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Abstract

A wide range of length and time scales are relevant to pharmacology, especially in drug 

development, drug design and drug delivery. Therefore, multiscale computational modeling and 

simulation methods and paradigms that advance the linkage of phenomena occurring at these 

multiple scales have become increasingly important. Multiscale approaches present in silico 
opportunities to advance laboratory research to bedside clinical applications in pharmaceuticals 

research. This is achievable through the capability of modeling to reveal phenomena occurring 

across multiple spatial and temporal scales, which are not otherwise readily accessible to 

experimentation. The resultant models, when validated, are capable of making testable predictions 

to guide drug design and delivery. In this review we describe the goals, methods, and opportunities 

of multiscale modeling in drug design and development. We demonstrate the impact of multiple 

scales of modeling in this field. We indicate the common mathematical and computational 

techniques employed for multiscale modeling approaches used in pharmacometric and systems 
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pharmacology models in drug development and present several examples illustrating the current 

state-of-the-art models for (i) excitable systems and applications in cardiac disease; (ii) stem cell 

driven complex biosystems; (iii) nanoparticle delivery, with applications to angiogenesis and 

cancer therapy; (iv) host-pathogen interactions and their use in metabolic disorders, inflammation 

and sepsis; and (v) computer-aided design of nanomedical systems. We conclude with a focus on 

barriers to successful clinical translation of drug development, drug design and drug delivery 

multiscale models.
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Introduction

One of the biggest challenges in the current era of data abundance is revealing how the 

interactions between discrete biological system components result in integrated emergent 

effects on higher order systems. This is especially relevant in the setting of pharmacology 

and toxicology, where there have been no reasonable, efficient or cost-effective experimental 

or clinical strategies to facilitate prediction and development of therapeutic interventions. 

One of the reasons that projecting the effects of drugs on biological systems has been so 

difficult is because physiological processes occur over a wide range of length and time 

scales (Figure 1). New approaches in multiscale modeling and simulation are now being 

developed to bridge these scales and allow for the first in silico predictions that can facilitate 

drug development and screening, predict drug mechanisms and responses, optimize drug 

delivery and therapeutic effect, and minimize toxicity. Mechanism-based multiscale models 

that include patient specific parameters are occurring in multiple domains ranging from 

excitable systems to cancer to metabolic disorders, inflammation and sepsis, and 

musculoskeletal systems. These modeling adjuncts to traditional clinical practice are an 

important complement to purely inferential (statistical) approaches to personalized 

medicine.

1. Pharmacometric and Systems Pharmacology Models in Drug Development

Multiscale modeling is beginning to be applied more and more in the development of new 

drugs. The most advanced application is in the field commonly termed as 

“pharmacometrics”, i.e., “the branch of science concerned with mathematical models of 

biology, pharmacology, disease, and physiology used to describe and quantify interactions 

between xenobiotics and patients, including beneficial effects and side effects resultant from 

such interfaces” 1. This emerging discipline has been reviewed before 2 and has influenced 

drug development, especially in the clinic, significantly 3,4. Together with the 

complementary discipline of systems pharmacology, which is perhaps best suited for the 

early discovery stages, pharmacometrics is helping drug discovery and development 

approach the aerospace industry in its reliance on computer modeling and design 5.

This discussion will focus on drug development, as this is where multiscale models are most 

widely used, although their role in early stages is increasing rapidly. Models used in this 
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context are multiscale models, but at the level of their statistical complexity, as opposed to 

structural behavior.

It has been recognized for some time that variability in drug dose-exposure-response 

relationships is hierarchical. While the time course of drug concentration (pharmacokinetics) 

and the time course of drug effect (pharmacodynamics) can most often be described, on 

average, by nonlinear differential equations with relatively few parameters, the parameters of 

these equations vary among individual patients (this is usually called BSV, between-subject 

variability). Moreover, real-world biological measurements are affected by error, which can 

also change with time (this is RUV, residual unknown variability). The statistical distribution 

of these parameters can become part of the model 6. The scientific context of these models is 

that of nonlinear mixed effects models, which are an extension of the linear mixed effects 

framework which has been so successful in experimental design in the statistical sciences 7.

Briefly, nonlinear mixed effects models enable the estimation of means and variances of the 

statistical distributions of model parameters 8,9. An example would be the mean and 

variance in the population of the clearance of the drug being studied. This is particularly 

useful in the context of clinical trials, where a large number of subjects may have been 

studied, but no individual subject has a dense enough sampling schedule to reveal that 

patient’s individual parameters.

Latest developments in systems pharmacology, which has been described as the interface 

between Pharmacometrics and Systems Biology 1, aim at increasing the biological realism 

of the models underlying pharmacokinetics and pharmacodynamics. This usually requires 

more parameters and pathways to be added to the models, increasing their complexity. 

Systems pharmacology was the subject of a series of workshops at the National Institutes of 

Health, whose proceedings were summarized in a white paper 10. While systems 

pharmacology models are starting to be applied in the context of clinical data analysis and 

simulation, the application of pharmacometrics techniques has been occurring for longer. 

However, the therapeutic areas and applications where systems pharmacology results have 

been published are multiple: infectious diseases 11, cancer 12, cardiovascular disease 13–15 

and neurosciences 16 among others. Future challenges 17 include continuing to augment the 

biological realism of multiscale models used in drug development, as well as continue to 

improve integration between bioanalytical and laboratory sciences and model development 

experts. These salient issues are further demonstrated through specific illustrations of 

modeling technologies applied to various disease states in the sections that follow.

2. Models for Excitable Systems and Applications in Cardiac Disease

Multiscale modeling for drug prediction in excitable systems is critical because experimental 

approaches at individual system scales cannot solve the fundamental problem – that the 

effects of multifaceted drug interactions are emergent. Computational based methods under 

development to predict emergent effects of drugs on excitable rhythms may form an 

interactive technology driven process that can be used in industry for drug and disease 

screening, in academia for research and development and in the clinic for patient oriented 

medicine. There is potential for far-reaching implications because millions of people 

affected each year by arrhythmia would benefit from improved risk stratification for drug-
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based interventions. Effective pharmacological treatment of arrhythmia syndromes would 

reduce shocks from implantable defibrillators that reduce quality of life for so many 

individuals.

