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Second order Møller-Plesset and coupled cluster singles and doubles methods
with complex basis functions for resonances in electron-molecule scattering

Alec F. White,1, 2 Evgeny Epifanovsky,3 C. William McCurdy,2, 4 and Martin Head-Gordon1, 2
1)Department of Chemistry, University of California, Berkeley
2)Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley CA 94720
3)Q-Chem Inc., 6601 Owens Drive, Suite 105, Pleasanton, California 94588,
USA
4)Department of Chemistry, University of California, Davis, CA 95616 USA

(Dated: 27 June 2017)

The method of complex basis functions is applied to molecular resonances at correlated levels of theory.
Møller-Plesset perturbation theory at second order and equation-of-motion electron attachment coupled-
cluster singles and doubles (EOM-EA-CCSD) methods based on a non-Hermitian self-consistent-field reference
are used to compute accurate Seigert energies for shape resonances in small molecules including N−2 , CO−,
CO−2 , and CH2O−. Analytic continuation of complex θ-trajectories is used to compute Seigert energies, and
the θ-trajectories of energy differences are found to yield more consistent results than those of total energies.
The ability of such methods to accurately compute complex potential energy surfaces is investigated, and the
possibility of using EOM-EA-CCSD for Feshbach resonances is explored in the context of e-helium scattering.

PACS numbers: 34.80.Bm, 34.20.-b, 32.80.Zb 33.80.Eh 82.20.Kh,

I. INTRODUCTION

Metastable electronic states, or resonances, have long
been recognized as important intermediate states in a
variety of chemical applications.1 Such states can decay
and are therefore characterized by a finite lifetime, τ =
h̄/Γ, where the “width” of the resonance, Γ, has units
of energy. The width and the energetic position of the
resonance above the ground state, Er, can be specified
by a complex energy,

E = Er − iΓ/2, (1)

called a Siegert energy, which is the location of the S-
matrix pole associated with the resonance.2 Despite their
importance, simple, black-box, methods for the compu-
tation of electronic resonances have been elusive. The
difficulty is a result of the complexity of the quantum
many-body problem with the additional difficulty of scat-
tering boundary conditions.

One solution to the difficulty of scattering bound-
ary conditions is offered by complex scaling and related
methods,3–5 which are originally based on the theorems
of Aguilar, Balslev, Combes, and Simon.6–8 These math-
ematically rigorous theorems offer an attractive solution
to the scattering problem: the resonance parameters
are found as a complex eigenvalue of the non-Hermitian
Hamiltonian obtained by scaling the coordinates by a
complex number, eiθ. The eigenvalue is discrete and the
corresponding eigenfunction is square-integrable. The
problem can then be solved by variational, finite basis
methods.

For the molecular Born-Oppenheimer problem, com-
plex scaling is not appropriate, and the method of ex-
terior complex scaling9 is the most rigorously justifiable
means of obtaining an appropriate non-Hermitian Hamil-
tonian. In this method, the coordinates of electrons are

scaled along a contour that remains real at the posi-
tions of the nuclei. Unfortunately the method is diffi-
cult to apply, though applications to resonances in di-
atomic molecules have been reported.10,11 In practice one
is forced to use a more approximate method for poly-
atomic molecules. One such method is the method of
complex basis functions (CBFs) in which the transforma-
tion is applied to the basis set itself.12 The result is that
standard electronic structure methods can be used but in
a basis set including Gaussians with complex exponents.
The method is related to the analytic continuation of
matrix elements13 and is a complex-variational14,15 ap-
proximation to the exterior-scaled wavefunction.16 The
method of complex basis functions has been most ex-
tensively applied to molecular shape-resonances at the
Hatree-Fock level of theory. There have been various
applications to diatomic molecules,17–20 and a recent ap-
plication to some polyatomic molecules.21

A closely related method involves the addition of a
complex absorbing, usually negative-imaginary, potential
(CAP or sometimes NEP).22–24 These methods can be
shown to be related to a variant of exterior scaling,25 and
share many features of other complex-coordinate meth-
ods. These methods have been successful for calculations
on shape resonances, but application to Feshbach reso-
nances has proven difficult.26,27

In addition to complex coordinate methods, sev-
eral other methods are commonly used for the com-
putation of resonance parameters in molecular sys-
tems. Scattering methods compute scattering observ-
ables directly.28–31 Stabilization methods use the be-
havior of discretized continuum eigenvalues to com-
pute resonance parameters.32–34 Stieltjes imaging uses
the discretized continuum to compute cross-sections and
widths.35 Bound state extrapolation and analytic contin-
uation methods rely on the extrapolation of bound-state
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energies to compute resonance parameters.36–39

