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Sizable Sharks Swim Swiftly:
Learning Correlations through Inference in a Classroom Setting

Yasuaki Sakamoto (yasu@psy.utexas.edu)
Bradley C. Love (love@psy.utexas.edu)

Department of Psychology, The University of Texas at Austin
Austin, TX 78712 USA

Abstract

Fifth-graders’ results from a category learning experiment
suggest that inferring stimulus properties given the category
membership leads to better acquisition of category knowl-
edge than classifying stimulus items. Fifth-graders liked better
and learned more properties of the shark categories acquired
through inference than those acquired through classification.
Classification promoted learning of only the property that was
most diagnostic in discriminating among categories. Inference
facilitated learning of all properties associated with each cate-
gory, including properties not queried during training. Seven
to 33 days after training, fifth-graders who inferred still had
more information about properties of each category than fifth-
graders who classified. Classroom teaching should emphasize
reasoning from the category to multiple properties rather than
from a set of properties to the category.

Category learning researchers seek to understand better how
humans encode, organize, and use knowledge. Given these
objectives, research in category learning should have impor-
tant implications for education. However, the link between
the two fields is not as solid as one might expect in part be-
cause category learning research has focused mostly on clas-
sification learning (e.g., Shepard, Hovland, & Jenkins, 1961)
despite the fact that humans learn through a variety of in-
teractions with their environment. As shown in Figure 1, in
classification learning, participants predict the category mem-
bership of a given stimulus item and then receive corrective
feedback. The focus on classification learning has advanced
the development of theories that predict how people classify
stimulus items in the laboratory. Unfortunately, many of these
theories do not generalize to category learning in the real
world, such as in a classroom.

More recent work has began to address the limitation of
focusing on a single learning task by comparing learning and
transfer performances for different category learning tasks,
such as inference and classification learning (see Markman &
Ross, 2003 for a review). Inference learning is closely related
to classification learning. As shown in Figure 2, in inference
learning, participants predict a single unknown property of
an item given the remaining properties and the item’s cate-
gory membership. Different properties are queried on differ-
ent inference learning trials. Inference learners receive the
same corrective feedback as classification learners consisting
of the category label and all perceptual properties.

In the present work, findings from category learning re-
search with adults comparing classification and inference
learning are extended to fifth-grade children with class re-
lated materials. Many classroom exercises can take the forms
of classification and inference learning. For instance, chil-
dren may learn about different animals in a science class by

Figure 1: A classification learning trial is shown. The de-
scription on the left differs from the description on the right
only on the category label (in this case, Tiger vs. Sixgill
shark).

classifying a series of animals presented to them. In the next
class session, children may infer properties associated with
the animals whose category memberships they already know.

Consideration of related work in category learning leads
us to advance that inference learning should result in better
acquisition of category knowledge in a classroom than clas-
sification learning. To foreshadow our results, children liked
better and learned more properties of the shark categories ac-
quired through inference than those acquired through classi-
fication. Whereas children acquired only the most diagnostic
property discriminating among categories when they learned
through classification, they acquired all properties associated
with each category, including properties not queried during
training, when they learned through inference.

Related Work in Category Learning
The basic finding from work with adults is that the difference
between classification and inference (see Figure 1 and Fig-
ure 2) leads participants to focus on different sources of infor-
mation (e.g., Chin-Parker & Ross, 2004; Yamauchi & Mark-
man, 1998). Whereas classification learners focus mostly on
diagnostic information that discriminates among categories,
inference learners focus on each category’s prototype.

For example, Chin-Parker and Ross (2004) asked classi-
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Figure 2: An inference learning trial is shown. The descrip-
tion on the left differs from the description on the right only
on the queried dimension (in this case, smaller vs. larger body
size).

fication and inference learners, following training, to chose
which one of two choices was more typical of a given cate-
gory, to draw each type of bug stimulus from training, and to
rate typicality of each category member. In all these mea-
sures, classification learners’ responses were based on di-
agnostic information, whereas inference learners’ responses
were based on both diagnostic information and information
typical of each category.

