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EXECUTIVE  SUMMARY

A significant body of research on advanced techniques for automated freeway incident detection

has been conducted at the University of California, Irvine (UCI).  Such advanced pattern

recognition techniques as artificial neural networks (ANNs) have been thoroughly investigated

and their potential superiority to other techniques has been demonstrated.   Of the investigated

ANN architectures, two have shown the best potential for real-time implementation: namely, the

Probabilistic Neural Network (PNN), (Abdulhai and Ritchie 1997), and the Multi-Layer-Feed-

Forward Neural Network (MLF), (Cheu and Ritchie 1995).

This project extended existing freeway incident detection research conducted under both PATH

and under the ATMS Testbed Research Program, to operationalizes its principal findings.  The

most prosmising neural network, the PNN, was integrated into the UCI testbed for on line

operation on the testbed network in Southern California.

The PNN incident detection system was re-coded in Java, to facilitate network communications

and platform-independent operation. A Java-based graphical user interface has been developed.

The GUI components include a display of the probabilistic neural network (PNN), the current

input to the PNN, a sliding window display of the output (the computed incident probability

every time step) and a sliding button to allow the user to specify the desired misclassification cost

ratio. The GUI code is in the form of a Java Applet object and has a modular structure that makes

it easier to incorporate possible future modifications and extensions.  The PNN algorithm itself

was then translated from C to Java as a stand alone application object and was interfaced to the

GUI applet running on the same host. The GUI display is updated each time a new output is

computed by the PNN. The PNN algorithm and the GUI display update run as separate threads of

control in Java; this concurrency leads to better utilization of CPU resources. A new module for

computing the principal component transformation of the volume and occupancy inputs was

developed to replace using statistical packages for this transformation. This was needed for

maximum portability and independence of the overall system. Another module for computing

volume and occupancy historical Averages for different Times and Locations (ATLs.) was also



developed to prepare the ATLs from real freeway data.  The PNN and GUI were tested and

correct operation was confirmed with sample inputs from data files.

The whole package was interfaced to a remote C++ CORBA client program that acquires online

CalTrans traffic data from a CORBA server in the Testbed. Communication modules were added

to the CORBA client program as well as the PNN to enable online volume and occupancy data

from different freeway sections to be sent from the CORBA client to the PNN at a specific rate

(once every 30s). The data are sent to the PNN using a reliable TCP/IP streams sockets

connection.

An on-line retraining module was developed as well. This module enables the TMC operator to

initiate retraining on recently captured incident data, on-line without disturbing the operation of

the system.

The PNN was then started on-line on a 5 mile section of the 405 freeway, for on line monitoring

and testing. The overall on-line operation of the PNN was demonstrated to Caltrans engineers

from D12.   Currently, efforts are in progress to expand the network coverage to enhance the

odds of capturing incidents.  On line evaluation will be performed next.
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INTRODUCTION

Considerable research has focused on improving techniques for managing traffic in a real-time

environment.  From this perspective, proper incident detection and management are recognized

to be key components of any potentially successful Advanced Traffic Management System

(ATMS).  Such detection has become a vital link in decision support for TMC personnel

responsible for large and complex transportation networks managed by an ATMS.

The performance of conventional approaches to automatic incident detection has proven

inadequate for every-day use at Traffic Management Centers (TMCs).   Inadequacy stems from

three main sources: (1) the less-than-perfect performance at the original site that the algorithm

was developed for, (2) the lack of transferability to any new site, and (3) the inability of the

algorithm to consider such important but often neglected issues as the prior (predicted)

probability of occurrence of incidents, posterior probability of an incident after an alarm, and the

unequal costs of misclassifying a traffic pattern as an incident or non-incident.  A significant

body of research on advanced solutions to these issues has been conducted at the University of

California, Irvine (UCI).  Such advanced pattern recognition techniques as artificial neural

networks (ANNs) have been thoroughly investigated and their potential superiority to other

techniques has been demonstrated.   Of the investigated ANN architectures, two have shown the

best potential for real-time implementation: namely, the Probabilistic Neural Network (PNN),

(Abdulhai and Ritchie 1997), and the Multi-Layer-Feed-Forward Neural Network (MLF), (Cheu

and Ritchie 1995).

This project extends existing freeway incident detection research conducted under both PATH

and under the ATMS Testbed Research Program, and operationalizes its principal findings.  The

PNN will undergo extensive testing in UCI testbed as well as in real TMC environments.   The

final product of this effort is expected to be an operational neural-network-based freeway

incident detection framework.

ARTIFICIAL NEURAL NETWORKS (ANNS)

Artificial neural networks, from the field of Artificial Intelligence, are information processing

structures based on a simplified model of the functioning of the human brain, in which brain cells

or neurons, and their interconnections, can perform extremely complex calculations very quickly.



Typical neural networks consist of many processing elements (PEs) interconnected with each

other.  A neural network has a group of PEs which receive external inputs, and another group of

PEs that communicates the output to some external sources.  Each PE in the network receives

signals from other PEs, weighted by the interconnection weights, and transmits the processed

signal to other PEs.  Information is thus represented and processed in a parallel and distributed

fashion across the network.  The major advantages of neural networks are fast processing speed,

parallel and distributed representation and processing of information, the ability to be trained to

perform non-linear mappings of patterns, and the ability to produce good classification results

with imperfect input data.

BACKGROUND: FREEWAY AUTOMATED INCIDENT DETECTION (AID)USING THE PNN

Work on incident detection at UCI has focused on the application of Artificial Neural Networks

as a computationally-efficient approach to on-line detection of traffic stream abnormalities.