New computational methods are being developed for drug design and development that take 

advantage of high-performance computing technologies to reveal emergent mechanisms of 

disease and to facilitate prediction and development of therapeutic interventions 18. A 

primary goal in developing these computational approaches is to generate frameworks that 

can ultimately be scaled up and automated for prediction of drug design, development and 

drug effects that can be applied to industry, academia and in clinical settings.

In the context of the heart, there exists a long history of failure in predicting effective or 

harmful action of drugs. Antiarrhythmic drugs, which primary target cardiac ion 

channels 19,20, have been widely prescribed for arrhythmia syndromes arising from multiple 

underlying diseases that increase arrhythmia proclivity including coronary artery disease, 

cardiomyopathies, post-infarction injury and heart failure. For example, the CAST 21 and 

SWORD 22 clinical trials, showed that compared to placebo, common antiarrhythmic drugs 

increased mortality and risk of sudden cardiac death. Almost thirty years after the beginning 

of the first CAST trial, there is still no available approach to differentiate potentially useful 

and potentially harmful drugs for treating arrhythmia.

Much progress has been made in developing multiscale computational modeling and 

simulations approaches for prediction of the effects of cardiac ion channel blocking drugs 

(Figure 2). Structural modeling of ion channel interactions with drugs is a critical approach 

for current and future drug discovery efforts. Modeling of drug receptor sites within an ion 

channel structure can be useful to identify key drug-channel interaction sites. Drug 

interactions with cardiac ion channels have been modeled at the atomic scale in simulated 

docking and molecular dynamics (MD) simulations, as well as at the level of the channel 

function to simulate drug effects on channel behavior 14,23–31. Modeling drug interactions at 

the molecular scale requires high-resolution structures of potassium and sodium channels 

that are used as templates for pairwise sequence alignments 32–34. Structural modeling of 

drug-channel interactions at the atomic scale may ultimately allow for design of novel high-

affinity and subtype selective drugs for specific targeting of receptors for cardiac and 

neurological disorders.

In order to accurately predict ion channel drug effects in higher dimensions, the intrinsic and 

explicit dynamical complexity of the drug kinetics is increasingly being considered in 

computational model representations. Early studies of drug effects on cardiac ion channels 

relied on pore-block models 35, which did not include the complex features of drug-channel 

kinetics that fundamentally emerge to alter cardiac rhythms in higher dimensions. Examples 

of emergent drug properties include well-known effects like use-dependent and frequency-

dependent block, as well propensity to alternans and changes to action potential duration 

restitution and conduction velocity restitution in tissue 36–39.

Emergent drug effects have been predicted at the cellular level by incorporating drug 

channel models into computational models of cardiac myocytes. Simulations have been used 
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to test drug effects on cellular level parameters to search for antiarrhythmic or overt 

proarrhythmic potential 14,29,30,40–43. Although cellular level studies can plausibly suggest 

reduced or increased arrhythmia vulnerability, reentrant arrhythmias are fundamentally an 

emergent property of the cardiac system that can only be observed and studied in tissue. 

Thus, models have been developed to predict drug effects in higher dimensions that include 

spatial dimension and cellular coupling.

Computational studies have been carried out in tissue representations in one and two 

dimensions and even in high-resolution reconstructions of human virtual 

ventricles 14,18,35,44,45. Arrhythmia vulnerability parameters as described for one-

dimensional tissue can be tracked in two dimensions 46–49. Two-dimensional simulations 

can be undertaken to predict if proarrhythmic phenomena observed in lower dimensions 

cause reentrant arrhythmias and/or spiral wave breakup. The change in voltage in space and 

time are tracked in the simulation 50. In two dimensions, reentry wavelength and period can 

also be tracked to investigate head-tail interactions. More recently, drug simulations in three-

dimensional cardiac reconstructions from humans have been undertaken as computational 

resources are increasingly accessible 18,35,44,45.

Because antiarrhythmic drugs exhibit complex kinetic interactions with ion channels that are 

modified by action potential properties including morphology, duration and frequency, 

strong bidirectional feedback exists because drugs alter the action potential waveform, 

which in turn affects the potency of drugs. In tissue, electronic coupling leads to 

unpredictable emergent responses to drug application. An example is the study by Moreno et 

al., which showed mild depression of single cell cellular excitability by flecainide, 

suggesting its therapeutic potential to suppress ectopic arrhythmia triggers 46. No overt 

proarrhythmic potential was ever observed in cells. In tissue level simulations, the outcome 
was dramatically different. Substantial use-dependent block with flecainide resulted in 

insufficient Na channel availability for successful conduction, a higher dimensional 

phenomenon that emerged as a result of increased electrotonic load in coupled tissue. 

Proarrhythmic conduction block sometimes led to development of tachycardia indicated by 

spiral wave reentry, verified experimentally in rabbit heart and in MRI-based human 3D 

ventricle models 46. These types of computational studies have begun to improve 

understanding of antiarrhythmic drug actions across multiple spatial scales of the cardiac 

system, from molecule, to channel, to cell, to tissue, to heart.

3. Models for Stem Cell Driven Complex Biosystems

While cardiovascular disease is the leading cause of death in the United States, cancer 

currently ranks second and is projected to become the top cause of death in the next few 

years 51. Multiscale modeling is crucial for simulating drug responses of stem cell driven 

biosystems and the corresponding applications in cancer therapeutics, regenerative 

medicines, and beyond. In such systems, stem cells play two roles: driving tissue growth 

through differentiation to functional cells, and maintaining regeneration potential by self-

renewal. The micro-environment of stem cells (known as “stem cell niche”) provides 

physical, chemical, and biological cues with spatial and temporal52 patterns to regulate these 

two roles of stem cells, meanwhile the stem cell driven tissue growth will remodel such 
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micro-environment and affect stem cell behaviors. Such complex biosystems demonstrate 

strong multiscale characters in both space and time. Spatially, at the molecular level, the 

biological or cellular cues in stem cell niches trigger intracellular signaling and modulate 