Since molecular resonances are ultimately a many-
body problem, accurate computation necessitates taking
account of electron correlation effects. Feshbach reso-
nances in particular have lifetimes that are entirely de-
termined by electron correlation. While correlated calcu-
lations on atomic resonances are fairly routine,40–43 cor-
related calculations on molecular resonances are not as
commonplace. Electron correlation effects on resonance
parameters in electron-molecule scattering have been in-
corporated into a variety of methods. Configuration in-
teraction (CI)13 and electron-propagator methods44–47

have been used in conjunction with complex scaling
to capture electron correlation. In past complex ba-
sis function calculations, correlation has been taken into
account by means of various types of CI,20,48–50 but
these studies have been limited to atoms and diatomic
molecules. The CAP method is by far the most pop-
ular choice for use with correlated electronic structure,
and applications using CI,24,51,52 electron propagator,53

and coupled-cluster/SAC-CI54–58 methods have been re-
ported. The stabilization method has also been recently
applied to medium-sized molecules at various correlated
levels of theory.59,60 Stieltjes imaging has been used in
conjunction with correlated electronic structure methods
to compute widths of autoionizing states of benzene.61

Bound state analytic continuation methods have recently
been utilized for molecular resonances with the express
goal of using correlated quantum chemical methods.62–66

Our pursuit of correlated complex basis function methods
is motivated by the generality of the method in applica-
tions to shape and Feshbach resonances.

In the present study, we discuss the application of cor-
related electronic structure methods to molecular res-
onances using the method of complex basis functions.
Møller-Plesset perturbation theory at second order67

(MP2) and coupled-cluster singles and doubles68 (CCSD)
are both size-consistent, correlated methods with compu-
tational scaling with the system size of N5 and N6 re-
spectively. Specifically, we evaluate the ∆MP2 and equa-
tion of motion, electron attachment CCSD69 (EOM-EA-
CCSD) methods for accurate computation of resonance
parameters. Furthermore, we explore the possibility of
using EOM-EA-CCSD to obtain accurate complex po-
tential energy surfaces, and to compute positions and
widths of Feshbach resonances.

II. THEORY

A. Complex basis functions

To compute the complex Seigert energy associated
with a narrow resonance, we employ the method of com-
plex basis functions for all calculations. This method is
described in detail in the literature.12,16,21 Diffuse Gaus-

sian basis functions of the form

φθ(r) = N(θ)(x−Ax)l(y −Ay)m(z −Az)n

× exp
[
−αe−2iθ(r−A)2

]
(2)

are included in the basis set. For atoms, the θ appearing
in this equation is identical to that of complex-scaling,
while for molecules, it is related to a particular exterior
scaling contour. These basis functions provide a reason-
able basis for representing the exterior-scaled resonance
wavefunction in a c-normalized space. The c-product, in
which the bra-side is not complex conjugated, will be de-
noted using curved brakets (. . . | . . .). The application of
the complex variational principle14,15 allows for deriva-
tions of electronic structure methods in this space of c-
normalized states.

B. The non-Hermtian SCF reference

As in traditional electronic structure theory, the
starting point for the correlated calculations is a self-
consistent field (SCF) reference. The theories consid-
ered here are based upon a single, c-normalized, deter-
minant. The methods described in Ref. 21 can be used
to obtain the single determinant reference from a non-
Hermitian SCF (NH-SCF) calculation. For the NH-MP2
methods considered here, the reference is a single deter-
minant from a non-Hermitian unrestricted Hartree-Fock
or non-Hermitian restricted open-shell Hatree-Fock cal-
culation on the anion. For EOM-EA-CCSD, the refer-
ence can come from a NH-SCF calculation on the neutral
molecule.

C. Non-Hermitian MP2

The application of many-body perturbation theory
through second order to the problem of electron cor-
relation is well established in quantum chemistry. The
derivation of the analogous non-Hermitian method (NH-
MP2) exactly parallels that of the Hermitian case. The
MP2 correction to the energy in terms of canonical spin-
orbitals is given by

E(2) = −1

4

∑
ijab

tabij (ij||ab) (3)

where

tabij ≡
(ab||ij)

εa + εb − εi − εj
. (4)

Here and elsewhere we use (ab||ij) to indicate the an-
tisymmetrized electron repulsion integral in 12-12 (or
“physicist’s”) notation. The curved bracket is used to
indicate the use of the c-product. This equation assumes
that the spin-orbital Fock matrix is diagonal where the
occupied and virtual eigenvalues are given by εi and εa
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respectively. For an RHF or a UHF reference, the spin-
orbital Fock matrix is diagonal and Equation 3 is used
to compute the MP2 correction to the energy.