Recent research has demonstrated the potential benefit from and the superiority of approaching

the freeway incident detection problem using ANNs with particular emphasis on the Multi-Layer

Feed Forward network with back propagation learning (MLF) and our own modified version of a

Bayesian Probabilistic Neural Network (PNN).   Results have proven the superiority of this

approach relative to other existing conventional approaches.  The most recent UCI research on

freeway incident detection has developed a candidate universal approach that is expected to

fulfill a set of universality requirements.  This new approach is based on the PNN as a core, and

has a preprocessor feature extractor as well as a postprocessor probabilistic interpreter.  The

overall new framework is a promising neural-network-based UNIversally Transferable Incident

Detection (UNITID) algorithm that simultaneously incorporates all the issues of significance to

the problem of freeway incident detection including the important transferability issue.  The PNN

performance was found to be competitive with the MLF in terms of Detection Rate (DR), False

Alarm Rate (FAR), and average Time To Detection (TTD).  In addition, results also pointed to

the possibility of utilizing the real-time learning capability of this new architecture to produce a

transferable incident detection algorithm without the need for explicit, developer-attended, off-

line retraining in the new site.

The PNN performance was found to quickly improve with time in service, and approach an



“ideal” performance of 100% DR and 0% FAR as shown in Tables 1 and 2, (Abdulhai and

Ritchie, 1997).  Real time improvement in detection performance is the main contribution of this

algorithm.  Moreover, the PNN-based framework possesses all the remaining attributes that

would make it potentially universal.  Ongoing efforts are geared towards the maturation of the

algorithms beyond the prototype stage, and preparing them for real-time on-line implementation.

The PNN in the AID system takes as input, a feature vector composed of direct measurements of

volumes and occupancies from loop stations at the upstream and downstream ends of the freeway

segment over which the AID system operates. On receiving a new input vector, the PNN

computes the probability that this input vector relates to an incident condition on the freeway

segment. This aposteriori incident probability is computed by first computing likelihood

probabilities for incident and normal conditions from the value of the input vector and then using

Bayes Theorem. The likelihood probabilities are computed using a Parzen estimation formula.

The entire computation can be identified as a 3-layer neural network composed of a pattern layer,

a summation layer and an output layer (Abdulhai and Ritchie, 1997).

An extra transformation layer is added before the pattern layer as a modification to the standard

PNN.  This first layer rotates the input vector so as to transform its coordinates into its principal

components.  The mathematics of the PNN can be summarized as follows:

Principal components are computed from the input vector and the covariance matrix as follows:

• Let ∑ be the covariance matrix associated with the random vector X;

• Let ∑ have the eigenvalue - eigenvector pairs:

    ( , ), ( , ), ........... , ( , )λ λ λ1 1 2 2e e ep p

where

λ λ λ1 2 0≥ ≥ ≥.............. p ;

• The ith principal component of X is given by

Y e X e X e X e Xi i i i pi p= ′ = + + +1 1 2 2 ...........  
and

Var Y e ei i i i( ) = ′ =Σ λ   
Cov Y Y e ei k i k( , ) = ′ =Σ 0

where



i = 1,2,…,p

The weights between the input layer and the transformation layer are the eigenvectors of the

sample covariance matrix.  The transfer function in the units of the transformation layer simply

divides the weighted input to the unit by the standard deviations λ i .  The transformed vector Y

is then classified as belonging to:

      π1  if  :   f1(y) / f2(y)   ≥   {  [  C(1|2) / C(2|1)  ]  *   [ P2 / P1 ]  }

      π2 otherwise.

where :

- C(i|j)  is the cost of miss-classifying an object as belonging to population πi while it

     belongs to population πj.

- Pi  is the prior probability of occurrence of population πi

Typically, the a priori probability ratio and the cost ratio can be estimated either subjectively or

objectively.  The Probability Density Functions (PDF) are estimated using Parzen Windows as

follows:
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where :

k      =   class or category

i    =   pattern number

m  =   total number of training patterns

Yki =   ith training pattern from category or population πk

σ =   smoothing parameter

p =   dimensionality of feature (input) space.

As the algorithm generates an incident alarm, the probability of existence of a true incident in the

field is computed using Bayes’ theorem as follows:

P I A
P A I P I

P A I P I P A F P F
( | )

( | ) ( )
( | ) ( ) ( | ) ( )

=
⋅

⋅ + ⋅

where

A : the event of an incident alarm generation by a given incident detection algorithm.

I : the event of a true incident in the field.



F: the event of an incident-free condition in the field.

P(I): the prior probability of occurrence of an incident.

P(F): the prior probability of an incident-free condition, which is the complement of

P(I).

P(A|I): the conditional probability of occurrence (generation) of an alarm given the occurrence of

an incident in the field.  This could be taken as equal to the correct classification rate of incident

related input vectors.   It is algorithm-specific, and is obtainable during the testing of the

calibrated algorithm.

P(A|F):the conditional probability of occurrence (generation) of an alarm given an incident-free

condition in the field.  This could be taken as equal to the incorrect classification rate of incident-

free input vectors.  It is also algorithm-specific, and is obtainable during the testing of the

calibrated algorithm.

P(I|A): the conditional probability of existence of a true incident given the occurrence

(generation) of an alarm.

Note that P(A|I) and P(A|F) are always less than unity because any incident detection algorithm is

not perfectly reliable, and misclassifications inevitably occur.  

Similarly, if the incident detection algorithm indicates an incident-free condition, the probability

of existence of an incident in the field could be updated using the equation:

P I A P A I P I
P A I P I P A F P F

( | ) ( | ) ( )
( | ) ( ) ( | ) ( )

= ⋅
⋅ + ⋅

where  A   is the complement of A, i.e. the event of the algorithm is indicating an incident-free

condition at a particular time interval.   P( A | I ) is also the compliment of the P( A | I ) as the

conditioning component is the same.

The above scheme is applicable to the output of any incident detection algorithm including the

PNN.  However, there is another updating process that particularly fits only the PNN.  The

probability densities f1(X) and f2(X) produced by the PNN after classifying an input vector X

can be used in the following equations to update the incident probabilities instead:

P I X
f X P I

f X P I f X P F
( | )

( ). ( )
( ). ( ) ( ). ( )

=
+

1

1 2



P F X
f X P F

f X P I f X P F
( | )

( ). ( )
( ). ( ) ( ). ( )

=
+

2

1 2

It is noticeable that the above equations are useable right after the probability densities are

produced by the PNN and even before a classification of the incoming vector is made.  Therefore

there is no need to classify each incoming vector but rather update the posterior probabilities

directly.



