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Abstract

Autism spectrum disorder (ASD) is a common comorbidity of epilepsy and seizures and/or 

epileptiform activity are observed in a significant proportion of ASD patients. Current research 

also implies that autistic traits can be observed to a various degree in mice and rats with seizures. 

This suggests that there are shared mechanisms in both ASD and epilepsy syndromes. Here, we 

first review the standard, validated methods used to assess autistic traits in animal models as well 

as their limitations with regards to epilepsy models. We then discuss two of the potential 

pathological processes that could be shared between ASD and epilepsy. We first focus on 

functional implications of neuroinflammation including changes to excitable networks mediated 

by inflammatory regulators. Finally we examine mechanisms at the cellular and network level 

involved in neuronal excitability, timing and network coordination that may directly lead to 

behavioral disturbances present in both epilepsy and ASD. This mini-review summarizes the work 

first presented at an Investigators Workshop at the 2016 American Epilepsy Society meeting.
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Introduction

Autism spectrum disorder (ASD) and epilepsy are prevalent and pervasive lifelong disorders 

for which medicinal interventions are either not readily available or need drastic 

improvements. ASD represents a common co-morbidity in patients with epilepsy and vice 
versa, evidenced by the prevalence statistics that show that epileptic disorders are 10 times 

more likely to be diagnosed with ASD (Sundelin et al., 2016). According to prevailing 

estimates, ~30% of patients with ASD develop epilepsy at some point of their lives, and at 

the same time ~30% of patients with epilepsy as a primary diagnosis fit the criteria of being 

diagnosed with ASD (Clarke et al., 2005; Seidenberg et al., 2009; Tuchman & Rapin, 2002).

ASD prevalence is higher in boys compared to girls (Baron-Cohen et al., 2011). However in 

the past two years, research suggests that the ASD sex-bias toward boys may be the result of 

cases of under- or misdiagnosis in girls, who present with distinct, subtler behavioral profiles 

than boys due to a variety of compensatory behaviors and camouflaging the symptoms (Lai 

et al., 2015; Park et al., 2016; Rynkiewicz et al., 2016). Interestingly, association of epilepsy 

and ASD has been diagnosed more often in girls than in boys (for review see (Tuchman et 

al., 2010b)).

Most significant indicators that predict whether patients with epilepsy will also have ASD 

are an early onset of epilepsy together with low cognitive functioning and intellectual 

disability. Thus, the highest incidence of ASD is in those patients with epilepsy suffering 

from severe epileptic encephalopathies of infancy and childhood, i.e., Ohtahara, West 

(infantile spasms) and Lennox-Gastaut syndromes, and in those children with identifiable 

severe structural damage (symptomatic epilepsies). In these patients, a large number of 

uncontrolled seizures together with the structural abnormalities also likely contribute to 

ASD.

Stratifying patient subgroups and focusing on genetically identifiable ASD populations with 

co-morbid epilepsy is a main focus in autism research (i.e. genetic disorders); therefore, use 

of similar tools would be advantageous to both research focus groups. In fact, several 

neurodevelopmental syndromes with causal genetic etiology show co-existence of epilepsy 

and ASD as parallel syndromes, such as Rett, Dravet, Angelman, Dup15q and/or Landau 

Kleffner syndromes. In these syndromes, seizures and epilepsy often occur as a sign of 

general hyperexcitability with EEG epileptiform abnormalities, which is also common in 

some children with ASD (Tuchman et al., 2010b). Besides seizures, associated symptoms 

often found in ASD patients can include lack of achievement of neurodevelopmental 

milestones, learning and memory deficits, poor motor skills, hyperactivity, hyperexcitability, 

changes in responsiveness, aggression, anxiety, fear, sensory processing, altered sleep 

patterns and gastrointestinal distress.

Assessing social abilities in children is based on standardized interviews and observations 

using Autism Diagnostic Observation Schedule (ADOS) and the Autism Diagnostic 

Interview (ADI). The latest Diagnostic and Statistical Manual of Mental Disorders-5 

(DSM-5) recognizes two main behavioral domains for diagnostic criteria of ASD in humans: 

1) impairments in reciprocal social communication (verbal and non-verbal) and 2) repetitive 
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behaviors, with restricted interests and behavioral inflexibility. New diagnostic criteria 

include a broader definition of the ASD phenotype and reflect the current consensus that the 

causes and clinical presentations of ASD are highly heterogeneous (Association, 2013; Lai 

et al., 2014). To diagnose ASD clinically, at least six symptoms have to be present with a 

minimum two abnormal measures in social interaction, and at least one measure of disturbed 

social communication with some type of repetitive behavior. The new criteria in the DSM-5 

manual help more specifically diagnose the patients with ASD (Kulage et al., 2014) and 

assure better tailored treatments for distinct social behavior disorders (Halls et al., 2015). 

The new clinical benchmarks for ASD also lead to re-evaluation of the criteria for animal 

models of ASD and pose more strict rules for the ASD relevant behavioral phenotypes, 

especially to identify and study ASD as co-morbidity in animal models of epilepsy.

