
UC Irvine
ICS Technical Reports

Title
VSS : a VHDL synthesis system

Permalink
https://escholarship.org/uc/item/3r87f9c5

Authors
Lis, Joseph S.
Gajski, Daniel D.

Publication Date
1988-05-06

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3r87f9c5
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

VSS: A VIIDL
,~

Synthesis System

by

Joseph S. ,Lis,
Daniel D. Gajski

Technical Report 88-13

Information and Computer Science
University of California at Irvine

Irvine, CA 92717
(714) 856 7063

Abstract: This report describes a register transfer synthesis system that
allows a designer to interact with the design. process. The designer
can modify the compiled design by changing the input description,
selecting optimization and mapping strategies, or graphically
changing the generated design schematic. The VHDL language is
used for input and output descriptions. An intermediate represen­
tation which incorporates signal typing and component attributes
simplifies compilation and facilitates design optimization. The com­
pilation process consists of two phases. First, a design composed of
generic components is synthesized from the input description.
Second, this design is translated into components from a particular
library by a mapper and optimized by a logic optimizer. Redesign
to new technologies can be accomplished by changing only the
component library.

{ /I (
I '

' (_,

; I fi ' ; l

TABLE OF CONTENTS

1. Introduction 1

1.1. Ivfotivation .. 1

2. Previous Work 6

3. System Description ... 19

4. VHDL Input Description .. 24

4.1. Signal Declarations and Types ... 24

4.2. Data Flow Description Style .. 26

4.2.1. VHDL Concurrent Statements .. 26

4.2.1.1. Conditional Signal Assignment ,...................... 26

4.2.1.2. Selected Signal Assignment .. 28

5. Graph Representation ... 31

5.1. Node and Net Data Structure .. 33

5.2. Node Types ... 34

6. Compilation Algorithm ... 40

7. Graph Critic .. 42

8. Design Generation 46

9. Reverse Compiler .. 50

9.1. Generic Component Netlist .. 54

9.2. Interface to Other Synthesis Tools .. 59

10. An Example ... 60

11. Conclusions 69

12. References 71

:May 6, 1988 Page i

TABLE OF FIGURES

Figure 1: VHDL Controlled Counter Chip Model 10

Figure 2: VHDL Synthesis System 20

Figure 3: Conditional Signal Assig~nt .. 30

Figure 4: Flowgraph for Selected Signal Assign~nt 30

Figure 5: Graph Representation: Input Description and Symbol Table

Figure 6: Graph Representation: Flow Graph

Figure 7: Graph Critic Cleanup Rules

Figure 8: Graph Critic µArchitecture Substitution Rules

Figure 9: VHDL Generic Component Net list Format

Figure 10: Schematic for Example Design .. .

Figure 11: VHDL Structural Description of an Example Circuit

Figure 12: VHDL Description of the Bus Interface Circuit

Figure 13: Interconnected Flowgraph for Bus Interface Example

32

33

44

45

51

51

54

63

64

Figure 14: Graph Critic Rule Applications 65

Figure 15: Graph Critic Rules 65

Figure 16: Flowgraph after Optimization .. 67

Figure 17: Generic Component Schematic for Bus Interface Example 67

Figure 18: VHDL Generic Component Netlist 69

May 6, 1988 Page ii

1. Introduction

In order to successfully exploit new technologies, the problem of rapid

prototyping of new systems and redesigning old parts must be solved. To solve

these problems, a new generation of design tools that capture human design

knowledge must be developed. However, this knowledge about translating

functional specifications to structural representations and structural

representations into physical design is not sufficiently well understood to allow

ihe development of CAD tools based on simple algorithms. To make the problem

even more complicated, the functional specifications are often incomplete and

given with conflicting design goals.

1.1. Motivation

Design Synthesis on the register transfer level covers several areas: hardware

description languages, design representation (data base), logic synthesis, and

behavioral synthesis. The hardware description language (HDL) provides a

method of specification for the designer so that the design automation system

can be supplied with sufficient information to synthesize the desired circuit. A

design representation or data base is the internal description used by the design

automation system which organizes information extracted from the input

l\!Iay 6, 1988 Page 1

specification necessary for synthesis. This representation 1s created and

optimized by the system so that a net.list or other output specification can be

produced.

The purpose of a true hardware description language is to specify the

structure of a design m terms of interconnected components. This

representation contains sufficient information for tasks such as technology

mapping (the process of transforming a technology independent design into a

technology specific one) which operate on an existing design. However, this

description is at too low a level to support synthesis since design decisions have

already been made in selecting and interconnecting components. Simulation

languages classified as HDLs are used to model hardware. These languages are

tailored to optimize the performance and correctness of the simulation through

the use of constructs which have no direct correlation to hardware;

consequently, synthesis from these descriptions is difficult. The ideal HDL is a

language which captures the intended functionality of a design in terms of

generic components (a universal set of technology independent hard',varc

primitives) and provides sufficient information to guide the synthesis process.

The design process often proceeds through several stages of the abstraction

hierarchy (processor, register transfer (RTL), gate, circuit, layout). In

May 6, 1988 Page 2

particular, two stages of the digital design process will be addressed in the

context of this work: logic synthesis and behavioral synthesis. Logic sylhesis

operates at the gate level which uses simple logic gates (AND, OR, INVERTER,

etc.), fiipfiops and selected MSI components as design primitives. Systems

which attempt to automate this process accept a textual (netlist, HDL, boolean

equations, tables) or graphical (schematic, menu interaction) input and perform

logic level optimizations to meet area, timing or other design constraints.

Behavioral synthesis operates at the higher levels. It involves the description of

the functionality and input/output interfaces of the hardware to be designed in

algorithmic form (programming language, HDL). A system which addresst>s this

level of synthesis first translates this specification into a design representation

which can be operated on by design automation tools. This design data base is

theu used to create a more detailed description of the design at lower levels of

abstraction.

The types of designs produced by behavioral synthesis can be classified in

several different ways. The designs may consist of purely combinational

elements or may contain registers or other storage elements, thereby making

them sequential. Since sequential designs have more than one state, a further

classification according to the modeling level is introduced. A one state per

process model may be assumed where each process or block describes one state

May 6, 1988 Page 3

of the design. Alternatively, each process may model many states. In this case,

a design usually consists of a data path and control unit. The data path can

perform different operations on different clocks as determined by control signals

supplied by the control unit. The behavioral synthesis process allocates data

path units, schedules operations which can be performed on available units in

the given state, and determines the control which must be supplied to the data

path for each state.

The objective of this work is to develop a system which performs behavioral

synthesis; specifically, the translation of a VHDL description to a netlist of

generic components. The VHDL description may be writ ten in a data fl.ow style

where concurrent statements describe the fl.ow of information between memory

;rncl gating elements or in a behavioral style which uses sequential statements to

abstractly describe the function of the hardware. There are two motivations for

this work. The first of these is to provide a methodology for high level design.

