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Abstract

Understanding the nature of neural activity and computations
in the brain will help us build better decision-making mod-
els to facilitate human-AI collaboration. Recording the neural
activity of multiple and large neural populations in the brain
is becoming widely available with modern recording tech-
niques. It still remains a challenge, however, to understand
how distinct and anatomically different neural populations in-
teract with each other to control behaviour. We propose a new
method to discover causal interactions between neural popu-
lations based on recurrent switching dynamical systems. We
introduce an extended dynamics model that incorporates the
current time-step when calculating the latent state variables.
We also introduce an acyclicity constraint in learning the pa-
rameters of the model. These mechanisms enable rich causal
interactions between neural populations to be identified from
the learned model. Our model outperforms previous work on
discovering interactions between neural populations in simu-
lated datasets, without sacrificing the prediction performance
of firing rates. We also apply our method on real neural record-
ings from two Macaque monkey brains performing a behav-
ioral task, and show that the proposed method is able to detect
causal interactions between brain regions related to the differ-
ent time windows of the task.
Keywords: causal discovery; neural population interactions;
recurrent switching dynamical systems

Introduction
Recent advances in neural recording techniques allow us to
monitor thousands of neurons in multiple brain regions at
the same time with single-cell resolution (Jun et al., 2017).
The interactions and flow of information between these neu-
ral populations enable the sensory, motor, and cognitive func-
tions of the brain (Kohn et al., 2020). A key challenge of uti-
lizing multi-region recordings to understand how these popu-
lations communicate still remains.

The neural activity across a population of neurons can be
depicted as a point in a coordinate system where each axis
corresponds to the activity of one neuron. Since the num-
ber of neurons we are recording from is in the hundreds or
thousands, this coordinate system defines a high-dimensional
space which is known as the neural state (Remington, Egger,
Narain, Wang, & Jazayeri, 2018). Analyzing the dynamics
between or within brain regions can be challenging in such
a space. Cunningham and Yu (2014) showed that neural ac-
tivities within a population can be correlated and reflect their
dynamics in a low-dimensional latent space, suggesting that
dimensionality reduction methods can be used to study the
local dynamics within a brain region. Gallego, Perich, Miller,

and Solla (2017) utilized such a method to analyze how motor
cortex controls movement in the brain of a Macaque monkey.

Dimensionality reduction techniques have also been used
to study the interactions between brain regions. J. D. Semedo,
Zandvakili, Machens, Yu, and Kohn (2019) applied the
reduced-rank regression method to reveal that the commu-
nication between two visual cortex areas V1 and V2 occurs
in a lower-dimension latent space. Rodu, Klein, Brincat,
Miller, and Kass (2018) and J. Semedo, Zandvakili, Kohn,
Machens, and Yu (2014) used a framework where latent vari-
ables summarize the population activity within each area or
shared across areas. The interactions of these latent variables
through time were used to describe the interactions between
brain areas.

Glaser, Whiteway, Cunningham, Paninski, and Linderman
(2020) proposed an extended version of recurrent switch-
ing linear dynamical system (rSLDS) where they enforced
population-specific latent variables when analyzing multiple-
population interactions. They also introduced a set of discrete
states each with its own unique dynamics. Furthermore, the
probabilities in the transition model between these discrete
states were governed by the continuous latent states of the
neural populations. This parametrization increases the inter-
pretability of the final model.

None of the aforementioned works considers causality
when they study neural population interactions. Here, causal-
ity refers to the direct influence that one neural population ex-
erts over another neural population. This can be interpreted as
the passing or exchanging of information between them over
time. Discovering the causality between neural populations
especially in low-dimensional spaces might be the key to un-
derstanding the link between neural activity and brain behav-
ior (Jazayeri & Afraz, 2017), (Saxena & Cunningham, 2019).
We propose an extension of the rSLDS similar to Glaser et al.
(2020) to identify causal interactions between the population-
specific latent variables. Driven by Cohen and Kohn (2011),
who showed that timescale window of calculated spikes of
the neural activity affects the measurements of interactions
between neurons, we extend the model to include the cur-
rent time step in the calculation of latent variables. This in-
troduces cycles in the directed acyclic graph (DAG) of the
model. Learning the DAG of a model is an NP-Hard prob-
lem (Chickering, 1996), mainly because it is very difficult
to efficiently enforce the combinatorial acyclicity constraint.
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Zheng, Aragam, Ravikumar, and Xing (2018) proposed a new
approach for score-based learning of DAGs by converting the
traditional combinatorial optimization problem into a contin-
uous program. We adapt their suggested smooth function in
our problem to impose the acyclicity constraint in our model
and learn the underlying DAG.