PNN

Before On-Site Patterns Update After On-Site Patterns Update

Persistence DR FAR TTD DR FAR TTD

0 31 0.4 1080 100 0.5 15

1 29 0.02 1188 98 0 79

2 29 0 1218 98 0 112

3 27 0 902 98 0 142

Table 1.  Performance Improvements of the PNN After Real-Time Updating on the I-880

Patterns.

PNN

Before On-Site Patterns Update After On-Site Patterns Update

Persistence DR FAR TTD DR FAR TTD

0 76.12 8.16 415 98.51 0.011 48

1 40.0 2.7 348 98.51 0.009 85

2 29.1 1.3 328 98.51 0.006 116

3 24.6. 0.9 465 97.76 0.003 147

Table 2.  Performance Improvements of the PNN After Real-Time Updating of the I35W

Patterns.



DESIGN AND IMPLEMENTATION OF THE ONLINE AID SOFTWARE

The AID system is implemented as a Java application. The advantages of implementing incident

detection as a Java application are as follows:

1. Object Orientation. A Java application is fully object-oriented; the various AID modules are

therefore implemented as objects with complete data encapsulation and a meaningful inheritance

structure. This makes future program modifications and maintenance an easy task.

2. Complete Portability. A Java application program can run on any host, which has the Java

Virtual Machine (JVM) running. For example, in this project, the AID was developed and tested

on a Windows NT platform, but can be executed on any host (say, a Solaris workstation) which

has a JVM running; not a single line of code has to be modified to run the AID on a JVM on any

platform.

A commonly cited demerit of Java is that Java applications are run by first compiling the source

code to an intermediate Java byte-code, which is then interpreted line by line. This makes a Java

application run noticeably slower than a C++ application with the same functionality, but which

has been compiled to native machine language and executed. However, this slight slowdown in

execution is completely inconsequential for AID software since it has to do each round of

computation and user-interaction only once every 30 seconds. Even with ordinary processor

speeds of 100-150 MHz, the Java PNN program can compute each incident probability output

and do auxiliary operations such as display, file storage and network input/output all within 2-3

seconds.

Fig. 1 shows the environment in which the AID operates online. Loop data from the Caltrans

District 12 are acquired and organized at the D12 headquarters by a CORBA-based Traffic Data

Server program as a set of CORBA objects, one for each loop. The CORBA object for each loop

holds the speed, volume and occupancy per lane measured by the loop. Fig. 2 gives a module

level description of the AID software. In the rest of this section, we explain the functioning of

each of these modules. The next section describes the implementation of these modules in the

form of Java classes.



Figure 1.  D12 Data Acquisition System
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Fig. 2 Modules in the AID software
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The CORBA client and AID Input Modules

There are two versions of the input module in the AID software: the file input module and the

online-input module. Both modules prepare a 16-dimensional input vector X for input to the

PNN algorithm as follows: (the algorithm module actually subtracts the corresponding averages

for the current time of the day from these input vector components; it is this deviation from the

average that forms the actual input to the PNN computation.)

X[0] = Fourth previous upstream occupancy value

X[1] = Third previous upstream occupancy value

X[2] = Second previous upstream occupancy value

X[3] =  Previous upstream occupancy value

X[4] =  Current upstream occupancy value

X[5] = Fourth previous upstream volume value

X[6] = Third previous upstream volume value

X[7] = Second previous upstream volume value

X[8] =  Previous upstream volume value

X[9] =  Current upstream volume value

X[10] = Second previous downstream occupancy value

X[11] =  Previous downstream occupancy value

X[12] =  Current downstream occupancy value

X[13] = Second previous downstream volume value

X[14] =  Previous downstream volume value

X[15] =  Current downstream volume value

File-input Module

This module can be used to test the PNN with traffic data stored in a file. The module expects



PNN input vectors to be stored in the format described above, serially in the disk file with white

spaces or tabs separating the successive input vectors and successive input vector components.

Online-input Module and the CORBA client

The online input module uses a TCP/IP reliable streams connection to a Caltrans real-time traffic

data source which is an online loop-data retrieval program running on a separate host. Currently,

this real-time traffic source is a C++ CORBA client program that retrieves real-time per-lane

traffic data (volume, occupancy and speed) from the CORBA-based Traffic Data Server (TDS),

running on a host at the Caltrans D12 headquarters. The CORBA client averages each received

traffic data item over all the lanes and sends the averaged data to the AID via a TCP/IP

connection. Fig. 1 shows the traffic data flow from the server to the C++ client to the AID

system. Every time it receives fresh data from the CORBA client, the online-input module

updates the current PNN input vector according to the format described above.

It might be important at this stage to examine how CORBA software is used to make different

programs on heterogeneous hosts talk to each other. CORBA software mainly consists of an

Object Request Broker (ORB) which acts as a “middleman” between different programs running

on different hosts in a network. Also, the CORBA software consists of libraries which can be

used to build a CORBA interface to any program written in any of the supported languages which

includes C++, Java and Smalltalk. Once a program has such an interface, it is called a CORBA

object. This interface specifies a list of methods (procedures) and data variables that other

programs (CORBA clients) possibly residing on different hosts in the network can access using

the ORB. The CORBA clients do not have to “worry” about what underlying network (TCP/IP,

ATM, etc.) protocol is used to connect to the CORBA object or where in the network the object

resides or what operating system the object is running on as a program. All these details are taken

care of by the ORB. All the client has to do is to know the CORBA interface specifications of the

desired CORBA object, use the ORB to first get a handle or reference to that object and then

subsequently use this handle to invoke the various methods specified in the object interface as if



the object was a piece of code compiled and linked to the client program. For example, in the

AID software, the entire Traffic Data Server residing on a Caltrans D12 machine really appears

to the C++ client program as a set of C++ objects that have been linked to it.  Note that a given

program can act as both a CORBA client as well as a CORBA object: when it invokes one or

more services from other objects, it is acting as a client while it acts a CORBA object when it

processes requests that are received from other programs via its CORBA interface.