In the case of an ROHF reference, the spin orbital Fock
matrix is not diagonal. We therefore apply the restricted
Moller-Plesset perturbation theory of Knowles et al.70

This non-Hermitian restricted MP2 (NH-RMP2) yields
an energy expression in the pseudo-canonical basis that
takes explicit account of non-zero off-diagonal matrix el-
ements of the Fock matrix (f):

E(2) = −
∑
ia

(fai )2

εa − εi
− 1

4

∑
ijab

tabij (ij||ab). (5)

In the ∆-MP2 method, the excitation/attachment energy
is found as the difference between the MP2 energies of the
excited/electron-attached state and the ground state.

D. Complex coupled cluster methods

The theory behind the coupled cluster method has
been described in detail (See recent reviews of CC71 and
EOM-CC72 theory). Here we review only those points
relevant to our complex implementation. From the ref-
erence NH-SCF wavefunction, the coupled-cluster equa-
tions are solved to determine the T -amplitudes:

(Φµ|e−THeT |Φ0) = (Φµ|H̄|Φ0) = 0. (6)

Again we have used curved brackets to indicate the c-
product. |Φ0) is the reference wavefunction, and |Φµ)
is an excited determinant relative to the reference. For
CCSD, µ runs over all single and double excitations, and
the equations are used to determine T truncated to in-
clude only the singles and doubles part.68

The equation of motion (EOM) formalism can then
be used to compute electron affinities (EA) or excitation
energies (EE).69,73 In this method, one ultimately diag-
onalizes H̄ in the basis of excited determinants:

(H̄ − ECCSD)R|Φ0) = ωR|Φ0). (7)

R is an excitation operator,

REA =
∑
a

raa† +
1

2

∑
ia,b

rabi a
†ib† (8)

REE =
∑
ia

rai a
†i+

1

4

∑
ia,jb

rabij a
†ib†j, (9)

where the r-amplitudes are determined from the eigen-
value problem. Note that in a c-normalizable space, the
creation and annihilation operators are related by the
transpose and not the adjoint.74 However, we still use
†-notation to indicate creation operators to avoid con-
fusion. The complex CCSD and EOM-CCSD methods
have already been described in conjunction with complex
scaling75 and complex absorbing potentials.55,56,75–77

The biorthogonal version of Davidson’s iterative diag-
onalization method78 is used to solve the large eigenvalue
problem. For temporary anion shape-resonances, the or-
bital of the neutral molecule associated with the reso-
nance is easily identified from its behavior as we vary
θ. This orbital is used to construct a simple Koopman’s
type guess that is input to the Davidson procedure.

E. θ-trajectories and the computation of the Siegert
energy

Despite the θ-independent properties of the exact the-
ory, it has long been recognized that in a finite basis set,
the results will depend heavily on the value of θ. We
therefore search for solutions that satisfy

dE

dθ
= 0. (10)

This is equivalent to treating θ as a variational param-
eter. The stationary point is found by computing the
energy for many values of θ. This “θ-trajectory” is then
used as input into the analytic continuation procedure
described in Ref. 16. This is a reproducible method to
compute Seigert energies from θ-trajectories. However,
within this method, there are still three different ways
that the stationary point may be computed in practice.

For the moment, we ignore the complication that there
are in general multiple points where the energy is station-
ary with respect to variations in θ and define a functional
S[f(θ)] that returns the value of the function at the point
that it is stationary:

S[f(θ)] = f(θ0) s.t.
df

dθ

∣∣∣∣
θ=θ0

= 0. (11)

Using this notation, we can describe three methods, all
equivalent in the complete basis set limit, for finding the
Siegert energy of temporary anions as a complex attach-
ment energy:

1. Eres = S
[
Eanion(θ)

]
− Eneutral(0)

2. Eres = S
[
Eanion(θ)

]
− S

[
Eneutral(θ)

]
3. Eres = S

[
Eanion(θ)− Eneutral(θ)

]
.

