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Abstract

We present a new implementation of real-time time-dependent density functional the-

ory (RT-TDDFT) for calculating excited-state dynamics of periodic systems in the open-

source Python-based PySCF software package. Our implementation uses Gaussian basis

functions in a velocity gauge formalism and can be applied to periodic surfaces,

condensed-phase, and molecular systems. As representative benchmark applications, we

present optical absorption calculations of various molecular and bulk systems and a real-

time simulation of field-induced dynamics of a (ZnO)4 molecular cluster on a periodic gra-

phene sheet. We present representative calculations on optical response of solids to

infinitesimal external fields as well as real-time charge-transfer dynamics induced by

strong pulsed laser fields. Due to the widespread use of the Python language, our RT-

TDDFT implementation can be easily modified and provides a new capability in the

PySCF code for real-time excited-state calculations of chemical and material systems.

K E YWORD S

electron dynamics, electron transfer, Gaussian basis, periodic systems, photophysics, real-time
time-dependent density functional theory

1 | INTRODUCTION

The prediction of excited-state dynamics in condensed phase systems

continues to garner immense interest due to their importance in field-

induced transitions,1,2 surface reactions,3 photocatalysis,4,5 nanoscale

devices.6 and strong-field dynamics.7–9 Because of the dynamic nature

of these systems, an understanding of electron dynamics at a time-

resolved level of detail is central to improving and controlling their prop-

erties. Of the various theoretical capabilities for calculating electron

dynamics, real-time time-dependent density functional theory (RT-

TDDFT)10 continues to be one the most promising computational

approaches due to its balance between accuracy and cost. RT-TDDFT

codes for molecular (i.e., non-periodic) systems are becoming more

common since the implementation of the dipole-gauge formalism,

which is required to calculate quantum dynamics in non-periodic sys-

tems, is relatively straightforward. However, the dipole-gauge formal-

ism cannot be used for periodic systems since it breaks the

translational symmetry of the Hamiltonian.11 As such, open-source RT-

TDDFT codes for fully extended periodic systems are less common.

To bridge this gap between molecular and periodic systems, we

have implemented a new RT-TDDFT capability in the open-source

Python-based PySCF software package.12 While a few RT-TDDFT

implementations exist for condensed-phase systems, such as TDAP,2

Qball,13 Salmon,14,15 Elk,16 and Siesta,17 these programs are either in-

house, not open-source, or written in a low-level language. In con-

trast, the modular structure of the Python-based PySCF code allows

easy modification and extension of built-in methodologies, even for

researchers unfamiliar with specific details of each routine. These

Received: 20 September 2022 Revised: 30 November 2022 Accepted: 6 December 2022

DOI: 10.1002/jcc.27058

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any

medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2022 The Authors. Journal of Computational Chemistry published by Wiley Periodicals LLC.

980 J Comput Chem. 2023;44:980–987.wileyonlinelibrary.com/journal/jcc

https://orcid.org/0000-0002-3477-8043
mailto:bryan.wong@ucr.edu
http://www.bmwong-group.com
http://www.bmwong-group.com
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://wileyonlinelibrary.com/journal/jcc
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fjcc.27058&domain=pdf&date_stamp=2022-12-23


implementations are made possible through the high-level Python lan-

guage, which is known for its code readability/re-usability and has found

widespread usage in the scientific community.18 Another advantage of

PySCF is its use of localized, all-electron Gaussian basis sets, which are

(1) generally more accurate than pseudopotentials for RT-TDDFT calcu-

lations of intense laser fields19 and (2) more computationally efficient for

systems requiring a large vacuum space, such as extended surfaces and

low-dimensional systems. Moreover, previous work has shown that effi-

cient use of Python libraries enables PySCF to perform reasonably well

for many quantum chemistry implementations,12 although it should be

re-emphasized that PySCF was designed for code readability/modularity

and not massively-parallelized calculations. In the context of our work on

periodic systems, the use of Gaussian basis functions and several built-in

capabilities of PySCF,12 such as the density-fitting,20–23 enable calcula-

tions of periodic systems in a reasonable time and computational cost.

