of Piezo1 -GoF (v cells) with their respective wild-type control (u cells). The data in (D)
are also shown in Fig. 4.1D but are replicated here for ease of comparison. (G-I) Also akin
to (A-C), but featuring mixtures of Piezo1 -cKO (u cells) and Yoda1-treated cells (v cells).
The black dashed lines denote the unit normalized wound closure, representing the rate of
wound closure of wild-type control. The data in (G) are also shown in Fig. 4.1F but are
reproduced here for ease of comparison.
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3. Conversely, when the interaction coefficient αuv < 0.2, cells are more likely to migrate

away from the adhesion between different cell types compared to the adhesion between

the same cell types. The expelling effect occurs when αuv < 0 becomes negative,

causing cell-cell interaction between u and v cells to propel cells toward cell-free regions.

Consequently, the faster wound closure rate in the mixture results in a concave up

”bridge-shaped” line (e.g., the top line in dark blue in Fig. B.3A).

A similar pattern was observed when mixing ControlGoF with itself, albeit with variations in

the scale of changes in normalized wound closure (Fig. B.3B).

Mixing wild-type control cells to isolate the impact of the PIEZO1 phenotype also facilitates

the investigation of cell distribution near wound edges. This approach yields a symmetric

”double spindle” pattern when plotting the edge cell percentage of v cells over pv under

various αuv conditions (Fig. B.3C and B.3D). In this pattern, lines are roughly symmetrically

distributed around the line representing αuv = 0.2, which approximately overlaps with y = x.

This symmetry arises because the indistinguishable cell-cell interaction (αuu = αvv = αuv =

0.2) ensures that u cells and v cells perform identical roles in the mixture, differing only in

notation. Consequently, we do not anticipate any over- or under-representation of one cell

type over the other.

Upon closer examination of the double spindle patterns in Fig. B.3C and B.3D, it becomes

evident that higher interaction coefficient tends to impede the migration of v cells toward

the wound edge when the proportion of v cells is lower than that of u cells. Conversely, it

facilitates the migration of v cells toward the wound edge when the proportion of v cells

exceeds that of u cells. In contrast, lower interaction coefficient, especially negative αuv,

exhibits the opposite effect. It accelerates v cells’ migration toward the edge when the

proportion of v cells is lower than u cells and slows down v cells’ movement toward the wound

edge when the proportion of v cells is higher than u cells (see Table B.1 for a summary).
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Figure B.3: The self-mixture of wild-type control cells. (A) Line graphs illustrate the
mean of 100 simulation results involving mixtures of ControlcKO (u cells) and ControlcKO (v
cells), displaying the normalized wound closure versus the source cell percentage for v cells
under αuu = αvv = 0.2. Error bars indicate the standard error of the mean. The various
colored lines denote different interaction coefficient values (αuv). (B) Similar to (A) but for
mixing ControlGoF (u cells) and ControlGoF (v cells). (C) Line graphs illustrate the mean of
100 simulation results from modeling the mixtures of ControlcKO (u cells) and ControlcKO (v
cells), displaying the percentage of v cells in edge cells versus the percentage in source cells.
The various colored lines denote different interaction coefficient values (αuv), and error bars
indicate the standard error of the mean. (D) Depict similar scenarios to (C), but involving
the mixture of ControlGoF (u cells) and ControlGoF (v cells).
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pu < pv pu > pv
αuv < αuu = αvv u cells (+) v cells (−) u cells (−) v cells (+)
αuv > αuu = αvv u cells (−) v cells (+) u cells (+) v cells (−)

Table B.1: Edge cell representation in the self mixture. Summary table presenting the
edge cell representation in the self mixture, i.e., u and v model the same type of cells. In this
table, a ”+” indicates an over-representation of u (or v) cells in wound edge cells, indicating
that the percentage of u (or v) cells near the wound edge is higher than its percentage in
source cells pu (or pv). Conversely, a ”−” indicates an under-representation of u (or v) cells
in wound edge cells, implying that the percentage of u (or v) cells near the wound edge
is lower than the percentage in source cells pu (or pv). A ”+” for v cells corresponds to a
concave upward trend in lines, while a ”−” for v cells corresponds to a concave downward
trend in lines (Fig. B.3C and B.3D).

