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THE GENERALIZED LASSO WITH NON-LINEAR

OBSERVATIONS

YANIV PLAN AND ROMAN VERSHYNIN

Abstract. We study the problem of signal estimation from non-linear
observations when the signal belongs to a low-dimensional set buried
in a high-dimensional space. A rough heuristic often used in practice
postulates that non-linear observations may be treated as noisy linear
observations, and thus the signal may be estimated using the gener-
alized Lasso. This is appealing because of the abundance of efficient,
specialized solvers for this program. Just as noise may be diminished
by projecting onto the lower dimensional space, the error from modeling
non-linear observations with linear observations will be greatly reduced
when using the signal structure in the reconstruction. We allow gen-
eral signal structure, only assuming that the signal belongs to some set
K ⊂ Rn. We consider the single-index model of non-linearity. Our
theory allows the non-linearity to be discontinuous, not one-to-one and
even unknown. We assume a random Gaussian model for the measure-
ment matrix, but allow the rows to have an unknown covariance matrix.
As special cases of our results, we recover near-optimal theory for noisy
linear observations, and also give the first theoretical accuracy guaran-
tee for 1-bit compressed sensing with unknown covariance matrix of the
measurement vectors.

1. Introduction

Before describing to the non-linear setting which is the main theme of
this paper, let us first consider the structured linear model

y = Ax + z

where an unknown vector x belongs to some known set K ⊂ Rn. The goal
is to reconstruct the signal x from the noisy measurement vector y ∈ Rm. A
common method is to minimize the `2 loss subject to a structural constraint:

minimize ‖Ax′ − y‖2 subject to x′ ∈ K. (1.1)

We shall refer to this generalized Lasso as the K-Lasso for the rest of the
paper. The set K is meant to capture structure of the signal. In many cases
of interest K behaves as if it were a low-dimensional set, although it often
has full linear algebraic dimension. For example, to promote sparsity of the
solution, one can choose K to be a scaled `1 ball, and this gives the vanilla
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2 YANIV PLAN AND ROMAN VERSHYNIN

Lasso as proposed by R. Tibshirani [44]. When the signals are matrices, to
promote low rank one can choose K to be a scaled ball in the nuclear norm,
and this is referred to as the matrix Lasso [9] or trace Lasso [22].

How well can the signal be reconstructed based on the complexity of
the set K? Under the linear model, the last two decades have seen the
development of a strong theoretical backing for the Lasso from the statistical
community, mostly based on a sparsity assumption. See, e.g., [8, 23, 6, 29,
32, 46, 10]. Further, recent results developed from the compressed sensing
community give a clean, comprehensive theory for arbitrary signal structure.
See Section 2.

Consider the more challenging situation, in which there is an unknown
non-linearity in the observations. We ask:

What happens when the K-Lasso is used to reconstruct a
signal based on non-linear observations?

On the one hand, Lasso is by design a method for linear regression, and it
is dubious to expect it to work if y depends non-linearly on Ax. On the
other hand, practitioners have been successfully using Lasso for non-linear
(especially binary) observations without theoretical backing.

In this paper we demonstrate that K-Lasso can be used for non-linear ob-
servations. We will see that from Lasso’s point of view, non-linear observa-
tions behave as scaled and noisy linear observations, and we will characterize
the scaling and the noise. Furthermore, we assume A to be Gaussian, but
in contrast to much of the literature, we allow unknown covariance of rows.
A particular non-linearity of interest in signal processing is 1-bit quantiza-
tion, which, when combined with sparse signal structure, leads to the model
of 1-bit compressed sensing. We believe all previous theoretical results in
this area have required knowledge of the covariance of rows for the recov-
ery algorithm to be accurate; our work broadens the theory by removing
this requirement. We will describe related literature regarding non-linear
observations in Section 2 below.

1.1. Model. We will work with semiparametric single-index model of a sim-
ilar form to the one in [37]. Let x ∈ K ⊂ Rn be a fixed (unknown) signal
vector, let ai ∼ N (0,Σ) be independent random measurement vectors, and
let A be the matrix whose i-th row is aT

i . Let fi : R → R be independent
copies of an unknown, random function f modeling the non-linearity (it also
may be deterministic), which are independent of A. We assume that the m
observations yi that form the vector y = (y1, . . . , ym) take the form

yi = fi(〈ai,x〉). (1.2)

Note that the norm of x is sacrificed in this model since it may be absorbed
into the unknown random function fi. Thus, to simplify presentation, we
will assume that ‖

√
Σx‖2 = 1. We will remark on how to remove this

assumption by a rescaling argument.
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1.2. Examples. We now give two concrete examples of the above model:
quantized and binary observations.

A first non-linearity of interest is quantization applied to linear observa-
tions. Then the function f maps 〈ai, x〉 to a finite alphabet of real numbers.
In this case, the non-linearity is known, and furthermore, it is designed.
Thus, the theoretical error bounds we develop below may be tuned to opti-
mize the error. This observation has been made in [43].

On the extreme end, one may consider 1-bit quantization: f(〈ai, x〉) =
sign(〈ai, x〉). Measurements of this kind are of special interest due to the
simplicity of hardware implementation, and the robustness to multiplicative
errors. We further discuss 1-bit quantization in Section 3 below.

