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Wine grapes present a unique biogeography model, wherein
microbial biodiversity patterns across viticultural zones not only
answer questions of dispersal and community maintenance, they
are also an inherent component of the quality, consumer accep-
tance, and economic appreciation of a culturally important food
product. On their journey from the vineyard to the wine bottle,
grapes are transformed to wine through microbial activity, with
indisputable consequences for wine quality parameters. Wine
grapes harbor a wide range of microbes originating from the
surrounding environment, many of which are recognized for their
role in grapevine health and wine quality. However, determinants
of regional wine characteristics have not been identified, but are
frequently assumed to stem from viticultural or geological factors
alone. This study used a high-throughput, short-amplicon sequencing
approach to demonstrate that regional, site-specific, and grape-
variety factors shape the fungal and bacterial consortia inhabiting
wine-grape surfaces. Furthermore, these microbial assemblages are
correlated to specific climatic features, suggesting a link between
vineyard environmental conditions and microbial inhabitation
patterns. Taken together, these factors shape the unique microbial
inputs to regional wine fermentations, posing the existence of
nonrandom “microbial terroir” as a determining factor in regional
variation among wine grapes.

viticulture | agriculture | metagenomics | next-generation sequencing

Microbial biogeography, the study of microbial biodiversity
over time and space (1), uncovers the role that geospatial

dispersion patterns play in human health (2), environmental
inhabitation (3), indoor environments (4), and agriculture (5),
revealing important links between environmental conditions, mi-
crobial communities, and macroscopic phenomena. Vitis vinifera
(wine grape) represents an economically and culturally important
agricultural crop for which microbial activity plays critical roles in
grape (6) and wine production and quality formation (7, 8). In-
deed, regional variation in grape- and wine-quality characteristics
is a critical feature of perceived product identity (terroir), with
significant consequences for consumer preference and economic
appreciation (9). However, scant evidence exists for nonrandom
microbial distribution patterns in grapes and wines (6, 10) and
the factors driving microbial assemblages on grape surfaces are
unknown. Given that many of the same environmental conditions
that govern regional variations in grapevine growth and develop-
ment (11) also alter microbial communities across space and time
(1), it follows that biogeographical assemblages of grape-surface
microbiota may exist, potentially influencing grapevine health and
wine quality.
The V. vinifera phyllosphere is colonized by bacteria and fungi

that substantially modulate grapevine health, development, and
grape and wine qualities (6). Many microbes inhabiting the grape
surface cannot survive the low-pH, ethanolic, anaerobic conditions
of wine fermentations, but their metabolic activity on the grape
surface can have long-ranging consequences, such as the meta-
bolic changes wrought by phytopathogenic fungi (12, 13). How-
ever, some grape-surface microbes can grow and survive in wine
fermentations (14), and several are implicated in wine spoilage

downstream (7). This is particularly true of grapes damaged by
disease or pest pressure, which have been shown to contain ele-
vated populations of bacteria such as Acetobacteraceae and yeasts
such as Zygosaccharomyces (15, 16). The impact of grape micro-
biota is often beneficial, and the participation of indigenous
microbiota in wine fermentations is often considered to enhance
the sensory complexity of wines (17). Bioprospecting the microbiota
of wine fermentations has led to the discovery of several species
with positive enological properties, which are now commercially
available as coinocula with Saccharomyces yeasts in winemaking
(17). Consequently, a growing number of yeasts and bacteria are
being recognized as active participants in wine fermentations with
important contributions to wine sensory qualities (17).
Nevertheless, whether grape-surface microbiota are nonrandomly

distributed in the environment is disputed (6), and little work has
been done to test the impact of natural factors, such as climate,
growing region, and cultivar on grape microbiota. Geographical
delineations among Saccharomyces cerevisiae populations and
cultivable yeast communities in New Zealand vineyards have
been documented previously, providing evidence for regional dis-
persion of vineyard yeasts (18). However, it is unknown whether
nonrandom geographical dispersion patterns exist among the
complete grape-surface microbiota and how these communities
are formed, explaining relationships between environmental grow-
ing conditions and the microbial consortium living on and inter-
acting with wine grapes. Historically, microbial surveillance efforts
have been limited by the throughput and methodological biases of
culture-based techniques and low resolution of early molecular
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ecology techniques (19, 20). However, recent advances in massively
parallel, short-amplicon sequencing technologies have launched
a breakthrough in microbial ecology studies of wine- and food-
fermentation systems (14, 21–27), putting hitherto untenable
ecological questions within reach.

Results and Discussion
Regional Origin Defines Grape Must Microbial Patterns. To elucidate
connections between growing region, cultivar, climate, and micro-
bial biogeography, 273 grape must samples were collected from
across California in two separate vintages (SI Appendix, Fig. S1).
Must consists of destemmed, crushed grapes, representing a
mixed, aggregate sample of all grapes from an individual vine-
yard block. These samples were collected in the wineries imme-
diately following crushing and mixing, frozen, and analyzed with a
short-amplicon sequencing approach to characterize both fungal
and bacterial community compositions. Fungal profiles were dom-
inated by filamentous fungi, primarily Cladosporium spp. (28.2%
average relative abundance), Botryotinia fuckeliana (Botrytis
cinerea) (15.2%), Penicillium spp. (9.5%), Davidiella tassiana
(9.2%), and Aureobasidium pullulans (7.3%), with notable pop-
ulations of yeasts, including S. cerevisiae (4.0%), Hanseniaspora
uvarum (5.0%), and Candida zemplinina (1.3%) (Dataset S1).
Bacterial communities predominantly consisted of the orders
Lactobacillales (29.7%), Pseudomonadales (14.2%), Enterobac-
teriales (13.5%), Bacillales (12.6%), and Rhodospirillales (5.1%)
(Dataset S2). Community structure varied widely across different
grape-growing regions, exerting a significant impact on both fungal
taxonomic dissimilarity (Bray–Curtis RANOSIM = 0.265, P < 0.001;
ANOSIM, analysis of similarities) and bacterial genetic diversity
(weighted UniFrac RANOSIM = 0.088, P < 0.001) independent of
other variables, including variety and vintage (SI Appendix, Fig. S2
and Table 1). These variables are apparently confounding fac-
tors, as clustering patterns become more distinct and regression
coefficients improve when comparing regional differences within
single grape varieties (Fig. 1, SI Appendix, Fig. S3, and Table 1)
and within single years (Table 1).
The most commonly grown grape varieties in California, Char-