Because the designer is working at a higher level of abstraction (at the processor

or RT levels instead of gate, circuit or layout levels), requirements for design

expertise at the lower levels of design are removed, thereby increasing

productivity. A second motivation is to allow for redesign of existing designs

using new technologies. The use of a generic component net.list makes the design

independent of implementation style (gate arrays, standard cells, custom). By

l\!Iay 6, 1988 Page 4

mapping generic components to a particular gate array, standard cell, or custom

component library, the designer may consider alternative styles and fabrication

processes.

l\1ay 6, 1988 Page 5

2. Previous Work

There are two mam applications of hardware description languages: to

document a design and to model a design. VHDL has been used primarily as a

modeling and simulation language in hardware design efforts up to this point.

Recent efforts in design automation, including this work, seek to work with a

behavioral description that captures both the information necessary to simulate

the function of a design as well as to include attributes necessary to synthesize

the structure of the design.

Armstrong [Arms87J[Arms88] illustrates how VHDL can be used to :nodel

hardware at the various levels of abstraction. His work focuses on methods for

representing various behavioral aspects of chip level modeling. At this level, a

component is a complete VLSI chip such as a microprocessor, memory chip, or

UART. The chip is modeled as a single entity (not constructed hierarchically

from more basic primitives) which performs a sequence of micro-operations coded

in an HDL. The model defines the input/output response of the device by

specifying the algorithm the chip is to implement.

Because logic signals fl.ow in parallel, any hardware model must include a

provision for concurrency of execution. The VHDL language handles this notion

of simultaneity with the use of the process statement. Each process represents a

May 6, 1988 Page 6

block of logic, with all processes executing in parallel. Armstrong defines a

graph representation termed the process model graph which uses nodes to

represent a partitioning of the function of the model into subfunctions.

Intercommunication between process nodes is denoted by arcs. VHDL process

statements implement each node subfunction, while signals appearmg m the

process signal list model timing delay and input/output relationships between

subfunctions. A node may be functionally decomposed into more than one

VHDL process. For example, a node representing a register with synchronous

load and asynchronous clear attributes can be modeled by two processes, one

representing the effects of the load operation, the other reflecting the effects of

the clear operation.

\Vhile this style of VHDL description may correctly simulate the behavior of ..

the hardware, it presents several problems when viewed from the synthesis

perspective. First, the separation of the description of a, single component into

several process statements complicates the task of collecting and identifying

attributes to be associated with that component. Furthermore, this description

style relies on the VHDL simulator's notion of a container to assign the correct

value to a signal at any given time based on one or more drivers. A container

represents signal nets as well as registers, making the task of identifying these

entities difficult for the compiler. Often, complicated language constructs are

l\!Iay 6, 1988 Page 7

used to combine these drivers which result in a suboptimal design when mapped

to logic components.

For example, Figure 1 shows a VHDL description which uses separate

statements to model the asynchronous clear and synchronous up/down count of

a controlled counter [Arms87J. The drivers (OUTl, OUT2) generated to

represent the effects of each event on the register's output value are combined

using a conditional signal assignment statement MUXl. Note that MUXl is a

virtual component which should have no hardware realization. The sole purpose

of the statement is to collect the multiple drivers for simulation.

Two approaches may be taken to translate this behavioral description into

hardware: direct mapping of VHDL constructs to appropriate microarchitedure

components, or recognition of certain VHDL construct patterns as a

representation of a particular hardware concept. If a straightforward mapping of

VHDL constructs is performed, inefficient hardware will often result. In the

above example, an unnecessary multiplexor will be introduced when mapping

the MUXl statement to hardware, with each driver as a data input and

complicated selection logic. A sophisticated logic critic would then be needed to

t.ransform this design into an optimal one (i.e., a register with up/down count

and clear control inputs). The latter method of translation reqmres

May 6, 1988 Page 8

:May 6, 1988

Architecture PROCESS_JJvIPL of CONTROLLED_CTR is

signal CLK,EN: BIT;

signal CONSIG: BIT_ VECTOR(O to 3);

signal OUT_TMP,OUT1,0UT2: BIT_VECTOR(O to 3);

CLEAR_CTR: block (CONSIG(O) = 'l' and not CONSIG(O)'stable)

begin

OUTl < = guarded "oooo" after CLRDEL;

end block CLEAR_CTR;

CNT_UP _OR_DOWN: process (CLK,EN)

variable CNT: BIT_VECTOR(O to 3);

variable CLKE: BOOLEAN;

begin

if EN'stable then

if EN = 'O' then

CLKE := TRUE;

else

CLKE := FALSE;

end if;

end if;

if (CLK = '1' and not CLK'stable and CLKE) then

if (CONSIG(2) = '1') then

CNT := INC(CNT);

else if (CONSIG(3) = '1') then

CNT := DEC(CNT);

end if;

end if;

OUT2 <= CNT after CNTDEL;

end process CNT_UP _OR_DOWN;

MUXl: OUT_TMP <= OUTl when not OUTl'quiet else

OUT2;

end block PROCESSJMPL;

Figure 1: VHDL Controlled Counter Chip Model

Page 9

identification of the type of signals used to select the input driver. Since VHDL

allows the designer to express the same functionality in many different ways, the

task of developing a rule set which recognizes all valid VHDL representations of

a desired set of hardware concepts would be extremely difficult, if not

impossible. The compilation process becomes simplified if the descriptions are

not allowed to contain virtual components.

In order to reduce the complexity of the synthesizer, several systems have

been designed which use a subset of language constructs that can be mapped to

an appropriate set of hardware components. Systems such as SOCRATES

[GrBa86], LSS [JoTr86] and Logic Consultant [Kim87] are targeted to synthesis

at the gate or logic level. Each accepts input in the form of boolean equations,

PLA format, structural (net.list) or algorithmic behavioral description. The IB:M

VHDL environment [Saun87] combines a subset of VHDL language constructs

with language extensions to synthesize an RTL level design using components

from a target technology library.

A common characteristic of the above approaches to synthesis is the direct

correspondence of a set of language constructs to a fixed set of hardware

components. Technology details are hard coded into the translation process

through the use of a fixed component library. Such restrictions limit the

May 6, 1988 Page 10

flexibility of these synthesis systems when usmg different component libraries.

The input descriptions, while easier to map to hardware, force the designer to

use a representation style which 1s more structural than algorithmic or

behavioral.

When a behavioral description is used, synthesis consists of the following

phases: language translation, global optimization, data path allocation, data

path module binding, control path allocation and control path module binding

[Ts We88]. Language translation im·olves parsing a high level behavioral

description and translating it in to an intermediate representation (usually a

control/data fl.ow graph). Global optimizations such as standard language

compiler data fl.ow analysis or identification of signals and registers are then

performed on this intermediate form in order to increase the efficiency and

amount of parallelism in a design. Data path allocation involves component

selection, state synthesis and connectivity binding. During this phase, the

number and types (attributes) of components are selected, graph operation

nodes are assigned to machine states, and assignment of operations to hardware

components is performed. A symbolic microcode table is usually generated as the

allocation is made, indicating the control signals to be supplied to components

during each machine state. Once the data path is synthesized, control paths can

be generated after selecting a control style (hardwired, PLA, ROM, pipelined).

