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ARTICLE

Citywide serosurveillance of the initial SARS-CoV-2
outbreak in San Francisco using electronic health
records
Isobel Routledge 1,3✉, Adrienne Epstein 1,3, Saki Takahashi1,3, Owen Janson1, Jill Hakim1, Elias Duarte1,

Keirstinne Turcios1, Joanna Vinden1, Kirk Sujishi1, Jesus Rangel1, Marcelina Coh1, Lee Besana1, Wai-Kit Ho1,

Ching-Ying Oon1, Chui Mei Ong1, Cassandra Yun 1, Kara Lynch1, Alan H. B. Wu1, Wesley Wu2, William Karlon1,

Edward Thornborrow1, Michael J. Peluso 1, Timothy J. Henrich1, John E. Pak2, Jessica Briggs 1,

Bryan Greenhouse 1 & Isabel Rodriguez-Barraquer1

Serosurveillance provides a unique opportunity to quantify the proportion of the population

that has been exposed to pathogens. Here, we developed and piloted Serosurveillance for

Continuous, ActionabLe Epidemiologic Intelligence of Transmission (SCALE-IT), a platform

through which we systematically tested remnant samples from routine blood draws in two

major hospital networks in San Francisco for SARS-CoV-2 antibodies during the early months

of the pandemic. Importantly, SCALE-IT allows for algorithmic sample selection and rich data

on covariates by leveraging electronic health record data. We estimated overall ser-

oprevalence at 4.2%, corresponding to a case ascertainment rate of only 4.9%, and identified

important heterogeneities by neighborhood, homelessness status, and race/ethnicity.

Neighborhood seroprevalence estimates from SCALE-IT were comparable to local

community-based surveys, while providing results encompassing the entire city that have

been previously unavailable. Leveraging this hybrid serosurveillance approach has strong

potential for application beyond this local context and for diseases other than SARS-CoV-2.
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The rapid spread of the SARS-CoV-2 virus has laid bare
important gaps in routine infectious disease surveillance.
Serological data, particularly when collected at high spatial

and temporal resolutions, are a key resource for addressing many
key epidemiological questions since they directly quantify the
proportion of the population that has been infected by a
pathogen1,2. For SARS-CoV-2, serology is particularly useful
given the high levels of disease under-ascertainment: serologic
surveillance is the gold standard for estimating attack rates (the
proportion of the population that has been infected) and highly
complementary to virologic and syndromic surveillance systems
for providing vital information on where a population is along the
epidemic curve3. Population-based serosurveys that employ a
probabilistic sampling frame are considered to be the gold stan-
dard for estimating seroprevalence. However, performing large
population-based serosurveys can be prohibitively resource-
intensive to initiate swiftly or perform repeatedly, especially
during an ongoing outbreak, as demonstrated by the relative
sparsity of population-based versus convenience sampled ser-
osurveys for SARS-CoV-2 that have been conducted to date3. For
example, to date, no population-based serosurveys have been
conducted for the city of San Francisco or wider Bay Area, and
few have been conducted in the United States, limiting our ability
to identify of risk factors for infection, understand population-
level immunity, and determine which populations and localities
may be in need of targeted public health resources such as testing,
contact tracing, or vaccine allocation4.

Residual blood samples from readily available sources (e.g.,
blood donors or remnant samples collected from routine medical
care visits), especially when linked to individual-level meta-data,
provide a unique opportunity to address these limitations and to
efficiently survey a population for antibodies over an extended
period of time5,6. Such studies were found to be useful in the 2009
H1N1 influenza pandemic7–13, facilitating analyses on a broader
spatial and temporal scale than typical cross-sectional serological
surveys allow. However, in most studies that use residual blood
samples the source population is unknown14. This presents a
major limitation, as the results are difficult to interpret when it is
not known whether the sampled population is representative of
the population of interest.