In general, these methods will yield different results in
a finite basis. In Ref. 21, method 1 was used to de-
termine the stationary point for NH-SCF calculations.
While these three methods yield very similar results in
the case of NH-SCF, we will see that this is not the case
in correlated calculations. Because the stationary point
in a calculation on a neutral molecule is usually very
nearly on the real axis, method 2 will in practice yield
very similar results to method 1 and we will be primarily
concerned with the differences between methods 1 or 2
and method 3. In Sections III A and III B we will find
that method 3 is the most reliable.
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III. RESULTS

All methods are implemented in a development version
of the QChem 4.4 package.79 Libtensor80 is used for all
tensor manipulations, and the complex EOM-CC code
presented in Refs. 56, 75, and 76 is reused. The basis
sets are the same as those presented in Ref. 16. They
are constructed from Dunning’s augmented correlation-
consistent basis sets (aug-cc-pVXZ),81,82 but with added
diffuse functions on the center of mass. The basis sets
including core-valence polarization functions are con-
structed in precisely the same manner, but from the cor-
responding cc-pCVXZ basis.83

A. Benchmark calculations on N−
2

The 2Πg shape resonance in e−-N2 scattering is nearly
unique in that there is a experimentally derived esti-
mate of the position and width of the pure electronic
resonance.84 We will refer to this position of 2.32 eV and
width of 0.41 eV as the accepted values. The resonance
parameters computed in different basis sets at different
levels of theory are shown in Table I. Here the stationary
point is computed using method 1 of Section II E.

Note that while the NH-SCF results are unchanged
by the inclusion of core-valence polarization functions,
the results of the correlated calculations change signif-
icantly when core-valence polarization functions are in-
cluded. Furthermore, while there is evidence of conver-
gence with respect to basis set size, it is clear that even in
the caug-cc-pCVQZ(cm+) basis set, the results are not
entirely converged with respect to basis set size. This
is in contrast to the NH-SCF results which are largely
converged in the smallest caug-cc-pVDZ(cm+) basis set.

In Table II we show results from the same set of calcu-
lations, but compute the stationary point using method
3 of Section II E. While the method used for finding the
stationary point makes little difference in the case of NH-
SCF calculations, there are significant differences in the
correlated calculations. In particular, the widths tend to
be larger when computed using method 3. Only in the
largest basis (caug-cc-pCVQZ(cm+)) do the two meth-
ods provide similar results. In all other cases, method 3
is clearly superior: the results are much less sensitive to
the inclusion of core-valence polarization functions and
the basis set effects are less pronounced. For this reason,
we advocate the use of this method for all complex-basis
function calculations.

While we cannot be entirely certain as to the origin of
the differences between the use of method 1 and method
3, these differences are very likely due to basis set incom-
pleteness. The less pronounced differences in larger basis
sets as well as the negligible differences at the Hartree-
Fock level of theory support this claim. Furthermore, it
is notable that the accuracy of propagator methods (see
the discussions given in Refs. 44 and 85) and EOM meth-
ods (see the discussions of EOM-CC in Refs. 71 and 72)

can be largely attributed to the cancellation of errors in-
herent to the direct computation of excitation energies.
It makes sense that method 3 would maximize the benefit
from this same cancellation of error, because this cancel-
lation of error will be able to occur separately at each
θ-point.

This is, to our knowledge, the first explicit application
of a complex-coordinate based MP2 theory to molecular
resonances, and we note that while the MP2 methods
are unable to fully reproduce the EOM-EA-CCSD re-
sults, they represent a significant improvement relative to
the NH-SCF results. In general, the effect of correlation
is to lower the position but increase the width relative
to NH-SCF methods. This is consistent with previous
observations of similar behavior in CAP calculations.86

We cannot entirely account for the sometimes significant
differences between NH-UMP2 and NH-RMP2 energies.
They are based upon entirely different Hartree-Fock ref-
erences, and the explicit appearance of the non-Brillouin
singles amplitudes in RMP2 may lead to a larger corre-
lation energy.

Some selected literature results are shown in Table III.
We note that at the highest level of theory (EOM-EA-
CCSD), our results do not reproduce the accepted value,
even in the largest basis set (caug-cc-pCVQZ(cm+)). We
still overestimate both the position and width by approx-
imately 0.15-0.2 eV. This is not surprising considering
that the results are not entirely converged with respect
to basis set size or level of correlation. Based on the
effect of changing the basis set size, we estimate the ef-
fect of basis set incompleteness to be less than 0.05eV in
the caug-cc-pCVQZ(cm+) basis. The correlation energy
due to full inclusion of triple and higher excitations is
more difficult to quantify. Our method can be viewed as
an analytic continuation of the Gaussian-exponent sta-
bilization method of Ref. 59. For this reason, we would
expect agreement at a given level of theory and basis set.
The agreement with other theoretical results is reason-
able considering the basis/method-dependence of most
of these methods. Also, the width is highly dependent
on the bond length as will be shown in Figure 1. This
means that even small geometrical discrepancies can lead
to significant differences in the computed width.

