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ABSTRACT

Alternative splicing plays an important role in many
cellular processes of eukaryotic organisms. The
exon-inclusion ratio, also known as percent spliced
in, is often regarded as one of the most effective
measures of alternative splicing events. The exist-
ing methods for estimating exon-inclusion ratios at
the genome scale all require the existence of a ref-
erence transcriptome. In this paper, we propose an
alignment-free method, FreePSI, to perform genome-
wide estimation of exon-inclusion ratios from RNA-
Seq data without relying on the guidance of a ref-
erence transcriptome. It uses a novel probabilistic
generative model based on k-mer profiles to quan-
tify the exon-inclusion ratios at the genome scale
and an efficient expectation-maximization algorithm
based on a divide-and-conquer strategy and ultra-
fast conjugate gradient projection descent method
to solve the model. We compare FreePSI with the ex-
isting methods on simulated and real RNA-seq data
in terms of both accuracy and efficiency and show
that it is able to achieve very good performance even
though a reference transcriptome is not provided.
Our results suggest that FreePSI may have impor-
tant applications in performing alternative splicing
analysis for organisms that do not have quality refer-
ence transcriptomes. FreePSI is implemented in C++
and freely available to the public on GitHub.

INTRODUCTION

Alternative splicing plays a crucial role in many cellular pro-
cesses of eukaryotic organisms (1). It allows a gene to be
transcribed into multiple isoforms (or mRNA transcripts)

and hence increases the phenotypic complexity of an or-
ganism without increasing its genetic complexity. The exon-
inclusion ratio, also known as percent spliced in (PSI), is
a popular statistic for measuring alternative splicing events
(2). It is defined as the ratio of the relative abundance of all
isoforms containing a certain exon over the relative abun-
dance of all isoforms of the gene containing the exon. In
other words, the PSI value of an exon tells us how often the
exon occurs in all the isoforms of the gene that contains the
exon. The PSI values of a gene reflect the intensity of its
alternative splicing events and have been widely used in dif-
ferential expression analysis that aims at detecting spliced
exons (3) as well as in the exploration of biological mecha-
nisms of alternative splicing (4–6).

A genome-wide estimation of PSI values remains difficult
until the advent of high-throughput RNA-seq technology
(7). In recent years, many computational methods have been
proposed to analyze RNA-seq data (8), including several
for performing genome-wide PSI estimation. The methods
for PSI analysis generally fall into two categories: isoform-
centric or exon-centric (9). An isoform-centric PSI analysis
(10) begins by estimating the relative abundance of each iso-
form by using a quantification tool such as Cufflinks (11),
RSEM (12) CEM (13) or eXpress (14) if a reference tran-
scriptome is given. Once the relative abundance levels of all
isoforms have been quantified, the PSI values of each exon
in the genome can be easily derived. If no reference tran-
scriptome is available, a transcriptome assembly tool such
as Cufflinks, IsoLasso (15), StringTie (16) or TransComb
(17) can be used to infer the expressed isoforms as well as
their relative abundance from the input RNA-seq data and
reference genome.

A common feature of the above quantification/assembly
methods is that they all require the input RNA-seq reads to
be mapped (or aligned) to the reference genome (or tran-
scriptome) as a preprocessing step. This can be achieved by
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using alignment tools such as Bowtie (18), TopHat (19,20)
and HISAT (21). On the other hand, an alignment-free ap-
proach for abundance quantification has been proposed re-
cently and implemented in Sailfish (22). The method uses
k-mer counts to construct profiles of both the input RNA-
seq reads and reference transcriptome, and a probabilis-
tic generative model based on the profiles to estimate the
abundance of each isoform. As reported in (22), Sailfish is
able to achieve a comparable overall accuracy as Cufflinks
while maintaining a much higher efficiency. The high effi-
ciency of Sailfish is helped by a light-weight expectation-
maximization algorithm for solving the probabilistic model
and the parallelizable k-mer counting method evolved from
Jellyfish (23). Inspired by the alignment-free approach,
some ‘pseudo-alignment’ (or ‘quasi-mapping’) based meth-
ods including Kallisto (24) and Salmon (25) have been pro-
posed very recently in the literature with further improved
performance. These methods do not attempt to map reads
to precise locations of the reference genome. Instead, they
try to identify all isoforms in the reference transcriptome
that may potentially contain each specific read. Note that
the alignment-free or pseudo-alignment-based approaches
for isoform abundance quantification require the existence
of a reference transcriptome and their performance clearly
depends on the quality of the reference transcriptome.

Exon-centric methods including MISO (26), MATS (27)
and rMATS (28) focus on specific exons instead of an en-
tire exome and analyze alternative splicing events such as
exon skipping, mutually exclusive exons, intron retention as
well as alternative (5′ or 3′) boundaries based on the PSI
values of the exons. In particular, MISO can perform alter-
native splicing analysis on a single biological sample or dif-
ferential expression analysis on two samples, while MATS
and rMATS specialize in the comparison of two samples.
These methods all require mapped RNA-seq reads and use
Bayesian inference to perform PSI estimation that incurs
significant running time. Moreover, the alternative splicing
events to be analyzed have to be provided by the user in ad-
vance or extracted from a reference transcriptome.

Clearly, the availability of a high quality reference tran-
scriptome is critical for both isoform-centric and exon-
centric PSI estimation methods. Although transcriptomes
can be assembled from RNA-seq data on-the-fly by using
assembly tools such as Cufflinks, IsoLasso, StringTie or
TransComb, they are likely to contain a high degree of noise
(9). Such noise may significantly affect the accuracy of sub-
sequent PSI estimation. Moreover, even if a reference tran-
scriptome is available, it may not cover all expressed iso-
forms in the input RNA-seq data. Such an incomplete ref-
erence transcriptome may also misguide subsequent PSI es-
timation.

In this paper, we propose a new method for genome-
wide PSI estimation, called FreePSI, that requires neither
a reference transcriptome (hence, transcriptome-free) nor
the mapping of RNA-seq reads (hence, alignment-free). The
first freedom allows FreePSI to work effectively when a high
quality reference transcriptome is unavailable and the sec-
ond freedom not only helps make FreePSI more efficient,
it also eliminates the necessity of dealing with multi-reads,
which is a challenging problem by itself. Note that this is
the first alignment-free method in RNA-seq data analysis

that does not require a reference transcriptome. An outline
of the method is given below.