The San Francisco Bay Area has widely been recognized for
taking an early and proactive response to COVID-19. San Fran-
cisco Bay Area counties introduced a shelter-in-place order on 17
March 2020, requiring residents to remain at home unless leaving
the house for essential activities. Relative to many other US cities,
few cases were detected in San Francisco during the early months
of the epidemic, a pattern which continued as the pandemic
progressed15. However, like many other areas, a high proportion
of asymptomatic infections and limited access to diagnostic
testing during this time makes it difficult to interpret these
numbers. Results from an early San Francisco seroprevalence
study conducted on convenience samples in late March to early
April 2020 suggested that <1% of the population had been
infected overall16, in contrast to a seroprevalence of >6% esti-
mated by a community study focusing on a specific neighbor-
hood, particularly among the Hispanic/Latinx population17 but
consistent with a survey of a rural Bay Area community18. The
lack of citywide, representative seroprevalence estimates during
this time period limits the ability to determine to what degree
these discrepancies reflect heterogenous exposure or differences
in study design.

Here we present a blueprint and the early results of the
ongoing SCALE-IT study (Serosurveillance for Continuous,
ActionabLe Epidemiologic Intelligence of Transmission), lever-
aging residual sera samples from two large hospital systems in
San Francisco, California to quantify the prevalence of SARS-

CoV-2 antibodies. Importantly, these remnant samples are linked
to electronic health records (EHRs) enabling careful algorithmic
selection based on demographic and clinical variables, improving
their representativeness to the general population. We tested over
5000 samples collected from late March to June 2020 from San
Francisco residents, and calculated raw and adjusted ser-
oprevalence estimates over space, time, and socio-demographic
indicators. These data provide estimates of the overall ser-
oprevalence in San Francisco during the initial phase of the local
SARS-CoV-2 outbreak and highlight spatial and demographic
heterogeneities in transmission across the city.

Results
Between March 28, 2020, and June 26, 2020, we collected a total
of 5244 samples, representing 4735 individual patients, from
UCSF Health (n= 3037 patients) and ZSFG (n= 1698 patients)
(Fig. 1, Supplementary Fig. 1). By design, the age distribution of
sampled individuals remained consistent throughout the study
period, and the geographic distribution of residents matched the
proportion of the San Francisco population living in each zip
code (Fig. 2). Our sample did not achieve the target sample size
for the youngest age group due to the limited number of children
receiving routine phlebotomy in the UCSF and ZSFG health
systems (Table 1). Our results were relatively representative of the
San Francisco population by race and ethnicity, although our
sample overrepresented those who identified as Black/African
American and slightly underrepresented those who identified as
Asian.

Overall, from 5244 samples we identified 192/4735 positive
samples from unique patients for a raw seroprevalence of 4.1%.
After weighting for age group and sex to match the population
structure of San Francisco and correcting for test performance
characteristics (overall sensitivity of 93.7% and specificity of
99.6%), this corresponds to an estimated population ser-
oprevalence of 4.2% (95% Credible Interval [CrI]: 2.1–6.3%).
Based on the number of cases reported during the period covered
by the study, we estimate that only 4.9% of all infections were
ascertained by the reporting system (95% CrI: 3.3–9.9%) (Sup-
plementary Methods 1). Amongst pregnant women seeking
routine care (N= 268), we estimated a raw seroprevalence of
3.4% (9/268 seropositive), and after adjusting for test perfor-
mance characteristics we estimate 3.5% (95% CrI: 1.1–6.4%)
seroprevalence amongst this group. This estimate in our sentinel
population group is consistent with the estimates across our
overall population of samples.

We did not observe statistically significant differences in ser-
oprevalence by age (Fig. 3a) or hospital system (Supplementary
Table 2, Supplementary Data 1). We found seroprevalence to be
nearly twice as high in uninsured individuals (6.3%, 95% CrI:
3.1–9.9%) than in those with some form of insurance, [Private/
Commercial: 3.4% (95% CrI: 1.6–4.7%); Government: 4.0% (95%
CrI: 2.3–5.0%)] (Fig. 3b). With respect to race/ethnicity, ser-
oprevalence was highest in those identifying as Hispanic (6.3%,
95% CrI: 4.4–8.3%) followed by Black or African American (4.8%,
95% CrI: 2.8–7.0%), and lowest in those who identified as Asian
(2.3%, 95% CrI: 0.8–3.5%) (Fig. 3c). Seroprevalence was almost
twice as high in those identifying as Male (5.3%, 95% CrI:
3.7–6.6%) compared to Female (2.7%, 95% CrI: 1.1–3.6%)
(Fig. 3d). Although these samples were obtained over a 3-month
collection period, given the relatively low attack rate during these
initial stages of the pandemic in San Francisco, we were not able
to detect meaningful differences in seroprevalence over time
(Supplementary Table 2, Supplementary Figs. 2 and 3).