The explanation for these observations is as follows:

When the interaction coefficient exceeds 0.2, the cell type that constitutes a larger proportion

tends to move faster. This is because their migration is minimally influenced by the substan-

tial interaction coefficient due to the small proportion of their interacting counterpart, which

has a limited effect in impeding their movement. For instance, if u cells dominate over v cells,

the diffusion part of the governing equation for u cells contains the term 1−αuuu−αuvv (Eq.

4.9). Here, a large value of αuv has little hindering effect on the migration of u because v is

small. In contrast, the diffusivity of v cells contains the term 1−αvvv−αuvu, indicating that

the migration of v cells is significantly hindered by a large interaction coefficient αuv because

the cell density of u cells is high, amplifying the hindering effect of the substantial inter-

action coefficient. A similar rationale applies when the interaction coefficient is below 0.2,

where the cell type constituting a smaller proportion moves faster since they contact with a

larger portion of the different cell type with lower interaction coefficient. In conclusion, the

presence of the ”double spindle” pattern arises from the fact that both the hindering effect

of high cell-cell adhesion and the promoting effect of repulsive cell-cell interaction exert a

larger impact on cells with a smaller proportion in the mixture compared to those with a

larger proportion.

By comparing the ”double spindle” pattern observed earlier (Fig. 4.2G-4.2I) with the self-
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mixture results (Fig. B.3C and B.3D), the down-regulation impact of PIEZO1 activity on

the edge cell representation becomes evident. It’s important to note that if u and v represent

the same type of cell for mixing, the mixture will not regress to a homogeneous single type

of cell scenario. This is because our mathematical model assumes that u cells and v cells

have independent stochastic retractions. Therefore, even if u and v cells share the same set

of model parameters (e.g., µs,u = µs,v, µr,u = µr,v, etc.), it only means that their retraction

events are generated from the same distribution. However, the same distribution can produce

different random values for u and v cells. Only when individual retraction events applied to

u and v cells are identical, rather than just their random distributions being the same, will

the heterogeneous case converge to the homogeneous case.

B.1.4 The cell density threshold for wound edge cells

In the self-mixture of wild-type control cells, we expect to observe the same fraction of v

cells in wound edge cells (where u+ v < γedge) for any fraction of v in the entire monolayer.

This expectation implies that plotting the relationship between the percentage of v cells

in u + v < γedge and the percentage of v cells everywhere (pv) should result in an overlap

with the y = x line. However, this alignment does not hold when γedge is too small (e.g.,

γedge = 0.05 in Fig. B.4). Therefore, we gradually increase the value of γedge from a relatively

small value until the curve roughly aligns with the y = x line and ceases to change noticeably

with further increases in γedge. The minimal γedge that satisfies this condition serves as the

threshold we sought, and it was determined to be 0.2 (Fig. B.4 and B.5).

When γedge is too small to define the ”wound edge cells,” it leads to an overestimation of the

”edge percentage” of cells with a small fraction in the mixture, consequently underestimating

the ”edge percentage” of cells with a large fraction in the mixture. For instance, setting

γedge = 0.05 for wound edge cells in the self-mixture of ControlcKO (as shown in Fig. B.4),
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Figure B.4: The threshold tests in the self-mixture of ControlcKO cells. The model
involves self-mixing of ControlcKO cells. The figures depict the mean of 100 simulation results,
displaying the percentage of v cells in edge cells relative to its source cell percentage, under
various edge cell thresholds (γedge). Error bars indicate the standard error of the mean.
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Figure B.5: The threshold tests in the self-mixture of ControlGoF cells. The model
incorporates self-mixing of ControlGoF cells. The figures illustrate the mean of 100 simulation
results, showing the percentage of v cells in edge cells relative to its percentage in source
cells, across different edge cell thresholds (γedge). Error bars represent the standard error of
the mean.
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results in around 20% of v cells in edge cells when pv is only 0.1, and approximately 80%

of v cells in edge cells when pv is 0.9. This discrepancy is induced by retraction at the

wound edge. In an uneven mixture of u and v cells, for example pu > pv, the dynamics of

the region u + v < γedge are primarily determined by u cells due to their larger percentage.

