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Abstract: This report describes a register transfer synthesis system that 
allows a designer to interact with the design. process. The designer 
can modify the compiled design by changing the input description, 
selecting optimization and mapping strategies, or graphically 
changing the generated design schematic. The VHDL language is 
used for input and output descriptions. An intermediate represen­
tation which incorporates signal typing and component attributes 
simplifies compilation and facilitates design optimization. The com­
pilation process consists of two phases. First, a design composed of 
generic components is synthesized from the input description. 
Second, this design is translated into components from a particular 
library by a mapper and optimized by a logic optimizer. Redesign 
to new technologies can be accomplished by changing only the 
component library. 
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1. Introduction 

In order to successfully exploit new technologies, the problem of rapid 

prototyping of new systems and redesigning old parts must be solved. To solve 

these problems, a new generation of design tools that capture human design 

knowledge must be developed. However, this knowledge about translating 

functional specifications to structural representations and structural 

representations into physical design is not sufficiently well understood to allow 

ihe development of CAD tools based on simple algorithms. To make the problem 

even more complicated, the functional specifications are often incomplete and 

given with conflicting design goals. 

1.1. Motivation 

Design Synthesis on the register transfer level covers several areas: hardware 

description languages, design representation (data base), logic synthesis, and 

behavioral synthesis. The hardware description language (HDL) provides a 

method of specification for the designer so that the design automation system 

can be supplied with sufficient information to synthesize the desired circuit. A 

design representation or data base is the internal description used by the design 

automation system which organizes information extracted from the input 
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specification necessary for synthesis. This representation 1s created and 

optimized by the system so that a net.list or other output specification can be 

produced. 

The purpose of a true hardware description language is to specify the 

structure of a design m terms of interconnected components. This 

representation contains sufficient information for tasks such as technology 

mapping (the process of transforming a technology independent design into a 

technology specific one) which operate on an existing design. However, this 

description is at too low a level to support synthesis since design decisions have 

already been made in selecting and interconnecting components. Simulation 

languages classified as HDLs are used to model hardware. These languages are 

tailored to optimize the performance and correctness of the simulation through 

the use of constructs which have no direct correlation to hardware; 

consequently, synthesis from these descriptions is difficult. The ideal HDL is a 

language which captures the intended functionality of a design in terms of 

generic components (a universal set of technology independent hard',varc 

primitives) and provides sufficient information to guide the synthesis process. 

The design process often proceeds through several stages of the abstraction 

hierarchy (processor, register transfer (RTL), gate, circuit, layout). In 
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particular, two stages of the digital design process will be addressed in the 

context of this work: logic synthesis and behavioral synthesis. Logic sylhesis 

operates at the gate level which uses simple logic gates (AND, OR, INVERTER, 

etc.), fiipfiops and selected MSI components as design primitives. Systems 

which attempt to automate this process accept a textual (netlist, HDL, boolean 

equations, tables) or graphical (schematic, menu interaction) input and perform 

logic level optimizations to meet area, timing or other design constraints. 

Behavioral synthesis operates at the higher levels. It involves the description of 

the functionality and input/output interfaces of the hardware to be designed in 

algorithmic form (programming language, HDL). A system which addresst>s this 

level of synthesis first translates this specification into a design representation 

which can be operated on by design automation tools. This design data base is 

theu used to create a more detailed description of the design at lower levels of 

abstraction. 

The types of designs produced by behavioral synthesis can be classified in 

several different ways. The designs may consist of purely combinational 

elements or may contain registers or other storage elements, thereby making 

them sequential. Since sequential designs have more than one state, a further 

classification according to the modeling level is introduced. A one state per 

process model may be assumed where each process or block describes one state 
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of the design. Alternatively, each process may model many states. In this case, 

a design usually consists of a data path and control unit. The data path can 

perform different operations on different clocks as determined by control signals 

supplied by the control unit. The behavioral synthesis process allocates data 

path units, schedules operations which can be performed on available units in 

the given state, and determines the control which must be supplied to the data 

path for each state. 

The objective of this work is to develop a system which performs behavioral 

synthesis; specifically, the translation of a VHDL description to a netlist of 

generic components. The VHDL description may be writ ten in a data fl.ow style 

where concurrent statements describe the fl.ow of information between memory 

;rncl gating elements or in a behavioral style which uses sequential statements to 

abstractly describe the function of the hardware. There are two motivations for 

this work. The first of these is to provide a methodology for high level design. 

Because the designer is working at a higher level of abstraction (at the processor 

or RT levels instead of gate, circuit or layout levels), requirements for design 

expertise at the lower levels of design are removed, thereby increasing 

productivity. A second motivation is to allow for redesign of existing designs 

using new technologies. The use of a generic component net.list makes the design 

independent of implementation style (gate arrays, standard cells, custom). By 
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mapping generic components to a particular gate array, standard cell, or custom 

component library, the designer may consider alternative styles and fabrication 

processes. 
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2. Previous Work 

There are two mam applications of hardware description languages: to 

document a design and to model a design. VHDL has been used primarily as a 

modeling and simulation language in hardware design efforts up to this point. 

Recent efforts in design automation, including this work, seek to work with a 

behavioral description that captures both the information necessary to simulate 

the function of a design as well as to include attributes necessary to synthesize 

the structure of the design. 

Armstrong [Arms87J[Arms88] illustrates how VHDL can be used to :nodel 

hardware at the various levels of abstraction. His work focuses on methods for 

representing various behavioral aspects of chip level modeling. At this level, a 

component is a complete VLSI chip such as a microprocessor, memory chip, or 

UART. The chip is modeled as a single entity (not constructed hierarchically 

from more basic primitives) which performs a sequence of micro-operations coded 

in an HDL. The model defines the input/output response of the device by 

specifying the algorithm the chip is to implement. 

Because logic signals fl.ow in parallel, any hardware model must include a 

provision for concurrency of execution. The VHDL language handles this notion 

of simultaneity with the use of the process statement. Each process represents a 
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block of logic, with all processes executing in parallel. Armstrong defines a 

graph representation termed the process model graph which uses nodes to 

represent a partitioning of the function of the model into subfunctions. 

Intercommunication between process nodes is denoted by arcs. VHDL process 

statements implement each node subfunction, while signals appearmg m the 

process signal list model timing delay and input/output relationships between 

subfunctions. A node may be functionally decomposed into more than one 

VHDL process. For example, a node representing a register with synchronous 

load and asynchronous clear attributes can be modeled by two processes, one 

representing the effects of the load operation, the other reflecting the effects of 

the clear operation. 

\Vhile this style of VHDL description may correctly simulate the behavior of .. 

the hardware, it presents several problems when viewed from the synthesis 

perspective. First, the separation of the description of a, single component into 

several process statements complicates the task of collecting and identifying 

attributes to be associated with that component. Furthermore, this description 

style relies on the VHDL simulator's notion of a container to assign the correct 

value to a signal at any given time based on one or more drivers. A container 

represents signal nets as well as registers, making the task of identifying these 

entities difficult for the compiler. Often, complicated language constructs are 
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used to combine these drivers which result in a suboptimal design when mapped 

to logic components. 