Interestingly, binary statistical models are quite similar. For example,
f(〈ai, x〉) = sign(〈ai, x〉 + zi) gives the logistic regression model, provided
that zi is logit noise. Other binary models are available by adjusting the
distribution of zi. The classical approach in these models is (regularized)
maximum likelihood estimation [32, 14]. However, it requires knowledge
of the form of the nonlinearity, which is equivalent to knowledge of the
distribution of zi, and in practice one would often not expect this to be
known. Further, the theory requires the log-likelihood to be strongly convex,
which ceases to hold when zi is small compared to ||x||2. Ironically, the noise
needs to be roughly larger than the signal in the theoretical treatment of
maximum-likelihood estimation (see [14] for a discussion of this point). In
contrast, as we show, the K-Lasso does not need knowledge of the non-
linearity, and is accurate even when the noise zi disappears, as in the 1-bit
compressed sensing model.

1.3. Simplified results when K is a subspace. To begin in a simpler
setting, let us assume that the covariance matrix Σ is identity, K is a d-
dimensional subspace, and there is no non-linearity, just an unknown rescal-
ing and noise. Thus, we assume that fi(u) = µu+ zi for u ∈ R, where µ > 0
and zi ∼ N (0, σ2). Then the observations take the form

yi = µ〈ai,x〉+ zi. (1.3)

The K-Lasso (1.1) becomes the least squares estimator whose behavior is
well known. Let x̂ be the solution to the K-Lasso. Then, the conditional
expectation of the squared error with respect to A satisfies

E ‖x̂− µx‖22 = σ2 ·
d∑
i=1

1

σ2
i (AK)

where σi(AK) is the i-th singular value of A restricted to the subspace K.
Since A is Gaussian, it is well conditioned with high probability as long as
the number of observations m is significantly larger than the dimension d
of K [48]. In this case, with high probability, each singular value does not
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deviate significantly from
√
m [48] and thus

E ‖x̂− µx‖22 ≈
d

m
σ2.

Let us make a few observations about the ingredients involved in the
above calculation. First, the K-Lasso gives an estimate of a scaled version
of x. Second, note the vital requirement that the number of observations
m exceeds the dimension of the subspace d. Third, observe that the size of
the scaling and the noise satisfy

µ = E(f(g) · g) and σ2 = E(f(g)− µg)2 = E f(g)2 − µ2,

where g is a standard normal random variable.
Our main result states that up to a small extra summand, the K-Lasso

gives the same accuracy for non-linear observations, with σ and µ measured
in the same way. To easily compare, we first state this result when K is
a subspace. Here and in the rest of the paper, a statement is said to hold
with high probability if it holds with probability at least 0.99. Further, the
symbol . hides an absolute constant.

Proposition 1.1 (Non-linear estimation on a subspace). Suppose that ai ∼
N (0, I), and that y follows the semi-parametric single index model of Section
1.1. Let K be a d-dimensional subspace and assume x ∈ K ∩Sn−1. Suppose
that

m & d.

Then, with high probability, the non-linear estimator x̂ which minimizes the
K-Lasso (1.1) satisfies

‖x̂− µx‖2 .
√
d σ + η√
m

(1.4)

where

µ := E[f(g) · g], σ2 := E(f(g)−µg)2, η2 := E(f(g)−µg)2g2. (1.5)

One sees that this mirrors the result for linear observations aside from the
extra summand η/

√
m, which becomes quite small with a moderate number

of observations m. For example, in the noisy linear model (1.3) one has
η = σ, so this result gives the classic error rate as a special case.

Results of the above flavour have been rigorously proven in the statistics
literature [7], with a focus on asymptotic behaviour of the error. In this
paper, we extend these ideas to modern trends in signal processing and
statistics, in which it is assumed that the signal belongs to some non-linear
low-dimensional signal structure, such as the set of sparse vectors or low-
rank matrices. We now proceed to our main results in which K will be
allowed to be a general set.
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Figure 1. The tangent cone

1.4. Main results. We will give two results below, one specialized to the
case when the scaled signal µx lies at an extreme point of K with (small)
tangent cone, and one which only assumes that µx lies in K.

Definition 1.2 (Tangent cone). The tangent cone1 of K at x is

D(K,x) := {τh : τ ≥ 0,h ∈ K − x}.

For sets with non-smooth boundary, such as the `1 ball or the nuclear
norm ball, the tangent cone at a boundary point can be quite narrow, and
intuitively should behave like a low-dimensional subspace. We give an illus-
trative example of a tangent cone in Figure 1, although, in a two-dimensional
representation, we cannot do justice to the high-dimensional effects which
allow convex sets to have extremely narrow tangent cones.

While A may be singular, it can be quite well conditioned when restricted
to the tangent cone; it is not surprising that this restricted conditioning of A
can determine the accuracy of the solution to (1.1). Further, this restricted
condition number can be well understood via Gordon’s escape through the
mesh theorem (see Theorem 4.2). It states that the restriction of A onto K
is well conditioned provided that the number of observations m exceeds the
effective dimension of K. The effective dimension is measured in Gordon’s
theorem by the notion of Gaussian mean width. Let us recall the notion of
the local (Gaussian) mean width; see [36, 37, 48] for further discussion of
the mean width and how is serves as a measure of effective dimension.

Definition 1.3 (Local mean width). The local mean width of a subset
K ⊂ Rn is a function of scale t ≥ 0 defined as

wt(K) = E sup
x∈K∩tB2

〈x, g〉,

where B2 denotes the unit Euclidean ball in Rn.