Consequently, when u cells retract while v cells do not, a substantial portion of v cells are

exposed to the region considered as ”wound edge cells” expanded by the retraction of u

cells, resulting in an overestimation. Conversely, when v cells retract while u cells do not,

the impact on u cells is limited due to the small fraction of v cells. This asymmetric mutual

impact contributes to the observed pattern under small γedge (Fig. B.4 and B.5).

While this discrepancy is minor in nature, it gets amplified to a non-negligible extent due

to the choice of an excessively small γedge. Such noise can introduce unexpected bias to our

investigation of cell representation near the wound edge. Therefore, to eliminate this bias,

we must calibrate the definition of ”edge cells” by avoiding the use of overly small γedge. It’s

important to note that if we remove the wound edge retraction, which is responsible for this

pattern, the percentage of v cells in edge cells exactly matches its percentage in source cells

pv under such pure diffusion (Fig. B.6).

B.1.5 Investigation into counter-intuitive edge cell distribution

In the simulation, when ControlGoF and Piezo1 -GoF cells interact repulsively (αuv < 0),

the percentage of Piezo1 -GoF cells in backward edge cells was unexpectedly higher than in

forward edge cells. This edge cell distribution was counter-intuitive, as the higher PIEZO1

activity in Piezo1 -GoF cells compared to ControlGoF cells suggested it would be lower (Fig.

B.7).

To elucidate this phenomenon, a series of further simulations were conducted on different

mixtures (Table B.2). Test #1 involved mixing ControlGoF (u cells) and Piezo1 -GoF (v
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Figure B.6: The threshold tests in the self-mixture of ControlcKO cells without
retraction. The model integrates self-mixing of a specific cell type derived from ControlcKO

cells, with retraction removed. The figures illustrate the mean of 100 simulation results,
showing the percentage of v cells in edge cells relative to the source cell percentage for v
cells, across different edge cell thresholds (γedge). Error bars represent the standard error of
the mean.
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Figure B.7: The percentage of edge cells in forward and backward directions dur-
ing mixing ControlGoF and Piezo1 -GoF cells. The model involves mixing ControlGoF

(u cells) and Piezo1 -GoF (v cells). Cells at the wound edge are categorized based on their
migrating direction: forward or protrusion (blue), and backward or retraction (red). The
figures depict the mean of 100 simulation results, displaying the percentage of v cells in these
two specific types of edge cells relative to the source cells’ v cell percentage, under various
interaction coefficient (αuv). Error bars indicate the standard error of the mean.

cells), while #2 to #6 adjusted v cell parameters while keeping u cells unchanged. Initially,

we investigated whether this phenomenon stemmed from retraction-related parameters or

coordinated directionality. Tests #2 and #3 revealed that retraction-related parameters

primarily contributed, while coordinated directionality had minimal effects. Subsequently,

we sought to identify which specific parameter related to wound edge retraction played the

primary role. Individual parameter changes in tests #4, #5, and #6 indicated that retraction

strength was paramount. Hence, we hypothesize that the counter-intuitive phenomenon

mainly arises from retraction strength.

When mixing u cells and v cells, with v cells receiving stronger retraction strength than u

cells, the wound edge primarily comprises u cells (resulting in u cells being over-represented
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# u Cells
v Cells, Calibrated Based on u Cells

ResultsRetraction Retraction Inter-retraction Coordinated

Strength Duration Duration Directionality

1

CMControlGoF

+ + − − ✗✗

2 ∼ ∼ ∼ − ✗

3 + + − ∼ ✗✗

4 + ∼ ∼ ∼ ✗✗

5 ∼ + ∼ ∼ ✗

6 ∼ ∼ − ∼ ✗

7
CMDMSO

+ − − ∼ ✓

8 + ∼ ∼ ∼ ✗✗

9 + − ∼ ∼ ✓

Table B.2: Forward and backward edge cell distributions in model simulations.
Summary table presenting simulation outcomes using the calibrated model (CM) to determine
whether the percentage of v cells in backward edge cells surpasses that in forward edge cells
under modified model parameters. A “+” indicates a parameter set has a predicted increase
upon an experimental measure while a “−” indicates a predicted decrease. A check mark (✓)
indicates that model simulation consistently demonstrates a higher percentage of v cells in
backward edge cells compared to forward edge cells across various pv and αuv values. A cross
mark (✗) indicates the absence of such a trend, implying that there are combinations of pv
and αuv where the percentage of v cells in backward edge cells is lower than in forward edge
cells. Double cross marks (✗✗) highlight cases where this lower percentage is significantly
more prominent than instances with a single cross mark (✗).

in edge cells). Consequently, the backward movement of the wound edge depends more on u

cells. If the interaction between u and v cells is expelling (e.g., αuv = −0.4), the retracted u

cells would exert further pressure on v cells, pushing them backward into the inner monolayer.