The following pseudo-code describes how the CORBA client retrieves online data every 30

seconds from the Traffic Data Server.

CORBA client pseudo-code

1. Load the freeway loop list from the config file into an array.

2. From the aid-config file, load the list of IP addresses and port numbers for the AIDs

for each of the desired loops.

3. Get the grand list of CORBA object references (handles) to all freeway loops.

4. Filter the retrieved grand list to obtain the list of handles to the CORBA objects

representing only the desired loops (by searching through the grand list for the names

of the desired loops.)

5. Every 30 seconds, access the traffic data residing in each of the desired loop objects.

6. For each of the loops, parse the retrieved traffic data string to obtain the per-lane

volume, occupancy and speed.

7. Send the average volume, occupancy and speed for each loop to the corresponding

AID.

In our implementation, the CORBA client is a program written and compiled in the Microsoft



Visual C++ environment and running on Windows NT. The CORBA software used to connect to

the D12 traffic data server is ORBIX, an ORB developed by IONA. The actual network used to

connect to the D12 server is a dedicated fiber-optic link with the virtual circuit protocol, ATM,

running on top of the physical layer. With CORBA operating on top of such high-speed

connections to the real-time data, a distributed ATMS system designer does not have to worry

about the networking aspect of the system design and can instead focus solely on the efficient

design of the system as a group of CORBA objects and clients.  Fig. 2 shows the entire real-time

data retrieval set-up including the CORBA modules.

Inside the AID, the Online-input and File-input modules are encapsulated as methods in one

single Java class, namely InputClass.

PNN Training, ATL and Algorithm Modules

PNN Training Module

The PNN training module reads a training file that stores the complete set of exemplar input

vectors that are to be used for training the PNN. Each input vector in the training file has a tag

component attached to it that indicates whether that vector corresponds to an incident or a normal

condition. The training module reads each of these input vectors from the file, rotates (according

to principal component transformation) and then does a min-max transformation of each of the

vectors. These final transformed versions of the training input vectors are stored in memory in

the form of arrays, inc (all incident condition vectors) and nor (all normal condition vectors.)

These arrays are later used by the algorithm module for computing the likelihood probabilities of

an input vector given new data from a freeway segment.

PNN ATL Module

The PNN ATL module is used for computing the volume and occupancy ATLs (Averages for a

Time and Location) for the freeway segment on which the AID system is operating. These ATL

values are used by the PNN algorithm module in computing volume and occupancy deviations

from averages. In the current implementation, the averages are computed for a particular day as



follows: historical volume and occupancy data (at 30-second intervals) for that day are retrieved

from the Traffic Data Server using its Web browser interface. These data are averaged over 15

minute intervals, thus giving rise to 24*60/15 = 96 values that are stored in a file (named as the

ATL file.)

The ATL module is actually implemented as a separate program that is executed offline. The

ATL values it produces in the form of ATL files are read later on by the PNN algorithm module

and stored in arrays in the memory. Ideally, the AID user must collect recent historical non-

incident data for each day of the week, feed these to the ATL program and thus generate seven

ATL files, one for each day of the week. The algorithm module will then automatically choose

the correct ATL file during runtime and load the averages for each time of that day.

PNN Algorithm Module

Initially, before starting to receive traffic data inputs, the PNN Algorithm module reads the

volume and occupancy averages (ATLs) for its specific freeway segment from the corresponding

ATL file. These volume and occupancy ATLs are stored in two respective arrays in the memory.

The algorithm module invokes the input module to retrieve the latest traffic data in the form of

the 16-dimensional input vector. In the file-input version of the AID software, the file-input

module is invoked, while in the online-input version of the software, the online-input module is

invoked.

Given the new input vector, the algorithm module uses the incident and normal PDF functions

generated by the training module to compute the conditional (likelihood) probabilities that an

incident condition and normal condition will generate this input vector. Using Bayes theorem and

the incident and normal likelihood probabilities, the aposteriori probability that the given input

corresponds to an incident condition is computed according to the following algorithm (specified

in a pseudocode form):



PNN Algorithm Pseudocode

Data:

n: Total number of training vectors classified as incident-related

m: Total number of training vectors classified as normal-condition-related

Xk: The kth incident-related training vector (all such vectors are stored in an array, inc)

Yk: The kth normal-conditon-related training vector (all such vectors are stored in an array,

nor)

σ: Smoothing parameter in the Parzen estimation formula

p: Dimension of the input vector (p = 16 in our implementation)

X: received input vector

fI(X): likelihood probability density that an incident condition will generate X

fN(X): likelihood probability density that a normal condition will generate X

pI: apriori probability of an incident condition

pN: apriori probability of an normal condition; pN = 1- pI

PI : (PNN Output) aposteriori probability that given X, an incident has occurred on the

freeway segment

P(A/I): probability of incident alarm given an incident

P(A/N): probability of incident alarm given a normal condition

MCCR: MisClassification Cost Ratio

Algorithm:

P(A/I)= 0.85;

P(A/N)= 0.04;

// compute likelihood probability for X given an incident condition using Parzen’s

formula
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// compute likelihood probability for X given an normal condition using Parzen’s
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if(fI(X)  > MCCR * fN(X) )   // incident alarm

{

   // compute probability of incident given incident alarm:

  PI  = PI *P(A/I) / (PI *P(A/I) + (1- PI) * P(A/N)); // Step 1

}

else  // normal condition indication

{

  // compute probability of incident given normal condition indication:

  PI  = PI *(1-P(A/I)) / (PI *(1-P(A/I)) + (1- PI) * (1-P(A/N)) );         // Step 2

}

PI  = max(min(PI , 0.95), 0.05); // Step 3

The output of the PNN is PI  as calculated above. Steps 1 and 2 above are in fact applications of

Bayes theorem. In Step 1, PI is P(I/A), the aposteriori probability that given the incident alarm, an

incident has really occurred on the freeway segment. Therefore, by Bayes theorem,

P(I/A) = P(I)P(A/I) / P(I)P(A/I) + (1-P(I))P(A/N)

where P(I) is the apriori probability of an incident on the freeway segment over the observation

interval (=30 seconds in our implementation) and 1-P(I) = P(N) is the apriori probability of a

normal condition on the freeway segment. In Step 1, the previous output, i.e. the aposteriori

probability PI computed for the previous input is itself used as the apriori probability, P(I) in the

above Bayes formula. Thus, Bayes theorem is used recursively. The initial value of P(I)  (used for

computing the very first output) can be specified by the user when the AID software starts



execution; the user is prompted to supply the value of P(I).