1To allow non-convex K, the above is slight variation on the standard definition of
tangent cone [26]. The tangent cone may also be called the descent cone.
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Let us pause to explain the heuristic meaning of the local mean width of
a cone D. The square of the mean width, w1(D)2, can be described as a
measure of effective dimension of D. This can be seen on the following two
examples. First, let D be d-dimensional subspace in Rn. It is not difficult
to check that

w1(D)2 ∼ d,
up to a absolute multiplicative constants. Thus in this case, the square of
the mean width is equivalent to the algebraic dimension d.

A deeper example is where D = D(Bn
1 ,x) is the descent cone of the unit

`1 ball Bn
1 = {u ∈ Rn : ‖u‖1 ≤ 1} at some point x on the boundary of

Bn
1 . Suppose x is s-sparse, meaning that x has s non-zero coordinates. It

should be clear that the smaller sparsity s, the thinner the descent cone D
is. Quantitatively, this is captured by the notion of local mean width, which
can be shown (see e.g. [11]) to behave as follows:

w1(D)2 ∼ s log(n/s).

Thus, up to a logarithmic factor, the square of the mean width is again
equivalent to the dimensionality of the signal x, which is its sparsity s.

We refer the reader to [36, Section 2] where the notion of mean width
is discussed in more detail, as well as to [4] where an equivalent concept of
statistical dimension is introduced.

Let us first state our first main result specialized to the case when Σ = I
and to descent-cone structure.

Theorem 1.4 (Non-linear estimation with tangent cone structure). Sup-
pose that ai ∼ N (0, I), x ∈ Sn−1, and that y follows the semi-parametric
single index model of Section 1.1. Assume that µx ∈ K, and let d(K) :=
w1(D(K,µx))2. Suppose that

m & d(K).

Then, with high probability, the solution x̂ of the K-Lasso (1.1) satisfies

‖x̂− µx‖2 .
√
d(K)σ + η√

m
(1.6)

where µ, η, and σ are defined in (1.5).

It should be clear that this result extends Proposition 1.1 from linear to
non-linear observations, and from subspaces to general sets. To see this,
recall our observation that if K is a d-dimensional subspace, then d(K) ∼ d
up to an absolute constant factor.

Remark 1.5 (Boundary of K). For the above theorem to be especially useful,
µx needs to lie on the boundary of K. Otherwise, the tangent cone is the
entire Rn, and the effective dimension d(K) is of order of n. In this case,
the estimate becomes accurate only when the number of observations m
exceeds the ambient dimension n rather than the effective dimension of
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the cone, which may be significantly smaller. Thus, in practice, one would
like to rescale K to put µx on the boundary. If µx does not lie precisely
on the boundary, we may appeal to our more general Theorem 1.9 below.
Further, we note that the unconstrained version of the K-Lasso overcomes
this obstacle. This has been proven in the asymptotic setting in [43], which
built upon the ideas in this papper.

A substitution argument generalizes the above result to allow an unknown
covariance matrix.

Corollary 1.6 (Non-linear estimation with unknown covariance matrix).

Suppose that ai ∼ N (0,Σ),
√

Σx ∈ Sn−1, and that y follows the semi-
parametric single index model of Section 1.1. Assume that µx ∈ K, and let
d(K,Σ) := w1(

√
ΣD(K,µx))2. Suppose that

m & d(K,Σ).

Then, with high probability, the non-linear estimator x̂ which minimizes the
K-Lasso (1.1) satisfies

‖
√

Σ(x̂− µx)‖2 .
√
d(K,Σ)σ + η√

m
(1.7)

where µ, η, and σ are defined in (1.5).

Proof. We may set ai :=
√

Σgi where gi ∼ N (0, I). Then 〈ai,x〉 =

〈gi,
√

Σx〉. Thus, by replacing x with
√

Σx, we recover the model in which

Σ = I. Further, we may substitute x′ with
√

Σx′ in the K-Lasso to arrive
at the

√
ΣK-Lasso:

minimize ‖Gx′ − y‖2 subject to x′ ∈
√

ΣK (1.8)

where G is a matrix which contains gT
i as its i-th row. We have now com-

pletely reduced to the setup of Theorem 1.4, with the caveat that we have
substituted x,x′, and K by

√
Σx,
√

Σx′, and
√

ΣK. Apply the theorem to
finish the proof of the corollary. �

Remark 1.7 (Removing Σ from the mean width). If the covariance matrix
Σ is well conditioned, its effect on the error (1.7) can be easily evaluated
using the inequality

d(K,Σ) ≤ cond(Σ) · d(K). (1.9)

where cond(Σ) = ‖Σ‖ · ‖Σ−1‖ denotes the condition number and d(K) =
d(K, I) is the same as Theorem 1.4. Before we prove this bound, let us
mention that in some situations the effect of Σ is much smaller than it
predicts – for example, if K is a subspace, then d(K,Σ) = d(K).

To check (1.9), note that for the tangent cone D = D(K,µx) we have

w1(
√

ΣD) = E sup
x∈
√

ΣD∩B2

〈x, g〉 ≤ ‖
√

Σ
−1
‖ · E sup

x∈
√

Σ(D∩B2)

〈g,x〉, (1.10)
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where the inequality follows from the elementary containment
√

ΣD∩B2 ⊂
‖
√

Σ
−1‖ ·

√
Σ(D ∩B2). A straightforward application of Slepians inequality

[48] then bounds the quantity in (1.10) by ‖
√

Σ
−1‖ · ‖

√
Σ‖ · w1(D). Thus,

we conclude (1.9).