This would make v cells even more under-represented in the backward edge cells compared to

their percentage in the forward edge cells. However, when the percentage of v cells is large,

this pushing force is diminished, as v cells outnumber u cells, making it harder for u cells

to push them backward. It’s worth noting that mixtures involving Yoda1-treated cells also

exhibit strong retraction on v cells, but high-frequency short-duration retraction mitigates

this effect. This trend was observed in test #7. Conversely, when only retraction strength

was applied without shortening the retraction duration (test #8), the same phenomenon

as the Piezo1 -GoF case was observed, and shortening the retraction duration rescued this

trend (test #9).
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To further validate our hypothesis, we measured the percentage of v cells in forward and

backward edge cells across various thresholds γedge defining edge cells (Fig. B.8). These

simulations, performed in the mixture of ControlGoF and Piezo1 -GoF under αuv = −0.4

and pv = 0.5, confirmed our hypothesis that v cells are retracted to the inner monolayer.

Specifically, when the threshold γedge is small, indicating proximity to the wound edge, the

backward edge cell percentage is smaller than the forward edge cell percentage, as observed

earlier. However, when the threshold γedge exceeds 0.4, indicating the inner monolayer,

the backward edge cell percentage is higher than the forward edge cell percentage, as we

hypothesized.

Figure B.8: Edge cell distribution across thresholds. This figure illustrates the per-
centage of v cells at the wound edge across various thresholds (γedge), specifically under
conditions where αuv = −0.4 and pv = 0.5. The lines represent the mean, while error bars
denote the standard error of the mean, derived from 1182 data points for forward moments
and 539 data points for backward moments.

B.1.6 Supplementary figures
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Figure B.9: The percentage of edge cells in forward and backward directions dur-
ing mixing ControlcKO and Piezo1 -cKO cells. The model involves mixing ControlcKO

(u cells) and Piezo1 -cKO (v cells). Cells at the wound edge are categorized based on their
migrating direction: forward or protrusion (blue), and backward or retraction (red). The
figures depict the mean of 100 simulation results, displaying the percentage of v cells in these
two specific types of edge cells relative to the source cells’ v cell percentage, under various
interaction coefficient (αuv). Error bars indicate the standard error of the mean.
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Figure B.10: The mixture of DMSO-treated and Yoda1-treated cells. The model
involves mixing DMSO-treated (u cells) and Yoda1-treated (v cells). (A) Line graphs il-
lustrate the mean of 100 simulation results, displaying the normalized wound closure versus
the Yoda1-treated source cell percentage. Error bars indicate the standard error of the
mean. The various colored lines denote different interaction coefficient values (αuv). (B)
Line graphs within each cluster represent 100 individual tracks (300 total trajectories in
the figure), demonstrating the evolution of Yoda1-treated (v cells) percentage in edge cells
over simulation time steps during wound closure. The clusters correspond to distinct source
cell conditions, with Yoda1-treated (v cells) percentages set at 20% (bottom cluster), 50%
(middle cluster), and 80% (top cluster). These levels are indicated by black dashed lines.
(C) Line graphs illustrate the mean of 100 simulation results, displaying the percentage of
Yoda1-treated (v cells) cells in edge cells versus the percentage in source cells. The various
colored lines denote different interaction coefficient values (αuv), and error bars indicate the
standard error of the mean. (D) Cells at the wound edge are categorized based on their
migrating direction: forward or protrusion (blue), and backward or retraction (red). The
figures depict the mean of 100 simulation results, displaying the percentage of v cells in these
two specific types of edge cells relative to the source cell percentage for v cells, under various
interaction coefficient (αuv). Error bars indicate the standard error of the mean.
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Figure B.11: List of parameters and their base values for the heterogeneous
PIEZO1 model.
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Appendix C

Experimental methods and materials

C.1 Ethics statement

All studies were approved by the Institutional Animal Care and Use Committee of Univer-

sity of California at Irvine and The Scripps Research Institute and performed within their

guidelines.