stem cell behaviors such as renewal, differentiation, apoptosis, and migration; at the cellular 

level, such stem cell behaviors, together with environmental cues, determine the numbers of 

stem cells, progenitor cells, and terminal cells as well as their behaviors; at the tissue level, 

the populations as well as the behaviors of these cells define the structural and thus the 

functional behavior of the tissue generated de novo. Temporally, at the second-to-minute 

scale, the external cues trigger signaling events; at the hour-to-day level, cells response to 

such cues with various behaviors; at day-to-week scale, the downstream effects at tissue 

level as well as the remodeling of the cell microenvironments begin to show up. Such 

multiscale and highly dynamic biosystems require sophisticated drug delivery to generate 

desired spatial distribution and temporal patterns of drugs. Therefore, multiscale modeling 

on the spatial 53–57 and temporal 57,58 domains is the key strategy to predict the 

pharmaceutical inference of stem cell driven biosystems.

To illustrate the cutting-edge multiscale modeling approaches in simulating stem cell driven 

systems, two typical applications are presented in this section. The first one is the drug 

synergism analysis for cancer stem cell driven drug resistance54. In this example, we 

demonstrate how to use agent-based models (ABMs) (Figure 3) to analyze the complex 

spatial dynamics of myeloma initiating (stem) cells (MIC), bone marrow stromal cells 

(BMSC), progenitor cells (PC), and early multiple myeloma (MM) and terminal multiple 

myeloma (TMM) cancer cells as well as the remodeling of the tissue stiffness in bone 

marrow during the development and drug treatment of multiple myeloma (Figure 4). Each 

agent represented a tumor cell or a section of the elongated, network-like BMSCs, 

encapsulating intracellular signaling events within the agent, and, as a whole, responding to 

its microenvironment as cell behaviors such as proliferation, apoptosis, migration, 

contraction, and so on. Thus, an agent seamlessly incorporated the intracellular molecular 

scale events and the cellular scale behaviors, and provided the essential element to describe 

cell-to-cell interaction at the intercellular scale and finally the tumor development at the 

tissue scale. Knowledge and hypothesis were represented as “rules” of cell decision-making 

and realized using stochastic approaches such as Markov chain Monte Carlo (MCMC) 

methods. In this specific study, for a cell agent, the microenvironmental cues such as the 

concentrations of cytokines and drugs, the stiffness of the niche, and the types, number, and 

distance of neighbor cells, together with the current cell statuses (for example, during 

proliferation, during differentiation, etc.), were used as inputs by the pre-defined “rules” 

(equations) to calculate the probabilities of downstream cell behaviors. Such probabilities 

were then converted to cell decisions by random sampling. The MCMC approach thus 

seamlessly connects the deterministic and continuous mathematical models (“rules”) to the 

discrete, stochastic cell decisions. The second example 58 is to use a multiple temporal scale 

model to study the effects of sequential delivery of growth factors on a dual stem cell bone 

regeneration system (Figure 5). The dynamic balance between the mesenchymal stem cell 

driven osteoblastic bone formation and the hematopoietic stem cell driven osteoclastic bone 

resorption were analyzed for the best timing of BMP2, Wnt, and TGFβ delivery (Figure 6). 

Ordinary differential equations and Hill functions were used to describe the minutes-to-
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hours timescale intracellular signaling events and intercellular signaling, respectively; Hill 

functions were used to describe the days-scale stem cell differentiation; and finally 

stochastic differential equations were used to model the days-to-weeks scale dynamics of 

cell population and composition as well as the bone healing and remodeling. Key variables 

such as the section of cytokines and the population size of each cell type linked the three 

time scales to a consistent model.

Taken together, systematic modeling of stem-cell-driven complex biosystems by 

incorporating multiple spatial and temporal scales casts new light onto basic and 

translational biomedical research in multiple aspects: it provides insight into the underlying 

mechanisms of diseases and cures, allows in silico predicting drug responses for drug 

screening and optimizing combination therapeutic designs, guides precise drug delivery, and 

helps to bridge the gap from bench-side knowledge to bed-side clinical practice.

4. Nanoparticle Delivery Models, with Applications to Angiogenesis and Cancer Therapy

Nanotechnology is another field advancing from bench-side knowledge to bed-side clinical 

practice. The use of targeted nanocarriers (NCs) for delivering therapeutic compounds to 

sites of pathology presents significant opportunities both in terms of personalizing medical 

care and in accessing multiscale modeling to refine the specifics of individual treatments. 

This is particularly applicable in cancer care, wherein the clinical successes of anticancer 

therapies are often limited by the marginal efficacy of the therapeutics and their various side 

effects. Prediction of the distribution, metabolism, absorption, excretion and toxicity of 

potential new drugs in early stages of development has attracted much attention 59,60. The 

therapeutic efficiency of nanomedicine is determined by the proper concentration of drug at 

the lesion site. Drug carriers need to be delivered directly to the desired tissues while 

minimizing deposition/uptake by other tissues. Targeted drug delivery using functionalized 

NCs coated with specific targeting ligands has been clinically identified as a promising 

approach in both therapeutic and diagnostic applications in cancer treatments 61. A typical 

process of targeted delivery to tumor site is illustrated in Figure 7.

The biochemical and physiological properties of a tumor’s microenvironment, including the 

vasculature and the interstitial extracellular matrix (ECM), are the key regulators of anti-

cancer drug distribution and efficacy 62,63. Blood vessels provide the primary passage for 

drugs to be delivered to the tumor and other tissues. However, heterogeneous microvascular 

function within tumors can compromise delivery and undermine the effects of therapeutic 

agents 63. Enhanced permeability and retention (EPR) in leaky vessels has facilitated the 

targeting of macromolecular therapies 64–66. Yet, elevated interstitial fluid pressure (IFP), 

induced by vessel abnormalities, fibrosis and contraction of the interstitial matrix, also 

hinders the drug delivery to the tumor 67,68. In fact, IFP is known as the main barrier for 

drug delivery to tumor sites. Moreover, targeting of NCs to endothelium remains an 

important design challenge in pharmacological and biomedical sciences since functionalized 

NCs offers a wide range of tunable design parameters such as size, shape, type, functional 

coating 69.