Remark 1.8 (Removing the assumption that ‖
√

Σx‖2 = 1). The theory may
be generalized to the case when ‖Σx‖2 6= 1 with a simple rescaling argument.

Let δ = ‖
√

Σx‖2 and let x̃ := x/δ. Observe that

f(〈ai,x〉) = f(δ〈ai, x̃〉) =: f̃(〈ai, x̃〉).

Thus, the theorem applies to the estimation of x̃ with parameters

µ := E[f̃(g) · g], σ2 := E(f̃(g)− µg)2, η2 := E(f̃(g)− µg)2g2.

In some cases, one does not expect the tangent cone to have especially
small mean width. As a motivating example, in the field of compressed
sensing, it is standard to call x compressible if it belongs to a scaled `p
ball for p ∈ (0, 1), or if the ratio ‖x‖1/‖x‖2 is small. In this case, which
contrasts with the case of exact sparsity, the tangent cone may have mean
width comparable to the ambient dimension. However, the set K itself can
still behave in a low-dimensional fashion. Since K is not necessarily a cone,
and is not scale invariant, it is necessary to characterize dimension with a
scaling parameter. Fortunately, the local mean width accomplishes this task
with t as the scaling parameter, and wt(K − µx)2/t2 serving as a measure
of the dimension at scale t.

The next theorem considers a general signal structure.

Theorem 1.9 (Non-linear estimation without tangent cone structure). Sup-
pose that ai ∼ N (0, I), x ∈ Sn−1, and that y follows the semi-parametric
single index model of Section 1.1. Assume that µx ∈ K where K is con-
vex,2 and let dt(K) := wt(K − µx)2/t2. Then, the following holds with high
probability. For any t > 0 such that

m & dt(K),

the non-linear estimator x̂ which minimizes the K-Lasso (1.1) satisfies

‖x̂− µx‖2 .
√
dt(K)σ + η√

m
+ t (1.11)

where µ, η, and σ are defined in (1.5).

Note that one may derive Theorem 1.4 by taking the limit as t goes to
zero in the above theorem. However, in the proofs we will give a simpler
and more straightforward route to the proof of Theorem 1.4.

2More generally, the proof only requires that K−µx be contained in a star shaped set.
This star shaped set can take the place of K − µx in the results of this theorem.
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Remark 1.10 (Non-trivial covariance matrix). As above, this result can be
generalized to the case when the covariance matrix of the rows is Σ 6= I.
One would just define dt(K,Σ) in a straightforward way similar to that in
Corollary 1.6.

1.5. Key idea in the proof. While it may be surprising that the K-Lasso
is provably accurate even under the (non-linear) single-index model, it be-
comes much clearer when one observes that the expected loss, E ||Ax′−y||22,
is minimized by µx. In other words, regardless of the form of the non-
linearity, the expected squared error is minimized by a multiple of the orig-
inal signal. See Section 4 for a proof.

In fact, one may transform the single-index model into a scaled linear
model with an unusual noise term. Define an induced noise vector z to
satisfy

y = Aµx + z.

One may not expect z to play the role of noise, since it generally does not
have zero mean, and is not independent of A. However, zi is uncorrelated
with ai (see Section 4).

We note that under this scaled linear model, one could use standard tech-
niques to derive error bounds if z were deterministic, or independent of A
[33], or if z were sub-Gaussian. However, since we make quite mild assump-
tions in our single-index model, only implicitly assuming that the parameters
µ, σ, and η are well-defined, this induced noise may have heavy tails and
requires novel analysis. Some of the tools for this analysis are available in
the recent work [37] by the current authors and Yudovina. However, this
earlier paper did not apply to the K-Lasso, and there were many technical
details needed to extend these results. In particular, the extra steps in the
proof of Theorem 1.9 are new ideas, as well as the method to give results
with non-trivial covariance matrix. We give a detailed comparison with this
earlier work and others in the next section.

2. Related literature

There is now a precise and comprehensive theory of signal reconstruction
from linear observations, which takes into account signal structure. While it
is largely motivated by the quite modern area of compressed sensing [18, 19],
it is rooted in results developed in the older areas of geometric functional
analysis [47, 21] and convex integral geometry [40]. To leverage these tools,
it is vital to assume that the measurement matrix A is random. We give
a brief overview of the results most closely aligned with this work. The
literature that we describe below takes A to be a matrix with independent
Gaussian or sub-Gaussian entries.

In the noiseless case, signal reconstruction is possible as soon as the num-
ber of observations exceeds the manifold dimension [17]. Even in the noisy
case, there is a large pool of theory addressing signal reconstruction based
on manifold dimension [5, 50, 51, 16]. However, in the noisy case, it is
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necessary to make extra structural assumption of the set K beyond assum-
ing that it has small manifold dimension. Otherwise, signal reconstruction
based on a number of observations comparable to the manifold dimension
can be unstable [20].