FreePSI takes as the input a reference genome with exon
boundary annotation and a set of RNA-seq reads. Since a
reference transcriptome is not assumed, it uses a weighted
directed bipartite graph (called an abundance flow graph)
to represent all possible isoforms of a gene and their ex-
pression levels. In such a graph, each vertex represents an
exon boundary and each edge represents either an exon or
an exon junction. The weight of an edge represents the to-
tal relative abundance of all isoforms covering the corre-
sponding exon or junction. Obviously, to estimate the PSI
value of each exon, it suffices to infer the edge weights in
every abundance flow graph. By regarding each edge as a
sequence of k-mers, FreePSI constructs a novel probabilis-
tic model for generating all observed k-mers in the input
RNA-seq reads based on the abundance flow graphs for all
genes. It then employs the expectation-maximization (EM)
framework to solve a genome-wide maximum likelihood es-
timation (MLE) of the model and a divide-and-conquer
strategy to factorize the key optimization problem in the
M-step into independent subproblems for each gene, which
are then solved by an ultrafast algorithm, conjugate gradi-
ent projection descent. The above factorization is crucial for
the efficiency of FreePSI because unlike Sailfish whose EM
algorithm involves an M-step with a closed-form solution
due to the given reference transcriptome, the key optimiza-
tion problem in the M-step of the EM algorithm of FreePSI
does not have a closed-form solution. Finally, it uses a post-
processing procedure based on straightforward correlation
analysis to “smooth out” the PSI values in each gene.

To evaluate the performance of FreePSI, we compare it
with isoform-centric methods including Salmon (the most
recent isoform abundance quantification method) and Cuf-
flinks (the most popular transcriptome assembly and iso-
form quantification method) as well as a representative
exon-centric method MISO on both simulated and real
data. Our experimental results demonstrate that although
FreePSI is unable to match the overall performance of
Salmon on simulated data where the correct reference tran-
scriptome is provided, it performs better than Cufflinks
without assuming a reference transcriptome (denoted as
Cufflinks-A) and MISO in terms of both accuracy and ef-
ficiency. In particular, for genes that have large proportions
of multi-mapped reads, FreePSI achieves significantly bet-
ter accuracy than Cufflinks-A. On the other hand, on a
real dataset where the true reference transcriptome is un-
known, both FreePSI and Cufflinks-A are able to outper-
form Salmon significantly in terms of accuracy. These re-
sults suggest that FreePSI may have important applications
in alternative splicing analysis when a high quality reference
transcriptome is unavailable.

MATERIALS AND METHODS

Overview

As outlined in Introduction, FreePSI estimates the PSI
values of all annotated exons on the reference genome
from RNA-seq reads and is both transcriptome-free and
alignment-free. It uses a weighted directed bipartite graph,
called an abundance flow graph, to represent all possible
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Figure 1. An overview of FreePSI. (A) The input of FreePSI includes a
reference genome with exon boundary annotation and a set of RNA-seq
reads. (B) The main component of FreePSI is a probabilistic generative
model. The abundance flow graph represents all possible isoforms and
their abundance levels. For each exon (or junction), the (theoretical) dis-
tribution of k-mers in the exon (or junction, respectively) is derived by as-
suming that the reads were uniformly sequenced. (C) An EM algorithm is
employed to perform genome-wide inference for the model, and a divided-
and-conquer strategy decomposes the key optimization problem in the
M-step into independent subproblems for each gene. Each subproblem is
solved using a conjugate gradient projection algorithm. (D) The output of
FreePSI includes estimated PSI values for all exons.

isoforms of a gene and their abundance levels. The PSI val-
ues of all exons in the gene can be easily derived from the
weights of the edges in the graph, where each edge repre-
sents an exon or junction in all possible isoforms. The edge
weights are constrained by linear inequalities and can be
estimated via an alignment-free approach. The alignment-
free estimation formulates (theoretical) k-mer distributions
on exons/junctions by assuming that the reads were uni-
formly sequenced and uses a novel probabilistic generative
model to describe all observed k-mers in the reads. Then
it computes a genome-wide MLE of the model by the EM
framework, and uses a divided-and-conquer strategy to de-
compose the key optimization problem in the M-step into
independent constrained nonlinear optimization subprob-
lems for each gene. These subproblems are solved in par-
allel by using an elaborate implementation of an ultrafast
conjugate gradient projection descent algorithm. Figure 1
illustrates a flowchart of FreePSI. The details of FreePSI
are given in the following subsections.

Abundance flow graph

An abundance flow graph (AFG) represents all possible iso-
forms of a gene and their relative abundance based on the
concept of segments. There are two types of segments: exon
segments and junction segments. An exon segment is de-
fined as an interval on the reference genome sandwiched

between two consecutive exon boundaries. For any pair of
exon segments i and j that can potentially be joined by a
junction read, a junction segment is defined as the con-
catenation of the length Lread−1 suffix of i and the length
Lread−1 prefix of j, where Lread represents the read length.
Note that exon segments and junction segments are referred
to as expressed segments and junctions, respectively, in (15).
Let αh denote the relative abundance of isoform h and αij
denote the total relative abundance of all isoforms cover-
ing the junction segment formed by exon segments i and j.
For convenience, we use the notation αii to denote the total
relative abundance of all isoforms covering exon segment i.
The PSI value of exon segment i can be calculated by the
following equation:

ψi = αi i∑
h

αh

Figure 2A illustrates an example of segments. Supplemen-
tary Section S1.1 gives the formal definitions of α and PSI
as well as a detailed derivation of the above equation.