Mechanistic mathematical and computational modeling at multiple scales, from gene to 

protein to tissue and organ, and eventually the whole body is becoming an effective if not a 
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required tool for examining the impact of various biophysical features of the tumor tissue 

and biochemical properties of drug compounds on drug delivery efficacy 59,60,70–73. 

Numerical simulations are well-suited and cheaper, compared to laboratory experiments, for 

testing combinations of multiple parameters that can be varied simultaneously in a 

controlled manner and over a wide range of values. These in silico screenings can be helpful 

to optimize the drug design so that it is efficient in interstitial transport, or make decisions 

regarding the most effective drug combinations and scheduling protocols.

The NC targeted delivery in vascular system involves interplay of transport, hydrodynamic 

force, and multivalent interactions with targeted biosurfaces. Thus, drug delivery to tumor 

sites is a complex and challenging process over various spatial scales, including organ, 

tissue, cell, and intracellular levels. After systematic administration, drugs have to go 

through a few processes before arriving at the targeted tumor sites: 1) transport in the 

circulation system, 2) extravasation across the vessel wall, and 3) transport through 

interstitial space to the tumor site. Therefore, the modeling targeted drug delivery process 

spans physics across continuum vascular flow, particle Brownian adhesion dynamics, to 

molecular level ligand-receptor binding and cellular uptake.

We focus our discussion of multiscale drug targeting on three interconnected processes 

happening in various biological spatial scales: drug carrier transport in circulation system, 

drug transport through interstitial space, binding dynamics and cellular uptake. The targeted 

drug techniques such as MD, Brownian motion, and stochastic approaches such as Monte 

Carlo simulation can be used to simulate nano, micro, and macroscale interactions between 

carrier and target site.

Using nanoparticles in biomedical applications involves physical translocation processes of 

nanoparticles and the cellular uptake of particles. Models at this scale characterize the 

different interactions such as drug-carrier, carrier-medium (biological) and drug-medium. 

These molecular-scale models deal with length scales in the order of nm~μm and time scales 

of ns~μs. For instance, Yang and Ma et al. 74 used computer simulation to investigate 

nanoparticle penetration through cell membranes where the translocation processes of 

nanospheres, nano-ellipsoids, nanorods, nanodiscs and pushpin-like NCs across a lipid 

bilayer were studied by dissipative particle dynamics (DPD). It was reported that the shape 

anisotropy and initial orientation of the particle are crucial to the interactions between the 

particle and lipid bilayer.

Before reaching the targeted tumor region, drug carriers have to transport through interstitial 

space. Generally, conservation of mass is adopted as the mathematical equation to govern 

the drug delivery in tissue or tumor scale. In the most general description, changes in the 

amount of drug present in the tissue depend on three values: the amount of drug entering the 

tissue (drug production), how the drug moves within the tissue (drug transport), and the 

amount leaving the tissue (drug elimination)75, as shown in Equation 1:
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Eq. 1

Drugs can be carried through the tissue with the interstitial fluid flow (advective transport) 

or move randomly due to the Brownian motion of drug molecules (diffusive transport). Drug 

elimination from the tissue can take place due to its natural half-life (decay), binding to the 

ECM (degradation or deactivation), or cellular uptake. Pozrikidis presented a theoretical 

framework describing blood flow through an irregular vasculature of a solid tumor where 

capillary leakage due to the transmural pressure is considered 76. NC binding toward vessel 

wall surface considering ligand receptor interaction were modeled in 77,78.

NCs loaded with drugs have been widely used to target tumor cells due to its capabilities to 

control size, shape, surface chemistry 79,80. This necessitates a multiparameter optimization 

for achieving efficient vascular targeting 81,82. Studying adhesion dynamics, Liu et al. 
estimated NP binding affinity to endothelial cells 77. King et al. studied multiparticle 

adhesion dynamics and applied to leukocyte rolling 83,84. Fogelson et al. coupled ligand-

receptor binding with platelet aggregation 85. Most theoretical studies of NC deposition are 

limited to simple spherical particles under ideal shear flows 86–88, or combined Brownian 

motion with hydrodynamics in cylindrical tube flow 89.

At macroscale, continuum convection-diffusion-reaction and particulate 90 models have been 

widely used in modeling drug delivery process. A significant aspect of modeling 

nanoparticle motion in vasculature is the accurate evaluation of the associated momentum 

forces from which different translational and rotational motions arise. These macroscopic 

models deal with length scales in the order of μm~mm. In continuum assumption, the blood 

flow is characterized through the Navier-Stokes (NS) equations, while the drug is described 

as a variable denoted as concentration. The NS equations are coupled with convection 

diffusion reaction equations so that the distribution of NCs along the vascular network can 

be predicted 91. Particulate models also can be used to drug deposition in complex vascular 

geometry 90. Shipley and Chapman 92 and Modok et al. 93 modeled delivery of spherical 

NCs in tumor. Tan et al. 94 used a coupled continuum and particulate model to study NC 

transport and binding dynamics. Mahmoudi et al. 95 and Li et al. 96 performed 

computational fluid dynamics studies of magnetic NCs in vascular flow.

Blood is not a simple Newtonian fluid but is comprised of different cells, proteins, and 

nutrients. Explicit blood components have to be considered particularly if we are interested 

in the physical interaction between cells and NCs in microcirculation. Cell models have been 

considered in recent studies using DPD 97, Lattice Boltzmann 98, and Immersed 

Boundary 99 methods. These studies showed that the margination and adhesion probability 

depends on the cell concentration, particle size, shape, and shear rates. Haun and 

Hammer 100 also have investigated the kinetic rate constants of attachment and detachment 

of nanocarriers as a function of receptor density, ligand density on surface, and flow shear 
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rate. They also showed the time dependence of the detachment rate due to multivalent 

binding.