In this work, we provide a detailed description of our PySCF

RT-TDDFT implementation for simulating electron dynamics of

periodic systems in the presence of time-dependent external fields.

To validate our custom implementation, we provide a variety of

benchmark tests that include comparisons between (1) conventional

linear-response and RT-TDDFT calculations, (2) different gauge

choices, and (3) oscillator strength distributions. Our results are

also complemented by a variety of analyses, including real-time

electronic properties and time-dependent orbital occupations for a

(ZnO)4 molecular cluster on a periodic graphene sheet as a repre-

sentative example. Finally, we conclude with a discussion and sum-

mary of our results, with additional perspectives of future

applications of our RT-TDDFT implementation.

2 | METHODOLOGY

2.1 | Real-time propagation scheme

We first describe the real-time propagation scheme used in our cus-

tom PySCF implementation. We commence with the electronic

ground state of a periodic system described by a given nuclear config-

uration with lattice vectors {ai} and reciprocal vectors G. Each Kohn–

Sham (KS) orbital is characterized by a Bloch vector k and is a solution

of the eigenvalue equation,

HKS
k ψkα ¼ εkαψkα, ð1Þ

where α is an orbital index and HKS is the KS Hamiltonian given by

HKS ¼T þVextþVHþVxc, ð2Þ

where T , Vext, VH, and Vxc are the kinetic energy, external potential,

Hartree potential, and exchange-correlation (xc) potential operators,

respectively. In this work, we focus on a Kohn–Sham treatment of the

electrons (described via local and semi-local functionals), which can be

readily used by PySCF developers and users without significant com-

putational effort. We note that this formulation cannot capture all of

the intricate many-body effects in excited-state dynamics (such as

electron–hole interactions), and modifications of our program to

include these many-body effects would be possible future extensions

of our work.

For a system is in its electronic ground state at time t = 0, its time

evolution for future times, t > 0, is given by the time-dependent KS

equation

iℏ
∂

∂t
ψkα r, tð Þ¼HKS

k tð Þψkα r, tð Þ, ð3Þ

where Hk
KS(t) is the time-dependent KS Hamiltonian operator. The

electron density of the system at time t is given by

ρ r, r0;tð Þ¼
X
kα

ψkα r, tð Þwkαψ
�
kα r0 , tð Þ, ð4Þ

where wkα is a time-independent occupation number. In this

paper, we use the adiabatic formulation24 of TDDFT, which

approximates the xc potential to be a functional of the density at

time t. As representative examples of our implementation, we use

local and semi-local xc functionals such as the local density

approximation (LDA)25 and the generalized gradient approxima-

tions (GGA).26,27 We recognize that hybrid xc functionals typi-

cally give better results than LDA and GGA; however, the main

purpose of our work is to validate our implementation of RT-

TDDFT for periodic systems.

To numerically solve the time evolution in Equation (3), we

apply the Crank–Nicolson algorithm28 and propagate the KS

orbitals as

ψkα tþΔtð Þ≈
YNs�1

j¼0

1þ idt
2ℏ

HKS
k tjþ1

2

� �� ��1

1� idt
2ℏ

HKS
k tjþ1

2

� �� �
ψkα tð Þ, ð5Þ

where Δt is the step size of the propagation, Ns is the number of steps

(typically set as Ns = 20 in this work), dt�Δt=Ns is the propagation

time step, and tjþ1
2
� tþ jþ 1

2

� �
dt are the time values. The Crank–Nicol-

son operator in Equation (5) is a strictly unitary approximation of the

exact time evolution operator e�iΔtHKS=ℏ for a small step size Δt. The

density matrix and Hamiltonian at time t+Δt are solved self-consis-

tently, whereas the Hamiltonians at the intermediate time points,

HKS
k tjþ1

2

� �
, are approximated by a linear interpolation of Hk

KS(t) and

Hk
KS(t+Δt).