An AFG is essentially a weighted directed bipartite graph
(U, V, E). Here, U = {ui|1 ≤ i ≤ nexon} represents the left
part of the vertices, where ui denotes the starting bound-
ary of exon segment i and nexon the number of exon seg-
ments, and V = {vi|1 ≤ i ≤ nexon} represents the right part,
where vi denotes the ending boundary of exon segment i.
The edges are separated into the forward edges and back-
ward edges, denoted as E = (E→, E←). The forward edges,
E→ = {<ui, vi>|1 ≤ i ≤ nexon}, represent the exon segments
and are weighted as αii. The backward edges, E← = {<vi,
uj>|1 ≤ i < j ≤ nexon}, represent the junction segments and
are weighted as αij. In addition, two vertices s and t repre-
senting dummy (source and sink) exons are introduced in
the graph to accommodate isoforms with alternative tran-
scription start sites and/or polyadenylation cleavage sites.
For each i, an edge <s, ui> is added with weight αsi to
denote the total relative abundance of all isoforms start-
ing with exon segment i and an edge <vi, t> is added with
weight αit to denote the total relative abundance of all iso-
forms ending with exon segment i. An example AFG for
a gene consisting of four exon segments is shown in Fig-
ure 2B. Note that although an AFG looks very similar to
a splicing graph introduced in (29), its edges represent exon
and junction segments rather than exons and introns.

Clearly, every isoform of the gene corresponds to a path
in the AFG from s to t, and vice versa. Hence, the total
relative abundance of all isoforms of the gene is equal to
the summation of all αsi. Moreover, the edge weights in the
AFG should satisfy the “flow conservation” property. In
other words, for each vertex in U∪V, the total weight of all
its in-edges is equal to the total weight of all its out-edges.
Supplementary Figure S1 provides an example of the flow
conservation property. Using this property, the PSI value of
an exon segment can be expressed as

ψi = αi i∑
i

αi i − ∑
i

∑
j>i

αi j
(1)
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Figure 2. (A) Segments. Every annotated exon (black bar) corresponds to one or more exon segments and has two boundaries. If the annotated exons
from different isoforms overlap, they are partitioned into disjoint exon segments. If exon segment i is joined with exon segment j in an isoform, a junction
segment of length 2(Lread−1) would be formed. For examples, the junction segment (1, 2) is formed by exon segments 1 and 2 and the junction segment (3,
4) by exon segments 3 and 4. The parameter α associated with each segment represents the total relative abundance of all isoforms covering the segment.
(B) Abundance flow graph. The figure shows an example AFG for a gene consisting of four exon segments. The AFG is constructed according to the exon
boundary annotation of the reference genome. The red vertices represent the starting boundaries of the exon segments, and the blue vertices represent the
ending boundaries of the exon segments. The forward edges from the red vertices to the blue vertices represent the exon segments and the backward edges
from the blue vertices to the red vertices represent the junction segments. The parameter α defined for each segment is assigned as its corresponding edge
weight. Two dummy vertices s and t are introduced to handle isoforms that begin and/or end with different exon segments. (C) Probabilistic generative
model. The graphical structure of the probabilistic generative model is a three-layer Bayesian network. The distributions of the random variables G and Sg
are determined by the parameters γ and �. Sg has gene number replicates, and the random variable M is observable. (D) Theoretical k-mer distribution.
The theoretical distribution of k-mers is derived from the assumption that the reads are uniformly distributed in an isoform. Since each read belongs to one
segment, they are also uniformly distributed in a segment. Hence, k-mers near the middle of a segment are usually covered by more reads in the segment
than k-mers near the boundaries of the segment. This gives rise to a trapezoid shaped theoretical distribution of k-mers in a segment. Note that a k-mer
may be shared by multiple (exon and junction) segments.

The following inequalities will help us in the estimation of
the α values:

αi i ≥
∑
j<i

α j i , αi i ≥
∑
j>i

αi j (2)

The detailed derivations of these linear constraints are given
in Supplementary Section S1.2.

Probabilistic generative model

Since each read is generated from a segment randomly and
each read defines a set of k-mers, each segment generates a

random set of k-mers. We construct a three-layer Bayesian
network to model the mixture of all k-mers generated by
the segments from all genes, as shown in Figure 2C. In the
following, s denotes a segment (exon or junction) and g a
gene. Let G represent a random gene, Sg a random segment
of gene g, for each g, and M a random k-mer. We use P(G
= g) = γ g to represent the probability that a read is gen-
erated from gene g, P(Sg = s|G = g) = θgs to represent the
conditional probability that a read generated from gene g
belongs to segment s, and P(M = m) to denote the prob-
ability of observing k-mer m. Then, the probability of an
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observed k-mer m can be expressed as

P (M = m) =
∑

g

γg

∑
s∈g

θgsP
(
M = m|Sg = s, G = g

)
where P(M = m|Sg = s, G = g) denotes the (theoretical) dis-
tribution of k-mers on segment s in gene g assuming that
the reads are sampled uniformly. See Supplementary Sec-
tion S2.3 for a detailed derivation of this probability.

Again assuming that the reads are uniformly distributed
on each segment, then the parameters α can be approxi-
mated by γ and θ as follows, if the relative abundance is
measured by TPM (transcripts per million) :

αgs ≈ Z2

Z1

γgθgs

L̃gs
(3)

where αgs denotes the total relative abundance of all iso-
forms covering segment s in gene g, Z1 and Z2 are normal-
ization constants, and L̃gs is the effective length of segment
s in gene g. That is, if Lgs denotes the length of segment s
in gene g, then L̃gs = Lgs − Lread + 1. Hence, the PSI value
defined in Equation 1 can be estimated from θ and the linear
constraints in Equation 2 can also be applied to θ . The de-
tailed derivation of the above approximation can be found
in Supplementary Section S2.4.

The theoretical k-mer distribution over a segment is nec-
essary because even if the reads are sampled uniformly, the
k-mers are not distributed uniformly across the segment.
See Figure 2D for an illustration. Note that the segment de-
fines L̃gs distinct reads, and each read contains Lread−K+1
k-mers. Let Fgsm denote the number of distinct reads cover-
ing a k-mer m on segment s in gene g. Then, the theoretical
distribution of all k-mers generated from the segment can
be written as

P
(
M = m|Sg = s, G = g

) = Fgsm

L̃gs (Lread − K + 1)
(4)

From now on, let cgsm denote P(M = m|Sg = s, G = g). More
details of the above discussion are given in Supplementary
Section S2.5.

Therefore, to quantify PSI values, it suffices to perform a
MLE of the parameters γ and θ .