It is difficult to fully comprehend and integrate the complex, nonlinear, and often unintuitive 

processes involved in the cellular and physiological disposition of drug carriers, without the 

use of a multiscale, mechanism-based mathematical model. For instance, Shah et al. 101 built 

a multiscale pharmacokinetic–pharmacodynamic model of antibody drug conjugates for its 

preclinical to clinical translation efficacy. They not only characterized the biodisposition of 

antibody drug conjugates and payload at the cellular and physiological level, but also 

provided translation of preclinical efficacy data to the clinic. Moreover, Liu et al. 102 have 

used Metropolis Monte Carlo (MC) strategy in conjunction with the weighted histogram 

analysis method (WHAM) to compute the free energy landscape associated with the 

multivalent antigen-antibody interactions.

Overall, multiscale modeling to optimize NC delivery for cancer therapy and to alter 

angiogenesis requires that a wide range of length and time scales be accessed to describe the 

physics of hydrodynamic and microscopic molecular interactions mediating NC motion in 

bloodflow, binding, uptake and offloading of the deliverable. As with other clinically 

relevant simulations discussed herein, optimization for clinical applications must include 

both relevant anatomical, physiological and pharmacological features into computational 

models bridging the relevant multiple scales. Simulations can limit the need for large scale 

in vivo and in vitro experimentation in designing effective NP- or NC-based treatment.

5. Models for Host-Pathogen Interactions and Their Use in Metabolic Disorders, 
Inflammation and Sepsis

Simulation can also advance our knowledge and clinical capabilities in treating infectious 

and metabolic diseases. The ability of organisms to respond to and recover from damage is a 

fundamental biological function. The ubiquity of the inflammatory process, and its role as a 

pathway to healing, across the entire range of tissues and in response to a plethora of 

external and internal threats, is a testament to this fact. It is also becoming increasingly clear 

the pervasive role of inflammation in virtually all the significant disease processes that 

challenge us today; from the hyper-acute disruptions seen in Ebola and sepsis, to the 

punctuated equilibrium dynamics of cancer, to the chronic indolent nature of obesity, auto-

immune diseases, Alzheimer’s and cardiovascular disease. The Janus-faced visage of 

inflammation resides in every tissue, but with different controls and set-points, and 

modulating inflammation perhaps represents the prototypical dilemma of delivering the 

appropriate control at the right time, to the right place, with a minimum of collateral 

damage.

Evolution has dictated that a constant source of danger for multi-cellular organisms comes 

from the microbial world. However, while long being considered the primary threat to 

human health (not unfounded or incorrect), the recent understanding of the role of our 

resident microbiomes as partners in maintaining human health has added a new dimension to 

the relationship between host and microbe (see Figure 8). In fact, the inevitable evolutionary 

response of the microbial world to our attempts to eradicate them, manifest as the growing 

challenge of antibiotic resistance, suggests that it has become necessary for us to develop 
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more nuanced means of engaging in trans-kingdom relations in the interest of human health, 

strategies that owe more to ecological understanding than eradicative strategies.

Taken together, the goals of dealing with the microbial world and our host-side 

inflammatory mechanisms reacting to damage and threat, have potential implications across 

a wide range of pathophysiological processes that occur at multiple levels of biological 

organization. Therefore, system-level, multiscale perspectives are invaluable in our attempts 

to engineer safe and effective controls for these systems, and require the concurrent use of 

multiple complementary modeling methods. The comprehensive integration of a multiscale 

workflow is still far in the future, but below we present some selected examples that address 

some identified focus areas in the attempt to move towards that greater goal.

Taking a modeling approach to integrate systems biology and cheminformatics can provide 

new leverage for understanding and manipulating host-microbe interactions. The use of 

small-molecule therapeutics to shift how a host-microbe ecosystem behaves is a long 

established clinical approach to advantaging host immune response (e.g., antibiotics that 

target core conserved metabolic process for energy acquisition or biomass production) or 

dampening overactive immune response. In developing antibiotics such as isoniazid, which 

targets fatty acid biosynthetic pathways in Mycobacterium tuberculosis, the primary 

consideration has been within a single chemical scale, namely development of therapeutics 

that interfere with the chemical structures of the small molecules or enzymes that underpin 

critical microbial persistence or virulence pathways. With the proliferation of omics 

technology enabling a systems scale view of host-pathogen interactions, and high-

throughput chemotherapeutic modulation of those interactions, the need to consider and 

incorporate the multiscale effects of small-molecules on microbial persistence has led to the 

increasing integration of the fields of cheminformatics and systems biology 103–106. Here we 

focus on modeling platforms that consider the biochemical consequence of introduction of 

the chemotherapeutic agent into the organism, as opposed to models used to solely identify 

potential drug targets. As an example, systems chemical biology (SCB) and specifically 

computational SCB integrates chemical biology and computational systems biology to 

investigate the consequential outcome of small molecule disruption of metabolic pathways 

of pathogenic organisms (see Figure 9) 103,107,108. Given a target metabolic pathway, the 

computational SCB platform provides a tool for multiscale targeted drug design beginning 

with an automated cheminformatics virtual screening pipeline consisting of WOMBAT and 

SciFinder tools for generation of candidate small molecules, OMEGA and the Protein Data 

Bank (PDB) to generate 3D ligand and protein structures, and GRID and FRED to analyze 

structures and perform virtual docking studies. Molecular scale protein-ligand interaction 

data is integrated into metabolic scale models to capture the dynamic impact of small 

molecule inhibition on vital biochemical processes. Use of SCB modeling methods has been 

applied to explore the interplay of environmental and chemotherapeutic stress on M. 
tuberculosis growth and persistence, 109 and given the ability to use multiscale models to 

capture dynamic adaptation of the pathogen system, further extensions to studying the role 

of small molecule therapeutics on pathogen persistence and resistance is feasible. The 

continued integration of chemical informatics and system scale modeling will serve as a 

critical step in the development of personalized candidate interventions. Multiscale modeling 

of host-pathogen interactions in the presence of therapeutic agents can play an important 
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role in discovering desirable and undesirable mechanisms of action for existing antibiotics 

and antivirals, in determining differences between successful versus unsuccessful treatments, 

and in understanding the dynamic interactions involved in the emergence of multidrug 

resistant pathogenic strains.