ASD as well as epilepsy have multifactorial etiology and the high prevalence of co-existence 

of ASD and epilepsy suggests some shared underlying neurological abnormalities. New 

research suggests that a combination of heritable and environmental factors have a strong 

influence on both ASD and epilepsy (Meltzer & Van de Water, 2017; Ornoy et al., 2016; 

Sandin et al., 2017; Shorvon, 2014; Wipfler et al., 2018). Yet etiology in the overwhelming 

majority of cases is still unknown. Animal models have become important tools for studying 

the roles of genetic and environmental factors, and their reciprocal influence on the onset 

and severity of disorders, including ASD and epilepsies. Here, we would like to first review 

standard, validated methods used to assess autistic traits in animal models consistent with 

the human DSM-5 criteria recommendations as well as review their limitations with regards 

to epilepsy models. Then we want to focus on two newly implicated mechanisms 

contributing to neurodevelopmental dysfunction and etiology in both ASD and epilepsy: the 

immune dysfunction associated with chronic neuroinflammation and the changes in network 

synchrony. While other mechanisms have been proposed and discussed in recent excellent 

reviews and meta-analysis studies (Besag, 2015; Jeste & Tuchman, 2015; Lee et al., 2015; 

Spence & Schneider, 2009; Strasser et al., 2018), neuroinflammation and network 

coordination hypothesis recently gained attraction of the research community. We believe 

they may also form common substrates for epilepsy and ASD and contribute to the 

disturbances in the excitatory-inhibitory (E-I) balance characteristic for both diseases. This 

mini-review summarizes the work presented at an Investigators Workshop at the 2016 

American Epilepsy Society Annual Meeting held in Houston, Texas. Both clinicians and 

basic scientists have participated to discuss the new directions in epilepsy and ASD research.

Modeling the Social Brain: Preclinical assays for behavioral outcomes 

relevant to ASD and epilepsy. A cautionary tale for epilepsy models

The criteria for ASD diagnosis are purely behavioral and in vivo assessments in preclinical 

rodent models are important tools to determine the presence of autism-relevant phenotypes 

(Crawley, 2012; Silverman et al., 2010). Whether or not ASD-relevant behavioral 

phenotypes are present in an animal model of epilepsy, it is imperative that the criteria 

established for the endophenotypes of the human syndrome correspond to the behavioral 

phenotypes of the animals without confounding effects. Such strategies will ensure not 

collecting false positive or false negative data (Sukoff Rizzo & Silverman, 2016).
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Standard, validated methods for quantifying behavior relevant to social communication and 

repetitive behaviors with restricted interests are available in the rodent model behavioral 

neuroscience literature (Kazdoba et al., 2016; Silverman et al., 2010; Sukoff Rizzo & 

Silverman, 2016) and summarized in Table 1.

The methods employed for behavioral phenotyping for ASD-relevant traits are complex and 

warrant caution with regards to confounding factors. Some behaviors seen in animal models 

of ASD can overlap with seizure behavior. Therefore, cautious interpretations are necessary 

to determine whether the behavior of the animal is the result of ASD traits or seizures (see 

Table 1). The ultimate goal is to identify disease-relevant and translational behavioral 

endpoints that are robust, reliable, and reproducible, and that can be employed to evaluate 

potential of novel therapeutic agents to treat disease. The impact of a competing or 

confounding behavior on the behavioral endpoints should not be underestimated. For 

example, previous experience of seizures or some mutations can cause physical impairments 

that limit a subject’s ability to perform a task. Genetic mutations relevant to ASD that 

caused physical defects, including smaller body weights include the most common copy 

number variant in ASD, 16p11.2 deletions (Portmann et al., 2014). Motor defects in ASD 

models including hypo- (Copping et al., 2017; Dhamne et al., 2017) and hyper- locomotion 

(Kazdoba et al., 2014; Penagarikano et al., 2011; Pietropaolo et al., 2011; Spencer et al., 

2011; Spencer et al., 2006; Uutela et al., 2012) can also have consequences on the behavioral 

outcome of interest by competing or preventing the subject from engaging in the tasks of 

core symptomology testing. Another example is that strains of mice with visual impairments 

(FVB or CE3H) may not be useful for cognitive tests that employ visual cues as reference 

stimuli, and, further, it is well documented that blind mice tend to be hyperactive (Dyer & 

Weldon, 1975). Olfactory impairments that can occur following seizures (Tiedeken et al., 

2013) may abolish sociability in mice and rats. Animals with history of seizures may exhibit 

long-term changes in locomotor activity (Samotaeva et al., 2012). Most importantly, seizures 

may lead to other co-morbidities, i.e., depression-like behavior, changes in anxiety or 

developing aggressive behavior (Castelhano et al., 2015; Kalynchuk, 2000; Medel-Matus et 

al., 2017; Szyndler et al., 2002; Tiedeken & Ramsdell, 2013) and all of those may interfere 

with proper evaluation in complex social communication behavior. Repetitive behavior and 

automatisms in rodents such as wet dog shakes, excessive grooming, scratching, jumping or 

circling could be part of seizure behavior (Velíšková & Velíšek, 2017) and not necessarily a 

sign of autistic-like behavior. EEG recordings can provide the information regarding 

ongoing ictal activity to distinguish ASD and ongoing seizure activity.

Just as it is important to understand the limitations of a behavioral task itself, it is important 

to investigate, acknowledge, and report the limitations of the rodent model being tested so as 

not to be shortsighted in the interpretations of the data.

A Common Thread: Neuroinflammation in Epilepsy and ASD

Neuroinflammation is a pathological process actively present in both epilepsy and ASD, 

further linking the two diseases. The causes of neuroinflammation in both cases are poorly 

understood, however recent studies have begun to shine a light on how inflammation in the 

brain is contributing to these diseases’ pathologies. In this mini review, we will focus mainly 
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on commonalities between epilepsy and ASD in terms of neuroinflammation and functional 

implications of neuroinflammation, including changes to excitable networks mediated by 

inflammatory regulators.