Expectation-maximization algorithm

The MLE can be formulated as the following nonlinear con-
strained optimization problem:

max
∑

m

nm log

(∑
g

γg

∑
s∈g

θgscgsm

)
s.t. Agθ g ≥ 0, for all genes g∑

s∈g

θgs = 1, for all genes g

∑
g

γg = 1, ∀γg ≥ 0, ∀θgs ≥ 0

where nm denotes the number of occurrences of k-mer m in
all input reads, θ g the vector formed by all θgs, s ∈ g, and
Agθ g the matrix form of the linear constraints in Equation

(2) (see Supplementary Equations S2.7–S2.10 for details).
See Supplementary Section S3.1 for this formulation. We
develop an EM algorithm below to solve the optimization
problem iteratively.

Let γ denote the vector formed by all γ g and � the matrix
formed by stacking all vectors θ g. Before the iteration starts,
an initial feasible solution γ (0) and �(0) is obtained based on
the k-mer profiles of the input RNA-seq reads, as sketched
in Algorithm S1 of Supplementary Section S3.2. In general,
the E-step of the EM algorithm is to generate a function
for the expected log-likelihood based on the current estima-
tion of the parameters. Assuming that t iterations have been
completed, the expected log-likelihood is then

Q (γ ,�) = QI (γ ) +
∑

g

QII
g

(
θ g

)
where

QI (γ ) =
∑

m

∑
g

μ(t)
gm log

(
γg

)

QII
g

(
θ g

) =
∑

m

μ(t)
gm log

(∑
s∈g

θgscgsm

)

μ(t)
gm =

γ
(t)
g

∑
s∈g

θ
(t)
gs cgsm∑

g
γ

(t)
g

∑
s∈g

θ
(t)
gs cgsm

where μ
(t)
gm denotes the posterior probability of k-mer m be-

ing generated from gene g based on the last estimations of
γ (t) and �(t). More details of the derivation are given in
Supplementary Section S3.2. The expectation Q (γ ,�) is
decomposed into the summation of two terms, QI (γ ) and∑

g QII
g

(
θ g

)
, that involve independent parameters and con-

straints.
The M-step is to maximize the expected log-likelihood

given in the E-step. Given the above decomposition, the
maximization problem can be divided into two parts. The
first part is

max QI (γ )

s.t.
∑

g

γg = 1, ∀γg ≥ 0

This part has a closed-form solution (see Supplementary
Section S3.2). The second part

∑
g QII

g

(
θ g

)
can be solved

by a divide-and-conquer strategy, which leads to an opti-
mization subproblem for each gene g:

max QII
g

(
θ g

)
s.t. Agθ g ≥ 0,

∑
s∈g

θgs = 1, ∀θgs ≥ 0

Unfortunately, these subproblems do not have closed-form
solutions due to the presence of linear inequality con-
straints. Hence, we use a conjugate gradient projection de-
scent algorithm to solve them.
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The conjugate gradient projection descent (CGPD) algo-
rithm (30) is an efficient algorithm for convex optimization
under linear constraints. The detailed CGPD algorithm is
given in Algorithm S2 of Supplementary Section S3.3. Its
key idea is to perform line search along the conjugate direc-
tions in the null space of active constraints. Since the ob-
jective function QII

g

(
θ g

)
in our problem is a continuous dif-

ferentiable convex function and all the constraints are lin-
ear, the CGPD algorithm is particularly suitable. Because
∇QII

g

(
θ g

)
is much easier to compute than QII

g

(
θ g

)
(Sup-

plementary Section S4.2.1), we choose the secant method
for line search in CGPD, which only requires the first-order
derivatives of the objective function and has a super linear
convergence rate.

Post-processing

The above EM algorithm results in an estimation of the
parameters γ and �. Since these parameters only provide
an approximation of the parameters α (and thus PSI), as
shown in equation 3, some post-processing could be applied
to refine the raw estimation of PSI values. We adopt a post-
processing procedure based on two assumptions: for each
gene, (i) a small number of isoforms are expressed and (ii)
there exists an exon segment included in all expressed iso-
form.

The first assumption implies that the PSI values of the
exon segments from each gene should fall into a small set
of distinct numbers. Hence, we could potentially reduce
noise by clustering similar PSI values. An average-linkage
hierarchical clustering algorithm with Euclidean distance
is adopted here. Once a hierarchical clustering tree is ob-
tained, we cut it to result in the least number of clusters such
that either the maximum standard deviation of PSI values in
each cluster is less than 0.06 or the mean of the standard de-
viations of PSI values in all clusters is less than 0.05. Then,
the raw estimates of PSI values in each cluster are revised to
the mean values of the cluster.

The second assumption implies that there should be at
least one exon segment with PSI value equal to 100% PSI.
Hence, we rescale the above revised PSI values by dividing
each by the maximum PSI value of any exon segment in the
same gene.

It turns out that both the linear constraints in Equation
2 and the above processing steps are crucial for FreePSI to
obtain a good estimation of exon-inclusion ratios.

Implementation

FreePSI is implemented mainly in C++. We utilize the third-
part library Eigen for matrix manipulations. Paralleliza-
tion of the program is achieved by using OpenMP. Some key
issues of the implementation are discussed below.

K-mer hash table. As a preprocessing step, Jellyfish is in-
voked to count k-mers in the input RNA-seq reads. Then,
FreePSI indexes each k-mer as a 64-bit integer using a linear
algorithm that scans the reads and segments only once, as
shown in Algorithm S3 of Supplementary Section S4.1. The
k-mer indices are then hashed into aC++11 built-in hash ta-
ble, unordered map. Each entry of the hash table stores

two pieces of information: one is the count of the k-mer in
the reads and the other is a list of segments containing the
k-mer as well as the corresponding coefficient cgsm. During
hashing, all k-mers that share the same segments are com-
bined into one representative k-mer, and their counts and
the coefficients are also combined. This shrinks the size of
the hash table significantly. In our simulation experiments,
the shrinkage rates were ∼80% on average, which greatly re-
duced the computational complexity of subsequent steps. A
similar strategy was also adopted in (22).

Implementation of the EM algorithm. The convergence cri-
terion of the EM algorithm is that the log-likelihood in-
creases by less than 10−6 in an iteration. In order to speed
up the computation, sparse matrix and parallelization tech-
niques are adopted. In particular, the reduction function
in OpenMP is employed to allow for concurrent calculation
of the summation in the E-step of the algorithm. On the
other hand, the M-step, composed of many independent
subproblems, can be easily parallelized with OpenMP.