Within the PySCF12 software package, the time-dependent KS

orbitals are expanded in a set of Gaussian atomic orbitals (AOs) as

ψkα r, tð Þ¼
X
μ

χkμ rð ÞCμ
kα tð Þ, ð6Þ

where Cμ
kα tð Þ are the time-dependent coefficients,

χkμ rð Þ�
ffiffiffiffi
1
N

q P
Tn

χμ r�Rμ�Tn
� �

eik � Tn are the Gaussian basis functions

with Rμ being the atomic center of orbital μ, Tn is the lattice transla-

tion, and N is a formal normalization factor. The electron density,

Equation (4), is expanded as

HANASAKI ET AL. 981
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ρ r, r0;tð Þ¼
X
k

X
μν

χkμ rð ÞDkμν tð Þχ�kν r0ð Þ, ð7Þ

where Dkμν(t) is the density matrix in the AO representation, given by

Dkμν tð Þ�
X
α

Cμ
kα tð ÞwkαC

ν�
kα tð Þ: ð8Þ

With these definitions, the time-dependent KS equation (within

the fixed nuclei approximation) in Equation (3) can be written in matrix

form as

iℏ
X
ν

ffiffiffi
S

p
μν
_C
ν

kα tð Þ¼
X
κν

eHkμκ

ffiffiffi
S

p
κνC

ν
kα tð Þ, ð9Þ

where Sμν is the overlap matrix and eHkμν �
P
σκ

1=
ffiffiffi
S

p� �
μσ
Hkσκ 1=

ffiffiffi
S

p� �
κν
.

The Cν
kα coefficients can be calculated with the following expression:

Cν
kα tþΔtð Þ≈

X
μκ

1ffiffiffi
S

p
YNs�1

j¼0

1þ idt
2ℏ
eHk tjþ1

2

� �� ��1

1� idt
2ℏ
eHk tjþ1

2

� �� � !
νμ

ffiffiffi
S

p� �
μκ
Cκ
kα tð Þ:

ð10Þ

The required self-consistency between the KS Hamiltonian HKS(t

+ Δt) and the electron density ρ(r, r0;t + Δt) at time t + Δt is achieved

iteratively starting from an initial guess for HKS(t + Δt). We propagate

the wavefunctions using Equation (5), calculate the electron density at

time t + Δt using Equation (7), and recalculate the corresponding

Hamiltonian HKS(t + Δt). This iterative procedure is repeated until a

self-consistent solution is reached. We require the norm of the elec-

tron density difference across successive iterations to be smaller than

a predetermined ϵtol value, which we set to 5 � 10�7. Convergence is

accelerated by Pulay's direct inversion of iterative space (DIIS) algo-

rithm29 in which the trial density matrix at the pth iteration step

D pð Þ
kμν tð Þ is set as the input vector.

2.2 | Velocity gauge formulation

The velocity gauge formulation is used to correctly incorporate the

effects of external electric fields with periodic boundary conditions. In

this formulation, the kinetic energy, T , in Equation (2) becomes

T ¼ 1
2me

ℏ
i
r�qe

c
A tð Þ

	 
2

, ð11Þ

where me is the mass of an electron, qe is its charge, c is the speed of

light, and A(t) is the electromagnetic vector potential. Adopting the

long-wavelength approximation and assuming the spatial uniformity

of the electric field, A(t) is the integration of the electric field strength

E(t): A tð Þ¼�c
Ð tdt0E t0ð Þ. The wavefunctions in the velocity gauge, ψvg,

and the length gauge, ψlg, are related by a formal gauge

transformation:

ψvg r, tð Þ¼ ei
qe
ℏcA tð Þ � rψ lg r, tð Þ: ð12Þ

Non-local (NL) potentials appearing in the pseudopotential formu-

lation are therefore transformed according to the expression

Vvg
NL r, r0ð Þ¼ ei

qe
ℏcA tð Þ � rV lg

NL r, r0ð Þe�iqeℏcA tð Þ � r0 : ð13Þ

PySCF uses Goedecker Teter Hutter (GTH) separable dual-space

pseudopotentials.30 The matrix elements of the transformed GTH

pseudopotential in a Gaussian basis set representation can be evalu-

ated either analytically or numerically in reciprocal space. Observables

containing the differential operator, such as the electronic velocity,

are modified in a covariant manner as

ξvg tð Þ¼
X
kα

wkα⟨ψ
vg
kα tð Þj 1

me

ℏ
i
r�qe

c
A tð Þ

	 