The event, A, an incident alarm, is generated if fI(X)  > fN(X). This is nothing but the maximum

likelihood (ML) criterion for deciding that an incident has occurred. If we replace this with a

different criterion for generating an incident alarm, then we will obtain a correspondingly

different algorithm for incident detection; steps 1 and 2 will however remain unchanged. What

steps 1 and 2 do is to convert a hard decision on the occurrence of an incident (alarm/no-alarm)

into a soft decision, i.e. probability of occurrence of an incident. In the Bayes formula, the

probabilities P(A/I) and P(A/N) actually depend on the accuracy of the specific criterion used for

generating an incident alarm. In our case, the fixed values of P(A/I)=0.85 and P(A/N)=0.04 have

been found to satisfactorily reflect the accuracy of ML criterion. The actual algorithm above

shows a factor, MCCR, the MisClassification Cost Ratio used in the ML criterion. MCCR is used

to give different weights to minimizing the probability of a false alarm versus minimizing the

probability of a miss (deciding a no-incident when there is an incident) since there is a tradeoff

between minimizing these two probabilities. MCCR is initially set to 1 when the AID starts, but

can later be changed according to the value specified by the user; a slider button is moved on the

display screen by the user to set  MCCR  to the desired value.

A similar explanation holds for the computation in Step 2, where PI is really P(I/NC), the

aposteriori probability that given the normal condition indication (NC), an incident has really

occurred on the freeway segment.

Step 3 in the algorithm bounds the output probability between 0.05 and 0.95 to ensure that if the

output calculated in step (1) reaches 0.0 or 1.0, it does not get locked at that value.

The algorithm module first does a principal component transformation of the received input

vector and before feeding it to the above algorithm. The exemplar (training) vectors, {Xk} and

{Yk} have also been similarly transformed after being retrieved from the training file, as

explained above in the description of the training module. The motivation behind doing this

transformation before employing Bayes theorem is explained in Abdulhai and Ritchie (1998).



The PNN algorithm module also performs additional operations, namely invoking the GUI

module to display the latest input and output.

The PNN training and algorithm modules are encapsulated as separate methods (train() and

compute_output() respectively) in one single Java class, namely pnnThread. This is a Java

Thread class. A single object of this class is instantiated when the AID system starts functioning.

That is, a pnnThread thread is created and started by the main method of the IDet class which is

the primary class of the AID system. The pnnThread thread runs concurrently with the other

thread created by the Idet class, namely, the display thread, idet_applet. The run() method of the

pnnThread object carries out the initial PNN training by calling the train() method. After that, the

run() method loads the ATL values from the corresponding files and then enters an infinite loop.

Each cycle of this loop consists of:

1. acquiring the latest input from the input module

2. acquiring the latest user-specified MisClassification Cost Ratio (MCCR) from the GUI

module,

3. invoking the compute_output() method which is the Java implementation of the PNN

algorithm module.

PNN Retraining Module

The retraining module is invoked by the algorithm module whenever the latter classifies an

output as a suspected incident according to the Incident Threshold value (certain cut off

probability, specified by the user, above which the field event is considered a certain incident).

The retraining module then prompts the user with the computed incident probability value and

asks the user to verify whether this is an incident, using cameras or police records or similar. If

the user classifies this as an incident condition, the current input vector is appended to a

temporary incident data file. The user also indicates whether retraining is to be done; if so, the

user also specifies the time interval whose incident data is to be incorporated into the training

file. The retraining module accordingly retrieves the specified incident data from the temporary

file and this data either replaces existing data in the training file or is appended to the training



file according to what the user specifies. The above described interaction with the user is done

using a GUI as shown in fig. 4. In the current implementation, the Incident Threshold value that

triggers the retraining module has been hard coded to 0.5 in the program. However, in a future

version, the user will be able to set this value (among other things) in a config file. When the

AID starts, it will configure itself according to the specifications in the config file.

The retrain module is implemented as a thread, retrain_thread, that runs in parallel with

pnn_thread. Thus, the retraining of the PNN, i.e., computation of the new inc and nor arrays

continues in the background without disturbing the operation of pnn_thread. As soon as

retrain_thread has finished computation of the new inc and nor arrays, it overwrites the

corresponding old arrays in the data space of pnn_thread.

GUI Module

The GUI for the AID system consists of a display of the probabilistic neural network (PNN), a

sliding window display of the volume and occupancy deviation inputs to the PNN algorithm

module and a sliding window display of the output (incident probability). Figures 3a, 3b, and 3c

show screenshots of the GUI for the AID running on a Windows NT host, for typical normal,

incident beginning and incident end conditions respectively. The two windows on the left show

running plots of real-time volume and occupancy deviations from ATL values. Plots for upstream

variables are drawn in red, while those for downstream variables are drawn in blue. The window

on the right shows the running plot for the incident probabilities computed every 30 seconds. The

“Output Only” button on the top right corner of the GUI can be used to toggle between the

elaborate display shown and a reduced display showing only the plot of the incident probability.

The GUI module is implemented as an object of the Java Applet class. The GUI display is

updated whenever the PNN algorithm module calls the repaint() method of this object. Each

sliding window plot (upstream & downstream volume deviations/ upstream & downstream

occupancy deviations/ output probability) is maintained as a separate object of a class called the

OutputArrayClass. This class encapsulates the methods for maintaining the running window plot

data as a circular queue.