donnay and Cabernet Sauvignon, were analyzed independently
to dissect intravarietal biogeographical relationships. Chardon-
nay musts display highly significant regional patterns for fungal
(RANOSIM = 0.331, P < 0.001) and bacterial communities

(RANOSIM = 0.249, P = 0.002) across both vintages (Fig. 1 and
Table 1). Cabernet Sauvignon exhibits significant regional pat-
terns for fungal communities across both vintages (RANOSIM =
0.339, P < 0.001) but weak or no significance for bacterial com-
munities across both vintages (RANOSIM = 0.046, P = 0.189;
R2

ADONIS = 0.094, P = 0.002; ADONIS, permutational multi-
variate analysis of variance) and for the 2010 vintage alone
(RANOSIM = 0.067, P = 0.051; R2

ADONIS = 0.094, P = 0.014) (SI
Appendix, Fig. S3 and Table 1). Bacterial weighted UniFrac
distance (28)—a measure of phylogenetic similarity between
samples—reveals that must community similarities follow a geo-
graphical axis running roughly parallel to the California coastline
(P = 0.021) (Fig. 1A), suggesting that environmental patterns
may underlie these regional trends. Whereas fungal Bray–Curtis
dissimilarity patterns exhibit clear differences between regions for
both Chardonnay and Cabernet Sauvignon, only Cabernet Sau-
vignon musts are significantly associated with this coastal geo-
graphical axis (P < 0.001) (SI Appendix, Fig. S3B). Chardonnay
musts cluster by region but do not follow any apparent geo-
graphical axis (SI Appendix, Fig. S3B). Canonical discriminant
analysis (CDA) of the predominant bacterial and fungal taxa
reveals regional taxonomic associations, which are frequently con-
served across varieties and vintages (SI Appendix, Fig. S2 C and D)
as well as within individual varieties (Fig. 1C and SI Appendix,
Figs. S3D and S4). Least discriminant analysis (LDA) effect size
confirms that many of these trends relate to significant associa-
tions between microbial phyla and viticultural areas, with Fir-
micutes and Eurotiomycetes (including Aspergillus and Penicillium)
being more abundant in Napa Chardonnay musts; Bacteroides,
Actinobacteria, Saccharomycetes, and Erysiphe necator in Cen-
tral Coast; and B. fuckeliana and Proteobacteria in Sonoma
(Fig. 1D and Datasets S3 and S4). In Cabernet Sauvignon
musts, Eurotiomycetes (including Aspergillus and Penicillium),
Sordariomycetes, Lactobacillus, and Bacteroidetes are associated
with North San Joaquin Valley musts; Leotiomycetes (notably B.
fuckeliana and E. necator) C. zemplinina with Central Coast;
Dothideales (e.g., A. pullulans), Agaricomycetes, and Lactobacillales
with Sonoma; and Pichiaceae and D. tassiana with Napa (SI Ap-
pendix, Fig. S3C and Datasets S5 and S6).
To further confirm the stability of these observations across

different conditions, a Random Forest supervised-learning model
was used to identify which taxa explain the strongest variation in

Table 1. ANOSIM and permutational MANOVA of category effects on microbial diversity
patterns

Fungal Bray–Curtis Bacterial weighted UniFrac

ANOSIM ADONIS ANOSIM ADONIS

Group Vintage Factor R P R2 P R P R2 P

All All Region 0.265 0.001 0.137 0.001 0.088 0.001 0.066 0.001
All 2010 Region 0.255 0.001 0.139 0.001 0.095 0.001 0.075 0.001
Cabernet All Region 0.339 0.001 0.244 0.001 0.046 0.189 0.094 0.002
Cabernet 2010 Region 0.432 0.001 0.280 0.001 0.067 0.051 0.094 0.014
Chardonnay All Region 0.331 0.001 0.229 0.001 0.249 0.002 0.205 0.001
Chardonnay 2010 Region 0.426 0.001 0.317 0.001 0.437 0.001 0.289 0.001
All All Variety 0.248 0.001 0.239 0.001 0.100 0.001 0.129 0.001
CHZ All Variety 0.364 0.001 0.201 0.001 0.060 0.015 0.042 0.001
CHZ 2010 Variety 0.370 0.001 0.219 0.001 0.047 0.022 0.036 0.002
Sonoma CHZ 2010 Variety 0.553 0.001 0.373 0.001 0.298 0.001 0.231 0.001
Napa ABCD All Vineyard 0.469 0.001 0.672 0.001 0.024 0.403 0.112 0.440
Napa ABCD 2012 Vineyard 0.442 0.001 0.425 0.001 0.142 0.188 0.284 0.174
All All Vintage 0.101 0.054 0.036 0.001 0.025 0.306 0.024 0.001
Napa ABCD All Vintage 0.044 0.320 0.123 0.008 0.346 0.001 0.126 0.001