We fit our model with a variational expectation-
maximization algorithm that leverages the standard smooth
optimization scheme L-BFGS (Mikosch, Wright Stephen, &
Jorge, 2006). We show that our model is able to detect causal
interactions between multiple neural populations in simulated
and real data recordings. Discovering such interactions can
help us understand how brain regions communicate while the
brain performs a behavioral task and what computations take
place in the brain.

Background
In an example of two interacting neural populations, we wish
to study the interactions between the source population and
the target population. In particular, we want to understand
how the neural activity of the source population relates to the
activity of the target population. One way to determine that
relationship is to measure how well the neural activity of the
source population predicts the activity of the target popula-
tion. Given the high-dimensionality of the neural activity of
both populations, however, it is a challenge to avoid overfit-
ting. There are various types of models that use dimension-
ality reduction techniques with latent variables to overcome
this overfitting problem for multiple neural populations.

The linear dynamical system model (LDS) uses linear dy-
namics to model a lower-dimensional latent space represen-
tation of the multi-dimensional time series. An extended ver-
sion of LDS is the switching linear dynamical system (SLDS)
which includes a set of discrete states, each with its own linear
dynamics. This allows the model to switch between different
linear dynamics over time, thus modeling nonlinear dynam-
ics in a locally linear manner. A Markov transition matrix
specifies the probabilities of switching between the discrete
states, similar to a hidden Markov model. A further exten-
sion of SLDS is the rSLDS model, where the discrete state
transitions are dependent on the the low-dimensional latent
space that represents the time series (Linderman et al., 2017).

More specifically, in rSLDS, a vector yt represents the neu-
ral activity of N neurons at time t. xt ∈ RD denotes the con-
tinuous latent state space with a dimension much lower com-
pared to that of the observed neural activity (D≪N). A Gen-
eralized Linear Model (GLM) models the observed neural ac-
tivity as E[yt ] = f (Cxt +d), where C ∈RN×D and d ∈RN are
defining a linear mapping between the latent states and the
neural activity. The function f is applied to map the output
to the desired space. Typically, for spike counts, the soft-
plus function f (x) = log(1+ex) is used along with a Poisson
distribution. A Markov process with conditional dependen-
cies on the continuous latent states models the discrete states
zt ∈ {1, . . . ,K}, where K is the total number of discrete states

which is predetermined. Note that each discrete state K has its
own unique set of linear dynamics. Furthermore, the discrete
state at time t is sampled from a Categorical Distribution,

zt ∼ Cat(πt), πt = softmax(Rzt−1xt−1 + rzt−1), (1)

where Rzt−1 ∈ RK×D and rzt−1 ∈ RK define a GLM that de-
termines the influence of the continuous latent state on the
discrete state transitions.

Glaser et al. (2020) proposed an extended version of
rSLDS called multi-population srSLDS (mp-srSLDS) where
they constrained the neural activity of each brain region to
have its own continuous latent states. These are defined as:

x( j)
t = A(zt )

j← jx
( j)
t−1 +∑

i ̸= j
A(zt )

j←ix
(i)
t−1 +b(zt )

j + ε
( j)
t , (2)

where εt = (ε
(1)
t , . . . ,ε

(J)
t ) ∼ N(0,Q(zt )) and b(zt )

j is the bias.

The matrices A(zt )
j← jx

( j)
t−1 and A(zt )

j←ix
(i)
t−1 capture the linear dy-

namics within and between brain regions, respectively. Note
that each continuous latent state xt at time t is associated with
a different brain region j. It also depends on the previous time
step continuous latent state xt−1. Finally they extended the
transition model to distinguish between self-transitions and
transitions to other states. By dividing the neural population
activity into groups based on brain region and constraining
each region to have its own latent state, the interactions be-
tween those regions can be easily interpreted. Matrix A(k)

captures these interactions for each discrete state. However,
as mentioned in their work, these interactions should not be
interpreted as inferred causal interactions within the brain.