For example, Figure 1 shows a VHDL description which uses separate 

statements to model the asynchronous clear and synchronous up/down count of 

a controlled counter [Arms87J. The drivers (OUTl, OUT2) generated to 

represent the effects of each event on the register's output value are combined 

using a conditional signal assignment statement MUXl. Note that MUXl is a 

virtual component which should have no hardware realization. The sole purpose 

of the statement is to collect the multiple drivers for simulation. 

Two approaches may be taken to translate this behavioral description into 

hardware: direct mapping of VHDL constructs to appropriate microarchitedure 

components, or recognition of certain VHDL construct patterns as a 

representation of a particular hardware concept. If a straightforward mapping of 

VHDL constructs is performed, inefficient hardware will often result. In the 

above example, an unnecessary multiplexor will be introduced when mapping 

the MUXl statement to hardware, with each driver as a data input and 

complicated selection logic. A sophisticated logic critic would then be needed to 

t.ransform this design into an optimal one (i.e., a register with up/down count 

and clear control inputs). The latter method of translation reqmres 
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Architecture PROCESS_JJvIPL of CONTROLLED_CTR is 

signal CLK,EN: BIT; 

signal CONSIG: BIT_ VECTOR(O to 3); 

signal OUT_TMP,OUT1,0UT2: BIT_VECTOR(O to 3); 

CLEAR_CTR: block (CONSIG(O) = 'l' and not CONSIG(O)'stable) 

begin 

OUTl < = guarded "oooo" after CLRDEL; 

end block CLEAR_CTR; 

CNT_UP _OR_DOWN: process (CLK,EN) 

variable CNT: BIT_VECTOR(O to 3); 

variable CLKE: BOOLEAN; 

begin 

if EN'stable then 

if EN = 'O' then 

CLKE := TRUE; 

else 

CLKE := FALSE; 

end if; 

end if; 

if ( CLK = '1' and not CLK'stable and CLKE) then 

if (CONSIG(2) = '1') then 

CNT := INC(CNT); 

else if (CONSIG(3) = '1') then 

CNT := DEC(CNT); 

end if; 

end if; 

OUT2 <= CNT after CNTDEL; 

end process CNT_UP _OR_DOWN; 

MUXl: OUT_TMP <= OUTl when not OUTl'quiet else 

OUT2; 

end block PROCESSJMPL; 

Figure 1: VHDL Controlled Counter Chip Model 
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identification of the type of signals used to select the input driver. Since VHDL 

allows the designer to express the same functionality in many different ways, the 

task of developing a rule set which recognizes all valid VHDL representations of 

a desired set of hardware concepts would be extremely difficult, if not 

impossible. The compilation process becomes simplified if the descriptions are 

not allowed to contain virtual components. 

In order to reduce the complexity of the synthesizer, several systems have 

been designed which use a subset of language constructs that can be mapped to 

an appropriate set of hardware components. Systems such as SOCRATES 

[GrBa86], LSS [JoTr86] and Logic Consultant [Kim87] are targeted to synthesis 

at the gate or logic level. Each accepts input in the form of boolean equations, 

PLA format, structural (net.list) or algorithmic behavioral description. The IB:M 

VHDL environment [Saun87] combines a subset of VHDL language constructs 

with language extensions to synthesize an RTL level design using components 

from a target technology library. 

A common characteristic of the above approaches to synthesis is the direct 

correspondence of a set of language constructs to a fixed set of hardware 

components. Technology details are hard coded into the translation process 

through the use of a fixed component library. Such restrictions limit the 
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flexibility of these synthesis systems when usmg different component libraries. 

The input descriptions, while easier to map to hardware, force the designer to 

use a representation style which 1s more structural than algorithmic or 

behavioral. 

When a behavioral description is used, synthesis consists of the following 

phases: language translation, global optimization, data path allocation, data 

path module binding, control path allocation and control path module binding 

[Ts We88]. Language translation im·olves parsing a high level behavioral 

description and translating it in to an intermediate representation (usually a 

control/data fl.ow graph). Global optimizations such as standard language 

compiler data fl.ow analysis or identification of signals and registers are then 

performed on this intermediate form in order to increase the efficiency and 

amount of parallelism in a design. Data path allocation involves component 

selection, state synthesis and connectivity binding. During this phase, the 

number and types (attributes) of components are selected, graph operation 

nodes are assigned to machine states, and assignment of operations to hardware 

components is performed. A symbolic microcode table is usually generated as the 

allocation is made, indicating the control signals to be supplied to components 

during each machine state. Once the data path is synthesized, control paths can 

be generated after selecting a control style (hardwired, PLA, ROM, pipelined). 
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Facet [TsSi83] is a system for automated synthesis of data paths developed 

at CMU. It uses an input graph representation known as a Value Trace (VT) 

[McFa78] that is derived from an ISPS [Barb81] input description. The Value 

Trace is a collection of VT-bodies, each of which consists of a linear sequence of 

data flow operations. In order to maintain control information in the same 

representation, control constructs are translated into their data fl.ow equivalents 

and included in the VT. A clique-partitioning method is used to minimize the 

number of storage elements, data operators and interconnection units required 

to realize the design. Resources are shared in the final design wherever possible 

unless it is specified in the ISPS description that elements should not be 

combined (the reserved variable declaration). The Emerald design generator 

[TsSi86J was developed to perform manipulations (orderings) on the oµeration 

sequence before passing the VT-body on to Facet. Emerald also provides the 

designer with the capability to select design criteria (in the case of multiple 

alternatives for component allocation) and generates simple design evaluation 

statistics such as gate count. 

Bridge [TsWe88] is a high level synthesis system which is an extension of 

the Facet work. The system firsts allocates the generic structure of data and 

control paths and then proceeds with technology specific data/ control module 

binding. The FDL2 behavioral language is used as input and is parsed into a 
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control/ data flow graph. Global optimizations identify intermediate variables as 

signals or registers in addition to performing scheduling optimizations. 

Structural synthesis performs allocation and produces a design consisting of RTL 

components (registers, memories, ALUs, multiplexors) and a symbolic control 

table. The allocation program partitions the data flow representation into a 

number of code slices. Methods described for Facet are used to determine the 

storage, arithmetic and logic, and interconnection resources to be used in the 

design. If high speed performance is an important constraint on the design, 

pipelining schemes are considered. Module binding is then performed on the 

structural description to map generic components of the data path to a standard 

cell implementation using the FDS system for MOS chip design. Once the data 

path is physically generated, the control path is synthesized. 

The BECOME [Wei88] system assumes a finite state machine circuit model 

with an external view of only primary inputs and outputs. It accepts a C-like 

behavioral modeling language input. An intermediate form similar to the Value 

Trace is generated by an input parser with the purpose of resolving semantic 

differences among modeling languages. A Data Flow Analyzer identifies 

temporal or scan variables which effect the input/output behavior of the model. 

These variables are allocated to a minimal set of registers or latches, and the 

representation is then modified to create a combinational model (one in which 
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no variables are assigned more than once). If a variable is assigned in more than 

one branch of a complex statement, name splitting is performed to rename each 

multiply assigned variable. These multiple assignments are recombined in the 

bus allocation phase through the insertion of multiplexors. A structure 

description is generated from a one-to-one mapping of operators in the flattened 

model to functional elements. Global optimizations are performed by a mod1Lle 

logic generator. The output of this stage is either a generic logic description or a 

standard cell implementation produced by technology binding. The generic logic 

is represented in BLIF format which can be fed to logic minimization systems 

such as ESPRESSO. The optimized logic is then mapped into the chosen 

implementation technology. 