B. Shape resonances in small molecules

Seigert energies for several well-known low-energy
shape resonances in the caug-cc-pVTZ(cm+) and caug-
cc-pCVTZ(cm+) basis sets are shown in Table IV.

These values are computed using method 3 of Sec-
tion II E. Method 1, which we do not recommend, yields
results that are considerably less consistent and more de-
pendent on the basis set. These results are given in the
Appendix (Table VII), and we do not refer to them fur-
ther.

Again we note that the results obtained with method
3 show little sensitivity to the inclusion of core-valence
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caug-cc-pVDZ(cm+) caug-cc-pVTZ(cm+) caug-cc-pVQZ(cm+)
Re[E] Im[E] Re[E] Im[E] Re[E] Im[E]

NH-ROHF 2.9517 -0.1566 2.9704 -0.1692 2.9525 -0.1547
NH-UHF 2.8366 -0.1087 2.8330 -0.1167 2.8271 -0.1078

NH-RMP2 2.6899 -0.2009 2.5203 -0.0500 2.4245 -0.1828
NH-UMP2 2.8226 -0.1661 2.5733 -0.2475 2.5532 -0.1916

EOM-EA-CCSD 2.7616 -0.1961 2.5418 -0.0223 2.5178 -0.1332

caug-cc-pCVDZ(cm+) caug-cc-pCVTZ(cm+) caug-cc-pCVQZ(cm+)
Re[E] Im[E] Re[E] Im[E] Re[E] Im[E]

NH-ROHF 2.9472 -0.1565 2.9709 -0.1657 2.9523 -0.1544
NH-UHF 2.8328 -0.1087 2.8380 -0.1152 2.8159 -0.1239

NH-RMP2 2.6922 -0.1995 2.5082 -0.1856 2.4493 -0.3030
NH-UMP2 2.8273 -0.1622 2.6701 -0.2633 2.6193 -0.2805

EOM-EA-CCSD 2.7571 -0.1931 2.5300 -0.1873 2.4591a -0.2069a

a The EOM results in the largest basis are based on only 5 θ-points and are therefore more uncertain.

TABLE I. Computed Seigert energies for the lowest 2Πg shape resonance of N−
2 . The energies are computed as a stationary

point using method 1 of Section II E. We attribute the significant differences between the energies in valence polarized and
core-valence polarized basis sets to use of method 1. Method 3 (see Table II) provides more consistent results.

caug-cc-pVDZ(cm+) caug-cc-pVTZ(cm+) caug-cc-pVQZ(cm+)
Re[E] Im[E] Re[E] Im[E] Re[E] Im[E]

NH-ROHFa 2.9531 -0.1593 2.9513 -0.1551 2.9529 -0.1511
NH-UHFa 2.8346 -0.1178 2.8261 -0.1067 2.8267 -0.1040
NH-RMP2 2.6726 -0.3624 2.5054 -0.2841 2.4719 -0.3121
NH-UMP2 2.8042 -0.3198 2.6612 -0.2885 2.6066 -0.2888

EOM-EA-CCSD 2.6974 -0.3137 2.5653 -0.2770 2.5205 -0.2759

caug-cc-pCVDZ(cm+) caug-cc-pCVTZ(cm+) caug-cc-pCVQZ(cm+)
Re[E] Im[E] Re[E] Im[E] Re[E] Im[E]

NH-ROHF 2.9493 -0.1602 2.9711 -0.1432 2.9530 -0.1517
NH-UHF 2.8289 -0.1164 2.8338 -0.1167 2.8145 -0.1221

NH-RMP2 2.6687 -0.3647 2.5017 -0.2860 2.4957 -0.3269
NH-UMP2 2.7950 -0.3217 2.6452 -0.3091 2.6175 -0.3150

EOM-EA-CCSD 2.6844 -0.3166 2.5342 -0.2584 2.5360b -0.2604b

a These results were also reported in Ref. 21
b The EOM results in largest basis are based on only 5 θ-points and are therefore more uncertain.