Geographically, we found seroprevalence to be highest in the
Bayview neighborhood in the southeast region of the city, at 8.1%
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Fig. 1 Flow diagram of sampling algorithm. Flow diagram showing the inclusion and exclusion criteria used at different stages of the data screening and
sample selection process.

Fig. 2 Distributions of SCALE-IT samples. Figure showing distributions of SCALE-IT samples a boxplot showing the distribution of samples by
epidemiological week and age group (whiskers show minimum and maximum age, box shows 0.25 quantile, median and 0.75 quantile age respectively)
b plot of the proportion of the samples collected from patients residing in a zip code, plotted against the actual proportion of the San Francisco population
living in that zip code. Colors show the proportion of the population in that zip code living below the poverty line using the 2018 American Community
Survey thresholds, and c map of counts of samples collected by zip code.
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(95% CrI: 4.6%, 12.3%) (Fig. 4a, Supplementary Table 3, Sup-
plementary Data 2). Although several other neighborhoods had
similarly high seroprevalences, there was much more uncertainty
around these estimates (Fig. 4b). These findings are consistent
with patterns of incidence in the city during this period of time
(Fig. 4c). We identified 157 individuals who were homeless in our
study, and amongst this group seroprevalence was estimated to be
10.8% (95% CrI: 6.1%, 16.5%).

As validation of the representativity of our approach using
curated remnant samples, we compared results from this study to
two contemporaneous community-based serosurveys conducted
in specific neighborhoods of San Francisco. First, we compared
these results to a cross-sectional serosurvey carried out in a census
tract within the Mission District (census tract 022901, zip code
94110) between April 25 and April 28, 202017. Chamie et al. tested
2545 census tract residents for SARS-CoV-2 antibodies and esti-
mated seroprevalence to be 3.1% (95% CI: 2.5–3.9%). This is
consistent with our findings of 3.8% seroprevalence (95% CrI:
1.8–6.3%) between April and June 2020 in the broader Mission
District neighborhood. Second, we compared our results to a
cross-sectional serosurvey carried out in two census tracts in San
Francisco’s 10th District between May 30 and June 2, 2020
(https://unitedinhealth.org/sf-district-10), located in the Bayview
neighborhood. Among the nearly 1600 individuals tested for
antibodies, seroprevalence was estimated at 5.6% in Hispanic
participants (n= 320), 2.3% in Black participants (N= 397) and
0.4% in white participants (n= 231). The relatively high ser-
oprevalence we detected in the Bayview neighborhood through
our study is comparable to the results of this community-based
study, and the disparities by race/ethnicity were similar in direc-
tion, though different in magnitude, to those identified through
our remnant sample study as well. It is worth noting that the
community studies available for comparison also rely upon con-
venience sampling as participation in the studies was voluntary,
and therefore may contain inherent selection biases themselves.

Discussion
In this study, we developed and piloted a scalable and systematic
pipeline using remnant samples from two major hospital networks
in San Francisco to select, collect, and test specimens for SARS-
CoV-2 antibodies (SCALE-IT). Through this effort, we estimated
seroprevalence during the early months of the epidemic to be
relatively low throughout San Francisco (4.2%), but still repre-
senting more than 20 times the number of infections identified by
PCR-confirmed cases at that time. This may be due to the limited
availability of PCR testing during the beginning of the pandemic,
and the lack of testing of asymptomatic individuals. We also
identified important disparities in seroprevalence at the neigh-
borhood level, with the highest seroprevalence in the Bayview
neighborhood in the southeast region of the city, as well as dis-
proportionately higher seroprevalence in individuals experiencing
homelessness and those identifying as Hispanic, Black/African
American, or male. Leveraging this hybrid serosurveillance
approach has potential for broad application beyond this local
context and for diseases other than SARS-CoV-2.