þ 1
iℏ
br, bVvg

NL

h i
jψvg

kα tð Þ⟩, ð14Þ

where the commutator term reflects the non-commutativity of the

dipole and non-local pseudopotential operators.17

2.3 | Optical absorption spectrum

In the length gauge calculation of finite systems (i.e., molecules),31–34

the time-dependent dipole momenta is induced by an instantaneous

electric field pulse of the form E(t) = F0nδ(t), where n is the polariza-

tion direction, F0 the electric field amplitude, and δ(t) is the Dirac delta

function. From linear response theory, the system's response to an

infinitesimally small external field, F0n, is given by

⟨μk r, ωð Þ⟩¼
X
l

ð
d3r0χkl0 r, r0 , ωð ÞnlF0, ð15Þ

where μk(r, ω) is the Fourier transform of the dipole moment in the

kth spatial direction at coordinate r, where χ0 is the response function

given by

χkl0 r, r0, ωð Þ¼
X
a

⟨0jbμk rð Þja⟩⟨ajbμl r0ð Þj0⟩
ℏω�Ea0þ iℏη

�
X
b

⟨0jbμl r0ð Þjb⟩⟨bjbμk rð Þj0⟩
ℏωþEb0þ iℏη

,

ð16Þ

where ja⟩ (j0⟩) denotes an excited (ground) energy eigenstate with

energy Ea (E0), η is the broadening parameter, and the excitation ener-

gies are given by Ea0 ≡ Ea � E0. In our RT-TDDFT formalism, we are

only interested in the spatially uniform component, and the oscillator

strength can be computed as
P
kl
nkαkl ωð Þnl , where αkl(ω) is calcu-

lated as

αkl ωð Þ��2ℏω
π

Im
ð ð

d3rd3r0χkl0 r, r0;ωð Þ

¼2ℏω
X
α

⟨0jbμkjα⟩⟨αjbμlj0⟩δ ℏω�Eα0ð Þ: ð17Þ
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The oscillator strength satisfies the frequency sum rule. In the

velocity gauge formulation, the input field transforms to a step-

function vector field given by

A tð Þ¼�cF0nθ tð Þ, ð18Þ

where θ(t) is the Heaviside function. In condensed-phase calculations,

a convenient observable is, instead of the dipole, the electronic veloc-

ity, whose response is given by

χklvd ωð Þ¼
X
a

⟨0j bμk , HKS
h i

=iℏja⟩⟨ajbμlj0⟩
ℏω�Ea0þ iℏη

�
X
b

⟨0jbμljb⟩⟨bj bμk , HKS
h i

=iℏj0⟩
ℏωþEb0þ iℏη

, ð19Þ

where the vd subscript in the previous equation indicates the dipole to

velocity response. As such, Equation (17) can be succinctly written as

αkl ωð Þ¼�2
π
Reχklvd ωð Þ, ð20Þ

In real-time simulations, we calculate the electronic velocity (or

the dipole if the target system is an isolated molecule) as a time-

dependent observable, which is then Fourier-transformed to numeri-

cally calculate the response function χklvd ωð Þ [χkl(ω)]. The formal expres-

sion in Equation (20) or (17) is then used to calculate the oscillator

strength from the response function.

The dielectric function can be obtained from the following

expression:35

ε ωð Þ¼1þ4πiσ ωð Þ
ω

, ð21Þ

where the dynamical conductivity σ(ω) is given by

σ ωð Þ¼ qe
Ωc

ð
Ωc

d3r
ð
dteiωt⟨Ψtjbn �bj rð ÞjΨt⟩=F0, ð22Þ

where Ωc is the cell volume, andbj rð Þ is the electronic current operator.

The electronic current integrated over the unit cell is equivalent to

the electronic velocity expectation value given in Equation (14). In

our numerical implementation, the time propagation is truncated to

a finite range from 0 ≤ t ≤ T, where T is set to 24 fs. The time-series

of dipoles/electronic velocities are multiplied by a Gaussian func-

tion of the form e�w2t2=2 (w = 0.1 eV=ℏ is used in this work) before a

Fourier transformation is taken, which introduces a finite spectral

width.