The V-SYNTH system [Bhas86J[KBhN] provides a VHDL input interface to 

the existing MIMOLA Synthesis System (MSS) [Zimm85]. It seeks to improve 

upon the drawbacks of the MIMOLA system: to remove the burden of 

decomposing the behavioral description into operations to be performed m 

individual control states, and to perform global data flow analysis which 

minimizes the required number of operators and storage elements. A Process 

Graph Analyzer accepts a VHDL behavioral input and generates a process graph 

by decomposing each statement and expression into a simple form (one operator 

and at most two operands). Compiler-like techniques (constant folding, local 
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code optimization, code motion, common subexpression elimination) are used to 

optimize this description. The Control State Generator partitions the process 

graph into control states, introducing parallelism where possible. A re\·erse 

transformation from the process graph to legal VHDL syntax is performed by a 

translator. This description consists of a set of process statements, with each 

process describing operations to occur in a single control state. 

The MIMOLA design system is intended to be an interactive design aid. 

To that end, the Design Representation is a database where the output of the 

Process Graph Analyzer is stored for designer interaction. The designer is 

allowed to modify the Design Representation by adding hardware bindings or 

constraints before presenting the description to MSS for synthesis. When MSS 

is invoked, an implementation is generated by binding hardware components to 

operators and variables in the representation. A statistical analyzer provides 

information such as component utilization to aid the designer in determining 

constraints to meet design goals. 

The above mentioned work in behavioral synthesis has several limitations. 

First, the input languages used have restricted the designer to specify the design 

at the level (instruction set or algorithm, register transfer, logic) to which the 

system had been targeted. Simple design models are used (e.g., microprocessor 
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or DSP) which only apply to a limited domain of design problems. These 

systems fail to address important aspects of real world circuit design such as 

signal timing attributes or asynchronous behavior. Examples which demonstrate 

the operation of these systems do not represent typical design problems. 

In evaluating the strengths and weaknesses of the approaches discussed 

above, a set of criteria for a synthesis system can be derived: 

(1) A common, well defined design representation which will uniquely capture 

the functionality and intention of several equivalent behavioral descriptions 

and will lead to an unique, optimal hardware design. 

(2) The ability to specify and synthesize attributes imch as timing protocols, 

asynchronous control, pipelining, multiclocking, multifunction units, and 

multiple processes with different clocking strategies within the design 

representation. 

(3) Separation of procedural tasks (such as translation, allocation, binding, 

global optimization) which can be accomplished using known algorithms 

from heuristic tasks (local optimizations) which are best accomplished using 

a specialized set of rules. This implementation strategy takes advantage of 

the ability to perform optimization on the design at various levels where the 
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information is most accessible. For example, optimizations for circuit area 

are accomplished more effectively at the local level where tradeoffs can be 

made for individual components based on available primitives in the library, 

while critical path timing requires global analysis and optimization. 

( 4) The system should remam technology independent for as long as possible. 

This suggests that the synthesized design should be composed of generic 

components which can be considered primitive building blocks of all target 

technologies. The system can then be adapted to any implementation 

technology by defining the mapping of these generic components to 

technology specific components and specifying local optimizations to tune 

the design to the selected technology specific components. 

( 5) It would be desirable to generate a design representation which can be used 

as input to simulation or other synthesis tools. Using the same language for 

the input and output descriptions would be particularly beneficial (e.g. 

VHDL behavioral input, VHDL structural output). In this manner, the 

design can be first synthesized at a higher level of abstraction using a 

behavioral input description, then passed to tools which perform logic level 

refinement and design which operate on a more structural description of the 

design. 
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The remainder of this report presents a system which addresses these issues. 

Advantages recognized in the previous work cited above are incorporated and 

expanded into this work. The VHDL language has been selected to specify the 

input behavioral description and the output netlist format because of its 

flexibility for description of hardware at various levels of abstraction and its 

ability to associate attributes with signals or other design entities. 
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3. System Description 

This section outlines a specification for a complete system for designing from 

a VHDL specification. Such a system translates VHDL descriptions into 

manufacturable chips. The input is a VHDL description at the system, 

register-transfer, and logic levels with some or all components described 

behaviorally. The output is a description ready to be sent for fabrication. The 

system can be targeted to gate arrays, standard-cells or custom designs by 

writing a technology translator. 

The system consists of several major components as illustrated in Figure 2. 

(1) The Data Base stores the design, its versions and alternatives, and manages 

hierarchy. The relations between original and compiled designs as well as 

reasons for particular design styles and modifications are stored in the 

database. This information can be used by an Explanation Facility to 

explai!1 design changes to the designer. 

The Data Base stores four types of information. For each hardware block 

or component it stores its VHDL behavioral description, the Control/Data 

Flow Graph obtained from the behavioral description, a structural 

description consisting of generic components, and the technology specific 
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Figure 2: VHDL Synthesis System 

structure description . m which generic components are replaced with 

components from prespecified libraries and then optimized. The data base 

can be considered to be the blackboard of a blackboard expert system 
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architecture m which the knowledge sources are the graph, architecture or 

logic critics. 

(2) A set of compilers is needed to make the design description more explicit or 

add new detail that did not exist before. The Graph Compiler translates 

textual VHDL description into a graph which is used to optimize the design 

description and remove redundancy associated with textual description. 

Logic Compilers then translate each graph node into a set of generic 

components (gates, registers, counters, ALUs, etc.) while the Technology 

l\1apper converts generic components to components in a chosen technology 

(gate macros for gate arrays, standard cells or custom blocks generated by 

silicon compilers). 

(3) A set of critics or optimizers is required to simplify or optimize the design. 

The Graph Critic removes redundancies from the language and improves 

the efficiency of the design using rearrangement and merging. For example, 

it converts a nested IF statement into a CASE statement. The Architecture 

Critic optimizes the design on the functional or register-transfer level. 

Merging an incrementer and a register into a counter is an example of this 

type of optimization. A Logic Critic optimizes the design on the logic level 

by simplifying components with constant inputs and performing logic 
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minimization. For example, this critic will replace an EXOR gate with one 

input connected to logic "1" with an inverter. The Logic Critic will also 

speed up critical paths (paths that do not satisfy timing constrain ts) by 

usmg faster units, by design rearrangement, or by introducing more 

parallelism into the design. 

( 4) The Design Capture and Display component is a man machine interface. 

The designer specifies the design as a set of interconnected modules. Each 

module is described by VHDL block or process statements. After 

compilation or any design modification, the compiled design is displayed 

back to the designer with a possible explanation of why and how a design 

was changed from the previous version. In addition to providing a 

monitoring function, the Graph Generator and Schematic Generator are 

necessary tool development aids which are used during code development 

and debugging. 