The heterogeneities in seroprevalence we observed by race/
ethnicity and socio-economic status—here obtained from EHR
data on health insurance status and whether individuals were
housed—echo the patterns, which have been highlighted over the
course of the pandemic at national and global levels19,20. Specific
to San Francisco, our results provide estimates of SARS-CoV-2
cumulative exposure at a granular spatial resolution with a scope
covering the entire city; despite low overall seroprevalence, we
identified specific neighborhoods with disproportionately higher
seroprevalence. Interestingly, we also found seroprevalence to be
approximately twice as high in those identifying as male com-
pared to female. Potential explanations for this difference include
differential pathogen exposure by sex, which is supported by
findings of other studies elsewhere14 and in San Francisco,
finding PCR positivity rates of 1.2% (20/1658) in women and
3.3% (63/1908) in men, with an odds ratio of 2.71 (1.64-4.69) for

Table 1 Distribution of Socio-demographic characteristics of patients sampled. Table showing socio-demographic characteristics
of patients sampled in SCALE IT and of the San Francisco population (2019).

UCSF
(n= 3037)

ZSFG
(n= 1698)

Total sampled individuals
(n= 4735)

SF Population
(ACS 2019)

Sex
Female 1733 (57.1%) 758 (44.6%) 2491 (52.6%) 49.3%
Male 1302 (42.9%) 929 (54.7%) 2231 (47.1%) 50.8%
Unknown 2 (0.1%) 11 (0.6%) 13 (0.3%) N/A

Age
0–19 246 (8.1%) 35 (2.1%) 281 (5.9%) 15.0%
20–39 836 (27.5%) 425 (25.0%) 1261 (26.6%) 38.0%
40–59 731 (24.1%) 591 (34.8%) 1322 (27.9%) 25.3%
60–79 834 (27.5%) 556 (32.7%) 1390 (29.4%) 17.3%
80+ 390 (12.8%) 91 (5.4%) 481 (10.2%) 4.3%

Race/Ethnicity
American Indian or Alaska Native 3 (0.1%) 9 (0.5%) 12 (0.3%) 0.3%
Asian 783 (25.8%) 423 (24.9%) 1,206 (25.5%) 34.6%
Black or African American 283 (9.3%) 308 (18.1%) 591 (12.5%) 5.2%
Other 214 (7.0%) 73 (4.3%) 287 (6.1%) 4.5%
Other Pacific Islander 28 (0.9%) 17 (1.0%) 45 (1.0%) 0.4%
White 1317 (43.4%) 358 (21.1%) 1675 (35.4%) 39.8%
Unknown or declined 43 (1.4%) 18 (1.1%) 61 (1.3%) N/A
Hispanica 366 (12.1%) 492 (29.0%) 858 (18.1%) 15.2%

Insurance type
Uninsured 119 (3.9%) 150 (8.8%) 269 (5.7%) N/A
Government 1462 (48.1%) 1475 (86.9%) 2937 (62.0%) N/A
Private or employer 1351 (44.5%) 70 (4.1%) 1421 (30.0%) N/A
Unknown 105 (3.5%) 3 (0.2%) 108 (2.3%) N/A

aHispanic includes respondents of any race. Other categories are non-Hispanic.
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PCR positivity in males, and also that the majority (74%,) of those
who tested positive by PCR or were seropositive for SARS-CoV-2
were frontline workers and unable to shelter-in-place17. It has
been found that males and females mount different immune
responses and infection severity21, which could affect assay sen-
sitivity, however, we believe this is unlikely to explain the large
difference we see in our estimates as we do not see sex-based
differences in the sensitivity of our assay on the positive controls
used in the study, which represent a range of disease severities.