CHZ, all Cabernet Sauvignon, Chardonnay, and Zinfandel samples; Napa ABCD, all Chardonnay musts from
Napa vineyards A–D.
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growing regions. This method determines the diagnostic power
of bacterial and fungal profiles for predicting regional origin by
using a subset of samples to train a model that identifies unique
features within data categories. The technique then determines
the accuracy of the model by categorizing sample subsets that
were not used to build the model. Fungal models display a large
degree of predictive power (observed error range 0.146–0.188;
ratio to random error 2.449–4.592), particularly when all must
samples are included regardless of variety or vintage (error
0.146 ± 0.055; ratio 4.592) (SI Appendix, Table S1). Bacterial
models for all must samples (error 0.282 ± 0.076; ratio 2.325)
and Chardonnay must samples (error 0.085 ± 0.116; ratio 4.914)
perform well, but vintage-controlled and Cabernet Sauvignon
models yield high error rates (SI Appendix, Table S1). The most

important taxonomic features for regional prediction in these
models are many of the same significant taxa identified by CDA
and LDA, including Pseudomonas, Acetobacter, and Cladosporium
spp. (SI Appendix, Table S2).
These results reveal that nonrandom regional distributions of

grape microbiota exist across large geographical scales. Growing
regions can be distinguished based on the abundance of several
key fungal and bacterial taxa, defining potentially predictive re-
gional features with obvious consequences for grapevine man-
agement and wine quality. The chemicosensory distinction of
wines from different growing regions is well established (29–33),
providing the conceptual basis of wine terroir, although the
causative factors are elusive (9). Likewise, the formative influ-
ences of many key grape-derived microbiota on wine quality

Fig. 1. Grape must bacterial communities demonstrate distinct regional patterns. (A) Weighted UniFrac distance dendrogram comparing bacterial
communities of Chardonnay musts from across California. Branches are colored by the growing regions they represent, white branches encompass
two or more regions. Pie charts represent average phylum-level taxonomic compositions of all samples from each site. P value represents goodness-of-
fit scores between tree topology and sample ordination along the geographical axis. Map adapted from Oak Ridge National Lab Distributed Active
Archive Center for Biogeochemical Dynamics spatial data access tool (http://webmap.ornl.gov/). (B) Weighted UniFrac distance PCoA of bacterial
communities in Chardonnay musts from across California. (Inset) Same plot categorized by vintage. (C ) Canonical discriminant analysis plot comparing
Chardonnay musts from Napa, Sonoma, and Central Coast growing regions coplotted against bacterial taxa loadings. Circles represent canonical
group means and 95% confidence interval for each class, which are significantly different if their confidence intervals do not overlap. Arrows rep-
resent the degree of correlation between each taxon and each class as a measure of predictive discrimination of each class. (D) LDA effect size
taxonomic cladogram comparing all Chardonnay musts categorized by growing region. Significantly discriminant taxon nodes are colored and branch
areas are shaded according to the highest-ranked variety for that taxon. For each taxon detected, the corresponding node in the taxonomic cladogram
is colored according to the highest-ranked group for that taxon. If the taxon is not significantly differentially represented between sample groups, the
corresponding node is colored yellow. Highly abundant and select taxa are indicated: A, Acetobacter; E, Erwinia; G, Gluconobacter; H, Hymenobacter;
J, Janthinobacterium; K, Klebsiella; L, Lactobacillus; M, Microbacteriaceae; O, Sporosarcina; P, Pseudomonadaceae; S, Sphingomonas; U, Leuconostocaceae;
X, Moraxellaceae; Y, Methylobacterium. For the complete list of discriminate taxa and ranks used to generate this cladogram, see Dataset S4.
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characteristics are well described (6–8, 17, 34), but whether their
geographical distribution follows logical patterns—supporting
a causative role in regional wine differences—has been unknown
(6). Thus, the nonrandom distribution of key taxa with crucial
impacts on wine quality supports the potential role of microbial
biogeography in shaping wine terroir. Many of the taxonomic
discriminants identified between growing regions are organisms
that can participate in wine fermentations. Most Saccharomycetes,
including S. cerevisiae, the primary driver of wine fermentations,
are notably nondiscriminant (SI Appendix, Fig. S3). However,
important exceptions exist, including C. zemplinina, Lachancea
thermotolerans, Hanseniaspora guilliermondii, and Pichia spp.,
fermentative yeasts with known chemicosensory impacts in wine
fermentations (17, 34). Additionally, discriminant populations
of Acetobacteraceae and Lactobacillales represent sources of ad-
ditional quality variation, being important organisms in wine
spoilage (7, 8, 16) and the latter in malolactic wine fermentations
(7, 8). These connections provide compelling support for the role
of grape-surface microbial communities in regional wine char-
acteristics. Differences in these fermentative populations can
conceivably underlie regional patterns in fermentation perfor-
mance and product qualities, participating in the formation of
terroir-associated wine characteristics. Whether these patterns
actively drive quantifiably discriminate chemicosensory char-
acteristics must be experimentally demonstrated to fully establish
microbial terroir as a determining feature of wine qualities, but
these results nevertheless provide a compelling basis to explore
these relationships on macroregional scales.