Efficiency improvements for CGPD. The CGPD algorithm
used in the M-step is the efficiency bottleneck of FreePSI.
Four techniques are implemented to improve its efficiency.

The first one is reordering matrix multiplications, which
has also been considered carefully in all implementations
of the CGPD algorithm. It is well-known that rearranging
the order of matrix multiplications can potentially reduce
time complexity drastically. In particular, the matrix multi-
plications in CGPD can be reordered so that only matrix-
vector multiplications are performed. In our simulation ex-
periments, we found that this technique contributed signif-
icantly to the efficiency of FreePSI.

The second strategy is the compaction of sparse param-
eters. Before calling CGPD, the zero entries in θ g as well as
their associated cgsm’s and optimization constraints are re-
moved. Only the remaining parameters are updated by the
CGPD algorithm. The compaction may reduce the number
of iterations by lowering the dimensionality of the search
space in CGPD.

The third technique is offline computation for a part of
∇QII

g

(
θ g

)
. The gradient ∇QII

g

(
θ g

)
is required in every iter-

ation of CGPD. We observe that the gradient can be de-
composed into the product of an iteration-invariant part
and an iteration-variant part, while the iteration-invariant
part consumes a large amount of running time (see Sup-
plementary Section S4.2.1 for the details). So, computing
the iteration-invariant part in advance can surely enhance
FreePSI’s efficiency.

The last technique is replacing outer products of vec-
tors into in-space column-wise operations. The CGPD al-
gorithm computes outer products of vectors during its itera-
tions. A direct implementation allocates new memory space
for storing the result matrix of each outer product, which is
then added to or subtracted from another matrix. However,
the storage of intermediate matrices is unnecessary. Hence,
we replace an outer product operation by some column-wise
operations that can be performed in-space. That is, the col-
umn vector is first multiplied with an element of the row
vector. The result is then added to or subtracted from the
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Table 1. Accuracy measured by both Pearson and Spearman correlations of the methods on both simulated and real RNA-seq datasets

Data Evaluation Correlation MISO Salmon Cufflinks-G Cufflinks-A FreePSI

Simulated data Genome-wide Pearson - 0.998 0.986 0.826 0.869
Spearman - 0.975 0.930 0.716 0.733

Exon-centric Pearson 0.807 0.995 0.985 0.884 0.895
Spearman 0.759 0.975 0.951 0.848 0.844

Real data Exon-centric Pearson 0.892 0.788 0.790 0.877 0.912
Spearman 0.838 0.762 0.754 0.875 0.897

corresponding column of another matrix (see Supplemen-
tary Section S4.2.2 for more details).

RESULTS

In this section, we evaluate the performance of FreePSI
by comparing it with the other state-of-the-art PSI quan-
tification methods on both simulated and real RNA-seq
data. More specifically, we compare two transcriptome-free
methods including FreePSI and Cufflinks (v2.2.1) and three
transcriptome-guided methods including Salmon (v0.7.2),
Cufflinks (v2.2.1) and MISO (v0.5.3). Here, Cufflinks is
considered as both a transcriptome-free method and a
transcriptome-guided method. In the former case (denoted
as Cufflinks-A), it is used to perform both transcriptome
assembly and abundance quantification; but in the latter
case (denoted as Cufflinks-G), it is only run to quantify the
relative abundance of the annotated isoforms. In addition,
HISAT (v2.0.4) is used for mapping reads in the alignment-
based methods (Cufflinks and MISO) and Jellyfish (v2.2.6)
is used for counting k-mers in FreePSI. All the methods are
run on a 64-bit Linux server consisting of two CPUs with
16 cores each and 96 GB memory.

Performance on simulated data

We use Flux Simulator (31) to simulate RNA-seq data.
Here, UCSC hg38 is used as the reference genome and the
RefSeq refGene annotation (23,983 genes and 57,822 iso-
forms) is used as the reference transcriptome. The expres-
sion level of each isoform is assigned according to a power-
law distribution, and roughly 100 million strand-specific
paired-end reads of length 76bp are simulated with the de-
fault sequencing error profile. The overall mapping rate of
the simulated reads to the reference genome is 92.2%.

FreePSI requires annotated exon boundaries as a part
of its input. Although such information is provided in the
reference genome (UCSC hg38), in order to be consistent
with the simulation, we extract exon boundaries from the
reference transcriptome by merging the annotated isoforms
(since the reads are simulated from them directly). In partic-
ular, overlapping exons from different isoforms are split into
disjoint “short exons”, and all short exons of lengths >30
bp are retained in the exon annotation. To avoid dealing
with genes with too many short exons, genes with more than
40 short exons are removed from the annotation, which ac-
counts for 1.4% of all genes. Finally, the exon annotation
is represented as a series of disjoint intervals on the refer-
ence genome. The annotation of alternative splicing events
required by MISO is extracted from the reference transcrip-
tome using a built-in toolkit of MISO. It includes five types

of alternative splicing events: skipped exon, retained intron,
mutually exclusive exons and alternative (5′ and 3′) bound-
aries.

The k-mer length is a key parameter in FreePSI. It is set as
27 bp in the experiment. (See Supplementary Section S5.4
for a discussion on the impact of the k-mer length on the
performance of FreePSI.) Jellyfish is used to count 27-mers
from the simulated RNA-seq reads while filtering out k-
mers that contain any base with error probability over 1%.
Both Cufflinks-A and Cufflinks-G are run with the “rescue
method” for multi-read refinement and the positional bias
correction enabled, while MISO and Salmon are run with
the default configurations. More details of the running con-
figurations are given in Supplementary Section S6.

To obtain the ground truth for evaluation, we transform
the simulated expression levels of the annotated isoforms
into PSI values of each annotated exon. The accuracy per-
formance is evaluated in two ways: genome-wide and exon-
centric. The genome-wide evaluation tests the overall accu-
racy of estimated PSI values across all exons of all genes.
MISO is excluded from this evaluation because it does not
provide a genome-wide estimation of PSI values. Totally,
7032 genes with expression levels over 10 TPM are selected
for the evaluation. The accuracy is measured by the Pear-
son and Spearman correlations between estimated and true
PSI values of all annotated exons in the selected genes. The
results of the compared methods are listed in Table 1 (rows
1 and 2).