A related result is that a family resemblance structure
(Rosch & Mervis, 1975) is easier to master through inference
than classification learning (Yamauchi & Markman, 1998).
Table 1 shows an example of a family resemblance structure.
In accord with the rich structure of natural categories, value 1
tends to co-occur with value 1 across the five dimensions, just
as having wings tend to co-occur with flying, but no single
dimension defines the categories. Each category’s prototype
in inference is useful in learning about a family resemblance
structure because the category prototypes successfully distin-
guish members of the contrasting categories. However, proto-
type knowledge in inference learning interferes with learning
about a nonlinear category structure, in which the category
prototypes do not help in discriminating members of differ-
ent categories (Yamauchi, Love, & Markman, 2002).

Furthermore, uncovering each category’s prototype dur-
ing inference learning should support subsequent classifica-
tion learning because the knowledge of the prototypes should
be sufficient to determine the category memberships when
categories have family resemblance structures. In contrast,
knowledge about the diagnostic information in classification
learning should not promote later inference learning because
the diagnostic information is not appropriate for inference
learning. Indeed, Yamauchi and Markman (1998) found that
inference learning-then-classification learning was easier to
master than the other ordering.

These studies with adults have clear implications for class-
room learning. Many categories children study at school
likely have family resemblance structures. Thus, learning

Table 1: The abstract category structures used in the current
experiment

Training Dimension Novel Dimension
item value item value
A1 21111 N1 21112
A2 12112 N2 12111
A3 12211 N3 11112
A4 11221 N4 12121
A5 11122 N5 11111
B1 12222 N6 12221
B2 21221 N7 21222
B3 21122 N8 22221
B4 22112 N9 21212
B5 22211 N10 22222

Note. During training, participants classified the training
items or inferred the middle three dimensions of the training
items. Both training and novel items were presented in the
typicality phase.

about categories in a classroom will involve discovering how
properties are correlated within categories, which will be eas-
ier through inference learning. Though ease of learning does
not necessarily mean ease of processing, if people find things
more attractive that are easier to process (Rolf, Schwarz,
& Winkielman, 2004), it is possible that inference learning
could increase children’s liking of learned materials and thus
motivation to learn. Moreover, prototype knowledge in infer-
ence should contain more information about properties asso-
ciated with each category than knowledge about diagnostic
properties in classification learning.

Two studies have examined the effects of category use
on children’s category knowledge (Hayes & Younger, 2004;
Ross, Gelman, & Rosengren, 2005) and showed that, like in
adults’ (e.g., Ross, 1999), making inferences plays an im-
portant role in children’s acquisition of category knowledge.
These studies however did not compare category knowledge
resulting from classification and inference learning.

Current Experiment
Participants learned about the categories under the heading
Training item in Table 1 through classification or inference
learning. Each item (e.g., item A1) has 5 binary-valued di-
mensions (e.g., 21111) – each column under the heading Di-
mension value in Table 1 is a dimension. For example, the
first column might be the size dimension, where value 1 could
be small and value 2 could be large. If this was the case,
item A1 was large. The five dimension values were mapped
to five properties of animated sharks as described in Materi-
als in Method. Training items A1–A5 belong to category A,
whereas items B1–B5 belong to category B.

The categories are defined by both family resemblance and
rule-plus-exception structures. The modal prototype of cate-
gory A is 11111 (i.e., Novel item N5) and the modal prototype
of category B is 22222 (i.e., N10). The first dimension is the
most diagnostic in distinguishing members of the two cate-
gories as 4 of 5 items in each category follow an imperfect
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regularity on the first dimension. For instance, A2–A5 dis-
plays value 1 on their first dimensions and B2–B5 displays
value 2 on theirs.