Grape Variety Influences Grape Must Microbiota. Grape variety also
plays a significant role in shaping microbial community patterns
across all regions and vintages (fungal Bray–Curtis RANOSIM =
0.248, P < 0.001; bacterial weighted UniFrac RANOSIM = 0.100,
P < 0.001) (Table 1 and SI Appendix, Fig. S5). Fungal com-
munity differences are apparent among the most highly sampled
varieties (Cabernet Sauvignon, Chardonnay, and Zinfandel)
(RANOSIM = 0.364, P < 0.001) (Table 1 and Fig. 2) but bacterial
communities exhibit weak separations among these varieties
compared across all growing regions (RANOSIM = 0.060, P =
0.015) (Table 1). For both fungal (RANOSIM = 0.553, P < 0.001)
and bacterial communities (RANOSIM = 0.298, P < 0.001), vari-
etal variation is most powerful within individual regions (Table 1
and Fig. 2). These varietal–microbial patterns appear highly
stable year to year and controlling for vintage yields little im-
provement in regression coefficients (Table 1) and does not
appear to confute clustering patterns (Fig. 2). However, bacterial
communities appear strongly influenced by region, and controlling
for regional variation greatly improves regression coefficients
(Table 1) and clustering patterns (Fig. 2). CDA, LDA, and
ANOVA demonstrate broad taxonomic trends underlying va-
rietal patterns, with Proteobacteria, Capnodiales (including Cla-
dosporium spp.), and Penicillium significantly more abundant in
Chardonnay; β-Proteobacteria, Bacteroidetes, Clostridia, Dothideo-
mycetes, Agaricomycetes, Tremellomycetes, Microbotryomycetes, and
Saccharomycetaceae in Cabernet Sauvignon; and Firmicutes, Glu-
conobacter, Eurotiomycetes (Aspergillus), Leotiomycetes, and Sac-
charomycetes (notably C. zemplinina) in Zinfandel (Fig. 2, SI
Appendix, Fig. S5, and Datasets S7 and S8).
Varietal patterns in grape-surface microbiota suggest a genetic

component to host–microbial interactions on the grape surface.
Relationships between grape variety and the abundance of yeast
(35, 36) and bacterial species (37) on berry surfaces have been
documented previously on very limited scales, but not statistically
demonstrated. Cultivar differences in growth habit and stress and
invasion response (38) could explain how Vitismanages (or incurs)
its grape-surface microbial ecosystems, explaining both the
“normal” microbiota and cultivar-specific susceptibilities to dis-
ease pressures under different environments. Many of the ob-

served patterns support this hypothesis. For example, the thin
skins and dense growth habit of Zinfandel fruit result in over-
crowding and berry breakage (39). This effect likely explains
the elevated abundances of Gluconobacter, Lactobacillales, and
fermentative yeasts (notably C. zemplinina) on the surface of
Zinfandel grapes (Fig. 2), as these organisms are enriched on
damaged fruit (6, 15, 40). However, unlike biogeographical pat-
terns, nonrandom microbial patterns linked to grape variety may
also represent the influence of viticultural practices. Many culti-
vars receive specific treatments, including trellising and canopy
management strategies, which alter grape microclimate, compo-
sition (41, 42), and hence possibly microbial community patterns.
No matter the underlying mechanism, the formation of robust

cultivar-specific microbial patterns raises several opportunities
for wine-quality management. Many of the variety-discriminant
taxa are fermentative organisms, and may play a role in de-
termining positive or negative chemicosensory features of ensuing
wine fermentations (8). For example, undesired acetate production
by Gluconobacter (16), malate conversion, off-flavor production
by lactic acid bacteria (7, 8), or desirable enhancement of the
sensory profile by C. zemplinina (43) all represent wine-quality
impacts imparted by the cultivar-discriminative taxa detected in
this study. Given the demonstrable relationship between these
taxa and specific grape varieties, customized fermentation man-
agement strategies could improve product outcomes, e.g., through
moderating sulfite additions, temperature control, oxygen lim-
itation, inoculation, or cold maceration (to name only a few
treatments) to promote or suppress individual populations based
on the modeled microbial composition of a given grape variety.
For example, significant associations between Zinfandel and
Gluconobacter warrant extra attention to sulfite additions and
oxygen exposure to prevent excess volatile acidity production in
fermentations with this variety.

Environmental Conditions Modify Grape Microbiota Across Space and
Time. Regional patterns in grape must microbiota suggest that
local environmental conditions are responsible for driving bio-
geographical diversity. A high degree of correlation exists be-
tween different climatic and topographical features (SI Appendix,
Fig. S6), and all environmental metrics display significant dif-
ferences between regions (SI Appendix, Table S3). A best vari-
ables rank correlation test (BEST) was used to determine which
of these factors explain the greatest degree of microbial com-
munity β-diversity dissimilarity, followed by permutational
MANOVA tests to confirm significance. BEST identified aver-
age evapotranspiration (ET0), net wind run, minimum temper-
ature, and relative humidity (RH) as prevailing features for
multiple sample subsets (SI Appendix, Table S4), with latitude,
longitude, minimum temperature, average high temperature,
average temperature, and average soil temperature all ranking
highly. MANOVA determined that all features are highly sig-
nificantly (P < 0.05) related to fungal and bacterial patterns in all
must samples, with the exception of soil temperature in bacterial
communities, and most features are significant (P < 0.05) among
Chardonnay and Cabernet Sauvignon must samples (SI Appen-
dix, Table S5). However, many features identified by BEST yield
poor MANOVA R2 coefficients, suggesting weakly significant
feature importance (SI Appendix, Table S5). MANOVA identi-
fies net precipitation, maximum temperature, RH, latitude, and
longitude as the strongest features explaining microbial com-
munity dissimilarities across most subcategories, particularly for
fungal community patterns (SI Appendix, Table S5). Significant
covariance between each of these factors (P < 0.05) (SI Appen-
dix, Fig. S6) complicates identification of potentially causative
features, but weak MANOVA R2 coefficients (explaining less
variance than region alone) imply multiple interacting factors are
responsible for the complex process of regional conditioning.
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To elucidate which of these climatic conditions may drive
specific microbial populations across growing regions and vin-
tages, partial least squares regression (PLSR) was used to model
covariance between environmental features and bacterial and
fungal taxa at multiple taxonomic levels. PLSR projections were
initially made between all order- to species-level taxa detected
(Fig. 3 and SI Appendix, Fig. S7) and used to select taxa ex-
plaining >30% of the variance in the first two components.
Projections of these extracted features reveal highly covariable
relationships between several climatic conditions and microbial
taxa (Fig. 3 and SI Appendix, Fig. S7). Notably, net precipitation
associates strongly with Mycosphaerellaceae, B. fuckeliana, and
Pseuodomonadales; RH with Moraxellaceae and Cladosporium;
and maximum temperature and average low temperature associate