Fig. 3a. Snapshot of AID screen during normal conditions



Fig. 3b. Snapshot of AID screen during beginning of incident



Fig. 3c. Snapshot of AID screen towards end of incident



Fig. 4. Snapshot of GUI for PNN Retraining



DETAILED DESCRIPTION AND PSEUDOCODE OF THE AID SOFTWARE

This section describes the organization of the AID software in the form of Java classes. The AID

classes are listed below followed by the pseudocode for the important classes, viz. IDet,

pnnThread, RetrainDialog and RetrainThread.

1. IDet: This is the “main” class (the class that contains the main() function). In Java, the

compiled program (the executable) has the same name as its main class.

2. IncidentDetector: This is the GUI class of IDet and is an Applet class. It contains methods for

updating the display of IDet (the PNN, the input and output plots) and for accepting input

from the user.

3. pnnThread: This is the core class of IDet. It is a Java Thread class. The main get_next_input-

compute_output endless loop of the software is contained in its run() method.

4. inputClass: contains methods for connecting to the source of input data (either a local file or a

TCP/IP socket stream connection to a remote host.)

5. OutputClass: This class contains methods for maintaining and displaying a sliding window

plot of variables that evolve with time. These methods are called by the IncidentDetector

class in order to display a sliding window plot of the output versus time as well as upstream

and downstream volumes and occupancies versus time.

6. statClass: This is the ‘statistics’ class that contains methods for computing the mean, standard

deviation and the eigenvectors of the correlation matrix of the exemplar input vectors used

for training the PNN. These methods are called by the training module of Idet , i.e. the train()

method of the pnnThread class.

7. RetrainDialog: This class implements the GUI for retraining of the PNN. It contains methods

for pre-processing the different user inputs regarding retraining and then sending these user

data to the RetrainThread object which in turn carries out the retraining.

8. RetrainThread: This is a Thread class and carries out the retraining of the PNN by basically

invoking the train() method of the PNN after the new training data have been incorporated

into the training file.

In the rest of this chapter, we describe the pseudo-code for the important methods of the



important AID classes in detail in the form of program control-flow-charts.

Class Idet

This class is the ‘main’ class of the program, i.e. it contains the main() method. Program

execution starts from the main() method. IDet is a Java Frame class. The PNN is created as a

thread, pnn_thread(), by Idet.main(). Also, the display (GUI) is created by Idet.main() as an

Applet object of the IncidentDetector class.

Important methods in IDet are: main().

Pseudocode for main():

Read training input
vectors from training file

Compute mean, std. deviation and correlation
matrix of input from the training data by
invoking methods in statClass object.

Find eigenvalues and eigenmatrix of input
correlation matrix by invoking eigenroutine
in statClass object.

Create the GUI as idet_applet, an object of
the IncidentDetector class.
Initialize and display idet_applet in the IDet
frame.

Create the PNN as pnn_thread, an object of the pnnThread
class. Pass to pnn_thread, the reference to idet_applet and
the input mean, std. deviation and eigenmatrix arrays.



Class pnnThread

Main methods are: the constructor, pnnThread(), run(), train(), compute_output() and

update_training_file().

Pseudocode for constructor, pnnThread():

Call method in inputClass to connect to
source of input: either local file or
remote host.

Call method in inputClass to open
training file.

Create the RetrainDialog object,
retrain_dialog.
Create the RetrainThread object,
retrain_thread.



 Pseudocode for train():

Read input from training file and separate
into incident and normal vectors. Store
vectors in arrays inc and nor respectively.

Rotate the vectors in inc and nor according to the
principal component transformation (that is,
multiply inc and nor with the eigenmatrix
supplied by the IDet class.)

Minmax the vectors in inc and nor.



Pseudocode for run():

Get next input vector from the input source.

Call method in the GUI object, idet_applet, to
update the current-input vector display and
upstream/downstream volume/occupancy plots.

while(TRUE)

   Repeat

Compute incident probability:
PI  = compute_output().

obtain latest user-specified MisClassification
Cost Ratio by calling get_MCCR() method of
idet applet. Store the ratio in variable MCCR..

Call method train() for training the
PNN:

if(PI  > Incident_Threshold)
{
  record incident in file, incident_data.txt.

  invoke display_data method of the object
  retrain_dialog of the RetrainDialog class.
}



Pseudo-code for compute_output():

(refer to Appendix A to gain a full understanding of the algorithm for computing the incident

probability.)

Rotate the input vector, X, according to
principal component transformation.

Minmax the input vector.

Using Parzen estimation formula,
Compute likelihood probability for X given an incident:
fI = Parzen(X - inc);
Compute likelihood probability for X given a normal
condition:
fN = Parzen(X - nor);

// P(A/I): probability of incident alarm given an incident
// P(A/N): probability of incident alarm given a normal condition
// MCCR was obtained from idet_applet by run() and stored in an object variable, MCCR.

P(A/I): 0.85
P(A/N): 0.04

if(fI  > MCCR * fN )   // incident indication
{
   // compute probability of incident given incident alarm:
  PI  = PI *P(A/I) / (PI *P(A/I) + (1- PI) * P(A/N));
}
else  // normal condition indication
{
  // compute probability of incident given normal condition indication:
 PI  = PI *(1-P(A/I)) / (PI *(1-P(A/I)) + (1- PI) * (1-P(A/N)) );
}



Pseudocode for update_training_file( boolean append, time data_interval ):

(This method is called by retrain_thread.)

Retrieve all the data from file, incident_data.txt, that had been
recorded within the time interval, data_interval.
if (append is true)
  Append the new data to the end of  incident_data.txt
else
  Overwrite the entries at the beginning of incident_data.txt
  with the new data.



Class RetrainDialog

This class is derived from the Java Frame class. It creates a display window on the screen for

interaction with the user regarding retraining the PNN.

Main methods are: RetrainDialog() (the constructor) and action().