May 6, 1988 Page 11

Facet [TsSi83] is a system for automated synthesis of data paths developed

at CMU. It uses an input graph representation known as a Value Trace (VT)

[McFa78] that is derived from an ISPS [Barb81] input description. The Value

Trace is a collection of VT-bodies, each of which consists of a linear sequence of

data flow operations. In order to maintain control information in the same

representation, control constructs are translated into their data fl.ow equivalents

and included in the VT. A clique-partitioning method is used to minimize the

number of storage elements, data operators and interconnection units required

to realize the design. Resources are shared in the final design wherever possible

unless it is specified in the ISPS description that elements should not be

combined (the reserved variable declaration). The Emerald design generator

[TsSi86J was developed to perform manipulations (orderings) on the oµeration

sequence before passing the VT-body on to Facet. Emerald also provides the

designer with the capability to select design criteria (in the case of multiple

alternatives for component allocation) and generates simple design evaluation

statistics such as gate count.

Bridge [TsWe88] is a high level synthesis system which is an extension of

the Facet work. The system firsts allocates the generic structure of data and

control paths and then proceeds with technology specific data/ control module

binding. The FDL2 behavioral language is used as input and is parsed into a

May 6, 1988 Page 12

control/ data flow graph. Global optimizations identify intermediate variables as

signals or registers in addition to performing scheduling optimizations.

Structural synthesis performs allocation and produces a design consisting of RTL

components (registers, memories, ALUs, multiplexors) and a symbolic control

table. The allocation program partitions the data flow representation into a

number of code slices. Methods described for Facet are used to determine the

storage, arithmetic and logic, and interconnection resources to be used in the

design. If high speed performance is an important constraint on the design,

pipelining schemes are considered. Module binding is then performed on the

structural description to map generic components of the data path to a standard

cell implementation using the FDS system for MOS chip design. Once the data

path is physically generated, the control path is synthesized.

The BECOME [Wei88] system assumes a finite state machine circuit model

with an external view of only primary inputs and outputs. It accepts a C-like

behavioral modeling language input. An intermediate form similar to the Value

Trace is generated by an input parser with the purpose of resolving semantic

differences among modeling languages. A Data Flow Analyzer identifies

temporal or scan variables which effect the input/output behavior of the model.

These variables are allocated to a minimal set of registers or latches, and the

representation is then modified to create a combinational model (one in which

l\!Iay 6, 1988 Page 13

no variables are assigned more than once). If a variable is assigned in more than

one branch of a complex statement, name splitting is performed to rename each

multiply assigned variable. These multiple assignments are recombined in the

bus allocation phase through the insertion of multiplexors. A structure

description is generated from a one-to-one mapping of operators in the flattened

model to functional elements. Global optimizations are performed by a mod1Lle

logic generator. The output of this stage is either a generic logic description or a

standard cell implementation produced by technology binding. The generic logic

is represented in BLIF format which can be fed to logic minimization systems

such as ESPRESSO. The optimized logic is then mapped into the chosen

implementation technology.

The V-SYNTH system [Bhas86J[KBhN] provides a VHDL input interface to

the existing MIMOLA Synthesis System (MSS) [Zimm85]. It seeks to improve

upon the drawbacks of the MIMOLA system: to remove the burden of

decomposing the behavioral description into operations to be performed m

individual control states, and to perform global data flow analysis which

minimizes the required number of operators and storage elements. A Process

Graph Analyzer accepts a VHDL behavioral input and generates a process graph

by decomposing each statement and expression into a simple form (one operator

and at most two operands). Compiler-like techniques (constant folding, local

May 6, 1988 Page 14

code optimization, code motion, common subexpression elimination) are used to

optimize this description. The Control State Generator partitions the process

graph into control states, introducing parallelism where possible. A re\·erse

transformation from the process graph to legal VHDL syntax is performed by a

translator. This description consists of a set of process statements, with each

process describing operations to occur in a single control state.

The MIMOLA design system is intended to be an interactive design aid.

To that end, the Design Representation is a database where the output of the

Process Graph Analyzer is stored for designer interaction. The designer is

allowed to modify the Design Representation by adding hardware bindings or

constraints before presenting the description to MSS for synthesis. When MSS

is invoked, an implementation is generated by binding hardware components to

operators and variables in the representation. A statistical analyzer provides

information such as component utilization to aid the designer in determining

constraints to meet design goals.

The above mentioned work in behavioral synthesis has several limitations.

First, the input languages used have restricted the designer to specify the design

at the level (instruction set or algorithm, register transfer, logic) to which the

system had been targeted. Simple design models are used (e.g., microprocessor

May 6, 1988 Page 15

or DSP) which only apply to a limited domain of design problems. These

systems fail to address important aspects of real world circuit design such as

signal timing attributes or asynchronous behavior. Examples which demonstrate

the operation of these systems do not represent typical design problems.

In evaluating the strengths and weaknesses of the approaches discussed

above, a set of criteria for a synthesis system can be derived:

(1) A common, well defined design representation which will uniquely capture

the functionality and intention of several equivalent behavioral descriptions

and will lead to an unique, optimal hardware design.

(2) The ability to specify and synthesize attributes imch as timing protocols,

asynchronous control, pipelining, multiclocking, multifunction units, and

multiple processes with different clocking strategies within the design

representation.

(3) Separation of procedural tasks (such as translation, allocation, binding,

global optimization) which can be accomplished using known algorithms

from heuristic tasks (local optimizations) which are best accomplished using

a specialized set of rules. This implementation strategy takes advantage of

the ability to perform optimization on the design at various levels where the

May 6, 1988 Page 16

information is most accessible. For example, optimizations for circuit area

are accomplished more effectively at the local level where tradeoffs can be

made for individual components based on available primitives in the library,

while critical path timing requires global analysis and optimization.

(4) The system should remam technology independent for as long as possible.

This suggests that the synthesized design should be composed of generic

components which can be considered primitive building blocks of all target

technologies. The system can then be adapted to any implementation

technology by defining the mapping of these generic components to

technology specific components and specifying local optimizations to tune

the design to the selected technology specific components.

(5) It would be desirable to generate a design representation which can be used

as input to simulation or other synthesis tools. Using the same language for

the input and output descriptions would be particularly beneficial (e.g.

VHDL behavioral input, VHDL structural output). In this manner, the

design can be first synthesized at a higher level of abstraction using a

behavioral input description, then passed to tools which perform logic level

refinement and design which operate on a more structural description of the

design.

May 6, 1988 Page 17

The remainder of this report presents a system which addresses these issues.

Advantages recognized in the previous work cited above are incorporated and

expanded into this work. The VHDL language has been selected to specify the

input behavioral description and the output netlist format because of its

flexibility for description of hardware at various levels of abstraction and its

ability to associate attributes with signals or other design entities.