I) Inflammation in ASD

In ASD, the presence of neuroinflammation has been reported in both clinical and 

preclinical studies. Post-mortem brain tissue from ASD patients, ranging in age from 3 years 

to adult, was shown to have Allograft Inflammatory Factor 1 (Iba1) -positive microglia with 

an activated morphology, defined by truncated processes and an enlarged cell soma volume, 

compared to age matched controls (Morgan et al., 2010). However in this study, microglial 

activation was not specific to ASD patients with seizure presence, as data from these patients 

showed “normal” ramified microglial morphology. This highlights that microglial activation 

is not always dependent on seizure presence, nor is it a consistent marker of seizures in ASD 

patients.

Astrocytes, another inflammation-associated cell type in the brain, are also activated in ASD 

patients (Vargas et al., 2005). Increased Glial fibrillary acidic protein (GFAP; astrocytic 

marker) expression is observed in cerebellum and cortex and accompanied by localized 

expression of pro-inflammatory cytokine interleukin-6 (IL-6), and chemokine MCP-1. IL-6 

drives microglial activation and promotes astrogliosis, whilst MCP-1 is a chemoattractant 

driving macrophage migration, both contributing to the neuro-inflammatory cycle.

A recent study found that increased serum levels of high mobility group box protein 1 

(HMGB1) significantly correlated to impaired social interaction in ASD patients (Emanuele 

et al., 2010). This protein is a key inflammatory molecule, which can activate interleukin-1 

(IL-1) mediated signaling (including IL-1β) leading to activation of toll-like receptor 4 

(TLR4) through NFκB-mediated processes.

Besides the changes in neuroinflammatory markers, the brain’s immune response, in 

general, is compromised in ASD patients, namely the imbalance in pro-inflammatory/anti-

inflammatory signaling (Ashwood et al., 2011). Adaptive immune response, primarily 

coordinated by T helper cells, differs in ASD patient frontal cerebral cortex compared to 

healthy controls (Li et al., 2009). Increased Th1 type cytokines, which are typically pro-

inflammatory and pro-injury inducing (e.g. IL-6, TNFα and IFNγ), are increased, whilst 

Th2, reparative/counteracting inflammation cytokines (e.g. IL-4, IL-10 and IL-5) are 

unchanged resulting in an increased Th1/Th2 ratio in ASD patients. Another study showed 

an exacerbated immune response in ASD patients (Jyonouchi et al., 2001); peripheral blood 

mononuclear cells (PBMCs) taken from ASD patients displayed two-fold higher cytokine 

expression basally compared to controls, and this difference was further increased after LPS 

stimulation, a classical immune trigger. TNFα was the primary cytokine found to be 

increased at baseline conditions in ASD samples compared to controls, and increased further 

after LPS stimulation. Interestingly, when the TNFα levels were compared to unaffected 

siblings, the difference was still significant yet not so prominent as the comparison to 

unrelated individuals, suggesting some genetic contribution. In conclusion, the data illustrate 

that heightened response of immune cells determines the ASD pathology.
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Finally, mast cell (MC) activation is a key process found present in ASD patients 

contributing to neuroinflammation. It is proposed that MC located in the hypothalamus can 

be activated via triggers such as stress, which is strongly associated with ASD, and lead to 

changes in blood-brain barrier (BBB) integrity (Theoharides & Zhang, 2011). The hormone 

neurotensin, which activates MCs, is increased in ASD patients. Activation of MCs then 

leads to pre-formed TNFα and other MC mediators (e.g. IL-6, vascular endothelial growth 

factor and mitochondrial DNA) being carried to target endothelial cells and comprising the 

BBB tight junctions along with other cytokines to exert pro-inflammatory effects driving 

BBB breakdown. Additional cross-talk between glia and MCs can lead to further immune 

activation, such as activation of the complement pathway, further promoting 

neuroinflammation.

II) Inflammatory processes in epilepsy

Like ASD, neuroinflammation is also present in epilepsy as shown by several key studies 

(reviewed by (Vezzani et al., 2011; Vezzani et al., 2016)). Significant increases in pro-

inflammatory cytokines, including TNFα, IL-1β and IL-6, have been found in human 

temporal lobe epilepsy (TLE) brain samples (Vezzani & Granata, 2005). These cytokines are 

known to be proconvulsant in vivo (Kalueff et al., 2004) and in vitro (Chiavegato et al., 

2014). IL-1β expression was also ectopically localized to astrocytes in TLE patients with 

hippocampal sclerosis (HS), which is not observed in patients without HS suggesting 

relation to the neurodegeneration (Ravizza et al., 2008). Astrocytic end-feet projecting 

around endothelial cells expressing IL-1β provide the potential for neuroinflammation to 

affect BBB integrity.

Furthermore, it has been shown in several experimental models, that antagonizing the pro-

inflammatory cytokines can be anticonvulsant. Similarly to ASD brains, increased HMBG1 

expression is present in the hippocampus of TLE patients (Maroso et al., 2010) and children 

with febrile seizures (Choi et al., 2011), triggering IL-1/TLR4 signaling cascades driving 

inflammation and resultant increased excitability. Accordingly, when the endogenous 

antagonist, IL-1 receptor antagonist (IL-1ra), is applied to the brain or expressed selectively 

in astrocytes (Vezzani et al., 2000), seizures are inhibited. Antagonists of TLR4 and 

HMGB1 are also effective at controlling seizures in preclinical models (Maroso et al., 2010).

Further examples of inhibiting cytokine signaling have also proved to be anticonvulsant 

including modulation of the complement activation pathway. Inhibition of a key pro-

inflammatory complement factor, C5a, was shown to be anticonvulsant in several acute and 

chronic models of epilepsy potentially due to inhibition of downstream cytokine 

upregulation and signaling (i.e. TNFα. IL-1β) (Benson et al., 2015). Neuroprotective 

outcomes following status epilepticus were observed following inhibition of C5a signaling, 

an effect attributed to reduction of TNFα production (Benson et al., 2015) and increases in 

IL-4 (Benson et al., 2017). Finally, the BBB integrity is compromised following complement 

activation resulting in increases in peripheral inflammatory immune cell migration (Benson 

et al., 2017).
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III) Common inflammatory pathologies in ASD and epilepsy

Approximately in 30% of childhood ASD patients with epilepsy, the seizures are typically 

difficult to control adequately with current anticonvulsant drugs (Tuchman et al., 2010a). 