The Gaussian mean width gives an alternative measure of dimension.
When it is applicable, it leads to simpler assumptions. Indeed, as described
above, the Gaussian mean width controls the conditioning of A when re-
stricted to a cone, as proved in Gordon’s escape through the mesh theorem.
Rudelson and Vershynin [38] leveraged this result in the compressed sens-
ing setup, showing that the signal could be reconstructed as long as the
number of observations exceeded the squared Gaussian mean width of the
tangent cone; Stojnic continued in this line of research [41]. Chandrasekaran
et al. [11] extended this result to general convex bodies K. Amelunxen et
al. [4] took a different route, synthesizing tools from conic integral geome-
try to give a precise phase transition for the number of observations needed
to reconstruct x. There work is based on the statistical dimension, which
is roughly equivalent to the mean width, but has some extra convenient
properties (see [4]). This showed that previous results were tight. A line of
work by Thrampoulidis, Oymak, and Hassibi [33, 34, 42] concentrated on
the precise reconstruction error from noisy observations, and also consid-
ered unconstrained versions of the K-Lasso. Our theoretical results in the
non-linear case can be seen to mirror Theorem [33, Theorem 1] in the linear
case. We state a simplified version of this theorem, specialized to Gaussian
noise (see the original theorem for a very careful treatment of constants).

Theorem 2.1. Suppose that ai ∼ N (0, I), x ∈ Sn−1, and that y fol-
lows the noisy linear model (1.3). Assume that µx ∈ K, and let d(K) :=
w1(D(K,x))2. Suppose that

m & d(K).

Then, with high probability, the solution x̂ of the K-Lasso (1.1) satisfies

‖x̂− x‖2 .
√
d(K)σ√
m

.

Thus, one sees that our theorem 1.4, when specialized to linear observa-
tions, recovers this modern theory up to an absolute constant.

2.1. Prior work addressing non-linearity of the observations. There
are also numerous works, and fields of study, addressing non-linearity. We
describe the work that is most closely related to the present paper.

The semiparametric single-index model that we take in this paper is well
studied in econometrics; see the monograph [24]. Most work in this area
is asymptotic, although recent works have considered the finite case [25,
3, 13]. However, we believe that this literature does not address, from a
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theoretical standpoint, the gains that can be made by utilizing a general low-
dimensional structure. See [37, Section 6] for a more thorough discussion of
this literature.

In contrast, our work precisely characterizes the benefits from taking into
account low-dimensional signal structure. For example, consider the sparse
signal structure assumed in compressed sensing, in which x contains at most
s non-zero entries. The effective dimension is O(s log(n/s)) which can be
significantly smaller than the ambient dimension, n. Thus, we show only
O(s log(n/s)) measurements are needed to estimate x. Specialized to the
case of linear, noiseless measurements, our theory recovers the classic re-
sult that x may be exactly reconstructed from this number of measure-
ments. When non-linearity is present, the “noise” induced by modeling
non-linear measurements with linear measurements is reduced proportion-
ally to s log(n/s)/m.

The area of 1-bit compressed sensing [1] concentrates on the case when the
non-linearity is 1-bit quantization. In other words, for q ∈ R, f(q) = sign(q)
or f(q) = sign(q+z) where z is noise. This has been a lively field of research
for several years, in part due to a wide range of applicability in both signal
processing problems and also statistical models in which the data is inher-
ently binary. The discrete nature of this problem has led to new challenges
that were not inherent in unquantized compressed sensing. Indeed, even the
method of reconstruction of the signal has posed a challenge, and some of
the proposed methods, such as the approach of [37] require knowledge of the
covariance of the rows to be accurate. We believe our paper provides the
first analysis of the K-Lasso for this problem, and the first theoretical result
which allows non-trivial covariance of the rows of A. In the next section,
we specialize our work to the 1-bit compressed sensing model.

While there are numerous other publications which relate to various forms
of non-linearity and low-dimensionality, there are three papers which we be-
lieve are most closely related to our results [37, 32, 28]. All three papers
address general low-dimensional signal set K combined with general non-
linearity. Our current result builds on the work in [37], which considers
a very similar model. There are two significant extensions that we make
beyond this work. First, our results are tighter in the sense that when spe-
cialized to the linear model, they match modern theory which is developed
specifically for the linear model (see above). This is only true in [37] when
the noise is larger than the signal. Further, as discussed above, the method
espoused in [37] is not the K-Lasso, and requires knowledge of Σ to be
effective.

The other two related works [32, 28] give a very general framework, which
does not focus on the K-Lasso, but can be specialized to this recovery
method. We believe that using the framework of [32], a theorem similar
to our Theorem 1.4 could be derived. A key statistical idea, which is put
rigorously in [32], is that the solution to the K-Lasso is a good estimate
of the minimizer of the expected loss. In other words, misspecification of
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the model is tolerable provided that the true signal minimizes the expected
loss. See [49, Theorem 1] for a simplified version of this result. As we noted
in Section 1.5, µx is indeed the minimizer of the expected loss—this is the
first step in our proofs, and could be used as a first step to derive error
bounds from the framework of [32]. However, the results of [32] are gen-
eral enough that such a derivation is non-trivial. Furthermore, we do not
require restricted strong convexity in our Theorem 1.9 or decomposability in
any of our theorems, which are two strong requirements of [32]. Similarly,
by observing that µx minimizes expected loss, the results of [28] could be
specialized to the K-Lasso. This would give a result similar to our Theorem
1.9. However, our result expands upon this in two ways: 1) In [28] it is
assumed that yi is sub-Gaussian, whereas we make almost no assumption
on yi—roughly, it only needs a bounded second moment; 2) In contrast to
[28], our theory takes advantage of local structure of K around µx, thus
allowing, for example, the consideration of tangent cones. By doing this,
our theory re-creates classical compressed sensing results as a special case,
for example.