Recognizing that microbial communities act as endogenous bioreactors establishes a 

pathway for applying new modeling paradigms. As noted above, there seems to be no end to 

the systemic effects of our endogenous microbiomes, particularly with respect to the 

metabolic impact of our gut microbiota. The gut microbiome can be thought of as the first-

pass metabolic organ affecting both our nutrient intake and our resistance to toxicants, and is 

likely to be both a signifier and player in the health differences arising from different diets.

A key issue for understanding the dynamics of the gut microbiome is that many of the 

microbial players are unknown and, even for well-characterized microbes, knowledge of 

their metabolic capacity is incomplete. While the quickening pace of sequencing technology 

has been extremely valuable, a major challenge is that genomes are all annotated based on 

similarity to known genes and function. We understand the function of metabolism in a 

handful (of related) microbes well, but for many others we have knowledge of only their 

central metabolism, and even those processes are not characterized sufficiently. Moreover, 

we have limited knowledge of regulation of metabolism, let alone how a microbial 

community is regulated as a whole.

In part due to this lack of knowledge and in part due to lack of physical theories that operate 

on the scale of biological processes, social theory (e.g., game theory) has been used to try 

and understand the dynamics of microbial communities. However, social theory falls short in 

that the molecular mechanisms that are responsible for emergent behavior of the community 

are not directly modeled (or understood), making this approach less useful for drug design.

Intermediate between social theory and complete physical models of microbial metabolism 

is constraint-based flux modeling 110, in which the external fluxes into and out of a system 

are used as constraints and internal fluxes are then optimized with respect to those 

constraints. If additional internal constraints are known, through isotope labeling 

experiments for example, then these fluxes can also be used as constraints. While these 

approaches have been enormously valuable in understanding microbial metabolism, they 

provide no information on metabolite concentrations and have large solution spaces even 

when additional physical constraints are added.

Physics based modeling has taken two opposing approaches to modeling microbial 

dynamics. The naive, but theoretically well-grounded, choice is to attempt to use mass 

action dynamics of metabolism to model enzymatic reactions. However, this approach is not 

feasible beyond small reaction networks due to the requirement for knowledge of the 

hundreds to tens of thousands of rate constants that are involved. An alternative choice is to 

model functional guilds, which can be thought of as microbial species grouped together 

based on shared/common metabolic capabilities and treated as a single modeling entity, an 

approach that was developed before genome sequencing was available and has continued to 

evolve 110. In modeling functional guilds, only a few summary reactions are used to 
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represent the metabolic capability of each organism. Clearly, there is a tremendous need for 

development of more rigorous 111 and complete models of microbial metabolism.

There are existing models of the systemic inflammatory response on which to build. Even 

with microbial détente the host must deal with persistent incursions from resident 

microbiota, to say nothing about the constant wear and tear on its own constituent tissues. 

The inflammatory response, at baseline, retains a persistent counterpoise between effective 

responsiveness (pro-inflammation) and sufficient attenuation (anti-inflammation), with 

recovery (healing) intimately tied to the anti-inflammatory response. Inflammation is 

therefore a classic robust adaptive control structure that has been evolutionarily 

optimized 112–114. Paradoxically, enhancements of human health have shifted that fitness 

landscape such that pre-technological adaptations for evolutionary fitness have been 

superseded such that inflammation enhances, if not directly contributes to, a newer class of 

diseases. Dysregulation of inflammation plays a role in a host of indolent diseases that most 

likely result from an inappropriate resetting of homeostatic set points. However, at an even 

more fundamental level, there is a challenge of parsing the dynamic range of a particular 

individual’s response, and determining where and how within their pathway control 

structure different trajectories are determined. To this end, we turn to perhaps the most 

dramatic case of inflammatory dysregulation, sepsis, and the role of multiscale modeling for 

dynamic knowledge representation and conceptual model verification.

Despite being the focus of extensive basic research and the target of over 20 clinical trials of 

anti-mediator therapies, there currently exists no approved pharmacological treatment 

specific for sepsis. The failure of the initial set of anti-mediator clinical trials in the 1990s 

may be one of the first explicit examples of the Translational Dilemma, i.e., the inability to 

effectively and efficiently translate basic mechanistic knowledge, developed based on in 
vitro data, into clinically successful therapeutics 115,116, and spurred the initial steps in the 

computational multiscale modeling of acute systemic inflammation 117–120. One of the 

primary insights gained from that experience is the need for multiscale computational 

modeling as a means of testing whether the mechanistic hypotheses concatenated from pre-

clinical experimental results actually behave in the manner expected. This approach was 

demonstrated in an early example of cell-level agent-based modeling used to generate an in 

silico trial population 120. An ABM of systemic inflammation was developed based on the 

prevailing conceptual model of how systemic inflammation worked, and, importantly, 

represented the conceptual basis for the design of anti-mediator therapies for sepsis that 

ultimately failed. The purpose of the ABM was to determine whether, if these interventions 

behaved exactly as they were supposed to have behaved, would they have impacted survival 

in a simulated clinical population? In addition to the existing clinical trials, potential multi-

modal/combination therapies were simulated in an attempt to address the concern that 

pathway redundancies limited the efficacy of an intervention. The result that none of the 

simulated interventions demonstrated a survival benefit is both not surprising (since it was 

known that the trials had failed) and enlightening (since none of the combination therapies 

worked either). The conclusion drawn was that there was a fundamental conceptual flaw in 

the design of those interventions, a flaw that would have been evident had such a means of 

dynamic knowledge representation been utilized as part of the standard drug development 

pipeline. This approach has been expanded to other disease processes 121–125 and shows 
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promise as an additional means of assessing the impact of pathway complexity/cell 

population heterogeneity on putative control strategies/therapies.

Multi-tissue signaling must also be incorporated into clinically relevant modeling. Our 

persistent theme in this section has been the concept that both microbial and inflammatory 

systems produce both beneficial and detrimental effects. To add to the complexity of these 

interactions is the fact that the different tissues and body compartments are in constant 

communication. Engineering effective therapeutics requires us to acknowledge this reality 

and develop rational strategies for predicting and capitalizing on that communication. One 

such strategy involves understanding the systemic transport of locally produced signals. 