While a key strength of our approach was leveraging residual
sera from two large health system networks and using data from
EHRs to algorithmically select samples for inclusion, there are
limitations to this type of surveillance that require consideration.
Most obviously, patient samples may not be fully representative
of the underlying population. This may be particularly true
during “shelter-in-place” periods, when behavioral changes may
affect the availability and characteristics of the patient population.
These issues can ideally be mitigated by careful sample selection,
as done here by focusing on a subset of outpatients, with the
possibility of further refinement by inclusion of additional
selection criteria (e.g., by restricting or weighting sampling to
consider specific visit types or underlying conditions). Repre-
sentativity of the serosurveillance system could also be enhanced
by including a broader network of local health systems. We also

recognize that the generalizability of our findings may differ by
age groups, and is likely to be lower in children who were
underrepresented in our sample set despite the stratified sampling
framework. Additional study designs, such as school-based ser-
osurveys, could be leveraged to augment these data to pro-
spectively assess seroprevalence in specific age groups, possibly by
using non-invasive, saliva-based antibody testing22. Despite
including over 5000 samples, our study was not powered to detect
differences between covariates or by time in a multiple regression
framework, in part due to San Francisco’s success in maintaining
low transmission and thus low seroprevalence during this time
period. Lastly, while we validated our estimates against results
from available community-based studies, further validation
would be ideal to assess validity of results and findings.

Whilst our estimates of seroprevalence in the Mission and
Bayview districts were consistent with community studies and we
found similar disparities by demographics, we did find slightly
higher seroprevalences overall. This was particularly true for the
Bayview/Sunnydale surveys where we estimate a seroprevalence
of 8.1% (95% CrI: 4.6–12.3%) for Bayview/Hunter’s point
neighborhood, whilst a community survey in the census tract
231.02 which lies within the neighborhood, found a raw ser-
oprevalence estimate of 24/784 (3.06%). This difference may be
due to heterogeneity within the neighborhood, i.e., higher

Fig. 3 Stratified seroprevalence by demographic group. Box and whisker plots showing posterior estimates of seroprevalence from n= 7500 iterations of
the algorithm to produce adjusted estimates for test performance (Supplementary Methods1), stratified by a age, b insurance type, c race/ethnicity
(groups containing n < 50 samples were included in ‘other’) and d sex. The shaded triangle shows the raw seroprevalence estimate. The number of
biologically independent samples used to calculate raw and adjusted seroprevalence estimates for each stratified group are shown in the figure legends.
The midline of the boxplot shows the median of the posterior, the upper and lower edges of the box show the 25% and 75% quantiles, whiskers show 95%
credible interval of the posterior. Points show posterior estimates outside of this interval. For (c), stars (*) indicate the race/ethnic groups where the 2.5%
and 97.5% quantiles of the differences in posterior estimates for seroprevalence between samples from Hispanic patients and that group did not cross
zero. Crosses (†) indicate the ethnic groups where the 2.5% and 97.5% quantiles of the differences in posterior estimates for seroprevalence between
samples from Black or African American patients and that group did not cross zero. For (d) a star (*) indicates that the 2.5% and 97.5% quantiles of the
differences in posterior estimates for seroprevalence between Males and Females did not cross zero.
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seroprevalences in other census tracts not sampled in the com-
munity survey, or differences in the underlying population
sampled. There are also differences in the timing of sample col-
lection; we collected samples up until the end of June 2020,
whereas this study was conducted between May 30 and June 2,
2020. In addition, the difference could be caused by our study
sampling individuals more at risk of exposure than the commu-
nity surveys. It is also interesting to compare our results to other
serosurveys, which sampled the wider San Francisco Bay Area
during the early months of the pandemic. A serosurvey across the
wider San Francisco Bay Area found a seroreactivity 0.1% in 1000
blood donors, and 0.26% in 387 hospitalized patients admitted for
non-respiratory indications in early April 202023. An additional
study of residual sera in the San Francisco Bay area between 23
and 27 April found a seroprevalence of 1.0%14. These results are
quite a bit lower than our estimate for April of 4.6% (2.7–6.3%),
but not directly comparable as the source populations drawn for
these studies are not fully characterized and are unlikely to be
representative of the San Francisco population. In addition,
samples in both studies included residents from outside of San
Francisco county, including counties known to have experienced
very low transmission of SARS-CoV-2 during this time period.

We did not find a clear increase in seropositivity over time,
whilst case counts in San Francisco did increase, albeit slowly,
during the observation period. This lack of increase in ser-
oprevalence over time may be the result of changes in some of the
demographics of our sample population over time (Supplemen-
tary Fig. 2, Supplementary Table 4), as the proportion of samples
from patients who identify as white, female and who have private
insurance (all of which we found had lower seroprevalence)
increased over the period of sample collection. This could also be
explained by a lack of power to detect small changes at such low
seroprevalence. If implemented in a context where there was
more power to detect changes and/or stratify by additional

demographic variables when selecting samples, then our
approach could provide valuable data to explore additional
questions of public health interest, such as the impact of inter-
ventions and changes in ascertainment rates over time.