Finally, we would like to point to the new work [43] which considers the
unconstrained version of the K-Lasso. By considering the asymptotic regime
and adopting a stochastic model for signals x, the authors of [43] were able
to give a precise treatment of constants involved in the error bounds.

3. Specialization to 1-bit compressed sensing

As discussed above, the simplest 1-bit compressed sensing model takes
the following form: For q ∈ R, f(q) = sign(q), i.e., we just observe the
sign of the linear observations. Let K be a scaling of the `1 ball and x is
assumed to be s-sparse, i.e., to contain only s non-zero entries. This latter
requirement implies that the tangent cone has small mean width. Indeed,
as can be seen from [11] for instance, for the appropriate scaling of K, one
has

d(K) = w1(K − µx)2 . s log(n/s).

A straightforward calculation shows that

µ =

√
2

π
, σ2 = 1− 2

π
, η2 = 1− 2

π
.

Thus, Theorem 1.4 states that as long as m = O(s log(n/s)) observations
are observed, the K-Lasso gives accuracy

‖x̂−
√

2
π x‖2 .

√
s log(n/s)

m
. (3.1)

Moreover, this bound holds for observations with general covariance struc-
ture. Indeed, Corollary 1.6 combined with (1.9) imply that (3.1) remains
true as long as Σ is reasonably well conditioned.

This yields the following surprising conclusion:
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Even for highly non-linear observations, such as 1-bit quan-
tization, the K-Lasso is quite accurate as long as the number
of observations significantly exceeds the effective dimension
of the signal.

4. Proof of main results

We begin by setting

z := y −Aµx.

While z is not independent of A or x, and generally does not have mean 0,
it will nevertheless play the role of noise. As shown in [37], z satisfies

EATz = 0. (4.1)

We repeat the derivation here to keep the paper self contained. It suffices
to show that for any v ∈ Sn−1, EvTATz = 0, which in turn would follow
from

E yi〈ai,v〉 − Eµ〈ai,v〉〈ai,x〉 = 0.

Since the covariance of ai is identity, the second term is equal to µ〈x,v〉.
To calculate the first term, note that gi := 〈ai,x〉 has distribution N (0, 1).
Then make the Gaussian decomposition 〈ai,v〉 = 〈x,v〉gi + g⊥i where g⊥i is
independent of gi. By independence, the first term above is equal to

E yi〈ai,v〉 = E f(gi)[〈x,v〉gi + g⊥i ] = 〈x,v〉E f(gi)gi = µ〈x,v〉

where the first equality follows from our model assumption (1.2) that yi =
f(gi), and the last equality follows by definition of µ in (1.5). This completes
the derivation of (4.1).

Now let x̂ be the solution of the K-Lasso (1.1), that is the minimizer of
the loss function ‖Ax′ − y‖2 on K. We may replace this loss function by

L(x′) :=
1

m

(
‖Ax′ − y‖22 − ‖Aµx− y‖22

)
without affecting the minimizer x̂. Indeed, µx is a fixed scalar multiple of
a fixed signal, and thus we have only squared the loss function, subtracted
a constant and multiplied by 1/m. Now, the new loss function is very well-
behaved in expectation.

Lemma 4.1 (Expected loss).

EL(x′) = ‖x′ − µx‖22.

Proof. Expanding L(x′), we can express it more conveniently as

L(x′) =
1

m
‖Ah‖2 − 2

m
〈h,ATz〉 where h := x′ − µx. (4.2)

The second term has zero mean according to (4.1). Since the covariance
matrix of ai is identity, the first term is ‖h‖22 in expectation, as desired. �
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Lemma 4.1 implies that µx minimizes the expected loss. In order to prove
the main theorem, we need to control the deviation from expectation of the
two terms in the loss function (4.2).

First, we lower bound the ratio of 1
m‖Ah‖22 to its expectation value of

‖h‖22. This can be done by applying the classical result from the work of
Gordon [21].

Theorem 4.2 (Escape through the mesh). Let D ⊂ Rn be a cone. Then

inf
v∈D∩Sn−1

‖Av‖2 ≥
√
m− 1− w1(D)− r (4.3)

with probability at least 1− e−r2/2.

Next, we control the size of 〈h,ATz〉.

Lemma 4.3. Let D ⊂ tBn
2 , and let z := y −Aµx as before. Then

E sup
v∈D
〈v,ATz〉 ≤ C (w(D)σ + tη)

√
m. (4.4)

Here and in the rest of the argument, C, c refer to numerical constants;
their values may differ from instance to instance. Before proving Lemma 4.3,
we pause to show how the lemma and Theorem 4.2 imply our main result.

Proof of Theorem 1.4. For convenience, let us denote the spherical part of
the tangent cone by D = D(K,µx) ∩ Sn−1. We begin by recording two
events which occur with high probability. First, under the assumptions of
our main Theorem 1.4, the escape through the mesh Theorem 4.2 implies
that the following event holds with probability at least 0.995:

Event 1: inf
v∈D

1√
m
‖Av‖2 ≥ c.