negatively with Penicillium, Pseudomonas, Enterobacteriaceae, and
Leuconostocaceae (Oenococcus oeni) in Chardonnay musts (Fig. 3).
Scatterplots and correlation coefficients were generated between
these variables and factors to test the strength of the PLSR model,
confirming noisy but significant (P < 0.05) correlations for many
of these observations (SI Appendix, Figs. S8 and S9).
The apparent modification of grape microbial consortia by en-

vironmental factors suggests that biogeographical trends are
responsive to local conditions, as opposed to being shaped by
physical patterns of microbial dispersion, a finding with powerful
implications for the future of wine-grape cultivation. First, some
of these conditions can be modified by viticultural practices, so
trellising types, canopy management, and other methods may be
selected to alter the microclimate of the fruiting zone in an at-

Fig. 2. Varietal variation in bacterial (Left) and fungal (Right) communities of Zinfandel, Cabernet Sauvignon, and Chardonnay grape musts. (A) LDA
effect size taxonomic cladogram comparing bacterial communities in all Sonoma Cabernet Sauvignon, Chardonnay, and Zinfandel musts. Significantly
discriminant taxon nodes are colored and branch areas are shaded according to the highest-ranked variety for that taxon. For each taxon detected, the
corresponding node in the taxonomic cladogram is colored according to the highest-ranked group for that taxon. If the taxon is not significantly
differentially represented between sample groups, the corresponding node is colored yellow. Highly abundant and select taxa are indicated: C, Cit-
robacter; E, Erwinia; G, Gluconobacter; H, Hymenobacter; J, Janthinobacterium; K, Klebsiella; L, Lactococcus; M, Microbacteriaceae; P, Pseudomonadaceae; S,
Sphingomonas; U, Leuconostocaceae; X, Moraxellaceae; Y, Methylobacterium. (B) Weighted UniFrac distance PCoA of bacterial communities in all Sonoma
Cabernet Sauvignon, Chardonnay, and Zinfandel musts. (C and D) One-way ANOVA of select bacterial (C) and fungal taxa (D) exhibiting significant differences
between grape varieties. The x axes represent relative abundance (maximum 1.0). Bonferroni-corrected and false-discovery-rate (FDR) corrected P values
are shown. (E ) Bray–Curtis dissimilarity PCoA of fungal communities in all Cabernet Sauvignon, Chardonnay, and Zinfandel musts. (Inset) Same plot
categorized by vintage. The x axis represents relative abundance (maximum 1.0). (F ) LDA effect size taxonomic cladogram comparing fungal com-
munities in all Cabernet Sauvignon, Chardonnay, and Zinfandel musts in all regions. Significantly discriminant taxon nodes are colored and branch
areas are shaded according to the highest-ranked variety for that taxon. Highly abundant and select taxa are indicated: A, Aureobasidium pullulans;
B, Botryotinia fuckeliana; C, Cladosporium; D, Davidiella; G, Rhodotorula glutinis; H, Hanseniaspora; M, Erysiphe necator; N, Sclerostagonospora
opuntiae; P, Penicillium; R, Rhizopus oryzae; S, Saccharomyces cerevisiae; T, Lachancea thermotolerans; U, Aspergillus; Y, Cryptococcus; Z, Candida
zemplinina. For the complete list of discriminate taxa and ranks used to generate these cladograms, see Datasets S7 and S8.
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tempt to positively shape the microbial consortium. Such prac-
tices already see some employment, such as reducing canopy
density to control mold growth (44). Second, the juggernaut of
climate change threatens not only the sensitive geographic range
and water availability for viticultural practices (45), but also the
microbial ecologies of grape surfaces, potentially altering sus-
ceptibility to phytopathogen enrichment. The mounting risks of
some phytopathogens under changing growing conditions have
already been considered (46, 47) but the complete implications
for the grape-surface microbiome is undefined. These findings
present a platform from which to experimentally test these factors
and whether microclimate modification procedures (e.g., trellising,
shoot thinning, leaf removal) may be used to responsively manage
grape-surface microbial communities.
These trends also permit development of predictive models for

interpolation of microbial response across a greater geographical
range and under variable climatic conditions. Such models could
be useful in predicting microbial community responses under
different combinations of grape variety and local conditions when
selecting new vineyard sites or forecasting the impact of weather
and climate change on grape microbial communities. Similar
models are already used for the prediction of specific grapevine
pathogen threats in response to environmental conditions (48–50)
and to model large-scale biogeographical predictions (51). To be
most effective outside of the established zones in this study, these
observations need to be expanded to capture a greater variety of
environmental conditions and global growing regions. Microbial
dispersion limits may play a role in community assembly under
global conditions (1) and must also be defined to avoid overfitting
to Californian conditions. If regional factors define the “microbial
terroir” of grape surfaces within this confined region, global vi-
ticultural zones may likewise express disparate microbial patterns
and warrant further investigation.