3 | RESULTS

This section provides numerical results of our velocity-gauge RT-

TDDFT implementation in the PySCF software package. We first dis-

cuss our calculations of the optical absorption spectra and examine

both non-periodic molecules (Section 3.1.1) and periodic solids

(Section 3.1.2) to validate and verify our implementation. We then dis-

cuss real-time electron dynamics between a (ZnO)4 molecular cluster

and a periodic graphene sheet in Section 3.2 as an example of real-

time charge transfer in strong external fields.

3.1 | Optical absorption spectra

To benchmark and validate our velocity-gauge RT-TDDFT implemen-

tation, we calculated the optical absorption spectra of both molecular

and condensed-phase systems. The real-time response to a vector

field step-function (Equation (18)) was calculated with F0 set to 0.001

in atomic units (a.u.). The time step, Δt, was set to 8.0 as, and the

wavefunction was propagated for 3000 steps.

3.1.1 | Optical absorption spectra of molecules

As a first test of our implementation, we compare our real-time

electron dynamics results for an isolated CH4 molecule against a

variety of benchmark calculations. To enable a fair and consistent

comparison among the various benchmarks, all of the excited-state

calculations for CH4 were executed in the PySCF software package

using the Slater exchange plus Vosko, Wilk, Nusair (S-VWN) corre-

lation36 and the aug-cc-pvtz37 basis set. The molecular geometry

was optimized using the Broyden–Fletcher–Goldfarb–Shanno

(BFGS) variant of the Davidon–Fletcher–Powell minimization

algorithm.38

Figure 1A compares our velocity-gauge RT-TDDFT optical absorp-

tion results against a standard linear-response (LR) TDDFT calculation.

The continuous RT-TDDFT spectrum was calculated from Equation (20),

and the LR-TDDFT spectrum was obtained from the tdscf module in

PySCF. The low-energy optical spectrum obtained using RT-TDDFT is

essentially equivalent to that obtained with LR-TDDFT, which validates

our velocity-gauge implementation. As another sanity check on our

implementation, we also calculated the LR-TDDFT spectrum of CH4

with the Gaussian software package39 at the S-VWN/aug-cc-pvtz

level of theory and obtained excitation energies of 9.36, 10.40,

11.96, 12.04, 13.03, 13.67, 16.62, and 17.98 eV, which agree well

with the excitation peaks shown in Figure 1A. Our next validation

test is shown in Figure 1B, which compares the oscillator strength

results obtained from our length-gauge and velocity-gauge

RT-TDDFT calculations, using Equations (17) and (20), respectively.

We obtained the length-gauge results from the system's response to

a delta-function electric field strength of F0 = 0.001 a.u., whereas

the velocity gauge results were obtained using the Heaviside func-

tion vector field Equation (18) with the same field strength. The two

results show nearly perfect agreement, indicating equivalence of the

two gauge choices in the linear response regime.

Finally, Figure 1C compares the same oscillator strength

distribution calculated from the dipoles and electronic velocities (see

Equations (17) and (20), respectively). Except for the fictitious peak

around ω ≈ 0 appearing in the velocity spectrum, these two results

HANASAKI ET AL. 983
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show good agreement. We attribute the appearance of the fictitious

peak to the nature of the velocity spectrum calculated from

Equation (20).40 The consistency between the results obtained from the

length and velocity gauges validate our RT-TDDFT implementation.

3.1.2 | Optical absorption spectra of solids

We next investigate the optical response of fully extended periodic

systems. As a prototypical example, we examine a two-dimensional

hexagonal boron nitride (h-BN) layer with a lattice constant of

a = 2.504 Å41 and a vacuum layer of 20 Å. We used a 15 � 15 � 1

Monkhorst–Pack42 mesh for the Brillouin zone sampling, and the

VWN36 formulation of the LDA25 xc functional. The GTH separable

dual-space pseudopotential30 and the double-zeta polarized basis set

adapted for DFT calculations with the GTH pseudopotential (gth-

dzvp)43 was used. To enhance the computational efficiency of our cal-

culations, the Gaussian and Plane-Wave density-fitting scheme,23

implemented in the Fast Fourier Transformation (FFT) density-fitting

routine in PySCF, was applied. In calculating the dynamical conductiv-

ity σ(ω), we followed the procedure in Reference 44 and introduced a

damping factor of the form e�γt with γ = 0.5 eV=ℏ, to reduce numeri-

cal errors due to the finite time propagation.