(5) A VHDL Simulator is used to check the intent of the initial descriptions. It 

is also used during compilation to check the consistency of the compiled 

design by comparing output vectors. The description of the compiled or 

manually modified design is obtained by a set of Reverse Compilers that 

link together models of the compiled structural description or graph 
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representation of the design. Reverse compilers are needed to fit this 

system into the VHDL environment since the proposed synthesis system 

takes a behavioral VHDL description and compiles it into a structural 

VHDL description. 
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4. VHDL Input D€scription 

The VHDL behavioral description itself consists of a design entity composed 

of two major sections: the entity block and the architecture body. The entity 

block contains the specification of external input/output port connections to the 

hardware to be designed. The architecture body consists of a description of the 

hardware to be designed in one of three styles: structural, which describes a 

hierarchy of interconnected components; data flow, which uses concurrent 

statements to describe the flow of information between memory and gating 

elements; and behavioral, which uses sequential statements to abstractly 

describe the function rather than structure of the hardware. 

4.1. Signal Declarations and Types 

VHDL supports the following standard data types: 

signal 
BIT 
BIT_VECTOR 
BOOLEAN 
INTEGER 

For synthesis purposes, the following special types are defined: 
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subtype CLOCK is BIT 
subtype SET is BIT 
subtype RESET is BIT 
subtype REGISTER is BIT_VECTOR 
subtype BUS is BIT_ VECTOR 
subtype WIRED is BIT_ VECTOR 

VHDL signal declarations can occur m two sections of the behavioral 

description: within the entity block, where external port connections are 

declared, and within block or process statements of the architectural body, 

where internal connections and storage elements are declared. These 

declarations are of the form: 

{signal} <signal-name> : <mode> <type> 

The <mode> attribute identifies the direction in which data flows at a port 

(IN, OUT, INOUT). We will define a signal to be of mode internal if it is not 

declared as a port in the entity portion of the VHDL description but is declared 

as a local signal within an architectural body. The <type> is one of the data 

types defined above. As these declarations are processed by the Graph 

Compiler, entries are made into the symbol table to record the signal attributes. 
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4.2. Data Flow Description Style 

The input description was initially constrained to consist of concurrent 

assignment statements which appear within the VHDL block construct. The 

following VHDL concurrent statements are supported: 

1) con di ti on al signal assignment 
2) selected signal assignment 
3) guarded signal assignment 

In addition, the following synthesis issues will be addressed: 

1) bus and register signal qualifiers 
2) timing specifications 
3) use of wired-or and bus nodes 
4) assumed predefined signal types 
5) recognition of edge transitions on clock signals 

4.2.1. VHDL Concurrent Statern:mts 

4.2.1.1. Conditional Signal Assignment 

The conditional signal assignment will occur in one of the following forms: 

a) signal<= <waveform> ; 

This is the simplest form of assignment statement where 

<waveform> ::= <expression> { after <delay> } 

The VHDL simulator interprets this statement as a directive to compute the 
value of <expression> and schedule the activation of this driver for the 
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signal value at time <current-simulation-time> + <delay> (if no delay 1s 
specified, the driver is activated immediately). 

From the CDFG perspective, a data fl.ow graph is constructed for the RHS 
expression, and the result is input to a WRITE node for the signal. 
Associated with each graph arc (connection) is a signal type (bus, register, 
port, wire), rmd.e (in/out/inout (for ports only), internal), number of bits, 
and representation. The optional delay specification indicates the time 
which elapses between the READ of all signals/variables which appear on 
the RHS of the assignment statement and the appearance (WRITE) of the 
updated expression value at the register /port /wire represented by the 
signal. 

b) signal<= guarded <waveform> 

The guarded assignment involves the conditional assignment of the 
evaluated <waveform> to the signal based on the value of the guard 
expression which appears at the beginning of the enclosing VHDL block 
statement. When the guard expression evaluates to true, the VHDL 
simulator activates the signal driver and places its value on the simulator 
event queue so that the signal is updated at the specified simulation time. 

For the purposes of CDFG generation and synthesis, a guarded signal 
assignment is used for signals declared with the bus or register qualifier. A 
data fl.ow graph is generated for the RHS expression and is connected to the 
true input of a CHOOSE-VALUE node. The CHOOSE-VALUE has a guard 
input which is a data fl.ow graph representing the block guard expression. 
The output of the CHOOSE-VALUE node is used as the input to a WRITE 
node for the signal. 

If the signal is declared as a bus, the CHOOSE-VALUE represents a tri­
state driver for the bus signal. If the signal is a register, the CHOOSE­
V ALUE represents a clock or control signal input to the register. The type 
of the guard input net will indicate the function of the signal. 

c) signal < = { guarded } 
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waveformN when conditionN else 
waveformN; 

This statement corresponds to a nested if arrangement of assignments to the 
same signal based on different boolean conditions. The VHDL simulator will 
evaluate waveform/condition pairs in the order in which they appear and 
will schedule the assignment of the first waveform value to the signal when 
its associated condition evaluates to true. 

This statement can be useful in representing an assignment to a signal based 
on prioritized conditions. For example, the statement in Figure 3 might be 
used to represent a register for which the CLEAR is of highest priority, 
followed by PRESET and CLOCKed assignment. Figure 3 shows the 
flowgraph generated for the statement. 

A chain of CHOOSE-VALUES is constructed to form the data flow graph 
for the nested if construct. The bottom most CHOOSE-VALUE is guarded 
by the first condition encountered, the CHOOSE-VALUE above the bottom 
one is guarded by the next condition, etc. The output of the bottom most 
CHOOSE-VALUE is connected to the WRITE node input. 

4.2.1.2. Selected Signal Assignment 

The format of the selected signal assignment is as follows: 

with <expression> select 
signal < = { guarded } 

waveform! when choicel , 
waveform2 when choice2 , 

waveformN when choiceN; 

This is equivalent to the case statement available as a sequential statement 
within the process construct. The choices are exclusive conditions (either 
integer or boolean values) such that only the waveform matching the value of 
the <expression> is evaluated and scheduled for assignment by the VHDL 
simulator. Figure 4 shows the fiowgraph generated for the general form of this 
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reg_A < = 

May 6, 1988 

)O' after 20 ns when CLEAR = 'O' else 
'l' after 20 ns when PRESET = 'l' else 
DATA after 35 ns; 

DF.3TART 

15 

DF_END 

fig2.dgm Sun Feb 14 18:59:39 1988 

Figure 3: Conditional Signal Assignrrent 
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statement. 