Pseudocode for constructor, RetrainDialog():

Pseudocode for action(Object arg):

Create text field for displaying new incident data
Create text field for accepting the Retrain/No-Retrain input from
user.
Create text field for accepting the Append/Overwrite input from the
user.
Create text fields for accepting the user input: the time interval
whose incident data are to be used for retraining.

if(arg == “OK”)  // user has finished specifiying the retrain parameters
{
  if(retrain_comand == “YES”)  // user has requested a retraining
 {
   Pass all the following retraining parameters to retrain_thread:
    Append/Overwrite flag
    Begin Time for the new incident training data
   End Time for the new incident training data

   Reactivate retrain_thread.
 }
}
else   // user has specified “QUIT”
  close the retrain_dialog window.



Class RetrainThread

This class is derived from the Java Thread class. A single thread object of this class,

retrain_thread, is created by the constructor of the pnnThread class (refer to the corresponding

pseudocode given above.) The thread, retrain_thread, runs in parallel with pnn_thread. Thus, the

retraining of the PNN, i.e. computation of the new inc and nor arrays continues in the

background without disturbing the operation of pnn_thread. As soon as retrain_thread has

finished computation of the new inc and nor arrays, it overwrites the corresponding old arrays in

the data space of pnn_thread.

Main methods are: run().

pnn_thread.update_training_file(retrain_parameters);

pnn_thread.train();

Resume on being reactivated by a
signal from retrain_dialog

while(TRUE)

    Repeat



 SUMMARY AND CONCLUSIONS

In this project, we extended existing freeway incident detection research conducted under both

PATH and under the ATMS Testbed Research Program, to operationaliz its principal findings.

The most promising neural network to date, the PNN, was integrated into the UCI testbed for on

line operation on the testbed network in Southern California.

The PNN incident detection system was re-coded in Java, to facilitate network communications

and platform-independent operation. A Java-based graphical user interface has been developed.

The GUI components include a display of the probabilistic neural network (PNN), the current

input to the PNN, a sliding window display of the output (the computed incident probability

every time step) and a sliding button to allow the user to specify the desired misclassification cost

ratio. The GUI code is in the form of a Java Applet object and has a modular structure that makes

it easier to incorporate possible future modifications and extensions.  The PNN algorithm itself

was then translated from C to Java as a stand alone application object and was interfaced to the

GUI applet running on the same host. The GUI display is updated each time a new output is

computed by the PNN. The PNN algorithm and the GUI display update run as separate threads of

control in Java; this concurrency leads to better utilization of CPU resources. A new module for

computing the principal component transformation of the volume and occupancy inputs was

developed to replace using statistical packages for this transformation. This was needed for

maximum portability and independence of the overall system. Another module for computing

volume and occupancy historical Averages for different Times and Locations (ATLs.) was also

developed to prepare the ATLs from real freeway data.  The PNN and GUI were tested and

correct operation was confirmed with sample inputs from data files.

The whole package was interfaced to a remote C++ CORBA client program that acquires online

CalTrans traffic data from a CORBA server in the Testbed. Communication modules were added

to the CORBA client program as well as the PNN to enable online volume and occupancy data

from different freeway sections to be sent from the CORBA client to the PNN at a specific rate



(once every 30s). The data are sent to the PNN using a reliable TCP/IP streams sockets

connection.

An on-line retraining module was developed as well. This module enables the TMC operator to

initiate retraining on recently captured incident data, on-line without disturbing the operation of

the system.

The PNN was then started on-line on a 5 mile section of the 405 freeway, for on line monitoring

and testing. The overall on-line operation of the PNN was demonstrated to Caltrans engineers

from D12.   Currently, efforts are in progress to expand the network coverage to enhance the

odds of capturing incidents.  On line evaluation will be performed using the developed on-line

PNN, under the University of California Irvine ATMS Testbed.



APPENDIX A: BRIEF INTRODUCTION TO CORBA CONCEPTS

CORBA is an acronym for Common Object Request Broker Architecture. It provides a high-

level framework for developing object-oriented distributed applications. Developing distributed

applications becomes significantly easier within such a framework. In fact, distributed

applications interact as if they were all implemented within a single computer in a single

programming language.

CORBA defines a standardized architecture for Object Request Brokers (ORBs.) An ORB is a

software component that mediates the transfer of messages from a client program to a CORBA

object. Fig. 5 illustrates how an ORB hides the complexity of the underlying network

communications from the programmer [4]. When a client invokes a member function on a

CORBA object, the ORB intercepts the function call and redirects it to the target object. The

latter returns the results (output) of the function call to the ORB which in turn relays the results

to the client. Part of the ORB resides on the same host as the CORBA object and the other part

resides on the client host. Thus, the ORB is really a collection of software modules residing on

all hosts. Every CORBA object has a standard interface specified in the Interface Definition

Language (IDL).  The IDL interface of a CORBA object consists of a list of the data variables (or

attributes) and member functions (or operations) of the object; client programs can make calls to

these member functions or access the data variables by simply sending an appropriate command

to the ORB without having to know the specific language in which the object is implemented or

the host operating system on which the object resides. A simple example is given below to

explain the various steps involved in creating and accessing CORBA objects.
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Fig. 5. The CORBA architecture

Example: Encapsulating freeway loop data as a CORBA object using the ORBIX ORB:

To further illustrate how CORBA objects can be developed and accessed by clients, we consider

developing a CORBA object holding data from a freeway loop in the C++ language using the

CORBA software called ORBIX from Iona Corp. [4].  In this simple example, the freeway loop

object must hold 3 variables, volume, speed and occupancy.

1. IDL file

The first step is to define a public interface to the loop object in the IDL language in a file with a

“.idl” extension (lets call it loop.idl) as follows:

// File loop.idl



interface Loop

{

readonly attribute long volume;

readonly attribute float speed;

readonly attribute float occupancy;

}

The keyword readonly means that the clients can only read but not set the attribute values.