In this pilot study, we developed and implemented a SARS-
CoV-2 serosurveillance system to detect population-level patho-
gen exposure in near-real time, and demonstrated how data
collected through this platform were comparable to results from
more resource-intensive community-based serological studies
and incidence data. The appeal of this hybrid approach is that it
achieves many of the strengths of population-based surveys and
provides rich data, while leveraging existing infrastructure to
allow for much greater efficiencies often seen in convenience
sampling approaches. Using EHR data, we were able to develop a
stratified sampling frame, ensuring improved representativeness
of the results in contrast to serosurveys performed using con-
venience samples without these key pieces of information14. At
the same time, we used these data to identify important spatial
and demographic heterogeneities in seroprevalence within our
study site; serosurveys performed on residual samples are often
limited to coarser levels of meta-data on the sampled
population24. The relative ease with which SCALE-IT can be
implemented means that it can be deployed over a broad geo-
graphic scale, continuously over time, and dynamically adjusted
to address specific surveillance needs.

We envision multiple lines of work for future directions. First, the
samples that we have selected, collected, and processed in this work
could serve as a valuable biorepository for future applications. The
ability to link rich EHR data to a large bank of well-curated serum
samples opens up opportunities for additional analysis including
longitudinal studies of patients. Second, as serosurveillance efforts
will be fundamental to monitor SARS-CoV-2 transmission rates
and evaluate the impact of control interventions (both Non Phar-
maceutical Interventions and pharmaceuticals) over the coming

Fig. 4 Multi-panel map of seroprevalence by geography. Maps show a seroprevalence by neighborhood, adjusted for test performance. Box shows
adjusted seroprevalence in individuals experiencing homelessness. b range of 95% Credible interval of estimates, c cumulative incidence by planning
neighborhood from March to June 2020, using data from San Francisco Department of Public Health (https://data.sfgov.org/COVID-19/COVID-19-
Cases-by-Geography-and-Date/d2ef-idww). Estimates for neighborhoods with under 50 samples from unique individuals are not plotted and shown
in gray.
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months and years, future work could leverage these and prospective
serological data to parametrize mechanistic models and to study the
effects of control strategies on infection rate. Third, as discussed by
others1,2, our local SCALE-IT platform could easily be expanded to
contribute to a ‘Global Immunological Observatory’ to perform
serosurveillance for other pathogens beyond the SARS-CoV-2
virus. Data generated by such an observatory could be used to
address specific public health gaps including serosurveillance
for seasonal pathogens such as influenza or emerging infections.
Lastly, the insights gained from developing this platform could
serve as a blueprint for adoption by other health systems in various
contexts.

Methods
Data source. Residual serum samples from routine blood draws from the Uni-
versity of California, San Francisco (UCSF) and San Francisco Department of
Public Health (SFDPH) inpatient and outpatient healthcare systems were sampled
from March 28, 2020, onward. UCSF Medical Center is a network of three hos-
pitals with ~1.8 million outpatient visits annually (https://www.ucsfhealth.org/
about/annual-reports). The SFDPH hospital, Zuckerberg San Francisco General
Hospital (ZSFG), is a city hospital that provides trauma, medical, and surgical
services to a heterogeneous population of largely un- or underinsured patients,
including the city’s homeless population, and serves roughly 100,000 patients per
year (https://zsfg.ucsf.edu/about-ucsf-zsfg).

We obtained daily EHRs for all patients in these networks undergoing routine
blood testing, defined as blood chemistries and tests for sexually transmitted
infections and rubella. EHR data included information on patient demographics,
address, insurance provider, and diagnoses. We also obtained information on all
tests for respiratory infections (including SARS-CoV-2) performed on patients in
the 6 months prior to the blood draw.