< expression> 

< waveform._2> 

< waveform_l> < waveform.Jl> 

WRITE 
signal 

Figure 4: Flowgraph for Selected Signal Assigmrent 

The data flow graph construct associated with this statement is the multiple 
input CHOOSE-VALUE guarded by the <expression>. Each waveform will 
have a corresponding data flow graph generated for its expression value, and the 
guard test for each input will be stored in the input net. 
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5. Graph Representation 

A control/data flow graph representation (OrGa86] is used and extended for 

the VHDL language. As the VHDL input description is parsed, a symbol table 

entry is created for each signal containing the following information: nooe 

(in/out/inout (for ports only), internal), VHDL declared type (BIT, 

BIT_ VECTOR, CLOCK, etc.), dirrensions (for vectors and arrays), wiring (bus, 

register, port, wire), and representation (magnitude, sign/magnitude, l's 

complement, 2's complement). READ nodes are used to access a signal value 

appearing on the RHS of an assignment statement. Operator nodes represent 

arithmetic, logic or signal seiection operations. The net representing the output 

of the RHS expression is connected to the input of a WRITE node for the LHS 

signal. Associated with each graph arc (connection) is a signal type (DATA, 

CLOCK, SET, RESET, TIMING), number of bits, active edge (positive, 

negative) and sensitivity (edge, level). Optional delay specifications are 

represented in the flow graph by DELAY nodes that indicate the time which 

elapses between the READ of alJ signals/variables which appear on the RHS of 

the assignment statement and the appearance (WRITE) of the updated 

expression value at the register/port/wire represented by the signal. 
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Figure 5 and Figure 6 illustrate a typical flowgraph representation. Signal 

attributes are extracted from port and variable declarations. Attributes for the 

CLK net are collected from the guard condition for the block statement in the 

VHDL description. Timing specifications are derived from the after clause of 

signal assignment statements. 

entity REGISTER is 

port 

(DATA_in: in BIT_VECTOR(O to 3); 

CLK: in CLOCK; 

OUTPUT: out BIT_VECTOR(O to 3)) 

end REGISTER; 

architecture EXAMPLE of REGISTER is 

signal A: BIT_VECTOR(O to 3) register; 

begin (CLK = 'l' and not CLK'STABLE) 

A < = guarded DATA_in after 10 ns; 

end EXAMPLE; 

SYMBOL TABLE 
n~ rmde declared type di~nsions . 

nnn max 

CLK in CLOCK - -
DATA_in in BIT_VECTOR 0 3 
OUTPUT out BIT_VECTOR 0 3 
A internal BIT_VECTOR 0 3 

.. 
wirmg 

PORT 
PORT 
PORT 
REGISTER 

Figure 5: Graph Representation: Input Description and Symbol Table 
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READ 
CLK 

type: CLOCK 
bit width: 1 

sensitivity: EDGE 
active edge: POSITIVE 

READ 
DATA_in 

type: DATA 

F=--- bit width: 4 

WRITE 
A 

type: DATA---~ 
bit width: 4 

WRITE 
OUTPUT 

Figure 6: Graph Representation: Flow Graph 

5.1. Node and Net Data Structure 

As each statement in the VHDL input description is parsed, flowgraph node 

and net structures are created and interconnected. A node data structure is 

created for each signal access (READ /WRITE), data operation, or control 

operation. Information maintained in the node structure includes: 
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(a) a unique node number 
(b) the node type (datafiow, control, demarcation, µarch) 
( c) a list of input net connections 
(cl) output net connection 
(e) the operator type 
(£) data dependency information (for the behavioral description style) 

As the Graph Critic operates on the fiowgraph structure, nodes lil the 

graph will be converted to microarchitectural components. 

The net data structure maintains node connectivity information as well as 

signal attributes. It contains the following information: 

(a) a unique net number 
( b) the source node for the net 
( c) a list of destination nodes 
(cl) a list of delays terminating at the net 
( e) a list of delays originating at the net 
( f) bit width 
(g) signal type (DATA, CLOCK, RESET, SET, TIMING) 
( h) signal edge (positive, negative) 
(i) signal sensitivity (level, edge) 

5.2. Node Types 

This section describes all nodes which may appear in the fiowgraph. For 

each node, the attributes and range of values for these attributes is given. Table 

1 classifies each of the nodes into groups based on the type of node. Following 

this classification table, the individual node details are given. 
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Node Types 

Operation Nodes 

• Arithmetic 
Adding Operators: ADD, SUB, CONCAT 
Unary Sign: +, -
Multiplying Operators: MULT, DIV, MOD, REM 

• Logical Operators 
n to 1 bit Reductions: OR, AND, EXOR, NOR, NAND 
n ton bit Logic Units: OR, AND, EXOR, NOR, NAND 

•Negation: NOT 

•Relational Operators: EQ, NE, LT, LE, GT, GE 

Storage/Value Reference Nodes 

•Signal Reference Nodes: READ, WRITE 
•Port Reference Nodes: READ, WRITE 
•Register Reference Nodes: READ, WRITE 
•Vector/Array Reference: READ_ARRAY, WRITE_ARRAY, SUBSCRIPT 
•Const.ant Read Nodes 

Selection Nodes 

• Choose-Value Nodes 

Delay Nodes 

DeIIru'cation Nodes 

•START 
•END 
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Operation Nodes 

Operation nodes represent the execution of the specified operator using one 

or more supplied inputs. The result of this operation is represented by the 

output net of the node. The class of operation nodes is further subdivided into 

Arithmetic, Logical, Negation and Relational subclasses. 

The Arithmetic Adding operator nodes ADD and SUB have two input 

connections and a single output connection which has a bit width that is the 

maximum of the input bit widths. The CONCAT operator requires an n-bit 

input and an m-bit input. It concatenates these vectors without modification to 

form an (n + m)-bit output. The Unary Sign + operator performs no 

modification. From the synthesis viewpoint, it is a VHDL language redundancy. 

The - operator inverts the magnitude of the input signal. Multiplying operators 

represent the operations associated with the designated keyword as described in 

the VHDL Language Manual [VHDL87]. 

Logic operators perform the specified logic function on the inputs in one of 

two fashions: n to 1 bit reductions and n bit logic units. The reduction operator 

treats each bit of the input as a unique input and performs the logic function on 

all inputs. The logic units treat each of two n bit inputs as a single input, 

producing an n bit output. Negation produces an output which inverts each bit 

1\.1.ay 6, 1988 Page 36 



of the input. 

Relational operators represent a comparison of two n bit inputs. A single 

bit output is produced indicating the result of the specified comparison as being 

TRUE (logic '1 ') or FALSE (logic 'O '). 

Storage/Value Reference Nodes 

This class of nodes represent a retrieval of current signal, port or constant 

values (READs) or an update of a signal or port value (WRITEs). Signal 

reference nodes are used as intermediate markers during the synthesis process as 

fl.owgraphs for individual statements are created and interconnected. They 

represent internal signal references. Since no hardware is allocated for these 

nodes, they are removed as the final fl.owgraph is created. Port reference nodes 

denote references to external ports. 

Register reference nodes represent assignment and retrieval of values which 

are to be stored in register components. These nodes have a CLOCK input 

which is used to load (latch) the data input. Other asynchronous control lines 

(SET, RESET, ENABLE) may be present. Attachment of these control lines to 

register reference nodes is determined during the synthesis process by taking 

into consideration signal type declarations and the scope of guard conditions 
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surrounding VHDL assignment statements. 

Vector/ Array reference nodes define the selection of one element (bit or 

word) or a subrange of elements from a multiple element bus or memory 

component. 

Selection Nodes 

The Choose-Value node is used to represent a conditional signal assignment. 

A SELECT input chooses one of the data inputs which will be passed to the 

output. Associated with each data input is a constant condition guard against 

which the SELECT input is tested. If condition guards, are consecutive, the 

node models a multiplexor component; otherwise, the node models a 

decoder/multiplexor component. 

Delay Nodes 

Delay nodes incorporate global timing parameters into the design 

representation. This information can be used in global timing analysis or be 

assigned as performance attributes (input/output response times, propagation 

delays) for a component. 
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Demarcation Nodes 

Demarcation nodes indicate the beginning and end of a data flow graph 

block. The start of the block is represented by the ST ART node; it is connected 

to all READ PORT and READ CONSTANT nodes accessed in the flowgraph. 