Special training items A1 and B1 in Table 1 are of inter-
est because these items violate the most diagnostic regularity
on the first dimension. At the same time, the special items
display the category-typical values on the remaining four di-
mensions and are overall the most typical training members.
The regular training items (i.e., A2–A5 and B2–B5) display
the category-typical values on the first dimension and on two
of the remaining four dimensions (see Table 1). Classification
learners should focus on the first dimension and make more
errors during training on the special than the regular items. In
contrast, inference learners should focus on the prototypical
nature of the special items.

Typicality ratings for the special and regular items, after
training, should vary for classification and inference learn-
ers. The special items should be poor category examples for
classification learners as these items violate the regularity on
the first dimension, whereas the special items should be good
category examples for the inference learners as these items
are most typical training items. Furthermore, the inference
learners should rate the novel items as better examples of the
categories than the studied items. The novel items contain
the category prototypes and other items that overall display
more category-typical values than the studied items (see Ta-
ble 1). Classification learners should be only sensitive to in-
formation about the first dimension.

The values of only three of 5 properties were queried
in the current experiment (cf. Anderson, Ross, & Chin-
Parker, 2002). If inference learning focuses learners on each
category’s prototype, inference learners should acquire the
category-typical values of all five dimensions. In contrast,
if inference learners are merely memorizing each category’s
correct value for each queried dimension, they will not learn
about the non-queried properties. Classification learners will
acquire the category-typical value of only the first dimension.
Participants’ knowledge about the sharks’ 5 properties was
measured a few minutes and a few weeks after training.

Method
Participants Twenty-eight fifth-graders from St. Fran-
cis School at Austin 1 participated in the experiment as
computer-based exercises during a science class at St. Francis
School. In addition, 54 University of Texas undergraduates
participated as a control and for developmental comparisons.

Materials Each stimulus was animated picture describing a
shark. Animations were used as they are common in educa-
tional materials (e.g., Lowe, 2003). The 5 binary-valued di-
mensions were habitat (near the surface or bottom), diet (fish
or shrimp), litter size (a few or many pups), body size (small
or large), and shade (light or dark). The five dimensions were
mapped randomly onto the logical structure shown in Table 1.
For example, for some participants the first dimension was the
habitat dimension, for others it was the diet dimension. The
dimension values were assigned according to the properties
of the sharks used in the experiment as described below.

1See http://www.stfrancis-school.org/ for descriptions of the
school.

One set of categories contrasted Sixgill and Tiger sharks.
The Sixgill sharks tend to be in deep water, feed on various
animals but often on shrimp, give birth to 22 to 108 pups, are
1.5 to 5 m long, and have dark body shade. In contrast, the
Tiger sharks go from the surface to 340 m, feed on anything
but often on fish, deliver 10 to 80 pups, are 3 to 6 m in size,
and have lighter shade.

In Table 1, value 1 on each dimension signifies the value
common to the Sixgill sharks when category A is the Sixgill
shark. Item N5 in Table 1 is a typical Sixgill shark that dis-
plays the category-typical values on all five dimensions (i.e.,
lives near the bottom, eats shrimp, delivers many pups, is
small, and has dark shade). Item N10 is a typical Tiger shark.
Participants were informed that the sharks vary in their prop-
erties and the two categories’ members could display over-
lapping properties. Another set of categories, Greenland vs.
Soupfin sharks, was prepared in a similar fashion.

Design and procedure The fifth-graders and the under-
graduates learned about the shark categories described in Ma-
terials. Whereas each undergraduate completed a single ses-
sion, each fifth-grader completed two sessions. In the initial
session, the participants were randomly assigned to either the
classification or the inference training condition, consisting
of the familiarization, training, interruption, test, and typical-
ity phases. On average 20 days (the range was 7 to 33 days)
after completing the initial session, the fifth-graders (but not
the undergraduates) completed a second session, in which
they learned about a different set of sharks through a different
learning mode. For example, fifth-graders who learned about
the Sixgill and Tiger sharks though classification learning in
the initial session learned about the Greenland and Soupfin
sharks through inference learning in the second session. The
second session featured a retention phase after the same 5
phases as the initial session.