C.2 Materials

C.2.1 Animals

Keratinocyte samples from Piezo1 -cKO and Piezo1 -GoF mice were a gift from Dr. Ardem

Patapoutian’s lab, the Scripps Research Institute. Piezo1 -tdTomato reporter mice (Piezo1 -

tdTomato; JAX stock 029214), Piezo1 -cKO and Piezo1 -GoF mice were generated in previous

studies [35, 70].
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C.2.2 Keratinocyte isolation and culture

Primary keratinocytes were isolated from the upper dorsal skin of P0-P5 mice as previ-

ously described [35]. Briefly, dissected tissue was allowed to dissociate for 15-18 hours.

After dissociation, the epidermis was separated and incubated in Accutase (CellnTec CnT-

Accutase-100) for 30 minutes at room temperature. Subsequently, the epidermis was trans-

ferred to a dish of CnT-Pr media (CellnTec), supplemented with 10% FBS and 1% peni-

cillin/streptomycin where the epidermis was minced and then agitated using a stir plate

for 30 min. After agitation, cells were strained through a 70 µm cell strainer (Falcon).

Strained cells were spun down and resuspended in CnT-Pr media (CellnTec) supplemented

with ISO-50 (1:1000) (CellnTec) and Gentamicin (50 µg/ml) (Thermo Fisher).

Isolated keratinocytes were seeded directly onto the glass region of #1.5 glass-bottom dishes

(Mat-Tek Corporation) coated with 10 µg/ml fibronectin (Fisher Scientific, CB-40008A).

For single cell migration experiments, isolated cells were sparsely seeded onto the glass

region at 1.5 × 104 cells/dish while for monolayer scratch assay experiments, isolated cells

were densely seeded onto the glass region at a density of 1.5x105 cells/dish. One day after

seeding, CnT-Pr supplemented culture media (see above) was switched to Cnt-Pr-D media

(CellnTec) to promote keratinocyte differentiation. Keratinocytes were imaged 3 days after

primary isolation, allowing at least 2 days for keratinocyte differentiation in Cnt-Pr-D media

(CellnTec).

C.2.3 Microscopy

For in vitro image acquisition, an Olympus IX83-ZDC inverted microscope equipped with

a SOLA light engine (Lumencor) was utilized. For time-lapse imaging experiments, a full

enclosure stage-top incubator system (Tokai Hit) enabled cells to be imaged at 37°C with

5% CO2 to maintain optimal cell health. µManager, an open-source microscopy controller
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software, was used for microscope hardware control and image acquisition [21, 22]. For all

experimental data, images were taken using a UPlanSApo 10× dry objective with a numerical

aperture of 0.40 and acquired using a Hamamatsu Flash 4.0 v2+ scientific CMOS camera.

C.3 Experiments

C.3.1 Immunofluorescence staining

For immunostaining of healing monolayers in Fig A.12, scratch wounds were generated in

confluent monolayers of isolated keratinocytes and then treated with either 4 µM Yoda1, or

the equivalent concentration of the solvent DMSO, before allowing the monolayers to collec-

tively migrate. 24 hours after initial wounding the monolayers, monolayers were fixed and

then immunostained for total levels of Rac1 (Fig A.12, left) and RhoA (Fig A.12, right).

Immunostaining was performed as previously described [67] using the following antibod-

ies: Mouse anti-Rac1 (Millipore Cat#05-389-25UG, 1:200), Rabbit anti-RhoA (Proteintech

Cat#10749-1-AP, 1:100), Donkey anti-Mouse 647 (Abcam Cat#AB150107, 1:500), Goat

anti-Rabbit 488 (Life Sciences Cat#A32731, 1:500). Nuclei were stained by Hoechst (Invit-

rogen Cat#H1399) at 1µg/mL for 5 minutes.

C.3.2 Single cell migration assay

As previously described [35], time lapse sequences of DIC images were taken at 5 minute

intervals. In brief, sparsely seeded keratinocytes were allowed to migrate for 16.67 hr at

37°C with 5% CO2 in fibronectin-coated glass-bottom dishes. Cell centroids were tracked

using Cell Tracker (https://celltracker.website/index.html, Piccinini2016-dx) and resulting

trajectories were analyzed using the cell trajectory analysis software, DiPer [28].
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C.3.3 Wound closure assay

Primary keratinocytes were cultured for 3 days until they formed a confluent monolayer.