Sampling methodology. We aimed to collect 2000 samples monthly. We deter-
mined this sample size based on considerations of both statistical power and fea-
sibility. To estimate seroprevalence with an absolute error of 5% and at Type I error
of 5%, and a prior of 20% seroprevalence, a sample size of 246 individuals would
need to be tested each month. We determined that an overall sample size of a
minimum 1230 samples per month would be sufficient to allow stratification of
results by five age groups (0–19, 20–39, 40–59, 60–79, 80+ years).

From the full list of residual serum samples that were available, we restricted
our sampling frame to samples from individuals undergoing routine blood testing.
We included patients residing in San Francisco, including those experiencing
homelessness. We excluded individuals who were tested for SARS-CoV-2 during
the visit when they received their blood draw (except if the test was for routine
purposes, such as testing prior to an elective procedure or admittance to the
hospital). We did not have any exclusion criteria for previous visits or tests for
SARS-CoV-2 of any severity. We restricted our sample to outpatient and
emergency department visits for adults; for the youngest age group, we included
both inpatient and outpatient visits due to small numbers of available samples.
Finally, we excluded samples if a sample from the same patient had been selected
within the previous 30 days.

After obtaining the list of eligible samples according to the above criteria, we
selected serum samples for the study using a sampling algorithm aimed to ensure
an adequate sample size for each of five age strata and to maximize geographic
representativity. After setting a daily target sample size for our overall population,
we divided this equally between five age bins to set a target sample size for each age
bin. We also set a target sample size for each zip code, which was proportional to
its population size. For each zip code with a larger number of eligible samples than
its target size, we kept all samples from age groups with sample sizes below or at
their target and obtained a random sample from any age group that had an eligible
sample size above the target size. We intentionally oversampled pregnant women
as a healthy sentinel population by aiming to obtain up to 10% of the samples from
pregnant women undergoing routine care, as defined by ICD-10 codes.

Sample processing. Remnant samples were stored at +4 °C in outpatient
laboratories at UCSF and ZSFG, and collected by our study team twice every week.
After collection, samples were centrifuged for 15 min at 3500 g before aliquoting a
working stock of 300 μL into 96 well-barcoded tubes, diluting in 1:1 HEPES storage
buffer, and storing at +4 °C. The remainder of the sample was aliquoted into
1.4 mL barcoded tubes and stored at −20 °C.

Serologic assays and validation data. We used two serologic assays for this study
in order to maximize assay specificity. First, we screened all samples using an in-
house ELISA assay and then performed confirmatory testing on a subset of samples
above a threshold value using an in-house Luminex assay. The ELISA assay
detected IgG to the receptor-binding domain (RBD) of the spike (S) protein, based

on published protocols25 with minor modifications, described here briefly. 1 μg of
RBD was used to coat each well of 384-well high binding plates, secondary anti-
body was diluted 1:5000 (Southern Biotech #2048-05), and OPD was used to
develop the plates. Concentration values were calculated from the ELISA optical
density using a plate-specific standard curve from serial dilutions of a pool of
positive control samples26. Samples with an ELISA concentration value above 0.049
were selected for confirmatory testing (see Supplementary Methods 1, Supple-
mentary Tables 5 and 6).

For confirmatory testing, we used a multiplex microsphere assay (Luminex
platform) to detect IgG against the SARS-CoV-2 S protein, RBD, and the
nucleocapsid (N) protein, based on a standardized serology protocol with minor
modifications27. Briefly, plasma samples were diluted to 1:100 in blocking buffer A
(1× PBS, 0.05% Tween, 0.5% bovine serum albumin, 0.02% sodium azide). Antigen
concentrations used were as follows: S: 4 μg/mL, RBD: 2 μg/mL, and N: 3 μg/mL.
As above, concentration values were calculated from the Luminex median
fluorescent intensity using a plate-specific standard curve from serial dilutions of a
pool of positive control samples. A logistic regression model including the
concentration values of the three antigens for each sample was determined to have
the highest cross-validation accuracy for classification and was used to establish a
cutoff for positivity (see Supplementary Methods 1).