The exon-centric evaluation is concerned with the accu-
racy of estimated PSI values of alternatively spliced exons,
which are exons with over 95% of their regions covered by
the annotated alternative splicing events extracted above.
According to this definition, 10,919 alternatively spliced ex-
ons are selected for the evaluation. The Pearson and Spear-
man correlation coefficients between estimated and true PSI
values of alternatively spliced exons are listed in Table 1
(rows 3 and 4).

Both genome-wide and exon-centric evaluations arrive
at similar conclusions. The transcriptome-guided isoform-
centric methods, Salmon and Cufflinks-G, delivered nearly
perfect estimates of PSI. This is clearly due to the fact that
the methods used the same reference transcriptome as em-
ployed in the simulation. On the other hand, the accuracy
of the exon-centric method, MISO, is just acceptable. The
transcriptome-free methods, FreePSI and Cufflinks-A, were
also able to deliver strong correlation results, with FreePSI
performing slightly better than Cufflinks-A. A scatter plot
of the estimation results of FreePSI is shown in Figure 3A.
Similar scatter plots for the other methods can be found in
Figures S2 and S3 of Supplementary Section S5.1.
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Figure 3. (A) Accuracy of FreePSI. The left and center scatter plots show the correlation between the true PSI values and PSI values estimated by FreePSI
on the simulated data using genome-wide and exon-centric evaluation methods, respectively. The right scatter plot shows the result of FreePSI on the
real data. The Y-axis in these plots represents the estimated values of PSI and the X-axis the ground truth, respectively. (B) Time usage evaluation. The
left histogram shows the time usages in hours of different methods with a single thread, while the right histogram shows the time usages in minutes of
the methods with 16 threads. Color is used to break the running time of a method into preprocessing time and quantification time. (C) Memory usage
evaluation. This histogram shows the memory usages in GB of different methods with 16 threads. Color is used to break the memory usage of a method
into preprocessing memory and quantification memory. The frame boxing the bars represents the peak memory usage of each method.
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Performance on real data

Although experiments on real data can provide a more real-
istic assessment of performance, ground truth is often diffi-
cult to obtain for real data. In the evaluation of many RNA-
seq quantification methods on real data, the results of quan-
titative real-time polymerase chain reaction (qRT-PCR) ex-
periments have been used as the ground truth of expression
levels of isoforms/genes. The limited number of isoforms or
splicing events considered in qRT-PCR experiments makes
it difficult to perform a genome-wide evaluation, but we can
still use it to conduct an exon-centric evaluation of the PSI
estimation methods.

We download the qRT-PCR data together with RNA-
seq data studied in (28) (SRA accession: SRR536348). The
RNA-seq dataset consists of ∼250 million strand-specific
paired-end reads with length 101 bp. The qRT-PCR data
concern 34 skipped exon events under the UCSC hg19 an-
notation, and provide the true PSI values of these events. To
process the RNA-seq data, we first use Sickle (32) (https:
//github.com/najoshi/sickle) to perform quality control on
the reads. Then, the tolerated error probability in Jellyfish
is decreased to 0.1% for each base when it is used to count
k-mers. k-mers that occur fewer than 10 times are removed.
The other processing steps are identical to those in the sim-
ulation experiment.

Out of the 34 skipped exons detected by the qRT-PCR
data, 22 can be mapped to our annotated exon boundaries.
Hence, we perform an exon-centric evaluation only on these
22 skipped exons. The Pearson and Spearman correlation
coefficients between qRT-PCR and estimated PSI values es-
timated by different methods on these 22 exons are listed in
Table 1 (rows 5 and 6).

We observe that the transcriptome-guided methods
Salmon and Cufflinks-G performed much worse than the
other methods on this real dataset. This is perhaps due to
the difference between the reference transcriptome and the
true transcriptome expressed in the real data. In particular,
Salmon and Cufflinks-G only estimated the relative abun-
dance for the annotated isoforms, and would ignore all iso-
forms that are actually expressed in the data but missing in
the reference transcriptome. Such reliance on a correct ref-
erence transcriptome might explain the 20% accuracy per-
formance drop on real data compared with the simulation
experiment. On the other hand, MISO performed much bet-
ter on this real data than on the simulated data. The good
performance of MISO on these 22 splicing events can per-
haps be explained by the fact that it is designed for estimat-
ing PSI values of specific splicing events. The transcriptome-
free methods, FreePSI and Cufflinks-A, continued to de-
liver strong correlation coefficients, again with FreePSI per-
forming better than Cufflinks-A. Since these methods do
not rely a given reference transcriptome, they are able to
deal with any set of expressed isoforms and provide robust
performance on data with unknown (or incomplete) tran-
scriptomes. A scatter plot of the results of FreePSI is shown
in Figure 3A, and scatter plots for the other methods are
given in Supplementary Figrue S4 of Supplementary Sec-
tion S5.2.

Efficiency evaluation

The efficiency of a quantification method is as impor-
tant as its accuracy. We present the running time of the
above PSI quantification methods using a single thread
or 16 threads separately in the above simulation experi-
ment. While single-thread running time represents the se-
quential time-efficiency of an algorithm, 16-thread run-
ning time could suggest the parallelizability of the algo-
rithm as well as its practical time efficiency when computer
clusters (or multi-core machines) are available. Since the
methods preprocess data differently, we also show the time
spent on preprocessing in each method besides quantifi-
cation. In particular, the alignment-based methods (Cuf-
flinks and MISO) begin by mapping reads to the reference
genome using HISAT, the pseudo-alignment-based method
(Salmon) starts by constructing a pseudo-alignment and the
alignment-free method (FreePSI) begins by building the k-
mer hash table. Figure 3B shows the running time of these
methods.

As shown in Figure 3B, the running time of all the meth-
ods compared is quite acceptable with 16 threads. Salmon
and FreePSI were able to complete the job within 20 min,
while the alignment-based methods (Cufflinks and MISO)
required more than an hour for both read mapping and PSI
quantification. In the case of using a single thread, both
Salmon and FreePSI finished the job within one hour, while
Cufflinks-A spent about 8 h and MISO about 28 h. Com-
paring the two transcriptome-free methods, we observe that
FreePSI ran about four times as fast as Cufflinks-A with 16
threads and eight times with a single thread. This suggests
that the time efficiency of FreePSI is much better than that
of Cufflinks-A.