Shared inflammatory pathologies occurring in both ASD and epilepsy are numerous. More 

specifically, increased HMBG1, compromised BBB integrity, microglial activation and 

stress-induced inflammation are key players in both pathologies. The neuroinflammation in 

both diseases significantly contributes to brain excitability and to the severity or progression 

of both syndromes, as well as more obviously increase seizure incidence/occurrence. A 

delicate equilibrium between excitatory and inhibitory neurotransmitters, glutamate and 

GABA respectively, is key to maintaining homeostasis by maintaining the E-I balance and 

preventing unwanted and uncontrollable neuronal firing manifesting in seizures, which are 

observed in both conditions and discussed in details below. Regarding the 

neuroinflammation, it is known to affect the E-I balance in multiple ways. Astrogliosis, 

detected in samples from both epilepsy and ASD postmortem brain tissue, leads to 

impairments in glutamate uptake by astrocytes resulting in excessive extracellular glutamate 

stores, which drives the glutamate receptor activation (Tian et al., 2005). Further 

contributing to this rise in extracellular glutamate are the microglial cells, which when 

activated also expel glutamate (Hu et al., 2000). Increased levels of pro-inflammatory 

cytokine IL-6, measured in both conditions, worsens this state of heightened excitability as it 

stimulates excitatory synapse formation in conjunction with impairing inhibitory synapse 

formation (Nelson & Valakh, 2015; Nelson et al., 2012). The pro-inflammatory cytokine 

TNFα also increased in both ASD and epilepsy brains works via an NFκB mediated 

mechanism to repress expression of excitatory amino acid transporter 2 (EAAT2) reducing 

the glutamate uptake (Sitcheran et al., 2005) and reduces the strength of inhibitory signaling 

between neurons (Pribiag & Stellwagen, 2013).

Neuronal coordination hypothesis: between etiology and phenotype

The common presence of epileptiform activity and ASD symptoms in various syndromes 

can be interpreted in two ways: 1) epileptiform activity causes ASD symptoms and/or 2) 

both are manifestations of a similar underlying cause. In the following section, we will 

discuss both possibilities separately. However, it is highly probable that they are non-

exclusive. Although, epileptiform events may originate from the same etiological origin as 

the autistic symptoms, they may aggravate the behavioral phenotype.

I) Is Epileptiform activity responsible for ASD symptoms?

The co-existence of seizures and interictal discharges in ASD patients is well documented 

(Spence & Schneider, 2009). It has been proposed that the EEG abnormalities may pose a 

causal role in the behavioral disturbances observed in ASD patients. In syndromes such as 

Rett, Fragile X, Angleman or Prader-Willi and other childhood epileptic encephalopathies, 

both epileptiform manifestations and ASD phenotypes are commonly observed together. In 

these syndromes, the onset of behavioral deficits often coincides with the apparition of the 

first epileptiform manifestations, leading to the hypothesis that seizures and/or epileptiform 

discharges during critical periods of development contribute, at least in part, to the 

behavioral deficits.

Velíšková et al. Page 7

Epilepsy Res. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



This hypothesis is indeed supported by animal model studies. When epilepsy is induced by 

prolonged status epilepticus, be it via chemical, hyperthermia or hypoxia/ischemia, a wide 

range of modifications is observed at different levels of organization. Specifically, prolonged 

SE has been shown to induce inflammation, epigenetic changes, cell metabolism, ion 

channels and receptors, rewiring or aberrant wiring, cell death, apoptosis and neurogenesis. 

In turn, affected networks become prone to seizures and, less able to sustain normal 

cognitive function (Lenck-Santini & Scott, 2015). It is important to note that induction 

protocols in animal models are extremely severe compared to what happens in real life. 

When prolonged SE occurs it is because of pre-existing conditions, trauma or brain infection 

that can also directly affect brain function, making it difficult to disentangle the role of 

etiology versus SE. In addition, the correlation between seizure frequency or severity and the 

extent of cognitive or behavioral impairment is not always straightforward, particularly in 

the context of epileptic encephalopathies (Nabbout et al., 2013). Finally, seizure suppression, 

particularly in epileptic encephalopathies, is associated with little to no improvement of the 

functional aspects. Therefore, it is likely that etiology, i.e. the underlying cause of epilepsy, 

may also contribute directly to cognitive/behavioral impairment in syndromes with epilepsy.

Apart from seizures, interictal EEG abnormalities are also believed to play an important role 

in behavioral comorbidities. Indeed, data show that both in humans and animal models 

(Holmes & Lenck-Santini, 2006; Kleen et al., 2010; Kleen et al., 2013) interictal 

abnormalities (IAs) can alter sensory, memory and higher cognitive functions such as verbal 

recognition. IAs interference with cognitive processes is transient, in the sense that the 

impact is limited to the ongoing process supported by the structure where IAs occur or 

propagate. However, IAs impact could be dramatic in situations where attention is critical 

such as when operating machines, driving or while at school. In addition, there are 

conditions where IAs are particularly frequent during sleep, a process known to play a 

fundamental role in learning and memory. This is the case of conditions such as continuous 

spike and wave discharges during slow wave sleep or Landau-Kleffner syndrome where 

during sleep a large majority of the patient EEG is occupied by IAs. These patients suffer 

from severe cognitive impairment and commonly have ASD. To help patients with large 

number of IAs and cognitive impairment although no or only few seizures, attempts have 

been made to suppress IAs by administration of anticonvulsant drugs with the hope to 

restore cognitive function. Unfortunately, although few cases have been successful, the 

efficacy of such approach has not been confirmed and some treatments have actually a 

negative effect on cognition (Wirrell et al., 2008). Although it is recognized that IAs have a 

significant impact on cognitive/behavioral function, the limited and inconclusive efficacy of 

different anticonvulsant drugs in restoring cognitive/behavioral function (see (Frye et al., 

2013) for review) suggests that another mechanism is at play. The following section will aim 

at identifying such mechanism.