TABLE II. Computed Seigert energies for the lowest 2Πg shape resonance of N−
2 . The energies are computed as a stationary

point using method 3 of Section II E.

method position width
Stieltjes imaging87 2.23 0.40
Schwinger variational + ADC(3) optical potential88 2.53 0.54
3rd order decouplings of dilated electron propagator89 2.11 0.18
Multi-partitioning perturbation theory stabilization90 2.36 0.43
Analytic continuation in the coupling constant CCSD39 2.56 0.55
CAP EOM-EA-CCSD (11s,8p,3d)54 2.44 0.39
EOM-EA-CCSD stabilization (aug-cc-pV5Z)59 2.49 0.50
CAP EOM-EA-CCSD (1st order, aug-cc-pVQZ + 3s3p3d)56 2.48 0.29
Analytic continuation in the coupling constant CCSD(T)66a 2.46 0.49
Experimental estimate (accepted value)84 2.32 0.41
This work (EOM-EA-CCSD) 2.54 0.52

a The results using the attenuated Coulomb potential with ω = 0.01 in the t-aug-cc-pVQZ basis set are given here.

TABLE III. Selected literature values (in eV) for the 2Πg shape resonance in electron-N2 scattering from experiment and
various correlated levels of theory. The EOM-EA-CCSD results from the caug-cc-pCVQZ(cm+) are given as the results of
“This work.”
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caug-cc-pVTZ(cm+) CO− CO−
2 CH2O−

Re[E] Im[E] Re[E] Im[E] Re[E] Im[E]
NH-ROHF 2.5367 -0.3576 4.4648 -0.0780 1.7769 -0.2003
NH-UHF 2.4194 -0.2964 4.3063 -0.0619 1.6399 -0.1411

NH-RMP2 2.1193 -0.5200 4.1018 -0.1832 1.0120 -0.3011
NH-UMP2 2.1968 -0.4826 4.1829 -0.1555 1.0986 -0.2859

EOM-EA-CCSD 2.0395 -0.4974 4.0193 -0.1422 1.1810 -0.2788

caug-cc-pCVTZ(cm+) CO− CO−
2 CH2O−

Re[E] Im[E] Re[E] Im[E] Re[E] Im[E]
NH-ROHF 2.5405 -0.3542 4.4654 -0.0801 1.7696 -0.2113
NH-UHF 2.4241 -0.3004 4.3114 -0.0634 1.6313 -0.1478

NH-RMP2 2.1149 -0.5026 4.0919 -0.1871 1.0066 -0.2997
NH-UMP2 2.1892 -0.4784 4.1734 -0.1576 1.0934 -0.2836

EOM-EA-CCSD 2.0434 -0.5164 3.9951 -0.1432 1.1632 -0.2837

TABLE IV. Computed Seigert energies for low energy shape resonances in some molecules in caug-cc-pVTZ(cm+) and caug-
cc-pCVTZ(cm+). The energies are computed as a the stationary point using method 3 of Section II E.

polarization functions. We make no attempt to fully ex-
plore the basis-set convergence, but these numbers are
very unlikely to be fully converged in the triple-zeta ba-
sis sets. The true values of the pure electronic Seigert
energies are not known in these cases. From the basis set
convergence of N−2 and the level of correlation, we are
likely overestimating positions by 0.1-0.3 eV and width
by 0.05-0.2eV. As in the case of N−2 , the NH-MP2 results
are improved significantly over the NH-SCF results.

We show some selected literature values which include
electron correlation effects in Table V. Note that the ex-
perimental results listed in Table V cannot be directly
compared with theory because they have not been cor-
rected to extract the location of the pure electronic res-
onance. As with N2, our results for the position of these
resonances agree fairly well with other theory. Our esti-
mates for the widths are a bit high compared with other
theoretical results, but not unreasonably so. Comparing
complex basis functions to CAPs at the EOM-EA-CCSD
level of theory, we find that the positions agree quite
well, but widths computed with complex basis functions
are consistently larger than those computed with CAPs.

C. Complex potential energy curves

An important challenge for electronic resonance meth-
ods is the computation of smooth, consistent potential
energy surfaces. By “consistent,” we mean that the imag-
inary part of the resonance goes to zero at the same point
that the state crosses the ground state of the target. A
potential energy curve for N−2 at the EOM-EA-CCSD
level of theory is shown in Figure 1. We used a spin-
restricted, NH-RHF determinant as the reference wave-
function. This choice of reference prevents us from ob-
taining a qualitatively correct potential energy surface
at significantly stretched geometries, but we can still
observe the behavior of the resonance as it crosses the
ground state of the neutral. The two curves are not com-
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FIG. 1. Potential energy curve of N2 neutral and anion. The
neutral is computed at the complex RCCSD level of theory,
and the complex excitation energy of the anion is computed at
the complex restricted EOM-EA-CCSD level of theory. The
basis set is caug-cc-pCVTZ(cm+).