Vintage Effects Exert Seasonal Shifts in Grape-Surface Microbiota
Within Single Vineyards. Environmental effects exhibit temporal
as well as spatial variation, yet vintage appears to have little ef-
fect on macroregional or varietal microbial patterns (Table 1).

To elucidate the scale and impact of vintage on must microbial
communities within microregions, four Chardonnay vineyards
(vineyards A–D) in Napa Valley (all <4 km apart) were highly
sampled in 2010 and 2012 to compare within and between vin-
tages. Vintage has only a weak or insignificant impact on var-
iation within all California must samples (Table 1). However,
within these four vineyards alone bacterial communities see a sig-
nificant vintage influence (RANOSIM = 0.346, P= 0.001), although
fungal communities see a weak vintage effect (RANOSIM = 0.044,
P = 0.320; R2

ADONIS = 0.123, P = 0.008). Conversely, vineyard-
specific patterns have a greater impact on fungal communities
(RANOSIM = 0.469, P < 0.001) (Table 1 and Fig. 4). Thus, be-
tween-vintage variations substantially affect microbial communi-
ties within small geographical scales (i.e., individual vineyards), but
not large scales (i.e., macroregions). CDA highlights the associa-
tion between several key taxa and each vintage (Fig. 4). Notably,
Cladosporium and B. fuckeliana are more abundant in 2010 sam-
ples, whereas Penicillium, Pseudomonas, Leuconostocaceae, and
Enterobacteriaceae are more abundant in 2012 (Fig. 4). Based on
associations revealed in the Chardonnay PLSR model (Fig. 3),
these alterations relate to the substantially greater net precipitation,
RH, and maximum temperatures in 2010 (711.15 cm; 77.6%;
41.1 °C) compared with 2012 (626.31 cm; 74.3%; 36.7 °C).
Bacterial and fungal communities exhibit different responses

to vintage and site-specific effects. Vintage and macroregion
appear to be the main drivers of bacterial community assembly,
and the four individual Napa Chardonnay vineyards are phylo-
genetically similar (RANOSIM = 0.024, P = 0.403), even within
a single vintage (RANOSIM = 0.142, P = 0.188) (Table 1), al-
though CDA enables significant (P < 0.0001) discrimination of
individual vineyard sites based on the abundance of individual
taxa (Fig. 4). Fungal communities within individual vineyards see
weak influence from vintage effects and are significantly dis-
criminant across both vintages (RANOSIM = 0.469, P < 0.001)
and within individual vintages (RANOSIM = 0.442, P < 0.001).
CDA also significantly discriminates these vineyards both across
and within vintages (P < 0.0001) based on the fungal taxa
dominating individual vineyards (Fig. 4). Thus, on site-specific

Fig. 3. Correlation loading plots demonstrate environmental influence on select microbial populations within Chardonnay musts across California. Partial
least squares regression correlation loadings of 15 environmental variables (gray text) and select microbial taxa (black text). (A) Selected bacterial populations
(n = 18 variables) of all Chardonnay musts. (B) Selected fungal populations (n = 12 variables) of all Chardonnay musts.
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scales, fungal communities appear more stable than bacterial
communities in response to annual climate changes.
The impact of vintage on grape must microbiota fits with the

apparent influence of climate and extends these observations.
The microbial changes observed between vintages follow the
predictions made by the PLSR model, valorizing the potential
use of such models for predictions across wider geographical and
climatic ranges, provided with appropriately expansive training
data. Interestingly, regional and varietal patterns are only weakly
influenced by vintage and the strongest effect appears to be
(dramatically) observed at the individual vineyard level. This
probably reflects the fact that macroregional climate patterns
still display greater dissimilarities than local weather variations,
where microregional idiosyncrasies may have a tremendous im-
pact, but may also suggest that establishment of regional mi-
crobial terroir identity resists such ephemeral events. The latter is
supported more strongly in the fungal communities, which ap-
pear more resistant to vintage variation even with individual
vineyards. More annual observations are necessary to determine
whether climate induces gradual shifts in regional identity or
localized phenomena only.
The discrimination of individual vineyards both within and

between vintages reveals important implications for microbial
dispersion across small geospatial scales. Setati et al. (52) have
demonstrated that intravineyard variation can be greater than
intervineyard variation within a single vintage, presumably due to

microclimate influences on grape-surface microbiota. By col-
lecting must samples, we have avoided errors arising from such
intravineyard variation and sampling biases (i.e., potential spatial
variation due to vine position, exposure, microclimate, and sto-
chastic effects), and show that individual vineyard blocks have
highly similar must fungal community structures, distinguishing
them from neighboring vineyards. As many of the discriminant
taxa appear to be fermentative yeasts (Fig. 4), there is a possi-
bility that such intervineyard microbiological variation may help
explain the variability frequently witnessed in fermentative per-
formance and product outcomes between different vineyards.
Intravineyard block variation may result in further variation
observed between different harvest lots, although insufficient
block sample replicates were analyzed to test this hypothesis
here. Determining how microclimate heterogeneity influences
microbial assemblages on the scale of individual vineyards, in-
dividual blocks, and individual vines will elucidate how grape-
surface microbial communities are established and maintained in
response to environmental conditions.