Prior to imaging experiments, cell nuclei were labeled by addition of SiR-Hoechst [58] (1

µM; Cytoskeleton Inc.) to Cnt-Pr-D+1.2 mM Ca2+ bath media for 1 hour prior to imaging.

As previously described, monolayer scratches were generated using a 10 µl pipette tip and

resulting cell debris was removed by performing three successive washes of culturing media

[35, 55]. Time-lapse imaging series of wound closure were acquired by taking sequential

DIC and fluorescence images at multiple positions. 1 µM SiR-Hoechst remained in the Cnt-

Pr-D+1.2 mM Ca2+ bath media throughout the imaging period. For Yoda1 experiments,

4 µM Yoda1 or, as a control, the equivalent concentration of DMSO was supplemented to

bath media prior to imaging. Leader cells display broad lamellipodia and are located at

the front of protrusions along the leading edge of healing monolayers. During identification,

leader cells were identified by manually reviewing time lapse image series and counting the

number of cells located at the front of fingering protrusions at the leading edge which display

increased polarization and large, prominent lamellipodia. Example leader cells identified

during manual review are denoted by white arrows within Fig A.1. The number of leader

cell formations is reported at the time point when either the wound interfaces touch or the

imaging period finishes.

C.4 Analysis

C.4.1 Wound edge length analysis

Monolayer sheets were segmented from images taken during wound closure assays using a

custom deep-learning based U-net architecture written in Python [74]
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(https://github.com/Pathak-Lab/PIEZO1-Collective-Migration). The length of the seg-

mented wound edge was calculated by taking the cumulative euclidean distance between all

detected pixel positions along the segmented monolayer leading edge. Due to any possible

differences in edge length which might arise when manually making scratches in monolayers,

each field of view's edge length was normalized by dividing the edge length at Tfinal, the

time point when either the wound interfaces touch or the imaging period finishes by T0, the

starting edge length at the starting time point for a field of view. This normalized edge

length was used as a measure of the prevalence of leader cells along the wound edge for a

given condition.

C.4.2 Image analysis

Using the open-source image analysis software Fiji [75] the signal-to-noise ratio of SiR-

Hoechst images was increased using Contrast Limited Adaptive Histogram Equalization

(CLAHE) (https://imagej.net/plugins/clahe) prior to further analysis. For some images

which had poor labeling of SiR-Hoechst, the denoising algorithm Noise2Void was also used

to further increase the signal-to-noise ratio of nuclei images [46] (Fig A.13).

C.4.3 Individual cell tracking

We combined the deep learning-based object detection method StarDist with the cell tracking

software TrackMate to perform automated tracking of cells within monolayers [23, 24, 82].

Cell trajectories harvested using TrackMate were then exported for further analysis. Due

to the technical limitations surrounding Microsoft Excel's ability to handle large datasets,

we developed Cell Pyper (https://github.com/Pathak-Lab/PIEZO1-Collective-Migration) a

Pythonic analysis pipeline based on the open-source algorithm DiPer [28] to analyze the

Mean Squared Displacement (MSD), Speed and Velocity autocorrelation of harvested cell
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trajectories.

For efficient computation of a trajectory’s MSD, MSDs are computed according to Eq. C.1

(Eq. 4.11 in [12]) where r(k) ≡ r(k∆t) is a cell trajectory consisting of Nt timepoints and

the MSD is calculated for timestep m.

∆2(m) =
1

Nt −m

Nt−m−1∑
k=0

[r(k +m)− r(k)]2 m = 0 . . . Nt − 1 (C.1)

As described by Gorelik & Gautreau (Eq. 6 and 7 in [28], Velocity Autocorrelation analysis

is calculated according to equations C.2 and C.3 for a trajectory consisting of N timepoints

with a time-step of ∆t=5 min. A normalization factor (Norm; Eq. C.2) is initially calculated

for velocity vector vi with starting coordinates (xi, yi) which is used to calculate the average

velocity autocorrelation coefficient vac with step size n.