Second, Markov’s inequality combined with Lemma 4.3 implies that the
following event holds with probability at least 0.995:

Event 2: sup
v∈D
〈v,ATz〉 ≤ C (w(D)σ + η)

√
m.

By the union bound, both events hold together with probability at least 0.99.
(We note in passing that the probability of success, and also the constant C
in the bound of Event 2 could be sharpened using concentration inequalities.
However, this would not change our final presentation.)

We now show how to bound the error vector h := x̂−µx in the intersection
of these events. Since x̂ minimizes the loss, we have

L(x̂) ≤ L(µx) = 0.

Combine this with Equation (4.2) to give

1

m
‖Ah‖2 ≤ 2

m
〈h,ATz〉. (4.5)
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On the other hand, h belongs to the tangent cone D(K,µx), so v :=
h/‖h‖2 belongs to its spherical part D = D(K,µx) ∩ Sn−1. Then, by
Events 1 and 2, we have

1

m
‖Ah‖22 ≥ c‖h‖22 and 〈h,ATz〉 ≤ ‖h‖2 · C (w(D)σ + η)

√
m.

Combining these two inequalities with (4.5), we obtain

c‖h‖22 ≤
2

m
· ‖h‖2 · C (w(D)σ + η)

√
m.

Simplifying this bound, we complete the proof. �

We now prove Lemma 4.3.

Proof of Lemma 4.3. This proof has similar steps to the proof of Theorem
1.3 in [37]. We begin with a projection argument to (mostly) decouple z from
A. Let P := xxT be the orthogonal projection onto the span of x and let
P⊥ := I − xxT be the projection onto the orthogonal complement. Then,
convexity of the functional ‖u‖D◦ := supv∈D〈v,u〉 leads to the following
decomposition:

E ‖ATz‖D◦ ≤ E ‖P⊥ATz‖D◦ + E ‖PATz‖D◦ =: I + II.

We first control I. Note that, since A is Gaussian, P⊥AT is independent
from PAT. It follows that P⊥AT is also independent of z. Indeed, to obtain
the latter conclusion, simply note that the columns of PAT are 〈ai,x〉x,
and the coordinates of z are

zi = f(〈ai,x〉)− µ〈ai,x〉. (4.6)

Therefore, P⊥ATz is distributed identically with P⊥ÃTz, where Ã is an
independent copy of A (independent also of z). Thus

I = E ‖P⊥ATz‖D◦ = E ‖P⊥ÃTz‖D◦ = E ‖(P⊥ÃT + E[PÃT])z‖D◦ .

Now, by Jensen’s inequality, the last quantity is bounded by

E ‖(P⊥ÃT + PÃT)z‖D◦ = E ‖ÃTz‖D◦ .

Now condition on z. Then ÃTz has distribution ‖z‖2 · N (0, I). Thus

I ≤ E ‖ÃTz‖D◦ = E ‖z‖2 · w(D) ≤
√
E ‖z‖22 · w(D) =

√
mσ · w(D).

Here in the first equality we used the definition of w(D); in the last equality,
we recall (4.6) and definition of σ from (1.5).

We now control II. Note that

PATz =
m∑
i=1

zi〈ai,x〉x =
m∑
i=1

ξi · x

where ξi := zi〈ai,x〉 =
[
f(〈ai,x〉)− µ〈ai,x〉

]
〈ai,x〉. Thus,

II ≤ ‖x‖D◦ · E
∣∣∣ m∑
i=1

ξi

∣∣∣.



16 YANIV PLAN AND ROMAN VERSHYNIN

Since D ⊂ tBn
2 , we have ‖x‖D◦ ≤ t. Substituting this, we obtain

II ≤ tE
∣∣∣ m∑
i=1

ξi

∣∣∣ ≤ t
√√√√ m∑

i=1

E ξ2
i = t

√
mE ξ2

1 = t
√
m · η

where the last equality follows by definition of η from (1.5). The proof is
complete. �

4.1. Proof of Theorem 1.9. When the error vector h = x̂ − µx is not
known to belong to a cone, but rather a general set, it can no longer be
guaranteed that h is not in the null space of A (which was true for cones via
Gordon’s Theorem 4.2.) Nevertheless, such bad behaviour generally only
occurs at tiny scales, and at large scales A may be quite well conditioned
even on general sets. This idea is made rigorous in the following lemma,
which is known in the geometric functional analysis community even in
more generality, see [39, 27, 31, 30, 45]. For the sake of the reader, we will
include a proof below.

Lemma 4.4. Let K ⊂ Rn be a star shaped set.3 Let t > 0 and suppose
that m & wt(K)2/t2. Then, with probability at least 1 − 2 exp(−m/8), the
following holds for all v ∈ K satisfying ‖v‖2 ≥ t:

‖Av‖2 ≥ c
√
m‖v‖2.

Before proving this lemma, let us combine it with Lemma 4.3 to prove
the second main result.

Proof of Theorem 1.9. For convenience, let us denote Kx := K − µx. As
before, we begin by considering two good events, whose intersection holds
with probability at least 0.99, based on Lemma 4.4 and Lemma 4.3.

Event 1: inf
v∈Kx∩tBc

2

1√
m

‖Av‖2
‖v‖2

≥ c.

Event 2: sup
v∈Kx∩tB2

〈v,ATz〉 ≤ C (wt(Kx)σ + tη)
√
m.