Method
In this work, we extend the mp-srSLDS model to identify
causal relationships between neural populations based on
their neural activity. We model the observed spiking ac-
tivity of different neural populations in a continuous low-
dimensional latent state space similar to the rSLDS we de-
scribed. If the size of the time window of spiking activity
is large enough, it can include causal interactions that are
missed. To address this issue, we propose an extension of the
dynamics in the continuous space that includes the current
time step of the latent state. In that continuous latent space,
we want to detect causal interactions between the neural pop-
ulations and discover the underlying DAG that depicts the
causal relations. The extended dynamics of our model takes
into consideration the cycles between neural populations that
occur in the brain. This however, hinders our ability to learn
the underlying DAG. Hence, we introduce an acyclicity con-
straint that helps us solve this problem and discover causal
interactions between neural populations.

Extending the dynamics model Typically, when calculat-
ing spike counts, we select a time bin size in the range of
20-100ms based on various experimental conditions and the
method we want to apply. This time bin size is an important
factor that can affect the measurement of interactions between

2528



Pop. 1

Pop. 2

Pop. 3

Re
ce

iv
in

g

Pop. 1

State 1 State 2 State 3
Ground Truth Dynamics

Sending Sending Sending

Time

pop 1

pop 2

pop 3

Observed
Neural Activity

yt

Continuous
Latent Variables

xt

Discrete Latent
Variables 

zt

B)

Pop. 2 Pop. 3Pop. 1 Pop. 2 Pop. 3Pop. 1 Pop. 2 Pop. 3

A)

Pop. 1

Pop. 2

Pop. 3

Re
ce

iv
in

g

Pop. 1

State 1 State 2 State 3
Example Inferred Dynamics

Sending Sending Sending
Pop. 2 Pop. 3Pop. 1 Pop. 2 Pop. 3Pop. 1 Pop. 2 Pop. 3

0.4

-0.4

-0.2

-0.0

0.2

Figure 1: A) Graphical Model of our causal model, an extension of mp-srSLDS for multiple population interactions. Each color
represents a different neural population. B) (top) Ground Truth Dynamics Matrices A for each of the three states of simulated
datasets. (bottom) Example of inferred Dynamics Matrices A.

populations of neurons. Small time bin sizes can reveal weak
correlations between neural populations while big time bin
sizes can reveal strong ones (Cohen & Kohn, 2011). This
means that information in each current time bin of neural
activities is important to accurately measure neural popula-
tion interactions. As a result, we extend the multi-population
srSLDS dynamics model to include the current time step of
observed neural activity in the calculation of the continuous
latent state variables (Fig1.A). Thus, the new temporal dy-
namics in our model are defined as:

x( j)
t = A(zt )

j← jx
( j)
t−1 +A(zt )

j← jx
( j)
t +∑

i̸= j
A(zt )

j←ix
(i)
t−1

+A(zt )
j←ix

(i)
t +b(zt )

j + ε
( j)
t , (3)

where xt ∈ RD, A ∈ RK×D×D, D is the size of the low-
dimensional space and K is the number of discrete states.
Note that each discrete state zt has a different dynamics ma-
trix A(k) with its own dynamics for the interactions between
neural populations.

The two new introduced terms, A(zt )
j← jx

( j)
t and A(zt )

j←ix
(i)
t , cap-

ture the linear dynamics of the current time bin within and
between brain regions, respectively. Note that A(k)

j← j and A(k)
j←i

form the blocks of the full dynamics matrix A(k). Now the
dynamics matrix A(k) can capture richer interactions between
neural populations, especially in cases where the time bin size

is big (≫ 25ms).

Acyclicity Constraint Naturally this new definition of the
dynamics model introduces cycles between the continuous la-
tent states, thus creating a directed cyclic graph. This im-
poses difficulties in learning the underlying DAG. Our sec-
ond extension of the model inspired by the work of Zheng et
al. (2018) where they proposed a new definition of acyclic-
ity which is expressed through a smooth function constraint
h(A) = 0. This function ideally should satisfy the following
criteria:

1. h(A) = 0 if and only if A is acyclic;

2. The values of h quantify the ”DAG-ness” of the graph;

3. h is smooth;

4. h and its derivatives are easy to compute.

“DAG-ness” is a quantification of how much the matrix A
violates acyclicity. A function that satisfies all the above is:

h(A) = tr(eA◦A)−d, (4)

where ◦ is the element-wise product. The parameter d is a
constant that is equal to the dimension of matrix A. When
there is no cycle in the underlying graph then h(A) = 0. By
incorporating this function in our fitting method while learn-
ing the parameters of our model, we can learn a matrix A that
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depicts the causal interactions between the different neural
populations in the lower latent space x. We also introduce
a regularizer parameter λh(A) that will control the level of
acyclicity in our model. In our experiments we try different
values of λ and evaluate their performance, but in general the
choice of λ should depend on the type of observed data we
train the model with.