II) Is there a common mechanism?

a) E-I balance hypothesis—A hallmark of epilepsy research is the concept of E-I 

balance. This term is based on the assumption that normal brain function depends on the 

perfect balance between excitatory and inhibitory inputs to principal cells. Too much 

excitation or too little inhibition leads to hyperexcitability of the network, in turn leading to 
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seizures. So far, this notion has been critical to further our understanding of epileptogenesis, 

ictogenesis and treatment design. Indeed, in a large number of epilepsy syndromes, the 

apparition of seizures can be explained either by a loss of inhibition, for instance by 

alterations of GABAergic receptors or interneuron function, or by excessive excitation when 

there is gain of function of excitatory receptors or increase in excitatory pathways. In 

accordance with the E-I balance hypothesis, drugs that increase inhibition, such as 

GABAergic agonists, or decrease excitation, such as sodium or calcium channels blockers 

are highly efficient in regulating seizures. In this regard, the E-I balance concept is critical as 

it provides a functional framework with clearly identified benefits, namely suppression of 

seizures.

In the mindset that seizures result from an alteration of E-I balance, we could logically 

propose that the mere presence of seizures in ASD is an indication of E-I imbalance in ASD. 

This hypothesis has been proposed for a more than a decade (Brooks-Kayal, 2011; Nelson & 

Valakh, 2015; Rubenstein & Merzenich, 2003). Loss of inhibition (via alteration of 

GABAergic synaptic transmission, interneuron dysfunction and abnormal migration) has 

been documented in ASD patients. Particularly, there is a decrease of GABA levels in 

various cortical regions of ASD patients, including the frontal cortex (Puts et al., 2017) 

where reduced GABAA receptor binding has been observed (Zurcher et al., 2015). 

Furthermore, recent post-mortem studies in patients show a reduction of parvalbumin 

interneurons in the medial prefrontal cortex (Ariza et al., 2018). On the top of loss of 

inhibition, gain of excitation (via an increased principal cell excitability of glutamatergic 

transmission) has also been identified in ASD (Nelson & Valakh, 2015). Characteristic 

findings in ASD syndromes, such as abnormal micro-column organization (Casanova, 2006; 

Frye et al., 2016), changes in metabolic pathways (Huber et al., 2015; Kwon et al., 2006), 

homeostatic plasticity (Nelson & Valakh, 2015) or alterations of glial function (Lioy et al., 

2011) are also known to affect E-I balance. Finally, various genetic abnormalities, known to 

alter E-I balance have been identified in both syndrome families (Lee et al., 2017). These 

include SCN1A (Weiss et al., 2003) GRIN2A mutations (Lesca et al., 2012), PTEN (Elia et 

al., 2012; Orrico et al., 2009) and others.

A logical consequence of the role of E-I imbalance hypothesis in ASD and epilepsy is that 

anticonvulsant drugs should restore cognitive/behavioral comorbidities in such syndromes. 

This strategy has indeed proven successful in animal models. For instance Scn1a +/− mice 

show improvement of social and memory deficits after clonazepam treatment (Han et al., 

2012) and juvenile diazepam treatment of the BTBR mouse model of autism prevented the 

emergence sensory integration deficits in this model. Unfortunately, in humans, 

anticonvulsant drugs have a limited to no efficacy in restoring cognitive and behavioral 

function in ASD (Belsito et al., 2001; Frye et al., 2013; Hellings et al., 2005). This is also 

the case for epilepsy syndromes. For instance, although clonazepam, a common Dravet 

syndrome treatment (Shi et al., 2016) restores cognitive function in mouse models (Han et 

al., 2012), it fails to do so in humans. Therefore, targeting E-I balance, at least using 

traditional anticonvulsant drugs, fails to treat cognitive disturbances (see (Frye et al., 2013) 

for review). This suggests that the mechanisms involved in cognitive dysfunction observed 

in ASD and epilepsy may be more complex than the seizures or E-I balance alteration. To 
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help identify potential mechanisms let us reconsider the E-I balance hypothesis in light of 

recent theories.

b) Role of etiology: interneurons and information processing—One important 

caveat with the E-I balance concept is that the term “balance” does not necessary mean static 

equilibrium. In the eye of early neuroscientists, brain systems were considered as systems 

prone to remain in an equilibrium state that only fluctuates when disturbed by external or 

internal (excitatory) inputs and quickly return back to a quiescent state. However, recent 

advances in fundamental research demonstrate that this is not the case and that, even in the 

resting state, brain structures are constantly active and that information in the brain is being 

processed via specific rhythms. Brain rhythms, by coordinating the firing of neurons, enable 

the transmission of information across and within structures (Fries, 2015). In addition, they 

are believed to allow the segregation of pyramidal cells into functional groups, called cell 

assemblies that convey meaningful information (Buzsaki, 2010). Importantly, GABAergic 

innervation plays a fundamental role in these processes. GABAergic inhibition provides, via 

perisomatic inhibition, a pace making activity for the oscillations (Bartos et al., 2007). It has 

been also proposed that such rhythmical silencing of neurons during oscillations creates 

short time windows, in which information is being segmented in “chunks” that can be 

transmitted and interpreted efficiently (Buzsaki, 2010). On the other hand, GABA inhibition 

is also critical for driving the flow of information within the dendritic microcircuits. In the 

hippocampus for example, each interneuron subtype projects to a specific part of the 

pyramidal cell dendritic arborization and is active at specific phase of ongoing oscillations, 

hereby routing and filtering excitatory flow to the cell (Klausberger & Somogyi, 2008; 

Kullmann & Lamsa, 2011; Leao et al., 2012; Varga et al., 2012).