pletely consistent: the width of the temporary anion goes
to zero a bit before the two curves cross. However, this
discrepancy (∼ 0.05Å) is fairly small considering that the
width depends only weakly on internuclear distance near
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molecule method position width

CO

2nd order electron propagator91 1.71 0.08
3rd order decouplings of the electron propagator89 1.65 0.14
Multi-partitioning perturbation theory stabilization90 2.02 0.35
CAP EOM-EA-CCSD (largest basis)54 2.07 0.42
CAP EOM-EA-CCSD (1st order, aug-cc-pV5Z + 3s3p3d)56 1.76 0.60
Experiment92 1.50 0.40
This work (EOM-EA-CCSD) 2.04 1.03

CO2

CAP EOM-EA-CCSD( aug-cc-pVTZ-f+ 1s3p)55 4.20 0.22
CAP EOM-EA-CCSD (1st order, aug-cc-pVTZ + 3s3p3d)56 4.00 0.20
Analytic continuation in the coupling constant SAC-CI64 4.18 0.24
CAP SAC-CI (cc-pVDZ + (2s5p2d))64 4.21 0.20
Experiment93 3.14 0.20
This work (EOM-EA-CCSD) 4.00 0.29

CH2O

2nd order decouplings of the dilated electron propagator (largest basis)47 0.89 0.076
CAP SAC-CI (cc-pVQZ + diffuse)94 1.09 0.42
CAP EOM-EA-CCSD (1st order, aug-cc-pVTZ + 3s3p3d)56 1.31 0.28
Experiment95 ∼0.67 -
This work (EOM-EA-CCSD) 1.16 0.57

TABLE V. Selected literature values (in eV) for the resonances studied here from experiment and various levels of theory. The
experimental values are uncorrected and therefore do not represent the properties of the pure electronic resonance. The results
from EOM-EA-CCSD in the caug-cc-pCVTZ(cm+) basis are also given labelled as “This work.”

the crossing region. This means that a very small abso-
lute error in the width can lead to much larger errors in
apparent point where it goes to zero. Similar curves are
provided in Ref. 76 at the CAP-EOM-EA-CCSD level
of theory in a very similar basis set. The positions agree
very well (see the upper panel of Figure 2 of Ref. 76) with
our results. The widths (see the lower panel of Figure 2
of Ref. 76) agree qualitatively, but disagree in the point
where they go to zero. There is agreement that the posi-
tion goes to zero at 1.40Å, but we find the width goes to
zero closer to 1.35Å whereas it goes to zero around 1.45Å
in Ref. 76.

Nitrogen is a difficult case for potential energy curves
because it is a triple bonded system and because its dis-
sociation products are bound by very little. For simpler,
single-bonded cases, a qualitatively correct potential en-
ergy curve can be obtained from EOM-EA on top of a
triplet reference. We demonstrate this process for H2 in
Figure 2. H2 has two temporary anions of Σ symmetry
that are anti-symmetric (u) and symmetric (g) with re-
spect to inversion. The 2Σu state is the lowest energy res-
onance and has been studied extensively.13,18,96,97 This
resonance is quite broad near equilibrium and we were
unable to easily distinguish it from the continuum in
this region. However, as the bond is stretched, it be-
comes bound near 1.60Å. There is also a 2Σg state97–99

which is not easily discernible in our calculations until
around 2.6Å where it is briefly a Feshbach resonance:
its position is above the singlet ground state but below
the triplet parent state. Near 2.7Å this state becomes
bound. The results for the crossing points agree to within
0.1Å with the calculations of Bardsley and Cohen.98 Both
these states can be obtained by adding an electron to
the triplet configuration. Even though both singlet and
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FIG. 2. Potential energy curve of H2 neutral and anion. The
neutral curves are computed at the CCSD level of theory,
and the complex excitation energy of the anion is computed
at the complex EOM-EA-CCSD level of theory relative to the
triplet reference. The basis set is caug-cc-pVDZ(cm+). For
H2, CCSD reproduces full-CI.
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Experiment
Reference position (eV) width (meV)
Brunt et al103 19.366(5) 9.(1)
Kennerly et al104 19.36(2) 11.0(5)
Buckman et al105 19.367(5) -
Dube et al106 - 10.3(3)
Gopalan et al102 19.365(1) 11.2(5)

Theory
Reference position (eV) width (meV)
Junker40 19.387 11.72
Bylicki107 19.367 8.6
Gil et al108 19.357 14
Gopalan et al102 19.366 10.7

Results of the present study
Basis position (eV) width (meV)
basis 1 19.28200 7.02475
basis 2 19.33005 6.88694