Model Fitting We fit our model using a variational
expectation-maximization algorithm (Zoltowski, Pillow, &
Linderman, 2020). We use a structured mean-field approx-
imation (Jordan, Ghahramani, Jaakkola, & Saul, 1999) to ap-
proximate the posterior distribution on latent variables given
the model parameters and observed data similar to Glaser et
al. (2020). Finally, we introduce our acyclicity constraint
λh(A) when maximizing the expected log probability.

L(Θ) = E
[

log p(z1:T ,{x
( j)
1:T ,y

( j)
1:T}

J
j=1)

]
−

K

∑
k=1

λh(A(k)), (5)

where Θ is the set of all model parameters. Since in our case
each discrete state has its own dynamics matrix A we apply
the constraint separately in each one of the A(k) matrices and
calculate their summation in the final term of the equation (5).

Results
In our experiments we test if our model is able to discover
causal interactions between neural populations. We quan-
tify the model performance in two ways: First, in simulated
datasets of neural spike activity, where ground truth is known,
we evaluate the accuracy of the inferred dynamics matrix A
and the inferred firing rates for different model versions. Sec-
ond, in real data recordings of neural spike activity, where
ground truth is not available, we do a qualitative interpreta-
tion of the results.

Simulated Data
We performed experiments on two types of simulated datasets
generated by two different generative models. The first gen-
erative model did not contain cycles like the original mp-
srSLDS model while the second one contained cycles as we
suggested in our extension of the model. We used J = 3
neural populations with D = 5 size for the latent space,
N = 75 neurons per population and K = 3 discrete states of
dynamics each with its own dynamics matrix A as shown
in Fig1.B. We experimented with different number of time
bins for the time series of neural activity which we set to
T ∈ {1000,2000,3000,4000,5000}. Finally, we also tried
various bin sizes {25,50,100} each with an average of 20
spikes per bin. The aim of the experiments is to show the
consistency of the model as we increase the size of available
data.

We trained three versions of our extended model with dif-
ferent values of our proposed regularizer λ ∈ {0.5,2,20} to
explore different levels of acyclicity. We also trained a ver-
sion of mp-srSLDS on the same datasets for comparison. Ad-
ditionally, we trained a version of srSLDS model which does

not constrain the neural activity of each brain region to have
its own continuous latent states.

To evaluate the performance of our models, first, we mea-
sured the Mean Square Error (MSE) between the ground truth
and the inferred dynamics matrix A (Fig2.A). Secondly, we
measured the predictive accuracy of each model by calculat-
ing the MSE between the firing rate of the simulated neural
activities and the predicted firing rate of the model (Fig2.B).
More specifically, we created new time series of neural activ-
ities sampled from the same Poisson distribution as the neural
activities used for training. Then, we tested the accuracy of
the model on the prediction of the last 1000 time bins of each
dataset.

We show that all three versions of our extended models
that include the acyclicity constraint outperform both the mp-
srSLDS and srSLDS models when inferring the dynamics
matrix A (Fig2.A). This is even more clear on the simulated
datasets with cycles. Additionally, when we compare the pre-
dictive accuracy on firing rates of simulated neural activity
we see that the proposed models do not sacrifice any predic-
tion performance and are marginally better for datasets from
both generative models, escpecially in cases with high num-
ber of time bins. These results indicate that the inclusion of
the acyclicity constraint and the extended dynamics are im-
proving the overall performance of our model, allowing it to
better detect causal interactions between neural populations.
Unfortunately, our model is not performing as well as mp-
srSLDS when predicting the discrete state zt of the dataset.
That means that the model cannot detect more than one dis-
crete state in the data with high accuracy. This is mostly be-
cause the transition model does not include any similar exten-
sion as our proposed dynamics that include the current time
step in the calculation of latent variables xt . Future work on
extending the transition model can help improve the perfor-
mance of our model when predicting the discrete states zt .