We now show how to bound the error vector h := x̂−µx in the intersection
of these events. As in the proof of Theorem 1.4, the fact that x̂ minimizes
the loss implies that

1

m
‖Ah‖22 ≤

2

m
〈h,ATz〉. (4.7)

We can assume that ‖h‖ ≥ t, since in the opposite case the error bound
of Theorem 1.9 holds trivially. Since h ∈ Kx, the inequality of Event 1
followed by (4.7) gives

c2‖h‖22 ≤
2

m
〈h,ATz〉. (4.8)

3K is a star shaped set if it satisfies λK ⊂ K for any 0 ≤ λ ≤ 1.
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We would like to apply the inequality of Event 2, but cannot do this directly
because ‖h‖2 is not bounded above by t. Fortunately, since Kx is convex
and contains the origin, Kx is star shaped. Using this fact, we may massage
our bound into the form of Event 2 via a monotonicity argument.

Divide both sides of (4.8) by δ := ‖h‖2. This gives

c2δ ≤ 2

m
δ−1〈h,ATz〉 ≤ 2

m
sup

u∈δ−1Kx∩B2

〈u,ATz〉 =: f(δ), (4.9)

where in the second inequality we set u = δ−1h and used that h ∈ Kx again.
Now, since Kx is star shaped, f(δ) is a monotonically decreasing function.
Thus, by assumption δ ≥ t, we may replace δ by t in our bound, giving

c2‖h‖2 ≤ f(t) =
2

mt
sup

v∈Kx∩tB2

〈v,ATz〉.

The proof is completed by applying the inequality of Event 2. �

It remains to prove Lemma 4.4.

Proof. We begin with the following simple comparison, which follows from
the Cauchy-Schwartz inequality for all v ∈ Rn:

‖Av‖2 ≥
‖Av‖1√

m
. (4.10)

Furthermore, since K is star shaped, we have

inf
v∈K∩tBc

2

‖Av‖1
‖v‖2

= inf
u∈K∩tSn−1

‖Au‖1
t

. (4.11)

(Indeed, u = tv/‖v‖2 lies in K since t/‖v‖ ≤ 1 and K is star shaped.)
Next, we will control ‖Au‖1 with an application of the following uniform

deviation inequality, which we proved in [35].

Lemma 4.5 (Uniform deviation for the `1 norm). Let K ⊂ Rn and let
r, t > 0. Then, with probability at least 1 − 2 exp(−mr2/t2), the following
holds for all u ∈ K satisfying ‖u‖2 ≤ t:∣∣∣ 1

m
‖Au‖1 −

√
2

π
t
∣∣∣ ≤ 4wt(K)√

m
+ r.

Choosing r = t/2 in this lemma, we conclude that with probability at
least 1− exp(−m/8), one has

inf
u∈K∩tSn−1

1

m
‖Au‖1 ≥ ct where c =

√
2

π
− 1

2
− 4wt(K)

t
√
m

. (4.12)

Recalling the assumption of Lemma 4.4 that m & wt(K)2/t2, we see that
c is bounded below by a positive absolute constant. In this case, we can
substitute the bound into (4.11) to obtain

inf
v∈K∩tBc

2

‖Av‖1
‖v‖2

≥ cm.
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We finish the proof by an application of inequality (4.10). �

5. discussion

We have analyzed the K-Lasso for signal reconstruction from the semi-
parametric single-index model. We showed that the K-Lasso solution under
the non-linear model yi = f(〈ai, x〉) behaves roughly like the K-Lasso solu-
tion under the noisy linear model yi = µx + σzi with zi ∼ N(0, 1), where
µ = µ(f) and σ = σ(f) have simple expressions; the error of the K-Lasso
is controlled by the local mean width of K. We hope this theoretical result
may aid researchers who use the K-Lasso in situations when the response
may not be linear. See [12] for one such implementation.

We have made some idealized assumptions in this paper thus allowing
theoretical results that are simple to state and understand. There are many
future directions of research both of theoretical and practical interest, par-
ticularly in softening assumptions, which we describe below.

We considered a Gaussian design matrix, A, and this allowed for a clean
theoretical result. It is of interest to determine whether these results have
some universality properties. Can the same kind of accuracy be expected
for random non-Gaussian matrices? Under the linear model, universality
results have been shown in the compressed sensing literature [15], that is,
theoretical performance based on a Gaussian matrix is shown to empirically
match the performance for many other kinds of matrices. However, there
is an extra wrinkle under the single-index model: a universality result is
impossible when x is extremely sparse [2]. When A has independent sub-
Gaussian entries, we conjecture that the results of our paper should still
hold, although with an extra error term that becomes large when x is very
sparse, and shrinks towards zero if x is spread out. It is of interest to iron
out this theory and also to determine, both theoretically and empirically,
how far these results may extend towards general design matrices.

Another direction of interest is robustness of the K-Lasso to model in-
accuracies. Will the K-Lasso solution remain accurate if the single-index
model is only approximately true, or if µx does not quite reside in K?

Finally, these results lead to new opportunities in signal processing prob-
lems in which the scientist has some control over the non-linearity f , e.g.,
for quantization (see [42]). In that case, the explicit expressions for µ(f)
and σ(f) may be tuned to optimize the error. It is of interest to identify
other such problems, aside from quantization, that can benefit from this.
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