2. Client-stub and Object-Skeleton-Code

The above IDL code is then compiled using the ORBIX IDL compiler for C++, thus generating

C++ code consisting of a header file, loop.hh (2 versions, one for client side and the other for

server side) and two C++ source files, loopC.c and loopS.c. The file loop.hh for the client side

contains the Loop class that defines the client’s view of a CORBA loop-data object. The class

Loop_var is a helper class for Loop that helps manage memory for objects of type Loop in a

client program. The files loop.hh and loopC.c form the client-stub. A client program that

accesses objects of type Loop must be compiled and linked with loopC.c and must include

loop.hh.

On the server side (as shown in fig. 5), the files loop.hh and loopS.c form the object-skeleton-

code.

//File loop.hh for Client Stub

#include <CORBA.h>

class Loop: public virtual CORBA::Object

{

public:

virtual CORBA::Long volume(CORBA::Environment

 &IT_env=CORBA::IT_chooseDefaultEnv())

 throw (CORBA::SystemException);



public:

virtual CORBA::Float speed(CORBA::Environment

 &IT_env=CORBA::IT_chooseDefaultEnv())

 throw (CORBA::SystemException);

public:

virtual CORBA::Float occupancy(CORBA::Environment

 &IT_env=CORBA::IT_chooseDefaultEnv())

 throw (CORBA::SystemException);

}

class Loop_var: public CORBA::_var

{

public:

Loop_var &operator= (Loop *IT_p);

Loop_var &operator= (const Loop_var &IT_s);

Loop* operator-> ();

}

//File loop.hh for Object-Skeleton-Code

#include <CORBA.h>

class LoopBOAImpl: public virtual Loop

{

public:

virtual CORBA::Long volume(CORBA::Environment

 &IT_env=CORBA::IT_chooseDefaultEnv())

 throw (CORBA::SystemException) = 0;

virtual CORBA::Float speed(CORBA::Environment



 &IT_env=CORBA::IT_chooseDefaultEnv())

 throw (CORBA::SystemException) = 0;

virtual CORBA::Float occupancy(CORBA::Environment

 &IT_env=CORBA::IT_chooseDefaultEnv())

 throw (CORBA::SystemException) = 0;

}

The class LoopBOAImpl in the server-side object-skeleton code defines the abstract member

functions that the loop-data CORBA object class must implement in order to implement the IDL

interface Loop.

3. Loop-data class implementation

To implement the IDL interface Loop, we must define a C++ class that inherits from abstract

class LoopBOAImpl and implements the abstract member functions of LoopBOAImpl.

Therefore, we define the implementation class in a header file, loop_i.h as follows:

// File loop_i.h

#include <Loop.hh>

class Loop_i: public virtual LoopBOAImpl

{

CORBA::Long m_volume;

CORBA::Float m_speed;

CORBA::Float m_occupancy;

public:

Loop_i();

virtual ~Loop_i();

// functions corresponding to the IDL attributes



virtual CORBA::Long volume(CORBA::Environment&);

virtual CORBA::Float speed(CORBA::Environment&);

virtual CORBA::Float occupancy(CORBA::Environment&);

void set(CORBA::Long vol, CORBA:Float sp, CORBA:Float occ);

}

The functions defined in class Loop_i are then implemented in the file loop_i.c as follows:

// File loop_i.c

#include “loop_i.h”

CORBA::Long Loop_i::volume(CORBA::Environment&)

{

return(m_volume);

}

CORBA::Float Loop_i::speed(CORBA::Environment&)

{

return(m_speed);

}

CORBA::Float Loop_i::occupancy(CORBA::Environment&)

{

return(m_occupancy);

}

void set(CORBA::Long vol, CORBA:Float sp, CORBA:Float occ);

{

m_volume = vol;



m_speed = sp;

m_occupancy = occ;

}

4. Creating a loop-data CORBA server object of class Loop_i :

Creating a CORBA object of class Loop_i inside a function (say main()) is simply done by

constructing a C++ object of type Loop_i . Once created, the object is available to clients.

However, to process IDL calls from clients, the Orbix function, CORBA::BOA::impl_is_ready()

must also be called:

#include “loop_i.h”

int main()

{

Loop_i loop1();  // CORBA object created

try

{

CORBA::Orbix.impl_is_ready(“LoopSrv”, 100000L);

}

catch (CORBA::SystemException &se)

{

cerr << “impl_is_ready() failed” << endl;

cerr << “Exception:” << endl << &se;

return 0;

}

.

.

.

}



The first parameter to the function impl_is_ready() specifies the CORBA name of the object.

This is the name that is used by a client in order to obtain a handle to the object .The second

parameter specifies a timeout period (in milliseconds) for which the impl_is_ready() call should

block while waiting for an IDL operation call from the client. If a client call arrives during this

period, Orbix calls the appropriate member function of the implementation object and resets the

timer to 0. But if no client call arrives during this period, impl_is_ready() simply returns.

5. A CORBA client that accesses a Loop_i object:

To obtain a handle (or reference) to a Loop_i object named “LoopSrv”, a client program can

“bind” to that object as shown in the code below. The bind call really creates a local proxy object

that acts as a double for the remote implementation object.

// CORBA client

#include “loop.hh”

#include <iostream.h>

int main()

{

Loop_var loop1;

try

{

loop1 = Loop::_bind(“:LoopSrv”);

}

catch(CORBA::SystemException &se)

{

cerr << “bind failed” << endl;

cerr << “Exception:” << endl << &se;

return 0;



}

try

{

cout << “Volume = “ << loop1->volume << endl;

cout << “Occupancy = “ << loop1->occupancy << endl;

}

catch(CORBA::SystemException &se)

{

cerr << “failed: cannot access loop1 attributes” << endl;

cerr << “Exception:” << endl << &se;

return 0;

}

.

.

.

}

At the end of these five steps, we have developed a server application that creates a loop-data

CORBA object and also developed a client application that can access the data in a loop-data

object without having to worry about what host in the network the server application is residing

on or what operating system it is running on. The actual compilation and creation of the client

and server executables needs linking to the appropriate Orbix libraries; for details on these steps,

we refer the reader to the Orbix Programmers Guide [4].
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