May 6, 1988 Page 18

3. System Description

This section outlines a specification for a complete system for designing from

a VHDL specification. Such a system translates VHDL descriptions into

manufacturable chips. The input is a VHDL description at the system,

register-transfer, and logic levels with some or all components described

behaviorally. The output is a description ready to be sent for fabrication. The

system can be targeted to gate arrays, standard-cells or custom designs by

writing a technology translator.

The system consists of several major components as illustrated in Figure 2.

(1) The Data Base stores the design, its versions and alternatives, and manages

hierarchy. The relations between original and compiled designs as well as

reasons for particular design styles and modifications are stored in the

database. This information can be used by an Explanation Facility to

explai!1 design changes to the designer.

The Data Base stores four types of information. For each hardware block

or component it stores its VHDL behavioral description, the Control/Data

Flow Graph obtained from the behavioral description, a structural

description consisting of generic components, and the technology specific

May 6, 1988 Page 19

Simulator Synthesis
l\.1odules Data Base

Control

Critic
M:>dules

Graph
Chr1c

Design
Capture
Display
Modules

n eYeHe l-E-~---~----'--------'----1--'--------'--'~G G fl\D h CCnnp11er ruer"ator

R eve•~e
Compuer

L .
Con?~lfers

Generic
Gates &
Blocks

Specific
~d111olo 1n.1---......-r iffnppel"'· ·omponen

Librarv

.-itch
Ch tic

Lo.e:ic
Crtt1c

R eve•ie -..~1 --~----;-----L----: -----_;_-.-iSchematic Compuer I I c,enerator
I I I
I I I

- - - - - - - - - - - - - - - - - - - J. - - - - - - - -'- - - - - - - - - - .J - - - - - - - - - L - - - - - - - -

FABRICATION

Figure 2: VHDL Synthesis System

structure description . m which generic components are replaced with

components from prespecified libraries and then optimized. The data base

can be considered to be the blackboard of a blackboard expert system

May 6, 1988 Page 20

architecture m which the knowledge sources are the graph, architecture or

logic critics.

(2) A set of compilers is needed to make the design description more explicit or

add new detail that did not exist before. The Graph Compiler translates

textual VHDL description into a graph which is used to optimize the design

description and remove redundancy associated with textual description.

Logic Compilers then translate each graph node into a set of generic

components (gates, registers, counters, ALUs, etc.) while the Technology

l\1apper converts generic components to components in a chosen technology

(gate macros for gate arrays, standard cells or custom blocks generated by

silicon compilers).

(3) A set of critics or optimizers is required to simplify or optimize the design.

The Graph Critic removes redundancies from the language and improves

the efficiency of the design using rearrangement and merging. For example,

it converts a nested IF statement into a CASE statement. The Architecture

Critic optimizes the design on the functional or register-transfer level.

Merging an incrementer and a register into a counter is an example of this

type of optimization. A Logic Critic optimizes the design on the logic level

by simplifying components with constant inputs and performing logic

l\1ay 6, 1988 Page 21

minimization. For example, this critic will replace an EXOR gate with one

input connected to logic "1" with an inverter. The Logic Critic will also

speed up critical paths (paths that do not satisfy timing constrain ts) by

usmg faster units, by design rearrangement, or by introducing more

parallelism into the design.

(4) The Design Capture and Display component is a man machine interface.

The designer specifies the design as a set of interconnected modules. Each

module is described by VHDL block or process statements. After

compilation or any design modification, the compiled design is displayed

back to the designer with a possible explanation of why and how a design

was changed from the previous version. In addition to providing a

monitoring function, the Graph Generator and Schematic Generator are

necessary tool development aids which are used during code development

and debugging.

(5) A VHDL Simulator is used to check the intent of the initial descriptions. It

is also used during compilation to check the consistency of the compiled

design by comparing output vectors. The description of the compiled or

manually modified design is obtained by a set of Reverse Compilers that

link together models of the compiled structural description or graph

May 6, 1988 Page 22

representation of the design. Reverse compilers are needed to fit this

system into the VHDL environment since the proposed synthesis system

takes a behavioral VHDL description and compiles it into a structural

VHDL description.

l\1ay 6, 1988 Page 23

4. VHDL Input D€scription

The VHDL behavioral description itself consists of a design entity composed

of two major sections: the entity block and the architecture body. The entity

block contains the specification of external input/output port connections to the

hardware to be designed. The architecture body consists of a description of the

hardware to be designed in one of three styles: structural, which describes a

hierarchy of interconnected components; data flow, which uses concurrent

statements to describe the flow of information between memory and gating

elements; and behavioral, which uses sequential statements to abstractly

describe the function rather than structure of the hardware.

4.1. Signal Declarations and Types

VHDL supports the following standard data types:

signal
BIT
BIT_VECTOR
BOOLEAN
INTEGER

For synthesis purposes, the following special types are defined:

May 6, 1988 Page 24

subtype CLOCK is BIT
subtype SET is BIT
subtype RESET is BIT
subtype REGISTER is BIT_VECTOR
subtype BUS is BIT_ VECTOR
subtype WIRED is BIT_ VECTOR

VHDL signal declarations can occur m two sections of the behavioral

description: within the entity block, where external port connections are

declared, and within block or process statements of the architectural body,

where internal connections and storage elements are declared. These

declarations are of the form:

{signal} <signal-name> : <mode> <type>

The <mode> attribute identifies the direction in which data flows at a port

(IN, OUT, INOUT). We will define a signal to be of mode internal if it is not

declared as a port in the entity portion of the VHDL description but is declared

as a local signal within an architectural body. The <type> is one of the data

types defined above. As these declarations are processed by the Graph

Compiler, entries are made into the symbol table to record the signal attributes.

l\1ay 6, 1988 Page 25

4.2. Data Flow Description Style

The input description was initially constrained to consist of concurrent

assignment statements which appear within the VHDL block construct. The

following VHDL concurrent statements are supported:

1) con di ti on al signal assignment
2) selected signal assignment
3) guarded signal assignment

In addition, the following synthesis issues will be addressed:

1) bus and register signal qualifiers
2) timing specifications
3) use of wired-or and bus nodes
4) assumed predefined signal types
5) recognition of edge transitions on clock signals

4.2.1. VHDL Concurrent Statern:mts

4.2.1.1. Conditional Signal Assignment

The conditional signal assignment will occur in one of the following forms:

a) signal<= <waveform> ;

This is the simplest form of assignment statement where

<waveform> ::= <expression> { after <delay> }

The VHDL simulator interprets this statement as a directive to compute the
value of <expression> and schedule the activation of this driver for the

May 6, 1988 Page 26

signal value at time <current-simulation-time> + <delay> (if no delay 1s
specified, the driver is activated immediately).

From the CDFG perspective, a data fl.ow graph is constructed for the RHS
expression, and the result is input to a WRITE node for the signal.
Associated with each graph arc (connection) is a signal type (bus, register,
port, wire), rmd.e (in/out/inout (for ports only), internal), number of bits,
and representation. The optional delay specification indicates the time
which elapses between the READ of all signals/variables which appear on
the RHS of the assignment statement and the appearance (WRITE) of the
updated expression value at the register /port /wire represented by the
signal.

b) signal<= guarded <waveform>

The guarded assignment involves the conditional assignment of the
evaluated <waveform> to the signal based on the value of the guard
expression which appears at the beginning of the enclosing VHDL block
statement. When the guard expression evaluates to true, the VHDL
simulator activates the signal driver and places its value on the simulator
event queue so that the signal is updated at the specified simulation time.