Systemic affects arise when local signals are transported to other parts of the body, primarily 

via the systemic circulation.

Understanding, and being able to model and hence predict, this systemic communication is 

key to understanding systemic multiscale and “systems biology” effects. The movement of 

chemicals through the body is generally represented using Physiologically-Based 

Pharmacokinetic (PBPK) modeling techniques, which were developed primarily to model 

the movement of drugs through the body 126. The same techniques can be applied to 

modeling the movement of locally generated signals that give rise to systemic responses 

(hence coupling local behaviors to other bodily sites) and in modeling the time evolution of 

clinical markers used to guide clinical interventions 127. There is a critical need to develop 

robust “hardened” models that, in addition to xenobiotics, can model the transfer of systemic 

signals. The conversion of “pharmacokinetic” to “metabolokinetic” modeling is needed to 

understand systemic signaling and clinical markers, to capture the systemic communication 

between host and microbiome, and ultimately to predict local concentrations of agents (both 

exogenous and endogenous) at the site of inflammation.

6. Computer-aided Design of Nanomedical Systems

Concepts from multiscale modeling for NP and NC targeted delivery as well as host-

pathogen interactions described above can also be intertwined in developing nanomedical 

systems, including nanoparticle vaccines, nanoreactors, and nanocapsules for the targeted 

delivery of small therapeutic molecules, genes, or imaging agents. To achieve the clinical 

objective of these nanosystem, a computer-aided design (CAD) approach is needed to meet 

the many, often conflicting requirement; for example, nanomedical systems must (1) avoid 

complexing with nontarget proteins and cells, (2) strongly interact with target objects, and 

(3) have longtime thermal-chemical stability. Since purely laboratory or clinically based 

approaches are time and resource demanding, a CAD approach is of great interest.

A CAD approach generally involves a computational model and ways to translate the 

computer simulation results into clinical or laboratory relevant information (Figure 10). 128 

In this section, the special multiscale challenge and simulation for nanomedical system are 

illustrated with the nanoparticle-based vaccines CAD, although the discussion readily 

generalizes to other nanomedical systems.

Nanoparticles free of genetic information have been in clinical use to provide protection 

against human papillomavirus (HPV),129–131 and others are in development or clinical trials. 
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The general objective behind nanoparticle-based vaccine research is to design a nanoparticle 

that elicits a neutralizing antibody response from the immune system. However, this effort 

suffers from two challenges. First, a nanomedical system with surrounding 

microenvironment contains millions of atoms and thus using conventional computer 

simulation methods, is a burden on computational resources, especially in light of the many 

longtime simulations in the course of a CAD study. The second challenge is to use the 

simulation results to provide a preclinical assay that predicts vaccine efficacy. In the 

following, these challenges will be addressed via multiscale MD simulations and an 

integrated physics-based bioinformatics methodology, respectively. 128,132

Multiscale MD approaches are employed for performating nanoparticle (NP) simulation 132. 

Successful vaccines of the NP type are based on a NP which, along with its 

microenvironment, constitutes a supramillion atom system (Figure 11). Conventional atom-

resolved molecular dynamics does provides a possibility of a calibration-free approach, i.e., 
only a well-tested interatomic force field should be required and there is a wealth of 

experience in the development of interatomic force fields.133–135 However, the large number 

of atoms involved, the longtime simulation, and the many simulations needed in a typical 

CAD study makes conventional MD an impractical basis of vaccine CAD.

Multiscale methods 132,136 are making all-atom molecular dynamics increasingly efficient, 

taking one or more orders of magnitude in simulation without (1) loss of accuracy, (2) 

avoiding the need for calibration with each new system considered, and (3) uncertainties in 

hypothesized coarse-grained (CG) governing equation. Also, the availability of atom-

resolved imaging technologies now enables rigorous testing of multiscale algorithms. 

Notions such as quasiequivalence137 are making rigorous comparison of multiscale software 

feasible (notably since even to conventional MD simulations may defer due to the orbital 

instability of classical trajectories). Thus an accurate, atom-resolved model free of CG 

phenomenology and the need for experiment laboratory testing is essential for a practical 

nanomedical system CAD.132

A promising solution to the nanomedical system computational challenges is the multiscale 

factorization (MF) algorithm.136 MF is based on the notion that CG variables guide the 

ensemble of microstates, while the later provide the Newtonian mechanics and interatomic 

force fields that makes the simulation well-grounded in physical principles. This scheme 

also involves the use of special CG variables which depend on the microstate (i.e., the 

positions and momenta of all atoms). These CG variables are designed to evolve with 

minimal microstate-generated stochastics fluctuations.138 Minimization of the noise effects 

enables the CG state to be advanced with large timesteps. Lie-Trotter factorization139,140 is 

used to rigorously coevolve CG and microscopic states in MF.132,136

Multiscale bioinformatics methods have utility for assessing immunogenicity 128,141. To 

achieve vaccine CAD, an approach is needed that enable predication of the neutralizing 

antibody response from microscale information on a NP. This connection is via a complex 

network that is not yet completely qualitatively understood, nor are completely 

quantitatively model available that connect cell membrane-localized receptor cite processes 

to the neutralizing antibody response. To address this gap, essential step in vaccine CAD, a 
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bioinformatics method is being developed as follows. 128 Epitopes are peptide sequences 

read, e.g., by B-cells, which elicits neutralizing antibody responses. The idea of the 

immunoinformatics approach is to establish a correlation between epitope molecular-scale 

properties and the immune response. Such a correlation has been discovered, the epitope 

fluctuation-immunogenicity correlation (Figure 12). 128 The fluctuations intensity can only 

be reliably used when a molecular metric is computed for a nanoparticle that has been well-

equilibrated. This suggests the role of multiscale MD to achieve the atom-resolved, 

longtime, and equilibration simulations. 132

Summary

A variety of multiscale modeling and simulation techniques from the atomic scale to the 

protein, cell, tissue, organ and even the whole body are now being developed to allow for in 
silico drug design and development. A variety of modeling approaches are being employed 

including, molecular dynamics, bioinformatics, stochastic approaches, ordinary and partial 

differential equation approaches and dynamical systems and statistical analyses, among 

others. The goals of these efforts is to develop computational multiscale models and 

processes that will ultimately allow for improved efficiency, specificity, sensitivity, accuracy 

and cost-effectiveness in drug development, screening and delivery. The multiscale modeling 

and simulation approaches that are currently in development may ultimately be applied to 

various contexts of use for multiple physiological and pathophysiological systems.