The GABAergic innervation is altered in ASD. In addition, brain rhythms and coordination 

of oscillations across structures are also affected (reviewed by (Kessler et al., 2016; Simon & 

Wallace, 2016)). Indeed, there is now accumulating evidence that ASD patients show 

reduced gamma (30–80Hz) and alpha (8–14Hz) power and phase synchrony when presented 

with visual or auditory stimuli (Buard et al., 2013; Edgar et al., 2015; Grice et al., 2001; 

Milne et al., 2009; Rojas et al., 2008; Stroganova et al., 2012; Sun et al., 2012). Recent work 

from Vakorin and colleagues (Vakorin et al., 2017) shows that the maturation profile of 

oscillatory power and network synchrony during resting state are abnormal in children and 

adolescent with ASD. Although the link between GABAergic alterations, altered rhythms 

and behavioral deficits in ASD has not yet been completely established, it is likely that, the 

E-I imbalance observed in ASD induces alterations of brain rhythms, and a poor 

coordination within and across networks. The resulting deficits in functional connectivity 

may be responsible for the sensory, perceptual, attention and social disturbances, the 

characteristics of ASD (Simon & Wallace, 2016).

Similarly to what has been documented in ASD, a significant number of epilepsy syndromes 

are caused by alterations of GABAergic function. It is highly plausible that the information 

processes mediated by GABA activity are also directly affected in these syndromes. A 

classic illustration of this idea is provided by SCN1A mutations in the context of Dravet 

syndrome: The SCN1A gene codes for the voltage gated sodium channel Nav1.1, that is 

involved in the generation and propagation of action potentials in the axonal initial segment 
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and along the axon. While SCN1A mutations are observed in various epilepsy syndromes 

such as generalized epilepsy with febrile seizures plus (GEFS+), it is only when mutations 

cause a loss of function of the protein that epileptic encephalopathy is observed. Loss of 

function of Nav1.1 prevents neurons to fire at high frequencies, yet such mutations 

paradoxically cause epilepsy. This phenomenon is explained by the fact that Nav1.1 is 

preferentially highly expressed in GABAergic interneurons expressing parvalbumin 

(Ogiwara et al., 2007; Yu et al., 2006). Therefore, Nav1.1 down regulation preferentially 

alters inhibitory function, explaining the seizure phenotype. As for other epileptic 

encephalopathies, cognitive impairment in Dravet syndrome was for a long time thought to 

be caused by seizures and ongoing epileptiform activity during infancy. However, there is no 

correlation between seizure frequency or severity and the extent of cognitive impairment in 

this syndrome. Moreover, the antiseizure treatments such as clobazam fail to improve 

cognitive function. Note finally that SCN1A mutations have been observed in ASD patients, 

suggesting that etiology could directly, in addition to seizures, cause behavioral and 

cognitive impairment.

The main difficulty in understanding the mechanisms of cognitive impairment in epilepsy is 

to dissociate the impact of etiology from the impact of seizures. To overcome this difficulty, 

we developed a targeted approach, in which the etiological alteration is restricted to a 

specific portion of the brain. This can be readily achieved using RNA interference, a 

technique enabling to down regulate the expression of a specific gene in vivo. Using either 

lipofectamine or viral vectors injected into the target structure, we managed to down-

regulate the expression of scn1a in adult rats.

To determine the impact of Nav1.1 deficit on neuronal function independently of seizures, 

we (Bender et al., 2013; 2016) conducted two sets of experiments. In both experiments, 

scn1a expression was down regulated in a restricted brain region to avoid seizures and in 

adult rats to prevent developmental disruptions. Our goal was to identify the direct 

physiological and behavioral consequences of scn1a down regulation and avoid the 

confounding effect of seizures. In the first series of experiments (Bender et al., 2013), we 

targeted Nav1.1 expression in the medial septum/diagonal band of Broca (MSDB), a 

structure controlling theta oscillations in the hippocampal formation. Theta oscillations have 

been shown to play a critical role in learning and memory as well as in organizing cell 

activity into cell assemblies that represent ongoing trajectories of rodents. We found that 

reduction of Nav1.1 expression in the MSDB induced a significant decrease of both 

amplitude and frequency of hippocampal oscillations. Theta frequency decrease was 

associated with spatial memory deficit in a reaction to spatial change task. Importantly, 

Nav1.1 down regulation in the MSDB did not cause seizures, therefore demonstrating that 

cognitive impairment in Dravet syndrome could directly be the result of etiology.

In the second set of experiments using single unit recordings (Bender et al., 2016) we 

showed that the decrease in hippocampal theta oscillation following MSDB Nav1.1 knock 

down was likely caused by a selective loss of fast spiking activity, a characteristic of 

GABAergic neurons in this structure. In addition, the induced decrease in hippocampal theta 

frequency was correlated with decreased performance in T-maze alternation task. Here 

again, no seizure was observed.
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Finally, there is now accumulating evidence that effective GABA signaling, which is the first 

one to emerge during development, plays a critical role in orchestrating the maturation of 

cortical function (see (Le Magueresse & Monyer, 2013) for review). For example, in the 

primary visual cortex, the initiation of the critical period during which neural circuits are 

shaped with experience is strongly influenced by the maturation of fast-spiking parvalbumin 

interneurons (Takesian & Hensch, 2013). It is therefore extremely likely that alterations of 

GABA signaling during such critical periods of development would have devastating 

impacts on the establishment and future maturation of cognitive/behavioral processes.