For the purposes of CDFG generation and synthesis, a guarded signal
assignment is used for signals declared with the bus or register qualifier. A
data fl.ow graph is generated for the RHS expression and is connected to the
true input of a CHOOSE-VALUE node. The CHOOSE-VALUE has a guard
input which is a data fl.ow graph representing the block guard expression.
The output of the CHOOSE-VALUE node is used as the input to a WRITE
node for the signal.

If the signal is declared as a bus, the CHOOSE-VALUE represents a tri­
state driver for the bus signal. If the signal is a register, the CHOOSE­
V ALUE represents a clock or control signal input to the register. The type
of the guard input net will indicate the function of the signal.

c) signal < = { guarded }

May 6, 1988

waveforml when conditionl else
waveform2 when condition2 else

Page 27

waveformN when conditionN else
waveformN;

This statement corresponds to a nested if arrangement of assignments to the
same signal based on different boolean conditions. The VHDL simulator will
evaluate waveform/condition pairs in the order in which they appear and
will schedule the assignment of the first waveform value to the signal when
its associated condition evaluates to true.

This statement can be useful in representing an assignment to a signal based
on prioritized conditions. For example, the statement in Figure 3 might be
used to represent a register for which the CLEAR is of highest priority,
followed by PRESET and CLOCKed assignment. Figure 3 shows the
flowgraph generated for the statement.

A chain of CHOOSE-VALUES is constructed to form the data flow graph
for the nested if construct. The bottom most CHOOSE-VALUE is guarded
by the first condition encountered, the CHOOSE-VALUE above the bottom
one is guarded by the next condition, etc. The output of the bottom most
CHOOSE-VALUE is connected to the WRITE node input.

4.2.1.2. Selected Signal Assignment

The format of the selected signal assignment is as follows:

with <expression> select
signal < = { guarded }

waveform! when choicel ,
waveform2 when choice2 ,

waveformN when choiceN;

This is equivalent to the case statement available as a sequential statement
within the process construct. The choices are exclusive conditions (either
integer or boolean values) such that only the waveform matching the value of
the <expression> is evaluated and scheduled for assignment by the VHDL
simulator. Figure 4 shows the fiowgraph generated for the general form of this

May 6, 1988 Page 28

reg_A < =

May 6, 1988

)O' after 20 ns when CLEAR = 'O' else
'l' after 20 ns when PRESET = 'l' else
DATA after 35 ns;

DF.3TART

15

DF_END

fig2.dgm Sun Feb 14 18:59:39 1988

Figure 3: Conditional Signal Assignrrent

13

l5

Page 29

statement.

< expression>

< waveform._2>

< waveform_l> < waveform.Jl>

WRITE
signal

Figure 4: Flowgraph for Selected Signal Assigmrent

The data flow graph construct associated with this statement is the multiple
input CHOOSE-VALUE guarded by the <expression>. Each waveform will
have a corresponding data flow graph generated for its expression value, and the
guard test for each input will be stored in the input net.

May 6, 1988 Page 30

5. Graph Representation

A control/data flow graph representation (OrGa86] is used and extended for

the VHDL language. As the VHDL input description is parsed, a symbol table

entry is created for each signal containing the following information: nooe

(in/out/inout (for ports only), internal), VHDL declared type (BIT,

BIT_ VECTOR, CLOCK, etc.), dirrensions (for vectors and arrays), wiring (bus,

register, port, wire), and representation (magnitude, sign/magnitude, l's

complement, 2's complement). READ nodes are used to access a signal value

appearing on the RHS of an assignment statement. Operator nodes represent

arithmetic, logic or signal seiection operations. The net representing the output

of the RHS expression is connected to the input of a WRITE node for the LHS

signal. Associated with each graph arc (connection) is a signal type (DATA,

CLOCK, SET, RESET, TIMING), number of bits, active edge (positive,

negative) and sensitivity (edge, level). Optional delay specifications are

represented in the flow graph by DELAY nodes that indicate the time which

elapses between the READ of alJ signals/variables which appear on the RHS of

the assignment statement and the appearance (WRITE) of the updated

expression value at the register/port/wire represented by the signal.

May 6, 1988 Page 31

Figure 5 and Figure 6 illustrate a typical flowgraph representation. Signal

attributes are extracted from port and variable declarations. Attributes for the

CLK net are collected from the guard condition for the block statement in the

VHDL description. Timing specifications are derived from the after clause of

signal assignment statements.

entity REGISTER is

port

(DATA_in: in BIT_VECTOR(O to 3);

CLK: in CLOCK;

OUTPUT: out BIT_VECTOR(O to 3))

end REGISTER;

architecture EXAMPLE of REGISTER is

signal A: BIT_VECTOR(O to 3) register;

begin (CLK = 'l' and not CLK'STABLE)

A < = guarded DATA_in after 10 ns;

end EXAMPLE;

SYMBOL TABLE
n~ rmde declared type di~nsions .

nnn max

CLK in CLOCK - -
DATA_in in BIT_VECTOR 0 3
OUTPUT out BIT_VECTOR 0 3
A internal BIT_VECTOR 0 3

..
wirmg

PORT
PORT
PORT
REGISTER

Figure 5: Graph Representation: Input Description and Symbol Table

l\1ay 6, 1988 Page 32

READ
CLK

type: CLOCK
bit width: 1

sensitivity: EDGE
active edge: POSITIVE

READ
DATA_in

type: DATA

F=--- bit width: 4

WRITE
A

type: DATA---~
bit width: 4

WRITE
OUTPUT

Figure 6: Graph Representation: Flow Graph

5.1. Node and Net Data Structure

As each statement in the VHDL input description is parsed, flowgraph node

and net structures are created and interconnected. A node data structure is

created for each signal access (READ /WRITE), data operation, or control

operation. Information maintained in the node structure includes:

May 6, 1988 Page 33

(a) a unique node number
(b) the node type (datafiow, control, demarcation, µarch)
(c) a list of input net connections
(cl) output net connection
(e) the operator type
(£) data dependency information (for the behavioral description style)

As the Graph Critic operates on the fiowgraph structure, nodes lil the

graph will be converted to microarchitectural components.

The net data structure maintains node connectivity information as well as

signal attributes. It contains the following information:

(a) a unique net number
(b) the source node for the net
(c) a list of destination nodes
(cl) a list of delays terminating at the net
(e) a list of delays originating at the net
(f) bit width
(g) signal type (DATA, CLOCK, RESET, SET, TIMING)
(h) signal edge (positive, negative)
(i) signal sensitivity (level, edge)

5.2. Node Types

This section describes all nodes which may appear in the fiowgraph. For

each node, the attributes and range of values for these attributes is given. Table

1 classifies each of the nodes into groups based on the type of node. Following

this classification table, the individual node details are given.