To further validate our implementation, we computed the dynam-

ical conductivity of h-BN and compared it with the results of Refer-

ence 44. Figure 2 shows the frequency-dependent conductivity, σ(ω),

calculated from the real-time response of the system to a weak step-

function vector field in Equation (18) with F0 = 0.001 a.u. and n in the

x direction. Our calculation shows that our computed spectrum agrees

relatively well with Reference 44, where we attribute the minor differ-

ences to the basis set and k-point sampling used in our calculations

(Reference 44 used a real-space grid and sampled over 32 � 32 k-

points). As such, the agreement between our RT-TDDFT calculations

with the LDA result of Reference 44 validates our RT-TDDFT PySCF

implementation for periodic systems.

3.2 | Real-time dynamics

With our PySCF RT-TDDFT implementation validated, we next dis-

cuss real-time dynamics in strong external fields. This

section examines laser-induced charge transfer dynamics for a two-

dimensional periodic system whose unit cell consists of a (ZnO)4

molecular cluster and a 4 � 4 monolayer graphene sheet, which is a

prototypical example of excited-state dynamics between a (non-peri-

odic) molecule and an extended periodic system.6

(A) (B) (C)

F IGURE 1 Optical absorption spectrum of the CH4 molecule. Panel (A) shows the oscillator strength distribution of the CH4 molecule
obtained with the LDA xc potential and aug-cc-pvtz37 basis set. The solid green line shows the RT-TDDFT result, and the dotted red line shows
the LR-TDDFT result. Panel (B) shows the RT-TDDFT spectra calculated using the velocity gauge (VG, solid green line) and the length gauge (LG,
dotted blue line) formulations. Panel (C) compares the velocity (solid green line) and dipole (dotted black line) spectra. The inset shows the
behavior of the spectra around ω = 0.

F IGURE 2 Dynamical conductivity σ(ω) of monolayer h-BN. The
solid red line was obtained from our RT-TDDFT PySCF
implementation, and the dashed gray line was obtained from
Reference 44.
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Figure 3 shows our simulation cell, which consists of a 4 � 4

supercell of graphene and a (ZnO)4 cluster, which was created with

Avogadro.45 The graphene sheet is held fixed with an inter-carbon

distance of rCC = 1.42 Å, whereas the nuclear configuration of the

(ZnO)4 cluster was first optimized by density functional tight binding

(DFTB) calculations46 with the 3ob parameter set47 and subsequently

shifted towards the graphene sheet by 1 Å. In this geometry, the Zn

atom closest to the graphene sheet was 1.71 Å above the sheet. Our

calculations utilized a single k-point. To reproduce the gapless excita-

tion spectrum of graphene, we shifted the k-point origin by

K0 � 4π
3a , 0, 0
� �

, where a (=2.4596Å = 4.648 a.u.) is the lattice con-

stant of the graphene sheet. We applied a Fermi–Dirac distribution

function corresponding to T = 1000K for smearing the metallic Fermi

surface. We used the Perdew, Burke, and Ernzerhof27 GGA xc func-

tional and the single-zeta molecularly optimized (molopt) basis set

(gth-szv-molopt-sr)43 for our RT-TDDFT calculation. Equation (10)

was integrated with a time step of Δt = 6 as, and we applied an ultra-

short trapezoidal pulse of width τp = 20 fs, with an ascending/

descending time of 5 fs, shown in the inset of Figure 4A. The wave-

length and peak intensity of the pulse was set to λ = 360 nm and

I = 4.0�1013W/cm2, respectively. We chose λ = 360nm as our exci-

tation energy since the local density of states of this hybrid system

indicates that a UV photon with this wavelength would cause an exci-

tation from the valence to the conduction band.

Figure 4 shows the time evolution of the electronic charges on

the (ZnO)4 cluster. We considered a dividing plane 1.0 Å above the

graphene sheet, z = z0 with z0 = 1.0 Å, and defined the total electric

charge Q above the dividing plane as Q tð Þ�
Ð
z≥ z0

dz
Ð Ð

dxdy ρ r, tð Þ,
which represents the total number of electrons on the (ZnO)4 cluster.