Conclusions

In conclusion, this paper highlights the most important autistic traits commonly tested in 

models of ASD. These traits should be considered when modeling ASD as a co-morbid 

functional outcome in models of seizures and epilepsy.

Recent studies implicate novel mechanisms involved in neurodevelopmental diseases such as 

ASD and epilepsy including the neuroinflammation and deficits in immune system and 

mechanisms involved in neuronal excitability, timing and network coordination that may 

directly lead to behavioral disturbances and thus, form a common substrate for epilepsy and 

ASD.

The clinical impact of neuroinflammation is difficult to interpret and put into action given 

the diverse types of inflammation observed in both disorders including severity and location 

within the brain. As discussed above, ASD patients even with severe microglia activation 

may not present with seizures and vice versa (Morgan et al., 2010), similarly not all patients 

with epilepsy (even the same type, i.e., TLE) may have ongoing neuro-inflammatory 

processes associated with seizures (Ravizza et al., 2008). Thus, the choice of patients 

eligible for adjunct anti-inflammatory treatment in both diseases has to be carefully made. 

Yet, a clear biomarker of neuroinflammation presence in these syndromes still awaits to be 

established especially given the diverse number of cellular activators and signaling 

molecules involved in these processes. Nevertheless, clinical trials show promise of adjunct 

anti-inflammatory and immune system modulating therapies in alleviating of some key 

symptoms in ASD patients (Chez et al., 2012) as well as in patients with epilepsy targeting 

the neuroinflammatory signaling seems to show promising directions as a disease modifying 

therapy (Terrone et al., 2017). Yet, further research has to be done to identify the 

subpopulation of patients most benefitting by targeting the inflammatory signaling.

Finally, taken together, preclinical studies show that altering interneuron function in the 

context of an epilepsy syndrome or ASD can also have direct effects on brain rhythms, 

cognitive function, maturation and ultimately cognitive and behavioral performance. 

Therefore, designing new treatments targeting these functions, including the anti-

inflammatory therapies, and not exclusively seizures will certainly benefit the patients.
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Highlights

• Autism spectrum disorder (ASD) is a common comorbidity of epilepsy

• ASD and epilepsy have multifactorial etiology with strong evidence of shared 

underlying neurological abnormalities

• New clinical benchmarks for ASD pose stricter criteria for animal models and 

provide a more systematic framework to test autistic traits

• Compromised brain immune response and neuroinflammation contributes to 

excitation-inhibition (E-I) imbalance in ASD and epilepsy

• E-I imbalance due to the loss of GABAergic function disrupts the brain 

rhythms and leads to cognitive and behavioral deficits observed in ASD and 

epilepsy

Velíšková et al. Page 21

Epilepsy Res. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Velíšková et al. Page 22

Ta
b

le
 1

su
m

m
ar

iz
es

 r
ep

re
se

nt
at

iv
e 

be
ha

vi
or

al
 a

ss
ay

s 
an

d 
ex

am
pl

es
 in

 th
e 

ge
ne

tic
 m

od
el

s 
of

 A
SD

 li
te

ra
tu

re
 th

at
 w

er
e 

us
ed

 to
 id

en
tif

y 
ph

en
ot

yp
es

 u
si

ng
 th

e 
tw

o 

co
re

 A
SD

-r
el

ev
an

t b
eh

av
io

ra
l d

om
ai

ns
 a

nd
 p

os
si

bl
e 

co
nf

ou
nd

in
g 

be
ha

vi
or

s 
re

le
va

nt
 in

 e
pi

le
pt

ic
 a

ni
m

al
 m

od
el

s.

B
eh

av
io

ra
l D

om
ai

n
A

ss
ay

A
SD

-r
el

ev
an

t 
co

re
 s

ym
pt

om
s

R
ef

er
en

ce
s 

fo
r 

de
ta

ile
d 

de
sc

ri
pt

io
n 

of
 t

he
 t

es
t

C
om

m
on

 s
ei

zu
re

 b
eh

av
io

rs
 t

ha
t 

ca
n 

m
im

ic
 A

SD
 

tr
ai

ts

R
ec

ip
ro

ca
l s

oc
ia

l c
om

m
un

ic
at

io
n

T
hr

ee
-c

ha
m

be
re

d 
ta

sk
E

qu
al

 o
r 

le
ss

 ti
m

e 
sp

en
t w

ith
 th

e 
no

ve
l m

ou
se

 a
nd

 th
e 

no
ve

l o
bj

ec
t

(D
ha

m
ne

 e
t a

l.,
 2

01
7;

 E
y 

et
 

al
., 

20
12

; M
oy

 e
t a

l.,
 2

00
7;

 
Si

lv
er

m
an

 e
t a

l.,
 2

01
2;

 
W

oh
r 

et
 a

l.,
 2

01
3;

 Y
an

g 
et

 
al

., 
20

11
)

In
cr

ea
se

d/
de

cr
ea

se
d 

an
xi

et
y

D
ep

re
ss

io
n-

lik
e 

be
ha

vi
or

A
gg

re
ss

iv
e 

be
ha

vi
or

H
yp

o-
/h

yp
er

-a
ct

iv
ity

O
lf

ac
to

ry
 d

am
ag

e
L

ea
rn

in
g 

an
d 

m
em

or
y 

de
fi

ci
ts

 d
ue

 to
 

ne
ur

od
eg

en
er

at
io

n

R
ec

ip
ro

ca
l d

ya
d 

in
te

ra
ct

io
ns

L
ac

k 
of

 in
te

re
st

 in
 th

e 
pa

rt
ne

r
(B

oz
da

gi
 e

t a
l.,

 2
01

0;
 