May 6, 1988 Page 34

Node Types

Operation Nodes

• Arithmetic
Adding Operators: ADD, SUB, CONCAT
Unary Sign: +, -
Multiplying Operators: MULT, DIV, MOD, REM

• Logical Operators
n to 1 bit Reductions: OR, AND, EXOR, NOR, NAND
n ton bit Logic Units: OR, AND, EXOR, NOR, NAND

•Negation: NOT

•Relational Operators: EQ, NE, LT, LE, GT, GE

Storage/Value Reference Nodes

•Signal Reference Nodes: READ, WRITE
•Port Reference Nodes: READ, WRITE
•Register Reference Nodes: READ, WRITE
•Vector/Array Reference: READ_ARRAY, WRITE_ARRAY, SUBSCRIPT
•Const.ant Read Nodes

Selection Nodes

• Choose-Value Nodes

Delay Nodes

DeIIru'cation Nodes

•START
•END

May 6, 1988

Table 1: Node Group CTassifications

Page 35

Operation Nodes

Operation nodes represent the execution of the specified operator using one

or more supplied inputs. The result of this operation is represented by the

output net of the node. The class of operation nodes is further subdivided into

Arithmetic, Logical, Negation and Relational subclasses.

The Arithmetic Adding operator nodes ADD and SUB have two input

connections and a single output connection which has a bit width that is the

maximum of the input bit widths. The CONCAT operator requires an n-bit

input and an m-bit input. It concatenates these vectors without modification to

form an (n + m)-bit output. The Unary Sign + operator performs no

modification. From the synthesis viewpoint, it is a VHDL language redundancy.

The - operator inverts the magnitude of the input signal. Multiplying operators

represent the operations associated with the designated keyword as described in

the VHDL Language Manual [VHDL87].

Logic operators perform the specified logic function on the inputs in one of

two fashions: n to 1 bit reductions and n bit logic units. The reduction operator

treats each bit of the input as a unique input and performs the logic function on

all inputs. The logic units treat each of two n bit inputs as a single input,

producing an n bit output. Negation produces an output which inverts each bit

1\.1.ay 6, 1988 Page 36

of the input.

Relational operators represent a comparison of two n bit inputs. A single

bit output is produced indicating the result of the specified comparison as being

TRUE (logic '1 ') or FALSE (logic 'O ').

Storage/Value Reference Nodes

This class of nodes represent a retrieval of current signal, port or constant

values (READs) or an update of a signal or port value (WRITEs). Signal

reference nodes are used as intermediate markers during the synthesis process as

fl.owgraphs for individual statements are created and interconnected. They

represent internal signal references. Since no hardware is allocated for these

nodes, they are removed as the final fl.owgraph is created. Port reference nodes

denote references to external ports.

Register reference nodes represent assignment and retrieval of values which

are to be stored in register components. These nodes have a CLOCK input

which is used to load (latch) the data input. Other asynchronous control lines

(SET, RESET, ENABLE) may be present. Attachment of these control lines to

register reference nodes is determined during the synthesis process by taking

into consideration signal type declarations and the scope of guard conditions

May 6, 1988 Page 37

surrounding VHDL assignment statements.

Vector/ Array reference nodes define the selection of one element (bit or

word) or a subrange of elements from a multiple element bus or memory

component.

Selection Nodes

The Choose-Value node is used to represent a conditional signal assignment.

A SELECT input chooses one of the data inputs which will be passed to the

output. Associated with each data input is a constant condition guard against

which the SELECT input is tested. If condition guards, are consecutive, the

node models a multiplexor component; otherwise, the node models a

decoder/multiplexor component.

Delay Nodes

Delay nodes incorporate global timing parameters into the design

representation. This information can be used in global timing analysis or be

assigned as performance attributes (input/output response times, propagation

delays) for a component.

l\!Iay 6, 1988 Page 38

Demarcation Nodes

Demarcation nodes indicate the beginning and end of a data flow graph

block. The start of the block is represented by the ST ART node; it is connected

to all READ PORT and READ CONSTANT nodes accessed in the flowgraph.

Similarly, the END node marks the end of the data flow graph block, and all

WRITE PORT nodes are connected to it.

l\1ay 6, 1988 Page 3!)

6. Compilation Algorithm

The basic algorithm used by the Graph Compiler to generate a control/ data

flow graph from the VHD L behavioral description consists of parsing each

statement and interconnecting graph sections. For each assignment statement, a

data flow graph is constructed for the RHS expression using standard compiler

techniques. Based on the description style, statement flow graphs are

interconnected and merged, generating a single graph.

Each concurrent assignment statement which appears within a VHDL block

construct will have a separate CDFG generated for it. The order of occurrence of

concurrent assignment statements is unimportant. This differs from the

compilation process for sequential statements which imposes an ordering of

execution of these statements and introduces READ /WRITE dependencies

based on that ordering.

If a d.ata flow description is being processed, flow graphs are generated for

each statement and then interconnected once all statements have been

processed. This corresponds to the concurrent data flow style where all

operations are assumed to be executed in parallel. The sections of CDFG

representing each signal assignment will be appropriately interconnected based

on the signal type. It is the signal type that will define whether a VHDL signal

May 6, 1988 Page 40

(container) represents a memory element, port or wire. The signal type will also

determine the interconnect protocol (wired-or, bus) which results when multiple

sources for the same VHD L signal are encountered.

Statements are processed and interconnected as they are encountered

within descriptions of the behavioral style (identified by the use of the VHDL

process construct). This method corresponds to sequential execution of

operations where data dependencies are important.

The single interconnected flowgraph begins with a START demarcation

node which is connected to all external input port references which occur within

the body of the behavioral description. Dataflow nodes created and

interconnected during the parsing of individual statements comprise the body of

the flowgraph. An END demarcation node is connected to all external output

port references occurring in the behavioral description.

l\.1ay 6, 1988 Page 41

7. Graph Critic

Once the initial flow graph has been generated and entered into the Design

Data Base, a rule-based Graph Critic performs optimizations on the flow graph

structure. Because VHDL allows the designer to express the same functionality

in many different ways, a Graph Critic module is needed to transform these

various representations into an unique construct which represents the hardware

concept being described.

The Graph Critic applies two types of rules when optimizing the flowgraph.

The first rule set consists of cleanup rules. These rules eliminate redundant

constructs in the flowgraph. Figure 7 gives several examples of cleanup rules.

For example, a WRITE node followed by a READ node for a variable of type

signal can be replaced by a simple wire connection since no storage element is

required.