Similarly, the END node marks the end of the data flow graph block, and all 

WRITE PORT nodes are connected to it. 
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6. Compilation Algorithm 

The basic algorithm used by the Graph Compiler to generate a control/ data 

flow graph from the VHD L behavioral description consists of parsing each 

statement and interconnecting graph sections. For each assignment statement, a 

data flow graph is constructed for the RHS expression using standard compiler 

techniques. Based on the description style, statement flow graphs are 

interconnected and merged, generating a single graph. 

Each concurrent assignment statement which appears within a VHDL block 

construct will have a separate CDFG generated for it. The order of occurrence of 

concurrent assignment statements is unimportant. This differs from the 

compilation process for sequential statements which imposes an ordering of 

execution of these statements and introduces READ /WRITE dependencies 

based on that ordering. 

If a d.ata flow description is being processed, flow graphs are generated for 

each statement and then interconnected once all statements have been 

processed. This corresponds to the concurrent data flow style where all 

operations are assumed to be executed in parallel. The sections of CDFG 

representing each signal assignment will be appropriately interconnected based 

on the signal type. It is the signal type that will define whether a VHDL signal 
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(container) represents a memory element, port or wire. The signal type will also 

determine the interconnect protocol (wired-or, bus) which results when multiple 

sources for the same VHD L signal are encountered. 

Statements are processed and interconnected as they are encountered 

within descriptions of the behavioral style (identified by the use of the VHDL 

process construct). This method corresponds to sequential execution of 

operations where data dependencies are important. 

The single interconnected flowgraph begins with a START demarcation 

node which is connected to all external input port references which occur within 

the body of the behavioral description. Dataflow nodes created and 

interconnected during the parsing of individual statements comprise the body of 

the flowgraph. An END demarcation node is connected to all external output 

port references occurring in the behavioral description. 
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7. Graph Critic 

Once the initial flow graph has been generated and entered into the Design 

Data Base, a rule-based Graph Critic performs optimizations on the flow graph 

structure. Because VHDL allows the designer to express the same functionality 

in many different ways, a Graph Critic module is needed to transform these 

various representations into an unique construct which represents the hardware 

concept being described. 

The Graph Critic applies two types of rules when optimizing the flowgraph. 

The first rule set consists of cleanup rules. These rules eliminate redundant 

constructs in the flowgraph. Figure 7 gives several examples of cleanup rules. 

For example, a WRITE node followed by a READ node for a variable of type 

signal can be replaced by a simple wire connection since no storage element is 

required. 

The second rule set contains microarchitectural substitution rules. These 

rules implement heuristics which make local substitutions for patterns of 

interconnected graph nodes based on signal types or other attributes associated 

with those patterns. In this manner, fiowgraph constructs representing the 

behavior of the hardware are systematically replaced by nodes which more 

closely represent microarchitectural components with those attributes. Figure 8 

May 6, 1988 Page 42 



1 

2 

REGISTER 

3 PORT 

Figure 7: Graph Critic Cleanup Rules 
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4 

5 

6 type: 
CLOCK 

7 

type: 
CLOCK 

CONST 

l sensitivity: r LEVEL 

l sensitivity: r EDGE 

lactive_edge: r POSITIVE 

lactive_edge: I NEGATIVE 

Figure 8: Graph Critic µArchitecture Substitution Rules 
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shows several examples of rules which remove fiowgraph sections generated by 

the translation of VHD L constructs and captures the necessary design 

information in the form of net attributes. 

These optimizations simplify the task of assigning generic logic comp on en ts 

to corresponding operation nodes in the flow graph representation. This 

approach is unique to our methodology in that the optimizations are performed 

incrementally at every stage of the design process where the functional 

information is recognizable, rather than postponing these mapping decisions by 

passing them on to future (logic) optimization processes where this data is not 

easily retrieved. 
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8. Design Generation 

Design Generation is the process of mapping each node in the flowgraph to a 

single or a combination of available microarchitectural component( s) in the 

generic component library. A component library specification is supplied to the 

synthesis system m tabular form (reference generic component table 

specification). Parameters and attributes are extracted from specifications in the 

flow graph structure so that constraints are met. Certain flowgraph nodes such 

as the CHOOSE-VALUE node are mapped into several components. After each 

flowgraph node is replaced by the appropriate library element( s), the partial 

design '.Vill consist of a netlist of generic logic components. 

The component table describes the port connections and functionality of a 

set of generic components. Table 2 illustrates a representative component set 

used in the MILO system [VZGa88]. 
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lVIICROARCHITECTURAL COlVIPONENTS 
(every component has loading and delay attributes) 

GATES 
(function (=AND, OR, INV, NAND, NOR, EXOR, EQ), 
#inputs. 
) 

LOGIC UNIT 
( # bits 
function ( = 2-variable Boolean functions) 

) 

INTERFACE (type(= tristate, buffer, clock), 
level (=TTL, ECL), 
function ( = inverting, non-inverting), 
#inputs. 
) 

SELECTOR 
( # bits, 

) 

type ( = binary), 
#inputs. 

DECODER 

May 6, 1988 

( # bits, 

) 

type ( = binary), 
control { = enable). 

Table 2: Module Generators and Parameters 
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• 

COMPARATOR 
( # bits, 
function ( = >, <, =, ... ). 

) 

ALU 
( # bits, 
function ( = +, -, INC, DEC, logic functions). 

) 

REGISTER 
( # bits, 
type ( = latch, D-FF), 
function(= load, shift), 
control ( = set, reset, enable), 
i/o (=serial, parallel). 

) 

COUNTER 
( # bits, 
function(= load, up, down), 
control ( = set, reset, enable), 
mode ( = ripple, carry-look-ahead), 
clock ( = single), 
type ( = custom, binary). 

) 

RAM/ROM 
( # bits, 
size 

) 

control ( = read, write, request, ready), 
select(=# bits, polarity). 

Table 2: Module Generators and Parameters (continued) 
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BARREL SHIFTER 
( # bits, 
function ( = left shift, left rotate, right shift, right rotate), 
fill in ( = left, right, 0, 1). 

) 

MULTIPLIER 
(#bits, 
representation ( = magnitude, 1 's complement, 2's complement). 

) 

REGISTER FILES 
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( # bits, 
#ports, 

) 

type(= FIFO, stack, register), 
port type(= in, out, in/out), 
port control ( = enable, load). 

Table 2: Module Generators and Parameters (continued) 
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9. Reverse Compiler 

The types of information contained in the design representation after the 

Graph Compilation, Graph Critic, and Design Generation phases have 

completed can be classified as follows: component instances, connectivity, 

instance para~ters, and timing. A Reverse Compiler is needed to present the 

design representation in a textual or graphic form which will allow the designer 

to examine the results of synthesis and verify design corre.ctness. The generic 

component netlist representation which is the textual output of the synthesis 

system must express this design information. A standard format for this netlist 

is desirable so that interfacing to other design tools can be more easily 

accomplished. 