Real Data
Next we applied our method on a dataset that consists of spik-
ing activity recorded from the Dorsolateral Prefrontal Cor-
tex (DLPFC) and Front Eye Fields (FEF) areas of a Macaque
monkey brain while the monkey performed a delayed saccade
task (Parthasarathy et al., 2017). In this behavioral task the
monkey was placed in front of a monitor displaying a grid.
The trial began when the monkey’s gaze was fixated on the
fixation point at the center of the grid. The goal was to re-
member the location of a target stimulus and make an eye
movement at the end of the trial to the correct location to re-
ceive juice as reward. In Fig3.A, we present the various time
windows of the task and their corresponding duration. Par-
ticularly, a target (purple square) was presented for 300ms
in a random place inside the grid in the monitor, called the
Target Stimulus Display (TSD). TSD was followed by a 1s
delay (D1). A distractor (orange square) was then presented
for 300ms (termed the Distractor Stimulus Display (DSD)),
followed by a another 1s delay (D2). After D2, the fixation
point disappeared from the monitor which was the go cue for
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the monkey to report the location of the target using an eye
movement (Response). If the movement was in the correct
location, it was rewarded with a drop of juice.

The task was performed by two monkeys. Each dataset
consisted of 525 and 365 trials for each monkey. Spikes from
127 FEF and 173 DLPFC neurons were recorded in total from
both monkeys. The spikes were counted in timebins of size
100ms. In our experiments we only modeled the neural activ-
ity of D1, D2, and Response time windows.

First we cross-validated our models with different D latent
space sizes to decide which one accurately predicts the firing
rate of real recordings. We ended up picking D= 3. Then, we
used that model to fit the fully observed data recordings from
each of the three time windows. We assumed that each time
window of the task contained only one discrete state related
to it, thus, we chose K = 1 as the latent discrete state size.
We picked a low value for λ = 0.5 to allow cycles between
the neural populations, since we know that the brain has a
high number of recurrent connections. Our goal was to learn
the dynamics matrix A that contains the causal interactions
between the two brain regions for the different time windows
of the behavioral task. In Fig3.C we show an example of
inferred dynamics matrices A and the predictive firing rates
of the model for each monkey. We can see that our model is
able to fit the firing rates of the data with high accuracy.

To quantify the causal interactions represented in matrix
A we measured the ratio of external to internal interactions
for each brain area across all the three time windows. Our
results in Fig3.B show an increasing trend of causal interac-
tions from DLPFC to FEF as we move from D1 to D2 and
Response, compared to the interactions from FEF to DLPFC
where such a trend is not present. This can be explained by
the transferring of information related to the location of the
target from DLPFC to the FEF, since DLPFC contains the
memory information of the correct target location and FEF is
responsible for controlling the movement of the eyes of the
monkey. The causal interactions peak during the response
time window where the monkey has to make an eye move-
ment to the correct target location. These results demonstrate
the ability of our model to detect the causality between the
two neural populations.

Subjects and surgical procedures
We used two adult male macaques (Macaca fascicularis) in
this experiment; Animal J (age 4) and Animal W (age 12).
All animal procedures were approved by, and conducted in
compliance with, the standard of the Agri-Food and Veteri-
nary Authority of Singapore and Singapore Health Services
Institutional Animal Care and Use Committee (SingHealth
IACUC #2012/SHS/757), and the National University of Sin-
gapore Institutional Animal Care and Use Committee (NUS
IACUC #R18-0295). Procedures also conformed to the rec-
ommendations described in Guidelines for the Care and Use
of Mammals in Neuroscience and Behavioral Research (Na-
tional Academies Press, 2003). Each animal was first im-

planted with a titanium head-post (Crist Instruments, MD,
USA) before arrays of intracortical microelectrodes (Micro-
Probes, MD, USA) were implanted in multiple regions of
the left frontal cortex. In Animal W, one array of 32 elec-
trodes was placed over the FEF, while in Animal J, 2 arrays of
32 electrodes were placed over the dorsal and ventral aspect
of the FEF, respectively. The arrays consisted of platinum-
iridium wires with either 200- or 400µm separation, 1-5.5
mm long and with 0.5MΩ of impedance, arranged in 4× 4
or 8×4 grids.

Discussion
Understanding how computations and causal interactions oc-
cur in different brain regions regulating different behavioral
functions can help us build more effective decision-making
models that support human-AI collaboration. In this work,
we proposed an extended version of recurrent switching dy-
namical systems model to infer causal interactions between
neural populations. We demonstrated increased efficacy of
our model compared to similar previous work on simulated
datasets. We achieved this by introducing an extended dy-
namics model of the latent state variables along with an
acyclicity constraint to learn the parameters of the model.
Furthermore, we showed that our model is able to detect
causal interactions of real data recordings from the Macaque
monkey brains in an interpretable way. A limitation of our
model is that it cannot match the performance of previous
works when detecting the discrete state of the observed data.
However, we believe that future work to extend the current
discrete state model can improve its performance.
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