The second rule set contains microarchitectural substitution rules. These

rules implement heuristics which make local substitutions for patterns of

interconnected graph nodes based on signal types or other attributes associated

with those patterns. In this manner, fiowgraph constructs representing the

behavior of the hardware are systematically replaced by nodes which more

closely represent microarchitectural components with those attributes. Figure 8

May 6, 1988 Page 42

1

2

REGISTER

3 PORT

Figure 7: Graph Critic Cleanup Rules

l\!Iay 6, 1988 Page 43

4

5

6 type:
CLOCK

7

type:
CLOCK

CONST

l sensitivity: r LEVEL

l sensitivity: r EDGE

lactive_edge: r POSITIVE

lactive_edge: I NEGATIVE

Figure 8: Graph Critic µArchitecture Substitution Rules

May 6, 1988 Page 44

shows several examples of rules which remove fiowgraph sections generated by

the translation of VHD L constructs and captures the necessary design

information in the form of net attributes.

These optimizations simplify the task of assigning generic logic comp on en ts

to corresponding operation nodes in the flow graph representation. This

approach is unique to our methodology in that the optimizations are performed

incrementally at every stage of the design process where the functional

information is recognizable, rather than postponing these mapping decisions by

passing them on to future (logic) optimization processes where this data is not

easily retrieved.

May 6, 1988 Page 45

8. Design Generation

Design Generation is the process of mapping each node in the flowgraph to a

single or a combination of available microarchitectural component(s) in the

generic component library. A component library specification is supplied to the

synthesis system m tabular form (reference generic component table

specification). Parameters and attributes are extracted from specifications in the

flow graph structure so that constraints are met. Certain flowgraph nodes such

as the CHOOSE-VALUE node are mapped into several components. After each

flowgraph node is replaced by the appropriate library element(s), the partial

design '.Vill consist of a netlist of generic logic components.

The component table describes the port connections and functionality of a

set of generic components. Table 2 illustrates a representative component set

used in the MILO system [VZGa88].

lVIay 6, 1988 Page 46

lVIICROARCHITECTURAL COlVIPONENTS
(every component has loading and delay attributes)

GATES
(function (=AND, OR, INV, NAND, NOR, EXOR, EQ),
#inputs.
)

LOGIC UNIT
(# bits
function (= 2-variable Boolean functions)

)

INTERFACE (type(= tristate, buffer, clock),
level (=TTL, ECL),
function (= inverting, non-inverting),
#inputs.
)

SELECTOR
(# bits,

)

type (= binary),
#inputs.

DECODER

May 6, 1988

(# bits,

)

type (= binary),
control { = enable).

Table 2: Module Generators and Parameters

Page 47

•

COMPARATOR
(# bits,
function (= >, <, =, ...).

)

ALU
(# bits,
function (= +, -, INC, DEC, logic functions).

)

REGISTER
(# bits,
type (= latch, D-FF),
function(= load, shift),
control (= set, reset, enable),
i/o (=serial, parallel).

)

COUNTER
(# bits,
function(= load, up, down),
control (= set, reset, enable),
mode (= ripple, carry-look-ahead),
clock (= single),
type (= custom, binary).

)

RAM/ROM
(# bits,
size

)

control (= read, write, request, ready),
select(=# bits, polarity).

Table 2: Module Generators and Parameters (continued)

May 6, 1988 Page 48

BARREL SHIFTER
(# bits,
function (= left shift, left rotate, right shift, right rotate),
fill in (= left, right, 0, 1).

)

MULTIPLIER
(#bits,
representation (= magnitude, 1 's complement, 2's complement).

)

REGISTER FILES

May 6, 1988

(# bits,
#ports,

)

type(= FIFO, stack, register),
port type(= in, out, in/out),
port control (= enable, load).

Table 2: Module Generators and Parameters (continued)

Page 49

9. Reverse Compiler

The types of information contained in the design representation after the

Graph Compilation, Graph Critic, and Design Generation phases have

completed can be classified as follows: component instances, connectivity,

instance para~ters, and timing. A Reverse Compiler is needed to present the

design representation in a textual or graphic form which will allow the designer

to examine the results of synthesis and verify design corre.ctness. The generic

component netlist representation which is the textual output of the synthesis

system must express this design information. A standard format for this netlist

is desirable so that interfacing to other design tools can be more easily

accomplished.

The VHDL structural style of description seems suited to this purpose. The

general form of this netlist is shown in Figure 9. Figure 10 shows a schematic of

an example circuit whose netlist is given in Figure 11. The following sections

describe how the various types of design information are represented in this

net list format.

May 6, 1988 Page 50

-- interface portion

entity <entity-name> is
<port-declarations>
<external-timing-assertions>

end <entity-name>;

-- architectural body (structural description style)

architecture Structure_View of <entity-name> is
<component-declarations>
<component-attributes>
<internal-signal-declarations>
<internal-timing-assertions>

begin
<component-instantion-statements>

end Structure_ View;

Figure 9: VHDL Generic Component Netlist For1n1t

"' llUXZ: 14• e2.
IU•I ..

lt(t: IS)
d> l(Ot Ul

11(0: ot(O: U) .. •Ct: IS l e." t(O: IS) 1111~1: Ut
tet: IS)

llfMllllt '° Cl(t) 1(0: IS) IO(t: IS)

lltt: otet: IS) ' let: IU
1(0)

cot•)

" t<•l 0Ct1 IU
IC I) .. ,..,,

c

""'''

.. , .. ,
Cito

Figure 10: Schcnl\tic fol' Example Design

May 6, 1988 Page 51

-- interface portion

entity Examplel is

port (A,B: in: BIT_VECTOR(O to 15);

Select,Enable: in BIT;

Clock: in CLOCK;

Regout: out BIT_VECTOR(O to 15));

-- external timing assertions

--T ~.A to ·~ Regout: 20 ns average

--T l Clock to ~. Regout: 5,10 ns

end Exam pie 1;

-- architectural body (structural description style)

architecture Structure_ View of Examplel is

-- component declarations

Component MUX2_16b

port (IO,Il: in: BIT_VECTOR(O to 15);

SO: in BIT;

00: out BIT_VECTOR(O to 15));

Component AU r 16 b

port (A,B: in: BIT_VECTOR(O to 15);

CI: in BIT;

S: in BIT_VECTOR(O to 1);

SUM: out BIT_ VECTOR(O to 15);

CO: out BIT);

Component RGdnn te 16 b

port (I: in: BIT_VECTOR(O to 15);

S: in BIT;

C: in CLOCK;

0: out BIT_VECTOR(O to 15));

Component sbl6_1

port (I: in: BIT_VECTOR(O to 15);

May 6, 1988 Page 52

0: out BIT);

Component G ND

port (0: out BIT);

-- component attributes

type FUNC_TYPE is (ADD,SUB,INC,DEC);

type CARRY is (RIPPLE,LOOKAHEAD);

attribute FUNCTION: FUNC_TYPE;

attribute ADDER_TYPE: CARRY;

attribute ENBL: BOOLEAN;

attribute FUNCTION of AUrl6b: component is ADD;

attribute ADDER_TYPE of AUr16b: component is RIPPLE;

attribute ENBL of C4: label is TRUE;

-- internal signal declarations

signal a,b,c: BIT_VECTOR(O to 15);

signal d,Gnd: BIT;

-- in tern al timing assertions

--T ~~a to U b: 20,25,35 ns

--T •A to~. b: 40 ns max

-- component instantiations

begin

CO: GND port map (Gnd);

Cl: MUX2_16b port map (A,B,d,a);

C2: AUrl6b port map (a=> A,Regout => B,Gnd => CI,Gnd => S(O),

Gnd => S(l),b => SUM);

C3: MUX2-16b port map (b,B,Select,c);

C4: RGdnnte16b port map (c,Enable,Clock,Regout);

CS: sbl6_1 port map (Regout,d);

d <= Regout(15);

end Structure_ View;

Figure 11: VHDL Structural Description of an Example Circuit

May 6, 1988 Page 53

9.1. G€neric Component Netlist

Entity Declaration

The entity declaration portion of the VHDL structural description specifies

the design name and defines the design's interface to the outside world. Port

declarations are used to define input and output connections. VHDL assertion

statements are used to specify timing constraints from input to output ports of

the design. The section on timing assertions below will describe the format of

these statements.