The VHDL structural style of description seems suited to this purpose. The 

general form of this netlist is shown in Figure 9. Figure 10 shows a schematic of 

an example circuit whose netlist is given in Figure 11. The following sections 

describe how the various types of design information are represented in this 

net list format. 
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-- interface portion 

entity <entity-name> is 
<port-declarations> 
<external-timing-assertions> 

end <entity-name>; 

-- architectural body (structural description style) 

architecture Structure_View of <entity-name> is 
<component-declarations> 
<component-attributes> 
<internal-signal-declarations> 
<internal-timing-assertions> 

begin 
<component-instantion-statements> 

end Structure_ View; 

Figure 9: VHDL Generic Component Netlist For1n1t 
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Figure 10: Schcnl\tic fol' Example Design 
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-- interface portion 

entity Examplel is 

port (A,B: in: BIT_VECTOR(O to 15); 

Select,Enable: in BIT; 

Clock: in CLOCK; 

Regout: out BIT_VECTOR(O to 15)); 

-- external timing assertions 

--T ~.A to ·~ Regout: 20 ns average 

--T l Clock to ~. Regout: 5,10 ns 

end Exam pie 1; 

-- architectural body (structural description style) 

architecture Structure_ View of Examplel is 

-- component declarations 

Component MUX2_16b 

port (IO,Il: in: BIT_VECTOR(O to 15); 

SO: in BIT; 

00: out BIT_VECTOR(O to 15)); 

Component AU r 16 b 

port (A,B: in: BIT_VECTOR(O to 15); 

CI: in BIT; 

S: in BIT_VECTOR(O to 1); 

SUM: out BIT_ VECTOR(O to 15); 

CO: out BIT); 

Component RGdnn te 16 b 

port (I: in: BIT_VECTOR(O to 15); 

S: in BIT; 

C: in CLOCK; 

0: out BIT_VECTOR(O to 15)); 

Component sbl6_1 

port (I: in: BIT_VECTOR(O to 15); 
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0: out BIT); 

Component G ND 

port ( 0: out BIT); 

-- component attributes 

type FUNC_TYPE is (ADD,SUB,INC,DEC); 

type CARRY is (RIPPLE,LOOKAHEAD); 

attribute FUNCTION: FUNC_TYPE; 

attribute ADDER_TYPE: CARRY; 

attribute ENBL: BOOLEAN; 

attribute FUNCTION of AUrl6b: component is ADD; 

attribute ADDER_TYPE of AUr16b: component is RIPPLE; 

attribute ENBL of C4: label is TRUE; 

-- internal signal declarations 

signal a,b,c: BIT_VECTOR(O to 15); 

signal d,Gnd: BIT; 

-- in tern al timing assertions 

--T ~~a to U b: 20,25,35 ns 

--T •A to~. b: 40 ns max 

-- component instantiations 

begin 

CO: GND port map (Gnd); 

Cl: MUX2_16b port map (A,B,d,a); 

C2: AUrl6b port map (a=> A,Regout => B,Gnd => CI,Gnd => S(O), 

Gnd => S(l),b => SUM); 

C3: MUX2-16b port map (b,B,Select,c); 

C4: RGdnnte16b port map (c,Enable,Clock,Regout); 

CS: sbl6_1 port map (Regout,d); 

d <= Regout(15); 

end Structure_ View; 

Figure 11: VHDL Structural Description of an Example Circuit 
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9.1. G€neric Component Netlist 

Entity Declaration 

The entity declaration portion of the VHDL structural description specifies 

the design name and defines the design's interface to the outside world. Port 

declarations are used to define input and output connections. VHDL assertion 

statements are used to specify timing constraints from input to output ports of 

the design. The section on timing assertions below will describe the format of 

these statements. 

Component Declarations 

For each umque component in the netlist, a component declaration must 

exist. This declaration defines a template containing input and output pm 

specifications via port declarations. The type and bit width of the signals (nets) 

to be attached to the component ports are specified in these declaration 

statements. 

In order to generate a genenc netlist usmg a set of generic components, a 

table of available components and their component declarations must exist. 

This table should identify the function of each input and output pin and the pin 

naming conventions for each component. It should also specify the operand port 
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mappings for multiple operation units. If this component declaration table is 

available to interface programs which accept the netlist as input, it would not be 

necessary to include component declarations in the netlist. 

Component Attributes 

In order to specify parameters particular to a component such as ALU 

functions, control input codes, etc., the VHDL attribute declaration and 

specification features can be used. Enumeration types can be used to specify the 

allowable values of an attribute. Attributes may be associated with the 

template component declaration, or with specific labeled instances of a 

component. For example, the statements 

type FUNC_TYPE is (ADD,SUB,INC,DEC); 
attribute FUNCTION: FUNC_TYPE; 
attribute FUNCTION of AUr16b: component is ADD; 

will associate the FUNCTION attribute ADD with every instance of an A Ur16b 

component, while the attribute specification 

attribute ENBL of C4: label is TRUE; 

will associate the ENBL attribute with RGdnnte16b instance C4 only. 
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Internal Signal Declarations 

Internal connection of components is accomplished by defining each internal 

net of the generic component netlist using signal declaration statements. These 

signal (net) names are used in the port map specification of component 

instantiations described below in order to identify uniquely the net connections 

between component ports. 

Timing Assertions 

It is often necessary and useful when specifying timing constraints of a 

circuit to have the capability of specifying relationships between signals. For 

exa,mple, a common requirement is that the data input to a clocked register be 

stable n. duration of time prior to the clock transition that strobes the d<ti a into 

the register (sometimes known as set up time) [Arms87]. The following signal 

transitions should be representable: 

1. ts 
2. is 
3. us 

transition from 0 to 1 of signal S (rising) 
transition from 1 to 0 of signal S (falling) 
any transition of signal S (change) 

The timing relationship is expressed as follows: 

< transitionl > to < transition2> : <duration> 

where < transitionl > and < transition2> are of the form specified above. The 
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<duration> specification is used to specify the nummum, maximum and/or 

average time interval(s) between two events. A single time period specification 

must be followed by a qualifier (max, min, or average). For example: 

--T i A to U b: 40 ns max 

A list of two time intervals specifies a minimum/maximum timing specification, 

such as: 

--T t Clock to U Regout: 5,10 ns 

A triplet of time intervals denotes minimum, average, and maximum, as in: 

--T Ha to t+ b: 20,25,35 ns 

One method of expressing timing information which conforms to the VHD L 

language definition would be to use comments. For example, the statements 

--T HA to H Regout: 20 ns average 
--T t Clock to H Regout: 5,10 ns 

would be parsed as comments by the VHDL Analyzer, but the netlist parser 

could recognize the --T timing assertion delimiter and record the specified timing 

information. 
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Component Instantiations 

A component is instantiated through the use of a VHDL component 

instantiation statement within the block of the architectural body. This 

statement has the form: 

<label>: <component-name> <port-map>; 

The <label> is a umque id for the component. A component declaration 

statement for <component-name> must exist, defining the ports (mode, bit 

width) to be found in the <port-map> list. The <port-map> is a list of 

previously defined port or internal signal names which defines the 

interconnection of components. This list may be of named or positional format. 

Named format is an unordered list of association of signals to ports. For 

example, if net Nl is attached to port Pl (as defined m the port list of the 

component declaration), Nl => Pl would appear m the <port-map> list. 