Participants were familiarized with the sharks’ 5 dimen-
sions by the sequential presentation of 15 pairs of stimuli, in
which selected whether the left or right stimulus correctly de-
picted the queried property.

Then, participants completed six blocks of training trials.
In each training block, the training items in Table 1 were pre-
sented sequentially once in a random order. On each trial,
two descriptions of the sharks were presented side by side.
In classification, the two descriptions were identical to each
other except for the category label (see Figure 1). In infer-
ence, the two descriptions were identical to each other ex-
cept for the value of a queried dimension (see Figure 2). On
each inference trial, participants predicted one of the middle
three dimensions’ values. Exception values (e.g., value 2 of
item A1) were never queried as in most inference learning
procedures (see however Nilsson & Olsson, 2005). Partic-
ipants in both conditions predicted whether the left or right
description was correct description and received the same cor-
rective feedback.

Participants then observed an animation of 12 sharks swim-
ming in the ocean one by one to prevent rehearsal of informa-
tion from the training phase.

Then, participants were tested on two-alternative forced-
choice questions about the properties of the two cate-
gories from the training phase without corrective feedback.
Multiple-choice tests are still commonly used in educational
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Figure 3: Mean training phase accuracies are shown. Error
bars represent the upper bounds of the 95% confidence inter-
vals (see Loftus & Masson, 1994).

settings (e.g., Roediger & Marsh, 2005). For example, “Tiger
sharks:” was presented above “A: tend to be smaller” and “B:
tend to be larger” to query the size of the Tiger shark. All
five dimensions were queried for the two categories. Another
set of 10 questions was queried in the opposite fashion (e.g.,
“tend to be larger:” was displayed above “A: Tiger sharks”
and “B: Sixgill sharks”). These 20 questions were sequen-
tially presented once in a random order.

After the test phase, all items in Table 1 were sequentially
presented once in a random order in the typicality phase. Par-
ticipants moved a red ball on a continuous (300-point) rating
scale to indicate how good an example they think the item is
of the category. The ends of the scale were labeled VERY
GOOD and VERY POOR (randomly assigned for each par-
ticipant).

In the second session, fifth-graders completed a retention
phase, which was identical to the test phase from the initial
phase, following the 5 phases described above. After the re-
tention phase, the experimenter asked 11 fifth-graders “which
sharks did you like better, those from this time or those from
the last time?”. For 6 fifth-graders the initial session was clas-
sification and the second session was inference, for others it
was the other order.

Results
All participants were included in the analyses. We only re-
port analyses relevant to our predictions. For fifth-graders, no
significant effects involving session (initial or second) were
found in all analyses.

Training As shown in Figure 3, as predicted, fifth-graders
were significantly more accurate on the regular than special
items, t(27) = 2.32, p < .05 when they learned through clas-
sification, whereas they were not when they learned through
inference (t < 1). Like the fifth-graders, the undergraduates
in classification were significantly more accurate on the reg-
ular than special items, t(26) = 2.55, p < .05, whereas the
undergraduates in inference were not (t < 1).

Test For analyses, the five shark dimensions were grouped
into D1 (first dimension), D2–4 (second, third, and fourth di-
mensions), and D5 (fifth dimension). For example, when the
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Figure 4: Mean test phase accuracies are shown.

first dimension was size, D1 included the test trials involving
“large/small.” The answer is “correct” in the test phase when
participants selected the property which is typical of the given
category or the category for which the given property is typi-
cal. D1 and D5 were never queried in inference. D1 was the
most diagnostic dimension. Accuracy data for D2–4, which
were queried in inference, were collapsed.