Serologic assays were optimized using positive and negative controls from several
sources. Serum samples from 127 patients with PCR-confirmed SARS-CoV-2
infections (representing 266 total samples, with 1-4 longitudinal monthly time points
per individual beginning at 3 weeks post-symptom onset) were obtained from the
Long-term Impact of Infection with Novel Coronavirus (LIINC) study (https://www.
liincstudy.org/) and used as positive controls. Importantly, participants in this cohort
represent a range of infection severities (ranging from asymptomatic to severe), age,
sex, and ethnicity and race. Serum samples from 119 individuals obtained prior to the
emergence of SARS-CoV-2 were used as negative controls. The overall sensitivity of
our serial testing approach using positive and negative controls was 93.7% (95% CrI
= 89.0%, 97.2%) and specificity was 99.6% (95% CrI= 98.2%, 100.0%)
(Supplementary Tables 1, 5 and 6, Supplementary Methods 1).

Analytic methods. Raw seropositivity was determined as the proportion of all
samples from unique individuals that tested positive on the confirmatory assay. We
then produced estimates of seroprevalence adjusted for the sensitivity and specificity
of the serial testing approach, incorporating potential conditional dependence of the
tests as described in Gardner et al.28 (see Supplementary Methods 1). We stratified by
covariates to obtain seroprevalence estimates for each stratum (age, sex, insurance
status, ethnicity, and neighborhood). To identify neighborhoods, we geocoded sample
addresses using the Google Cloud Geocoding API using the ggmap R package29.
Samples (n= 365 unique individuals) which could not be geocoded to rooftop (n=
261) and/or were from homeless individuals (n= 157) were excluded from neigh-
borhood level estimates of seroprevalence, however, estimates of seroprevalence were
calculated for homeless individuals separately and provided alongside neighborhood
level estimates of seroprevalence. All analysis was conducted using the R statistical
software30 and the Stan programming language31. Code and data to reproduce all
analyses are available at: https://github.com/EPPIcenter/scale-it32.

Institutional Review Board (IRB) approval. This study received expedited review
approval by the UCSF IRB #20-30379 (Serological Surveillance of SARS-CoV-2 in
Residual Serum/Plasma Samples). The IRB did not require patient contact or
written consent to use residual sera. The LIINC study (providing positive control
samples) was approved by the UCSF (IRB #20-30479). Pre-pandemic samples used
as negative controls came from the New York Blood Bank, and were de-identified
and not subject to IRB review for use in this study.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
To avoid identifiability of data and to comply with institutional policy around data
privacy, we have provided summarized data by demographic group and neighborhood
instead of individual-level data, used to generate Fig. 4a, b, as well as posterior values for
seroprevalence by demographic group used to generate Fig. 3a–d. The aggregated data
used for this analysis can be found on Github at https://github.com/EPPIcenter/scale-it/
(DOI:10.5281/zenodo.4695335)26. Maps were created in QGIS (QGIS.org, QGIS
Geographic Information System. QGIS Association. http://www.qgis.org, 2021) using
shapefiles in the public domain (Fig. 2c: California. Metropolitan Transportation
Commission. Census Zip Code Tabulation Areas, 2000 - San Francisco Bay Area,
California. Retrieved from https://earthworks.stanford.edu/catalog/stanford-
df986nv4623, 2002) (Fig. 4a–d: City of San Francisco, SF data (2019) Planning
Neighborhood Groups Map, https://data.sfgov.org/Geographic-Locations-and-
Boundaries/Planning-Neighborhood-Groups-Map/iacs-ws63, 2019). Cumulative
incidence by planning neighborhood from March - June 2020 in Fig. 4c used publicly
available data from the San Francisco department of Public Health (https://data.sfgov.
org/COVID-19/COVID-19-Cases-by-Geography-and-Date/d2ef-idww). Figures 3 and 4
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visualize Supplementary Tables 2 and 3. Figure 2 visualizes the distribution of samples,
although because the underlying raw data for Fig. 2 are at the individual level, they have
not been shared with the manuscript for ethical reasons, although the summarized
demographic distributions of the samples are included in the manuscript (Table 1) and
access to full raw data can be requested from the authors by contacting Bryan
Greenhouse. Data for poverty rates shown in Fig. 2c come from the American
Community Survey 2019 (https://data.census.gov/cedsci/).

Code availability
The code used for this analysis can be found on Github at https://github.com/
EPPIcenter/scale-it/ (DOI:10.5281/zenodo.4695335)26.
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