Norm =
1

N
ΣN−1

i=0 |v̄|2i

=
1

N∗(∆t)2
ΣN−1

i=0

[
(xi − xi+1)

2 + (yi − yi+1)
2] (C.2)

vac(n) =
1

N − n

(
ΣN−n

i=0 v̄i · v̄i+n

)
∗ 1

Norm

=
1

N − n
ΣN−n

i=0

[
(xi − xi+1) (xi+n − xi+n+1) + (yi − yi+1) (yi+n − yi+n+1)

(∆t)2
∗ 1

Norm

] (C.3)
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C.4.4 Particle image velocimetry analysis

Particle Image Velocimetry (PIV) analysis was performed using the Python implementation

of OpenPIV [56] (https://github.com/Pathak-Lab/PIEZO1-Collective-Migration). We use

multiple passes of interrogation window sizes, initially using first-pass calculations with a 64

pixel x 64 pixel (55.2 µm x 55.2 µm) window followed by two iterations of 32 x 32 (27.6

µm x 27.6 µm) pixel windows and two iterations of 16 x 16 pixel (13.8 µm x 13.8 µm) win-

dows. Each interrogation window was computed with a 50% overlap. A signal-to-noise filter

(Threshold=1.3) was used on detected velocity vectors to remove any vector outliers. Out-

puts produced by OpenPIV analysis were then used to generate PIV flow fields as shown in

Fig 3.3A-C. Working from the flow fields, individual PIV vectors were isolated and PIV vector

direction was calculated and normalized to 0° to account for differences in angles of scratches

made in monolayers (https://github.com/Pathak-Lab/PIEZO1-Collective-Migration). Vec-

tor direction distributions are illustrated as the probability density distribution across ex-

perimental replicates in Fig 3.3D-F. The von Mises distribution was employed to fit vector

direction datasets by minimizing the mean squared error between the vector direction data

and the von Mises probability density function. The resulting fitted curves represent the

best approximation of the data by adjusting the parameters µ (mean) and κ (concentration

or strength) of the von Mises distribution. The parameter µ represents the location where

the distribution is clustered, while parameter κ indicates the level of directionality in our

experimental context. The probability density function of the von Mises distribution for the

vector direction angle x is expressed as:

f(x|µ, κ) = exp(κ cosx− µ)

2πI0(κ)
, (C.4)

where I0(κ) represents the modified Bessel function of the first kind with order 0
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I0(κ) =
1

π

ˆ π

0

ex cos θdθ, (C.5)

which is selected to ensure the distribution integrates to unity:

ˆ π

−π
exp(κ cosx)dx = 2πI0(κ). (C.6)

The variance of PIV vector directions within a field of view was calculated as the mean

angular deviation, z, where z is defined in Eq. C.7 (Eq. 2 in [49]). Outputs of this equation

are bounded such that zero indicates no variability in vector direction within a flow field and

one indicates high variability in vector direction.

z =
1

N

( N∑
i

cos θi

)2

+

(
N∑
i

sin θi

)2
1/2

(C.7)

The spatial autocorrelation function, C , is computed according to Eq. C.8 (Eq. 4 in [49])

using the radial velocity component of a given PIV vector, v, within a vector flow field at

varying length scales, r.

C(∆r) =
Σriv (ri) · v (ri +∆r)√

Σriv
2
i (ri) · Σriv

2 (ri +∆r)
(C.8)

For measurement of the local autocorrelation in vector direction, the spatial autocorrelation
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at ∆r = 150 µm was used to capture correlation of motion at multiple cell lengths. Length

constants were calculated by using OriginLab to fit an exponential function whose exponent

is a 2nd order polynomial (Eq. C.9) to the spatial autocorrelation dataset and calculating

the distance at which C(∆r) ≈ 0.37.

y = ea+bx+cx2 (C.9)

C.4.5 Statistical analysis

P values, statistical tests, and sample sizes are declared in the corresponding figures. All

datasets were tested for normality using the Shapiro-Wilk test prior to statistical analysis.

The two-sample t-test was used where data were modeled by a normal distribution and a

nonparametric test was used in the case of non-normal distributions. Cumming estimation

plots were generated and Cohen’s d value was calculated using the DABEST python [32]

(https://github.com/ACCLAB/DABEST-python). The Cohen’s d effect size is presented as

a bootstrap 95% confidence interval (95% CI) on a separate axes. p values for Fig 3.3G-I

are declared in Fig A.11.
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