There are still multiple barriers to that must be overcome prior to successful clinical 

translation of drug development, drug design and drug delivery multiscale models. These 

include intrinsic limitations of the different in silico techniques on which the models are 

based. For example, MD simulations of ion channel interactions for drug development and 

evaluation can be constrained by the limitations of current force-fields. The quantum 

mechanics/molecular mechanics (QM/MM) approach further enables study of chemical 

processes involving proteins and solutions and can be employed to address these limitations. 

Likewise, the inherent loss of atomistic information that occurs in CG simulations could 

potentially be addressed by conversion of CG to atomistic simulations (for which tools 

exist), followed by performing minimization to enhance system accuracy. Other limitations 

for modeling in general include the enormous computing power and memory required to 

perform certain computational tasks, and the problems associated with “big data” in how to 

glean insight from massive data sets generated from these techniques. There is also a 

pressing need for community engagement to specifically define the context of use and 

application for computational multiscale models. Models need to be extensively tested and 

thoroughly validated within the defined context of use. Some of the modeling approaches 

that are being developed are extendable to include specific patient data to personalize the 

models to improve predictive value. Indeed, mechanism-based multiscale models that 

include patient specific parameters are an important complement to purely inferential 

(statistical) approaches to personalized medicine. Collection of patient data might include 

genotype, hormone/metabolic/endocrine status, co-morbidities and associated disease states 

and this collection may constitute an additional barrier to multiscale model implementation. 

Once these, and other identified barriers are overcome, the computational processes are 

expected to have broad impact in the regulatory process prior to drug approval, in academia 
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for research, in industry for drug and disease screening, and for patient oriented medicine in 

the clinic.
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Figure 1. 
Multiscale computational models can span an enormous spatial range from populations 

downward and time scales from sub-second to decades.
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Figure 2. 
A multiscale computational model for predicting cardiac pharmacology. The model may 

allow simulation and prediction from the small molecule scale of the drug, to protein 

structure, protein function, cell and tissue levels.
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Figure 3. 
A sketch of the ABM model for the impact of the stiffness of the BMSC-formed MIC niches 

to the myeloma lineage expansion and drug responses. (ABM: agent-based model; BMSC: 

bone marrow stromal cell; MIC: myeloma initiating cell; PC: cancer progenitor cell; MM: 

multiple myeloma cell; TMM: terminal multiple myeloma cell; BZM: Bortezomib; AMD: 

AMD3100; CXCR4: C-X-C chemokine receptor type 4; SDF1: stromal cell-derived factor 

1)
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Figure 4. 
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Figure 5. 
Schematic illustration of intracellular and intercellular signaling and cellular dynamics in 

bone healing and bone remodeling. Bone regeneration or bone remodeling involves bone 

resorption by osteoclasts (OC) and the following bone formation by osteoblasts (OB) within 

basic multi-cellular units (BMU). Three cytokines were considered: TGFβ, Wnt and BMP2. 

Intracellular signaling pathway consists of Smad2/3, Smad1/5, β-Catenin, and Runx2 and 

Osx. Runx2 can promote the differentiation of mesenchymal stem cells (MSCs) into pre-

osteoblasts (OBp) and can inhibit the differentiation of pre-osteoblasts into active osteoblasts 

(OBa). Osx also play a promoting role in the later stage of osteoblastic lineage which 

interacts with osteoclastic lineage through intercellular signaling pathway RANK-RANKL-

OPG.
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Figure 6. 
Synergy prediction on dual combinations of Wnt, BMP2, and TGFβ based on Bliss 

combination index. Wnt and BMP2 perform dose-dependent synergism. (a) BMP2 levels 

governed the synergism. When the BMP2 level was higher than 0, the two drugs were 

synergic, otherwise antagonistic. We also found that Wnt at high levels showed opposite 

effects in terms of synergism at different BMP2 levels. When BMP2 level was high, 

increasing Wnt level promoted the synergistic effects of the two drugs. In contrast, when 

BMP2 level was low, the more the Wnt was introduced, the stronger the antagonistic effect 

was. (b) Wnt/TGFβ and (c) BMP2/TGFβ combinations also showed dose-dependent 

synergism but much lower responses.
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Figure 7. 
Schematics demonstration of drug transport (A) through the circulation system, (B) blood 

vasculature, (C) across the vessel wall, (D) through interstitial space to the tumor site.

Clancy et al. Page 32

Ann Biomed Eng. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. 
Overview of the multiple scales and classes of processes involved in host-microbial 

interactions. Modeling efforts would necessarily integrate metabolic processes, microbial 

community dynamics, host responses involving inflammation as they manifest in different 

tissues. Figure reproduced from 142 under the Creative Commons Attribution License.
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Figure 9. 
The computational systems chemical biology (SCB) workflow integrates cheminformatics 

platforms for model-based identification of small molecule therapeutics with dynamic 

simulation of the system scale outcome of targeted inhibition. The SCB approach has been 

used to theoretically investigate the metabolic consequence of multiple chemotherapeutic 

agents on persistent and nonpersistent M. tuberculosis.
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Figure 10. 
Proposed computer-aided vaccine design workflow.
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Figure 11. 
Snapshots of the initial and final configurations of (a) human papillomavirus (HPV) T=1 

virus like particle (VLP) undergoing thermal fluctuations. After 29 ns, the system has 

slightly changed signifying the VLP is stable and has reached equilibrium, and (b) P22 T=1 

VLP significantly evolving from its initial symmetrical icosahedral form, which implies the 

VLP is unstable.
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Figure 12. 
Experimentally determined immunogenicity is inversely correlated with calculated MSF, a 

measure of flexibility.
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