Panel (A) plots the time derivative dQ=dt as a function of time. The

inset in panel (A) plots the electric field of the laser pulse, which con-

firms that the oscillation of the electric charge on the (ZnO)4 cluster is

directly correlated with the oscillations of the laser field. To confirm

these effects, Figure 4B plots the summation of the Mulliken charges

of Zn, C, and O represented by the blue, green, and red lines, respec-

tively. The green line represents the summation of the Mulliken

charges on the carbon atoms for the entire graphene sheet. Since the

total charge of the system is constant, additional charges on the car-

bon are provided by the (ZnO)4 cluster. The oscillations of the Mulli-

ken charges on the Zn and O atoms are partly due to charge transfer

F IGURE 3 Geometry of our simulation cell consisting of a (ZnO)4
molecular cluster and a 4 � 4 periodic graphene sheet. The purple,
red, and dark gray spheres represent zinc, oxygen, and carbon atoms,
respectively.

(A) (B)

F IGURE 4 (A) Rate of change (dQ/dt)
of the total electronic charge Q above the
z = 1.0 Å dividing plane. The inset shows
the electric field of the applied laser pulse.
(B) Mulliken charges as a function of time.
The blue, green, and red lines track the
total summation of the Mulliken charges
on the zinc, carbon, and oxygen atoms,
respectively.

F IGURE 5 Dynamic charge transfer in a system composed of a
(ZnO)4 molecular cluster and a periodic graphene sheet. The charge
density difference was calculated between t = 0 and 11.22 fs, and the
green and purple isosurfaces are plotted for Δρ = ±0.04 a.u.
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inside the (ZnO)4 cluster; however, the oscillations of charge on the

carbon atoms arise from charge transfer between the (ZnO)4 cluster

and the graphene sheet. To show the spatial distribution of the elec-

tronic density at an intermediate time t = 11.22 fs, Figure 5 plots the

charge-density difference, Δρ(r, t)≡ ρ(r, t)� ρ(r, 0), which shows

dynamic charge transfer between the (ZnO)4 cluster and periodic gra-

phene sheet.

4 | DISCUSSION AND CONCLUSION

In this work, we have implemented a new RT-TDDFT capability in

the open-source Python-based PySCF software package for calcu-

lating excited-state dynamics of periodic systems. Our implementa-

tion uses Gaussian basis functions in a velocity gauge formalism

and can be applied to periodic surfaces, condensed phases, and

molecular systems. We have validated our custom implementation

by computing optical properties of both molecular and extended

periodic systems with explicit time-dependent calculations of ultra-

fast dynamics in these systems. Our first validation test on an iso-

lated CH4 molecule shows that our velocity-gauge oscillator

strengths agree well with the LR-TDDFT and length-gauge TDDFT

results. To validate our implementation for periodic systems, we

calculated the dynamical conductivity of a periodic h-BN sheet,

which agrees with previously published benchmarks. Taken

together, our calculations show a close agreement between LR-

and RT-TDDFT, different gauge choices, and oscillator strength dis-

tributions obtained from our time-dependent dipoles and electronic

velocities. These detailed consistency tests validate our new RT-

TDDFT implementation for periodic systems in the open-source

PySCF software package.

With these validation tests completed, we then examined real-

time, laser-induced charge-transfer dynamics for a combined

(ZnO)4 molecular cluster and graphene system. These results pro-

vide real-time mechanisms of charge transfer dynamics, which can-

not be obtained from conventional linear response TDDFT

approaches. Furthermore, our femtosecond laser-induced dynamics

calculations for this system demonstrates that our implementation

can be used to probe real-time electron dynamics in periodic sys-

tems, which is a new capability not previously available in the

PySCF software package. Looking forward, we anticipate that this

new capability could be used by both users and developers of RT-

TDDFT for probing excited-state dynamics of periodic systems.

Due to the relative simplicity and widespread use of the Python

language, our RT-TDDFT implementation could be easily used/

extended to other chemical and material systems, which will be

incorporated in a future release of PySCF.
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