We also present the memory footprints of these methods
with 16 threads in Figure 3C. The amounts of memory re-
quired by all methods are acceptable. The alignment-based
methods (Cufflinks and MISO) exhibited similar memory
complexity patterns. The peak memory of both methods
took place in read mapping, and the memory cost in the
quantification process was very low (under 2GB). Salmon
and FreePSI showed another pattern of memory complex-
ity. Both methods required similar amounts of memory
when estimating PSI, while FreePSI used about three times
of memory as Salmon in the preprocessing step. This seems
to be reasonable because FreePSI has to model all possi-
ble isoforms without a reference transcriptome, i.e. it has to
build a large hash table to store the relationship between k-
mers and all exon segments and possible junction segments
covering all genes.

DISCUSSION

The above experimental results on simulated and real RNA-
seq data demonstrate that FreePSI performs well in both
accuracy and efficiency. In this subsection, we discuss im-
portant factors that may affect the performance of FreePSI
as well as the other methods.

Impact of sequencing depth

Sequencing depth is often considered as impact factor in
RNA-seq analysis. In order to observe how sequencing

https://github.com/najoshi/sickle
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depth may affect the accuracy of the PSI quantification
methods, we simulate two more RNA-seq datasets, with 20
million reads and 50 million reads each, respectively. The ac-
curacy results of MISO, Salmon, Cufflinks-A, and FreePSI
on all three simulated datasets are shown in Figure 4A.
Clearly, the trend is the same for all the methods and the
accuracy gets better when the sequencing depth increases.
While Salmon maintained a high accuracy for all three se-
quencing depths, FreePSI was able to achieve a decent cor-
relation at 0.817 on the dataset with only 20 million reads.
In other words, FreePSI can be used to provide a robust esti-
mate of PSI values on RNA-seq data with a broad range of
sequencing depths, especially when a high quality reference
transcriptome is unavailable.

Impact of reference transcriptome

As shown in Table 1, the performance of the transcriptome-
guided methods dropped sharply in the real data exper-
iment, although they were nearly perfect in the simu-
lation experiment. On the contrary, the performance of
transcriptome-free methods remained robust on both simu-
lated and real datasets. A plausible explanation of the poor
performance of the transcriptome-guided methods on the
real dataset is the mismatch between the reference transcrip-
tome and true transcriptome expressed in the data. In order
to test how the PSI quantification methods are affected by
the quality of the reference transcriptome, we conduct the
following simulation experiment.

We use the simulated dataset with 100 million reads, but
provide a randomly selected subset of isoforms from the
RefSeq refGene annotation as the input reference transcrip-
tome for Salmon and Cufflinks-G. In other words, the tran-
scriptome used in the simulation (i.e. the RefSeq refGene an-
notation) is the true transcriptome, but we assume that only
an incomplete reference transcriptome is known. We use the
sampling rate of the reference transcriptome to represent
the coverage of the true transcriptome. As shown in Fig-
ure 4B, the accuracy of Salmon and Cufflinks-G (measured
by Pearson correlation) decreased almost linearly with the
drop of the sampling rate. When the sampling rate de-
creased to 80%, the performance of Salmon and Cufflinks-
G was much worse than that of FreePSI.

In practice, reference transcriptomes are often incom-
plete and many organisms do not have well-annotated tran-
scriptomes. Hence, a plausible approach would be to as-
semble the transcriptome first and then quantify PSI val-
ues, as illustrated in Cufflinks-A. In order to test how the
quality of quantification would impact PSI estimation, we
conduct another experiment that applies one of the best iso-
form abundance quantification methods, Salmon, to per-
form quantification based on the transcriptome assem-
bled by Cufflinks-A (denoted as Cufflinks-A-Salmon). As
Supplementary Figure S5 demonstrates, Cufflinks-A and
Cufflinks-A-Salmon performed very similarly on both sim-
ulated and real data. This may suggest that the bottleneck
of estimating PSI values without a reference transcriptome
for methods based on transcript quantification is still the
quality of transcriptome assembly. Given the difficulty of
transcriptome assembly, transcriptome-free methods such

as FreePSI are expected to have important applications in
the analysis of many real RNA-seq data.

Impact of gene expression level

The above genome-wide performance evaluation on simu-
lated data focused on the performance of the methods on
highly expressed genes (i.e. abundance ≥ 10 TPM). To study
how the expression level of a gene may influence the accu-
racy of PSI estimation, we consider subsets of genes with
abundance above various TPM thresholds (i.e. 0, 1, 2, 5
and 10) in the simulated data with 100M reads. The per-
formance of the methods on these subsets of genes is shown
in Figure 4C. When the TPM threshold increases from 0
to 10, the accuracy measured by the Pearson correlation
of all methods generally increases. Clearly, the expression
level of a gene has significant impact on the performance
of the two transcriptome-free methods (i.e. Cufflinks-A and
FreePSI). More highly expressed genes are generally ex-
pected to produce more reads and thus correctly assembled
isoforms, which lead to more correctly estimated PSI val-
ues. The accuracy of FreePSI is always better than that of
Cufflinks-A for all the TPM thresholds. Interestingly, the
performance of both methods decrease significantly when
the TPM threshold increases from 0 to 1. This suggests that
the methods are able to deal with unexpressed genes better
than lowly expressed genes. This is true for Cufflinks-A be-
cause when a gene is not expressed, no isoform will likely be
assembled and thus all PSI values of the gene will be output
as 0 (correctly) in our experiment. As for FreePSI, although
an unexpressed gene may attract a few noisy k-mers, their
effect will likely be diminished by the linear constraints in
the EM algorithm and the post-processing step of FreePSI,
leading to (correctly) estimated PSI values of 0 for the gene.
The robust performance of transcriptome-guided methods
(i.e., Cufflinks-G and Salmon) suggests that a correct ref-
erence transcriptome is important to PSI estimation espe-
cially for lowly expressed genes.

