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A note on “Quasi-analytical solution of two-dimensional
Helmholtz equation”

Stefan G. Llewellyn Smitha

aDepartment of Mechanical and Aerospace Engineering, Jacobs School of Engineering, UCSD, 9500
Gilman Drive, La Jolla CA 92093-0411, USA

Abstract

The recent paper of Van Hirtum in this journal repeats a number of misconceptions

about the use of conformal mappings in solving the two-dimensional Helmholtz equa-

tion. These are discussed, as is the fact that the numerical approach presented does

not lead to accurate results. In general conformal mapping is not useful in solving

Helmholtz’s equation. Other, accurate, techniques are briefly reviewed.
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1. Introduction

The recent paper [1, hereafter VH17] in this journal repeats a number of misconcep-

tions about the use of conformal mappings in solving the two-dimensional Helmholtz

equation

∇2φ + k2φ = 0. (1)

In addition, the numerical procedure presented is quite misguided. This note points out

these problems to reinforce the warnings of [2, hereafter M12] in which the focus is on

scattering. The mathematical issues are related, although the interesting question of the

analytic continuation to solutions of the Helmholtz equation discussed in [3], which is

related to the Rayleigh hypothesis in scattering theory, does not arise here.

The derivation in VH17 follows that of [4, hereafter L82] in detail, although the text

suggests that only the contour of integration is found in L82, rather than the derivation
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itself which is in fact the case. The key result is Equation (16) of VH17, which can be

written as

φ =

∞∑
n=−∞

anHn(k| f (s)|)
(

f (s)
| f (s)|

)n

, (2)

where the conformal map z = f (s) goes from a canonical plane s = u + iv = σeiϕ to the

physical plane z = x + iy = reiθ. This is Equation (2.19) of [4], and can also be found

as Equation (27) in [5] and Equation (24) in [6].

However the functions Jn(kr)einθ and Yn(kr)einθ are solutions of the Helmholtz

equation (1). Hence a solution can immediately be written down in the form

φ =

∞∑
n=−∞

anHn(kr)einθ. (3)

This sum is in fact exactly (2) since z = reiθ = f (s), and the derivation in VH17 and

other references is unnecessarily complicated. This was pointed out in M12 which also

discusses the convergence properties of such sums in the context of scattering.

2. Ellipses

The first warning is that the comment at the top of p. 296 of L82 that the function of

k| f (s)| in (2.17) and beyond “in the case of elliptical domains with elliptical coordinate

systems [. . . ] turns out to be the Mathieu functions” is wrong. The functions remain

Bessel functions. A sum of Bessel functions may be used to approximate a Mathieu

function, but that is a different issue.

The discussion of the ellipse is further marred by the fact that the conformal map

presented is from the outside of the unit disc to the outside of the ellipse. This is not

the same as the map from the inside of the unit disc to the inside of the ellipse, which

is what is needed [7].

Mathieu functions may have been “cumbersome” to use in the past, but with mod-

ern software they are within easy reach. In fact they provide a nice example of the

use of pseudospectral methods in [8]. The use of Mathieu functions in solving the

Helmholtz equation in elliptical regions is discussed in [9, 10].

A true “quasi-analytic” way to solve the two-dimensional Helmholtz equation in

an elliptical domain is given in [11], in which successively more accurate solutions are
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obtained.

3. Poor approximation

The second warning is that what VH17 is actually doing is finding eigenvalues of

the Laplace operator in finite domains, which of course requires solving the Helmholtz

equation. However, the approach presented just involves writing down the zeros of the

individual Bessel function in the sum (3); see Equation (17) of VH17. This avoids

the need to solve a zero-finding problem, but no attempt is made to apply the actual

boundary condition. Obviously the results are exact for circles as in VH17 § 4.1. For

other shapes, they can only be approximate. Worse, there is no way to control the error.

As a result, VH17 adds the factors βel and βsq to improve the agreement. These are

basically geometric corrections to take into account the area of the domain and cannot

increase the accuracy for higher eigenvalues.

4. Obtaining accurate results

Accurate results can be computed using the sum in (3). The most straightforward

way is to use a Galerkin approximation on the boundary as in L82: one integrates

(3) expressed in the auxiliary plane against e−imϕ to obtain an infinite set of linear

equations. The map f (s) then provides the link between the physical coordinates of

points on the boundary used in the computation of terms in (3) and the angle in the

auxiliary plane ϕ.

Another approach is to use a collocation method, i.e. “point matching” in the lan-

guage of [12]. As pointed in [12], one can pick other solutions to use in the sum, and

the “method will work well or poorly according to the choice of the functions in the

series.”

In both approaches, one is free to pick points on the boundary in the physical do-

main as desired. The conformal mapping gives one choice, but is not the only one and

will become more and more difficult to use as the domain becomes more complicated.

(In the elliptical case, while the conformal map given is not correct, it does nevertheless

provide a mapping of the unit circle to the ellipse.)
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While the collocation approach is effective for smooth domains, “when corners

are present, functions must be included that have the behavior indicated [. . . ] or the

method will converge badly even for large values of N” [12]. Similar warnings hold

for Galerkin methods.

Many other approaches exist, with classical methods being listed in [12]. Some

notable recent methods include discretizing Boundary Integral Equations [13], the

Method of Fundamental Solutions, discussed in [3, 14] and Radial Basis Functions

[15]. Some of these correspond to existing software implementations, e.g. the Finite

Element Method is implemented in the freely available PLTMG package and the pro-

prietary MATLAB PDE toolbox.

5. Conclusion

The method of VH17 can only lead to poor results, whereas it is possible today

to solve the Helmholtz equation accurately and reliably in a number of different ge-

ometries using a variety of approaches, some of which are essentially “off the shelf.”

Using sums of the form (3) is one starting point, but not following VH17. In particular

conformal mapping is not necessary. The literature on the subject is enormous and the

reader should have no trouble finding good review articles. Finally, it is not clear what

is meant by “quasi-analytical”, since all the algorithms that give accurate solutions of

the Helmholtz equation are underpinned by a great deal of analysis. In mathematical

modelling, one needs approaches that can be proved to be accurate and efficient.

I acknowledge helpful discussions with Paul Martin.
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[7] G. Szegö, Conformal mapping of the interior of an ellipse to a circle, Amer. Math.

Monthly 57 (1950) 474–478.

[8] J. A. C. Weideman, S. C. Reddy, A MATLAB differentiation matrix suite, ACM

Trans. Math. Software 26 (2000) 465–519.

[9] P. M. Morse, H. Feshbach, Methods of Theoretical Physics, Mc-Graw-Hill, New

YorkBerlin, 1953.

[10] G. Chen, P. J. Morris, J. Zhou, Visualization of special eigenmode shapes of a

vibrating elliptical membrane, SIAM Rev. 36 (1994) 453–469.

[11] Y. Wu, P. N. Shivakumar, Eigenvalues of the Laplacian on an elliptic domain,

Comp. Math. Appl. 55 (2008) 1129–1136.

[12] J. R. Kuttler, V. G. Sigillito, Eigenvalues of the Laplacian in two dimensions,

SIAM Rev. 26 (1984) 163–193.

[13] D. Colton, R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory,

Springer-Verlag, Berlin, 1988.

5



[14] G. Fairweather, A. Karageorghis, The method of fundamental solutions for ellip-

tic boundary value problems, Adv. Comput. Math. 9 (1998) 69–95.

[15] B. Fornberg, N. Flyer, A Primer on Radial Basis Functions with Applications to

the Geosciences, SIAM Press, Philadelphia, 2015.

6