As shown in Figure 4, as predicted, fifth-graders were more
accurate on D1 than D2–4 and D5 when they learned through
classification, t(27) = 4.18, p < .001 and t(27) = 2.83, p <
.01, respectively. D2–4 and D5 did not differ significantly
(t < 1). When fifth-graders learned through inference, they
were more accurate on D2–4 than D1, t(27) = 2.08, p < .05.
The difference between D2–4 and D5 did not reach signifi-
cance, t(27) = 1.69, p = .10. D1 and D5 did not differ sig-
nificantly (t < 1). As predicted, when fifth-graders learned
through inference, they performed significantly above chance
for the non-queried D1 and D5, t(27) = 4.77, p < .001 and
t(27) = 3.71, p < .001, respectively. For comparison, when
fifth-graders learned through classification, they performed
significantly above chance for D1, t(27) = 6.97, p < .001,
but not for D5 (t < 1).

As shown in Figure 4, undergraduates showed a similar
pattern to fifth-graders. As predicted, the undergraduates in
classification were more accurate on D1 than D2–4 and D5,
t(26) = 4.97, p < .001 and t(26) = 2.67, p < .05, respec-
tively. D2–4 and D5 did not differ significantly (t < 1). The
undergraduates in inference were more accurate on D2–4 than
D1 and D5, t(26) = 2.55, p < .05 and t(26) = 3.41, p < .01,
respectively. Their accuracies for D1 and D5 did not differ
significantly (t < 1). Like the fifth-graders, the undergrad-
uates in inference performed significantly above chance for
D1 and D5, t(26) = 3.82, p < .001 and t(26) = 3.02, p < .01,
respectively, whereas the undergraduates in classification per-
formed significantly above chance for D1, t(26) = 7.98, p <
.001, but not for D5, t(26) = 1.17, p = .25.
Typicality As shown in Figure 5, the ratings for special,
regular, prototype, and other items did not differ significantly
when fifth-graders learned through classification (F < 1). As
predicted, when fifth-graders learned through inference, they
rated the special items as better examples than the regular
items, t(27) = 2.38, p < .05, and the prototype items as better
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Figure 5: Mean typicality ratings (0: atypical, 1: typical) are
shown.

examples than the other novel items, t(27) = 3.66, p < .01.
The special and prototype items did not differ significantly,
t(27) = 1.48, p = .15. As predicted, the other novel items
were rated as better examples than the regular studied items
when fifth-graders learned through inference, t(27) = 2.09,
p < .05.

For the undergraduates in classification, although the spe-
cial and regular items did not differ significantly, t(26) =
1.71, p = .10, the prototype items were rated as better ex-
amples than the special items (see Figure 5), t(26) = 3.52,
p < .01. As predicted, no other comparisons approached sig-
nificance for classification learners (t < 1 for both compar-
isons). For the undergraduates in inference, as predicted, the
special items were rated as better examples than the regular
items, t(26) = 6.65, p < .001, and the prototype items were
rated as better examples than the other novel items, t(26) =
6.96, p < .001. Moreover, the prototypes were rated as bet-
ter examples than the special items, t(26) = 2.22, p < .05.
As predicted, the undergraduates in inference rated the other
novel items as better examples than the studied regular items,
t(26) = 5.96, p < .001.

Retention and shark preference Figure 6 shows the fifth-
graders’ accuracies in the initial session’s test phase (left side)
and the same participants’ accuracies in the second session’s
retention phase (right side). For analyses, the fifth-graders
are grouped according to the learning mode in the initial ses-
sion. The fifth-graders in inference in the initial session were
significantly more accurate on D2–4 in the retention phase
than those in classification in the initial session (see the right
side of Figure 6), t(26) = 4.42, p < .001. However, the two
groups did not differ significantly in their retention phase ac-
curacies on D1 and D5 (t < 1 for both comparisons). The
fifth-graders preferred (10 of 11) sharks learned through in-
ference to sharks learned through classification, exact bino-
mial p = .01 (two-tailed).