TABLE VI. Results from the literature and from this study for
the 1s2s2 Feshbach resonance in e-helium scattering. Note the
high precision to which the resonance parameters are known
both theoretically and experimentally. The basis sets used for
these computations are described in the text of Section III D

triplet states are treated exactly at the CCSD level of
theory, the triplet reference is preferable because it can
be reached from either anion state by a single excita-
tion. In this way, we are able to treat both states con-
sistently throughout the full potential energy surface in
the spirit of spin-flip methods.100 The point where the
lowest energy resonance crosses the ground state of the
neutral to become bound differs from the point where
the width goes to zero. This is not necessarily surpris-
ing considering that the basis is relatively small and that
the singlet CCSD neutral and EOM-EA anion (from the
triplet reference) are not eigenfunctions of the same ef-
fective Hamiltonian.

D. The 1s2s2 Feshbach resonance in e-helium scattering

One of the simplest and most well-studied Feshbach
resonances is the 1s2s2 Feshbach resonance in e-helium
scattering. See Ref. 101 for a recent review and Ref. 102
for a fairly complete table of experimental and theoreti-
cal results. Selected theoretical and experimental results
(largely reproduced from Ref. 102) are given in Table VI
along with the results of this study.

EOM-EA-CCSD was used to compute the the complex
energy relative to a triplet He reference. The energy rel-
ative to the singlet ground state is reported in Table VI,
for two different basis sets. The basis sets were chosen to
be small enough that full diagonalization of H̄ is feasible
while still including functions necessary to describe the
principal contribution to the correlation energy. The first
basis set is caug-cc-pVTZ(cm+) but with no d-functions.
The second basis set is the caug-cc-pVTZ(cm+) basis set
including valence and augmenting d-functions but with-

out the additional diffuse d-functions. The agreement
with precise theoretical and experimental results is good:
the width is underestimated by a large relative amount
that is nonetheless very small in absolute terms. We
cannot expect to be able to reproduce the accuracy of
atomic calculations employing numerical basis sets, but
the modest agreement in fairly small Gaussian basis sets
is encouraging.

Despite this encouraging result, it can be difficult to
converge iterative diagonalization algorithms to the high
lying roots that are associated with Feshbach resonances.
More development is necessary to make this approach
applicable in general to molecular Feshbach resonances.
However, this study shows that the EOM-CCSD method
is, as we might expect, capable of qualitative, and maybe
even quantitative, calculations on Feshbach resonances.

IV. CONCLUSIONS

We have presented an efficient implementation of corre-
lated electronic structure methods utilizing complex basis
functions for the computation of positions and widths of
molecular resonances. Benchmark calculations on tem-
porary anions of small molecules indicate that analytic
continuation of the complex excitation energy (method
3 of Section II E) is the preferred method for extracting
resonance parameters from θ-trajectories. Our results for
the positions of these resonances agree well with the lit-
erature values, while our results for the widths are larger
than those of most other correlated methods. However,
because of the very large number of diffuse basis func-
tions included in our basis sets, we believe our results to
be among the most accurate available. The consistent ac-
curacy of the NH-MP2 results should be viewed as one of
the primary successes of this project. While EOM-EA-
CCSD is more accurate, its computational cost makes
NH-MP2 a more attractive candidate for larger systems.

We have also explored the ability of EOM-EA-CCSD
to accurately describe complex potential energy surfaces
and the essential physics of Feshbach resonances. The
results are very encouraging overall, but currently, the
computational cost and extreme basis-set requirements
of the EOM-EA-CCSD method make it impractical for
all but the smallest polyatomic molecules. Feshbach res-
onances bring additional difficulty in the convergence of
the iterative diagonalization method. Further work is
needed to improve the efficiency and general convergence
properties of the iterative diagonalization step.

∆-NH-MP2 is cheaper and has the advantage that it
does not require solution of a large NH eigenvalue prob-
lem. However, it does require the convergence of NH-SCF
calculations which can be difficult and it will break down
when bonds are stretched. Further work is needed in the
form of:

1. Better NH-SCF optimization algorithms for more
consistent convergence
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2. EOM-EA-MP2 for Feshbach resonances

3. Orbital optimized MP2 methods for an improved
description of open-shell resonances
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62J. Horáček, I. Paidarová, and R. Curik, J. Phys. Chem. A 118,
6536 (2014).

63J. Horáček, I. Paidarová, and R. Čuŕık, J. Chem. Phys. 143,
184102 (2015).

64T. Sommerfeld and M. Ehara, J. Chem. Phys. 142, 034105
(2015).
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