Positional format assigns elements of the <port-map> to ports with the 

corresponding position in the port list of the component declaration. 

Concurrent assignment statements may be used to specify necessary 

behavior characteristics of a component. Examples of this type of specification 

include the concatenation of input signals to form output signals for the 
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switchbox component of Figure 10, or the specification of the functionality of a 

random logic component using boolean equations. 

9.2. Interface to Other Synthesis Tools 

Since the generic component netlist output by the VHDL synthesis system 

described in this report is of valid VHDL syntax, the opportunity exists to verify 

its correctness. If behavioral VHDL models are developed for each generic 

component, the netlist can be used as input along with these models to the 

VHDL simulator. A comparison to simulation results generated using the initial 

behavioral description can verify the proper operation of the synthesized ndhst. 
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10. An Example 

An example of a VHDL description of a Bus Interface circuit from the 

VHDL Tutorial [VHDL87] will be used to illustrate the Data Flow compilation 

process. Figure 12 shows the VHDL input description. 

The Graph Compiler parses each individual statement as it is encountered, 

generating a corresponding flowgraph for that statement .. After all statements 

have been processed, the fl.owgraph sections are interconnected to produce the 

fl.owgraph shown in Figure 13. 

The Graph Critic is then invoked to optimize the fl.owgraph representation 

:>o that translation to generic microarchitecture components is straightforward. 

Figure 14 identifies sections of the initial fl.owgraph which are optimized through 

the application of Graph Critic rules. The actual rules that the Graph Critic 

will apply for this example are shown in Figure 15. The fl.owgraph that results 

after optimization appears in Figure 16. 
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Node compilers are then invoked for each of the remaining flowgraph nodes. 

The final generic netlist resulting after all nodes have been replaced by 

corresponding generic components is shown in Figure 17. A VHDL Generic 

Component Netlist as shown in Figure 18. This netlist describes the 

connectivity, component attributes and timing assertions of the interconnected 

microarchitecture components which comprise the design. 
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entity Businterface 
(ABus: in BIT_VECTOR(O to 31); 
DBus: out BIT VECTOR(O to 7); 
MernReq: in BIT; 
BusReq: out BIT; 
BusAck: in BIT; 
DataRdy: out BIT; 
Addr: out BIT VECTOR(O to 15); 
In_Data: in BIT_VECTOR(O to 7); 
MR: out BIT) 

is end Businterface; 

architecture DataFlow of Businterface is 

block 

signal Done,Enable: BIT; 
signal MRint: CLOCK; 
signal Board_id: integer; 

begin 

DataRdy <• not Enable ; 
MR <• not MRint ; 
Enable <· Done and not BusAck ; 
BusReq <· not (Done and BusAck) ; 
Done<- MRint and MRint'DELAYED(l75 ns); 
MRint <• MernReq and (ABus(l6 to 18) • Board_id) / 
with Enable select 

DBus <•In Data when 'l', 
"ZZZZZZZZ" when '0'; 

block (MRint • 'O' and not MRint'STABLE) 

signal Addr_reg: BIT_VECTOR(O to 15) register; 

begin 

Addr_reg <• guarded ABus(O to 15) 
Addr <• Addr_reg; 

end block; 

end block; 
end DataFlow; 

Figure 12: VIIDL Description of the Bus Interface Circuit 
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Figure 13: Interconnected Flowgraph for Bus Interface Example 
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Figut'e 17: Generic Component Schematic for Bus Interface Exarnple 
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entity Businterface is 
generic (Board_id: in BIT_VECTOR(O to 2)); 
port 

(ABus: in BIT_VECTOR(O to 32); 
DBus: out BIT_VECTOR(O to 7); 
MemReq: in BIT; 
BusReq: out BIT; 
BusAck: in BIT; 
DataRdy: out BIT; 
Addr: out BIT VECTOR(O to 15); 
Data: in BIT VECTOR(O to 7); 
MR: out BIT)-

--T Global timing assertions 

end Businterface; 

architecture 8tructure_View of Businterface is 

Component AND2 
port (IO,Il: in BIT; 0: out BIT); 

Component INV 
port (IO: in BIT; 0: out BIT); 

Component REG 
port (I: in BIT_VECTOR(O to 15); 

CLK: in BIT; 
0: out BIT_VECTOR(O to 15)); 

Component CMP 
port (A,B: in BIT_VECTOR(O to 2); 

AEQB: out BIT); 
Component BUF 

port (I: in BIT_VECTOR(O to 7); 
EN: in BIT; 
0: out BIT_VECTOR(O to 7)); 

Component ONE_8HOT 
port (I: in BIT; 0: out BIT); 

signal Done,Enable,MRint: BIT; 
signal 81,82,83,84: BIT; 

begin 

Cl: AND port map (81, MernReq, MRint); 
C2: AND port map (MRint, 84, Done); 
C3: AND port map (Done, BusAck, 82); 
C4: AND port map (83, Done, Enable); 
CS: INV port map (MRint, MR); 
C6: INV port map (82, BusReq); 
C7: INV port map (BusAck, 83); 
CS: INV port map (Enable, DataRdy); 
C9: REG port map (ABus(O to 15), MRint, Addr); 
ClO: CMP port map (ABus(l6 to 18), Board_id, Sl); 
Cll: ONE_8HOT port map (MRint, 84); 
Cl2: BUF port map (Data, DBus); 

end 8tructure_View; 

Figure 18: VHDL Generic Component Netlist 
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11. Conclusions 

In this technical report, we have presented a methodology for design 

synthesis from a VHDL description. The implementation of this methodology 

resulted in a system that increases designer productivity by removing the 

requirement of expert knowledge at lower levels of design. Designers can 

experiment by modifying design descriptions and parameters in order to evaluate 

alternative styles and target technologies. 

The VHDL input description language was restricted and extended to 

incorporate information necessary for synthesis. A well defined design 

representation, the control/data flowgraph, incorporates signal typing and other 

attributes. The flowgraph also provides a canonical form for a many to one 

mapping of equivalent language constructs to a unique representation. Graph 

optimizations are performed at various stages of the synthesis process, leading to 

a near optimal design. 

This approach to synthesis decomposes the process into two interacting 

stages: compilation and optimization. Compilation is procedural in nature and 

involves the generation of the design representation (flowgraph) given the input 

behavioral description. Emphasis is placed on creating a design data base which 

includes sufficient information for synthesis such as signal functionality and 
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tirning relationships. Optimizations are heuristic in nature and are performed 

most effectively when the necessary information is accessible. Local graph 

optimizations such as recognition of signal attributes can modify the 

representation so that optimal generic component mapping will result; global 

optimizations can be performed more easily if information such as critical path 

specifications or propagation delays remain associated with generic structural 

components. This avoids the difficult task of attempting to optimize a 

structural design which has been synthesized directly from a suboptimal 

behavioral description and has lost information during the translation process. 

The system remams technology independent through the use of a generic 

component library. Unlike systems which assume a limited design model which is 

hard coded into the software, the flexibility of this approach allows for the 

addition or modification of the generic component library by simply changing 

the input generic component table. The design can then be translated to 

technology components by a mapper and logic optimizer. Simple redesign to new 

technologies can be accomplished by changing the technology specific component 

library. 
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