Conclusions
These results represent evidence that grape-associated microbial
biogeography is nonrandomly associated with regional, varietal,
and climatic factors across multiscale viticultural zones. As the
most dominant and discriminant taxa between regions and va-
rieties have well-characterized impacts on grape and wine qual-

Fig. 4. Vintage affects vineyard-specific microbial patterns. Bacterial (Upper) and fungal (Lower) communities of Chardonnay musts from four Napa vine-
yards across 2 y. (A) Bacterial weighted UniFrac PCoA (Upper) and canonical discriminant analysis (Lower) comparing 2010 and 2012 vintages across all
vineyards reveal strong vintage effects. (B and C) CDA plots comparing bacterial communities in musts from four separate vineyards in both vintages (B) and
in 2012 only (C). (Insets) Weighted UniFrac PCoA comparison of the complete must bacterial communities in the corresponding vintage(s). (D) Fungal Bray–
Curtis PCoA (Upper) and canonical discriminant analysis (Lower) comparing 2010 and 2012 vintages across all vineyards reveal strong vintage effects. (E and F)
CDA plots comparing fungal communities in musts from four separate vineyards in both vintages (E) and in 2012 only (F). (Insets) Bray–Curtis PCoA com-
parison of the complete must fungal communities in the corresponding vintage(s). CDA circles represent canonical group means and 95% confidence interval
for each class, which are significantly different if their confidence intervals do not overlap. Arrows represent the degree of correlation between each taxon
and each class as a measure of predictive discrimination of each class.

Bokulich et al. PNAS | Published online November 25, 2013 | E145

M
IC
RO

BI
O
LO

G
Y

PN
A
S
PL

U
S

SE
E
CO

M
M
EN

TA
RY



ities, these differences may help explain regional patterns in wine
chemicosensory properties (29–33). Whether these regionally
differential microbiota actually modulate wine sensory qualities
must be experimentally tested, as do all putative features of wine
terroir. This prospective study also reveals several promising
applications for grapevine and wine-fermentation management,
with the opportunity to develop tailored strategies for improving
grape and wine quality of individual varieties and predictive
models for microbial community responses to climatic con-
ditions. These exploratory findings pose a paradigm shift in our
understanding of food and agricultural systems beyond grape
and wine production, wherein microbial communities play active
roles in product quality characteristics. Elaboration of the in-
terplay between production region, climate, microbial patterns,
and quality outcomes may enhance biological control within
these systems, improving the supply, consumer acceptance, and
economic value of important agricultural commodities.

Materials and Methods
Data Availability. Raw data are publicly deposited in QIIME-db (microbio.me/
qiime/) as studies 2019 (bacterial 16S rRNA sequences) and 2020 (fungal
ITS sequences).

Sampling and DNA Extraction. To obtain samples that represent both well-
mixed, representative vineyard communities and the microbial consortia
introduced into early wine fermentations, grape must was chosen as the
optimum sampling point. Grapemust consists of destemmed, crushed grapes,
which are subsequently pressed (in the case of white wine) and inoculated
with S. cerevisiae or Saccharomyces bayanus to commence fermentation. We
chose this as the optimal sampling time, as it represents the junction be-
tween grape surface and fermentation microbiota, when all grape-derived
microbial inputs are present but inoculation and the onset of fermentation
has not yet altered this community.

Grape must samples (n = 235) were collected in 2010 from eight wineries,
representing four of the major grape growing regions of California (SI Ap-
pendix, Fig. S1 and Datasets S9 and S10). In 2012, 39 additional samples were
collected from Napa only to test the impact of vintage on microbial patterns
within a single growing region. Samples were frozen immediately, shipped
on ice, and stored at −80 °C until processing. Sample processing was per-
formed as described previously (14). Briefly, must samples were thawed
and centrifuged at 4,000 × g for 15 min, washed three times in ice-cold
PBS, suspended in 200 μL DNeasy lysis buffer [20 mM Tris Cl (pH 8.0), 2 mM
sodium EDTA, 1.2% Triton X-100] supplemented with 40 mg/mL lysozyme,
and incubated at 37 °C for 30 min. From this point, the extraction pro-
ceeded following the protocol of the Qiagen Fecal DNA Extraction kit
protocol (Qiagen), with the addition of a bead beater cell lysis step of
2 min at maximum speed using a FastPrep-24 bead beater (MP Bio). DNA
extracts were stored at −20 °C until further analysis.

Sequencing Library Construction. Amplification and sequencing were per-
formed as described previously for analysis of bacterial (26) and fungal
communities (53). Briefly, the V4 domain of bacterial 16S rRNA genes was
amplified using primers F515 (5′–NNNNNNNNGTGTGCCAGCMGCCGCGG-
TAA–3′) and R806 (5′–GGACTACHVGGGTWTCTAAT–3′) (54), with the for-
ward primer modified to contain a unique 8-nt barcode (italicized poly-N
section of primer above) and a 2-nt linker sequence (bold portion) at the 5′
terminus. All F515 primer barcodes used are presented in Dataset S9. PCR
reactions contained 5–100 ng DNA template, 1× GoTaq Green Master Mix
(Promega), 1 mM MgCl2, and 2 pmol of each primer. Reaction conditions
consisted of an initial 94 °C for 3 min followed by 35 cycles of 94 °C for 45 s,
50 °C for 60 s, and 72 °C for 90 s, and a final extension of 72 °C for 10 min.
Fungal internal transcribed spacer (ITS) 1 loci were amplified with primers
BITS (5′–NNNNNNNNCTACCTGCGGARGGATCA–3′) and B58S3 (5′–GAGATC-
CRTTGYTRAAAGTT–3′) (53), with a unique 8-nt barcode and linker sequence
(bold portion) incorporated in each forward primer. All BITS primer barcodes
used are presented in Dataset S10. PCR reactions contained 5–100 ng DNA
template, 1× GoTaq Green Master Mix (Promega), 1 mM MgCl2, and 2 pmol
of each primer. Reaction conditions consisted of an initial 95 °C for 2 min
followed by 40 cycles of 95 °C for 30 s, 55 °C for 30 s, and 72 °C for 60 s, and
a final extension of 72 °C for 5 min. Amplicons were combined into two
separate pooled samples (keeping bacterial and fungal amplicons separate)
at roughly equal amplification intensity ratios, purified using the Qiaquick
spin kit (Qiagen), and submitted to the University of California Davis

Genome Center DNA Technologies Core for Illumina paired-end library
preparation, cluster generation, and 250-bp paired-end sequencing on an
Illumina MiSeq instrument in two separate runs. Following quality filtering
(see below), the first (bacterial 16S rRNA) run generated 5,120,803 reads
(247.35 nt mean length) and the second (fungal ITS) run generated 3,241,736
reads (245.43 nt mean length). Sequence rarefaction curves, demonstrating
per-sample sequence coverage, are shown in SI Appendix, Fig. S10.