Impact of multi-mapped reads

Table 1 suggests that FreePSI provides a better esti-
mate than Cufflinks-A and Salmon performs better than
Cufflinks-G (and MISO) on simulated data. In other words,
the alignment-free or pseudo-alignment-based methods
generally perform better than the alignment-based meth-
ods, with or without the reference transcriptome. The
advantage of alignment-free and pseudo-alignment-based
methods in PSI estimation can perhaps be explained by con-
sidering the impact of multi-mapped reads. Cufflinks first
uses uniquely mapped reads to estimate the relative abun-
dance of isoforms and then employs a ‘rescue method’ to
refine the estimates using multi-mapped reads. On the other
hand, the alignment-free methods and pseudo-alignment-
based methods do not distinguish multi-mapped reads from
uniquely mapped reads, and use all reads simultaneously to
perform quantification. We conduct a simple simulation ex-
periment below to study the impact of these different treat-
ments of multi-mapped reads on PSI estimation.

We consider the simulated dataset with 100 million reads
again. Among all mapped reads, 2.48% are mapped to mul-
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Figure 4. (A) Impact of sequencing depth. The figure shows Pearson correlation between estimated PSI values and the ground truth on the spliced exons
(i.e. exon-centric evaluation) under various sequencing depths. (B) Impact of reference transcriptome. The X-axis represents the sampling rate used for
creating the reference transcriptome for Salmon and Cufflinks-G. The Y-axis represents Pearson correlation between estimated PSI values and the ground
truth on the spliced exons (i.e. exon-centric evaluation). The dashed line denotes the performance of FreePSI in the exon-centric evaluation as a reference.
(C) Impact of gene expression level. The figure shows the Pearson correlation between estimated PSI values and the ground truth on expressed genes under
different TPM thresholds. (D) Impact of multi-mapped reads. The four plots show the performance of four PSI estimation methods on 14 gene families
with high proportions of multi-mapped reads. Each point represents Pearson correlation on all exons of the genes in the corresponding family. The X-axis
represents the proportion of multi-mapped reads in each gene family. The dashed line denotes the Pearson correlation coefficient obtained by the method
in genome-wide evaluation as a reference. The full details of all results discussed in this figure can be found in Supplementary Tables S1, S2, S3 and S4 of
Supplementary Section S5.5.
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tiple positions. Since multi-mapped RNA-seq reads are gen-
erally from genes with similar sequences, we retrieve gene
families from the HGNC database and consider large gene
families that have large numbers of isoforms. These gene
families are expected to result in large portions of multi-
mapped reads in the simulated dataset with 100 million
reads. Altogether, 93 gene families are selected, each of
which contains >20 genes and at least twice as many iso-
forms. Out of these gene families, 14 contain multi-mapped
reads that are more than 2.48% of their total numbers of
mapped reads. Figure 4D shows the accuracy of the PSI
estimation methods on the 14 gene families with different
proportions of multi-mapped reads.

While Salmon’s performance was robust across all gene
families and remained nearly optimal, Cufflinks-G per-
formed well on most gene families but failed to obtain an
acceptable estimate of PSI values on the gene family with
the highest proportion of multi-mapped reads. The per-
formance of FreePSI fluctuated slightly on the gene fam-
ilies around its genome-wide performance. However, the
performance of Cufflinks-A clearly decreased with the in-
creased proportion of multi-mapped reads. This simple ex-
periment illustrates that the performance of alignment-
free and pseudo-alignment-based methods are generally
not affected by the existence of multi-mapped reads, but
the performance of alignment-based methods may suffer
from a proportion of multi-mapped reads. In particular, al-
though the “rescue method” was enabled, without the guid-
ance of the reference transcriptome, the performance of
Cufflinks-A still suffered significantly from multi-mapped
reads. Therefore, the advantage of FreePSI over Cufflinks-
A is magnified on genes or gene families that involve large
proportions of multi-mapped reads.

CONCLUSION

In this paper, we presented an alignment-free approach,
FreePSI, for estimating exon-inclusion ratios (or PSI val-
ues) without requiring the guidance of a reference transcrip-
tome. FreePSI takes as its input a reference genome with
exon boundary annotation and a set of RNA-seq reads, and
produces the PSI values of all annotated exons. An abun-
dance flow graph was introduced to represent all possible
isoforms and their abundance levels. A novel probabilistic
generative model was designed to allow for an alignment-
free estimation of the parameters in the abundance flow
graph. An efficient EM method based on a divide-and-
conquer strategy was proposed to decompose a genome-
wide MLE of the model into independent optimization sub-
problems for each gene. An ultrafast optimization algo-
rithm, conjugate gradient projection descent, was imple-
mented for solving these subproblems in parallel. Finally, a
post-processing procedure was adopted to smooth out the
estimated PSI values in each gene.

FreePSI is the first quantification method achieving
transcriptome-free and alignment-free simultaneously in
RNA-seq data analysis. As a result, it not only performs
well when high quality reference transcriptomes are not
present, but also runs efficiently and is able to deal with data
involving a large proportion of multi-mapped reads. We ex-
pect that FreePSI will have important applications in the

alternative splicing analysis for organisms that do not have
well studied transcriptomes.

AVAILABILITY

The FreePSI algorithm is freely available under the GNU
General Public License (GPLv3). A version of the source
code has been deposited at https://github.com/JY-Zhou/
FreePSI. The scripts for generating the simulated RNA-seq
datasets analyzed in the paper can be found on the same
GitHub page. The actual datasets and detailed experimen-
tal results are available from the corresponding author upon
request.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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et al. (2012) The evolutionary landscape of alternative splicing in
vertebrate species. Science, 338, 1587–1593.

7. Wang,Z., Gerstein,M. and Snyder,M. (2009) RNA-Seq: a
revolutionary tool for transcriptomics. Nat. Rev. Genet., 10, 57–63.

https://github.com/JY-Zhou/FreePSI


PAGE 13 OF 13 Nucleic Acids Research, 2018, Vol. 46, No. 2 e11

8. Garber,M., Grabherr,M.G., Guttman,M. and Trapnell,C. (2011)
Computational methods for transcriptome annotation and
quantification using RNA-seq. Nat. Methods, 8, 469–477.

9. Conesa,A., Madrigal,P., Tarazona,S., Gomez-Cabrero,D.,
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