General Discussion
The current experiment demonstrates that inference learning
benefits classroom learning by leading to better acquisition of
category knowledge and better liking of categories. Children
and adults learned about two shark categories through infer-
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Figure 6: Fifth-graders’ mean test phase accuracies (left fig-
ure) and the same students’ retention phase accuracies (right
figure) are shown.

ence or classification learning. The categories were defined
by both family-resemblance and rule-plus-exception struc-
tures. A special item from each category violated the regular-
ity on the most diagnostic dimension but possessed category-
typical values on all of the other dimensions. These items
resulted in more errors during training in classification learn-
ing but did not in inference learning. The special items were
rated as better examples than regular items by inference learn-
ers but were not by classification learners.

Whether inference learners are forming a prototype of each
category or constructing a set of rules for each category (cf.
Johansen & Kruschke, 2005) was examined by querying only
three of five properties during training. Although inference
learners had more knowledge about the queried than the non-
queried properties, they showed some learning of the non-
queried properties (cf. Anderson et al., 2002), consistent with
the idea that inference learners are forming a prototype of
each category.

These results suggest that in accord with the findings from
prior work with adults, whereas classification learning en-
courages the acquisition of only the information that discrim-
inate among categories, inference learning facilitates the ac-
quisition of all properties associated with each category, in-
cluding to some extent properties not queried during training.
The acquired properties guided the processing of subsequent
experiences, especially for older population. Information that
distinguished among categories became central for classifi-
cation learners, whereas prototype information for each cat-
egory became central for inference learners. Though infer-
ence learners’ knowledge about the non-queried dimensions
were lost after a few weeks, they still possessed more knowl-
edge than classification learners. Further, children liked bet-
ter shark categories learned through inference than those ac-
quired through classification.

Implications and Future Research
The findings from the present experiment suggest that class-
room exercises should emphasize reasoning from the cate-
gory to multiple properties rather than from a set of proper-
ties to the category. Though the benefit of inference learning
is clear in the present work, both classification and inference
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learning operate in the real world. Thus, it is important to
examine the interaction between these two learning modes
(e.g., Hayes & Younger, 2004; Ross et al., 2005). In the
current work, half the fifth-graders completed classification-
then-inference. The other half completed in the other or-
der. Although no effects of task ordering were found in
the present work, there was a relatively long delay between
the first and second session. Future work should examine
whether the inference-then-classification advantage observed
in adults (e.g., Yamauchi & Markman, 1998) applies to class-
room learning with children.

Furthermore, children’s learning likely involves unsuper-
vised learning, in which there is no teacher-provided cor-
rective feedback, as well as supervised learning, in which
corrective feedback is provided as in the classification and
inference tasks in the present work. Previous work with
adults suggest that there are important differences between
unsupervised and supervised learning (Love, 2003). Future
work should examine how unsupervised learning interacts
with other learning modes in a classroom. For example, in-
cluding unsupervised learning trials within supervised infer-
ence and classification learning may have differential effects
on children’s learning. Using the current category structures,
an unsupervised learning trial, in which a stimulus is simply
shown with its category label, will likely facilitate inference
learning but may actually hinder classification learning. The
unsupervised learning trials will reinforce the prototype rep-
resentations of inference learners and may improve their ac-
quisition and retention of properties that are not queried dur-
ing training. Classification learners will be adversely affected
by the unsupervised learning involving the deviant (special)
items.

Final Note
Although the current work’s focus was to apply the findings
from category learning research to classroom learning, the
present results have important implications for work in cat-
egory leaning. Work in category learning typically offers a
great deal of experimental control, but it is not clear whether
such work has ecological validity. The work presented here
showed that laboratory findings could be successfully applied
to a real world classroom setting. The present results will al-
low us to conduct new laboratory experiments that explore
factors that could enhance classroom learning, instruction,
and assessment. Laboratory findings will be tested in the
classroom to examine their applicability in the real world.
Work along this line should benefit both education and re-
search.
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