Data Analysis. Raw Illumina fastq files were demultiplexed, quality filtered,
and analyzed using QIIME v1.7.0 (55). Reads were truncated at any site
containing more than three consecutive bases receiving a quality score <1e-
5, and any read containing one or more ambiguous base calls was discarded,
as were truncated reads of <190 nt. Operational taxonomic units (OTUs)
were assigned using QIIME’s uclust-based (56) open-reference OTU-picking
workflow, with a threshold of 97% pairwise identity. Sequence prefiltering
(discarding sequences with <60% pairwise identity to any reference sequence)
and reference-based OTU picking were performed using a representative sub-
set of the Greengenes bacterial 16S rRNA database (13_5 release) (57) or the
UNITE fungal ITS database (12_9 release) (58), filtered to remove incomplete
and unannotated taxonomies (53). OTUs were classified taxonomically using
a QIIME-based wrapper of the Ribosomal Database Project (RDP) classifier
(59) against a representative subset of the Greengenes 16S rRNA database
13_5 release (57), using a 0.50 confidence threshold for taxonomic assign-
ment. Bacterial 16S rRNA gene sequences were aligned using PyNAST (60)
against a template alignment of the Greengenes core set filtered at 97%
similarity. From this alignment, chimeric sequences were identified and re-
moved using ChimeraSlayer (61) and a phylogenic tree was generated from
the filtered alignment using FastTree (62). Sequences failing alignment or
identified as chimeric were removed before downstream analysis. Any OTU
representing less than 0.001% of the total filtered sequences was removed
to avoid inclusion of erroneous reads, leading to inflated estimates of
diversity (63), as were samples represented by less than 200 (bacterial) or
1,000 (fungal) sequences following all quality-filtering steps.

Alpha-diversity (within-sample species richness) and beta-diversity
(between-sample community dissimilarity) estimates were calculated within
QIIME using weighted UniFrac (28) distance between samples for bacterial
16S rRNA reads [evenly sampled at 1,000 (for Chardonnay-only analysis)
or 200 reads per sample] and Bray–Curtis dissimilarity for fungal ITS reads
(evenly sampled at 1,000 reads per sample). Principal coordinates were
computed from the resulting distance matrices to compress dimensionality
intro 3D principal coordinate analysis (PCoA) plots, enabling visualization of
sample relationships. To determine whether sample classifications (region,
variety, vineyard, vintage) contained differences in phylogenetic or species
diversity, ANOSIM (64) and permutational MANOVA (65) with 999 permu-
tations were used to test significant differences between sample groups
based on weighted UniFrac (28) and Bray–Curtis distance matrices. For all
categorical classifications (region, vintage, variety, vineyard) rejecting this
null hypothesis, one-way ANOVA was used to determine which taxa differed
between sample groups, resulting in these differences. A BEST was used
to rank the importance of environmental features in influencing beta-
diversity community comparisons, with feature significance confirmed with
permutational MANOVA.

Random forest supervised-classification models (66) were used to identify
taxonomic features that explain the strongest variation between sample
conditions and evaluate the diagnostic strength of these features to dis-
criminate against regional categories. Ten-fold cross-validation models were
constructed with 1,000 trees, using taxonomic assignments of evenly rare-
fied sample OTUs as predictors and regional origin as class labels.

Significant taxonomic differences between sample conditions were also
tested using LDA effect size (67). This method employs the factorial Kruskal–
Wallis sum-rank test (α = 0.05) to identify taxa with significant differential
abundances between categories (using one-against-all comparisons), fol-
lowed by LDA to estimate the effect size of each differentially abundant
feature. Significant taxa were used to generate taxonomic cladograms il-
lustrating differences between sample classes.

Geospatial biodiversity mapping analysis was performed using GenGIS II
(68). This method was used to determine significant fitness between geo-
graphical coordinates along linear axes and sample ordination on phyloge-
netic (bacterial 16S rRNA weighted UniFrac) (28) or taxonomic dissimilarity
(fungal ITS Bray–Curtis) unweighted pair group method with arithmetic
mean (UPGMA) trees constructed in QIIME.

All other statistical tests were performed in R software (v 2.15.0). CDA was
used to describe differences between sample categories and identify taxa
associated with each condition. PLSR analysis with cross-validation was used
to model associations between normalized mean values for significant
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environmental conditions (X variables) and taxonomic features (Y variables).
Pearson product–moment correlation coefficients, Spearman rank correla-
tion coefficients, and scatterplots were used to test and visualize relation-
ships between topographical and climatic features.

Climate Data. Daily weather data were extracted from the California Irri-
gationManagement Information System (CIMIS) database (www.cimis.water.
ca.gov/). Data were collected from 19 different weather stations throughout
California representing the nearest CIMIS station to each source vineyard.
Daily measurements were extracted for average high temperature, average
low temperature, average temperature, maximum temperature, minimum
temperature, net precipitation, average ET0, average solar radiation, aver-

age soil temperature, average wind speed, net wind run, and average RH in
2010 and 2012 for all stations.
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