D
ha

m
ne

 e
t a

l.,
 2

01
7;

 
Si

lv
er

m
an

 e
t a

l.,
 2

01
5)

So
ci

al
 r

ec
og

ni
tio

n
L

ac
k 

in
: 1

) 
tw

o-
ex

po
su

re
 

re
co

gn
iti

on
, 2

) 
ha

bi
tu

at
io

n-
di

sh
ab

itu
at

io
n,

 a
nd

 3
) 

so
ci

al
 

di
sc

ri
m

in
at

io
n

(F
er

gu
so

n 
et

 a
l.,

 2
00

1;
 

Fe
rg

us
on

 e
t a

l.,
 2

00
0;

 L
ee

 e
t 

al
., 

20
08

a;
 L

ee
 e

t a
l.,

 2
00

8b
; 

M
ac

be
th

 e
t a

l.,
 2

00
9)

Pa
rt

iti
on

 te
st

L
ac

k 
of

 in
te

re
st

 in
 th

e 
pa

rt
ne

r
(H

am
ilt

on
 e

t a
l.,

 2
01

4;
 

Sp
en

ce
r 

et
 a

l.,
 2

00
5;

 
Sp

en
ce

r 
et

 a
l.,

 2
00

8;
 

V
ee

ra
ra

ga
va

n 
et

 a
l.,

 2
01

6)

So
ci

al
 tr

an
sm

is
si

on
 o

f 
fo

od
 

pr
ef

er
en

ce
M

is
si

ng
(W

re
nn

 e
t a

l.,
 2

00
3)

U
ltr

as
on

ic
 v

oc
al

iz
at

io
n

R
ed

uc
tio

n 
in

 u
ltr

as
on

ic
 e

m
is

si
on

s
(S

ca
tto

ni
 e

t a
l.,

 2
00

9;
 

Sc
at

to
ni

 e
t a

l.,
 2

00
8;

 W
oh

r 
et

 a
l.,

 2
01

3;
 Y

an
g 

et
 a

l.,
 

20
12

)

R
ep

et
iti

ve
 b

eh
av

io
rs

, w
ith

 r
es

tr
ic

te
d 

in
te

re
st

s 
an

d 
be

ha
vi

or
al

 in
fl

ex
ib

ili
ty

St
er

eo
ty

pi
es

re
pe

tit
iv

e 
se

lf
-g

ro
om

in
g;

 c
ir

cl
in

g;
 

ju
m

pi
ng

; b
ac

k 
fl

ip
pi

ng
; p

er
se

ve
ra

tiv
e 

w
oo

d 
bl

oc
k 

ch
ew

in
g

(B
ec

ha
rd

 e
t a

l.,
 2

01
7;

 
B

lu
nd

el
l e

t a
l.,

 2
01

0;
 

C
op

pi
ng

 e
t a

l.,
 2

01
7;

 
D

ha
m

ne
 e

t a
l.,

 2
01

7;
 

E
th

er
to

n 
et

 a
l.,

 2
00

9;
 

H
am

ilt
on

 e
t a

l.,
 2

01
4;

 L
ew

is
 

et
 a

l.,
 2

00
7;

 M
ue

hl
m

an
n 

et
 

al
., 

20
12

; P
or

tm
an

n 
et

 a
l.,

 
20

14
; S

ilv
er

m
an

 e
t a

l.,
 

20
15

; S
ilv

er
m

an
 e

t a
l.,

 
20

12
; Y

an
g 

et
 a

l.,
 2

01
2)

O
ft

en
 p

ar
t o

f 
se

iz
ur

e 
be

ha
vi

or

M
ar

bl
e 

bu
ry

in
g

>
50

%
 c

ov
er

ed
 m

ar
bl

es
(T

ho
m

as
 e

t a
l.,

 2
00

9)
H

yp
o-

/h
yp

er
-a

ct
iv

ity
 f

ol
lo

w
in

g 
se

iz
ur

es

In
si

st
en

ce
 o

n 
sa

m
en

es
s 

an
d 

la
ck

 o
f 

co
gn

iti
ve

 f
le

xi
bi

lit
y

Im
pa

ir
ed

 r
ev

er
sa

l l
ea

rn
in

g 
in

 th
e 

M
or

ri
s 

w
at

er
 m

az
e 

or
 T

 m
az

e
(M

oy
 e

t a
l.,

 2
00

7)
D

ef
ic

its
 in

 s
pa

tia
l d

is
cr

im
in

at
io

n 
le

ar
ni

ng
 d

ue
 to

 
ne

ur
od

eg
en

er
at

io
n

Epilepsy Res. Author manuscript; available in PMC 2019 August 01.


	Abstract
	Introduction
	Modeling the Social Brain: Preclinical assays for behavioral outcomes relevant to ASD and epilepsy. A cautionary tale for epilepsy models
	A Common Thread: Neuroinflammation in Epilepsy and ASD
	I) Inflammation in ASD
	II) Inflammatory processes in epilepsy
	III) Common inflammatory pathologies in ASD and epilepsy

	Neuronal coordination hypothesis: between etiology and phenotype
	I) Is Epileptiform activity responsible for ASD symptoms?
	II) Is there a common mechanism?
	a) E-I balance hypothesis
	b) Role of etiology: interneurons and information processing


	Conclusions
	References
	Table 1