Component Declarations

For each umque component in the netlist, a component declaration must

exist. This declaration defines a template containing input and output pm

specifications via port declarations. The type and bit width of the signals (nets)

to be attached to the component ports are specified in these declaration

statements.

In order to generate a genenc netlist usmg a set of generic components, a

table of available components and their component declarations must exist.

This table should identify the function of each input and output pin and the pin

naming conventions for each component. It should also specify the operand port

l\!Iay 6, 1988 Page 54

mappings for multiple operation units. If this component declaration table is

available to interface programs which accept the netlist as input, it would not be

necessary to include component declarations in the netlist.

Component Attributes

In order to specify parameters particular to a component such as ALU

functions, control input codes, etc., the VHDL attribute declaration and

specification features can be used. Enumeration types can be used to specify the

allowable values of an attribute. Attributes may be associated with the

template component declaration, or with specific labeled instances of a

component. For example, the statements

type FUNC_TYPE is (ADD,SUB,INC,DEC);
attribute FUNCTION: FUNC_TYPE;
attribute FUNCTION of AUr16b: component is ADD;

will associate the FUNCTION attribute ADD with every instance of an A Ur16b

component, while the attribute specification

attribute ENBL of C4: label is TRUE;

will associate the ENBL attribute with RGdnnte16b instance C4 only.

May 6, 1988 Page 55

Internal Signal Declarations

Internal connection of components is accomplished by defining each internal

net of the generic component netlist using signal declaration statements. These

signal (net) names are used in the port map specification of component

instantiations described below in order to identify uniquely the net connections

between component ports.

Timing Assertions

It is often necessary and useful when specifying timing constraints of a

circuit to have the capability of specifying relationships between signals. For

exa,mple, a common requirement is that the data input to a clocked register be

stable n. duration of time prior to the clock transition that strobes the d<ti a into

the register (sometimes known as set up time) [Arms87]. The following signal

transitions should be representable:

1. ts
2. is
3. us

transition from 0 to 1 of signal S (rising)
transition from 1 to 0 of signal S (falling)
any transition of signal S (change)

The timing relationship is expressed as follows:

< transitionl > to < transition2> : <duration>

where < transitionl > and < transition2> are of the form specified above. The

l\1ay 6, 1988 Page 56

<duration> specification is used to specify the nummum, maximum and/or

average time interval(s) between two events. A single time period specification

must be followed by a qualifier (max, min, or average). For example:

--T i A to U b: 40 ns max

A list of two time intervals specifies a minimum/maximum timing specification,

such as:

--T t Clock to U Regout: 5,10 ns

A triplet of time intervals denotes minimum, average, and maximum, as in:

--T Ha to t+ b: 20,25,35 ns

One method of expressing timing information which conforms to the VHD L

language definition would be to use comments. For example, the statements

--T HA to H Regout: 20 ns average
--T t Clock to H Regout: 5,10 ns

would be parsed as comments by the VHDL Analyzer, but the netlist parser

could recognize the --T timing assertion delimiter and record the specified timing

information.

May 6, 1988 Page 57

Component Instantiations

A component is instantiated through the use of a VHDL component

instantiation statement within the block of the architectural body. This

statement has the form:

<label>: <component-name> <port-map>;

The <label> is a umque id for the component. A component declaration

statement for <component-name> must exist, defining the ports (mode, bit

width) to be found in the <port-map> list. The <port-map> is a list of

previously defined port or internal signal names which defines the

interconnection of components. This list may be of named or positional format.

Named format is an unordered list of association of signals to ports. For

example, if net Nl is attached to port Pl (as defined m the port list of the

component declaration), Nl => Pl would appear m the <port-map> list.

Positional format assigns elements of the <port-map> to ports with the

corresponding position in the port list of the component declaration.

Concurrent assignment statements may be used to specify necessary

behavior characteristics of a component. Examples of this type of specification

include the concatenation of input signals to form output signals for the

1\1.ay 6, 1988 Page 58

switchbox component of Figure 10, or the specification of the functionality of a

random logic component using boolean equations.

9.2. Interface to Other Synthesis Tools

Since the generic component netlist output by the VHDL synthesis system

described in this report is of valid VHDL syntax, the opportunity exists to verify

its correctness. If behavioral VHDL models are developed for each generic

component, the netlist can be used as input along with these models to the

VHDL simulator. A comparison to simulation results generated using the initial

behavioral description can verify the proper operation of the synthesized ndhst.

May 6, 1988 Page 59

10. An Example

An example of a VHDL description of a Bus Interface circuit from the

VHDL Tutorial [VHDL87] will be used to illustrate the Data Flow compilation

process. Figure 12 shows the VHDL input description.

The Graph Compiler parses each individual statement as it is encountered,

generating a corresponding flowgraph for that statement .. After all statements

have been processed, the fl.owgraph sections are interconnected to produce the

fl.owgraph shown in Figure 13.

The Graph Critic is then invoked to optimize the fl.owgraph representation

:>o that translation to generic microarchitecture components is straightforward.

Figure 14 identifies sections of the initial fl.owgraph which are optimized through

the application of Graph Critic rules. The actual rules that the Graph Critic

will apply for this example are shown in Figure 15. The fl.owgraph that results

after optimization appears in Figure 16.

May 6, 1988 Page 60

Node compilers are then invoked for each of the remaining flowgraph nodes.

The final generic netlist resulting after all nodes have been replaced by

corresponding generic components is shown in Figure 17. A VHDL Generic

Component Netlist as shown in Figure 18. This netlist describes the

connectivity, component attributes and timing assertions of the interconnected

microarchitecture components which comprise the design.

May 6, 1988 Page 61

-·

entity Businterface
(ABus: in BIT_VECTOR(O to 31);
DBus: out BIT VECTOR(O to 7);
MernReq: in BIT;
BusReq: out BIT;
BusAck: in BIT;
DataRdy: out BIT;
Addr: out BIT VECTOR(O to 15);
In_Data: in BIT_VECTOR(O to 7);
MR: out BIT)

is end Businterface;

architecture DataFlow of Businterface is

block

signal Done,Enable: BIT;
signal MRint: CLOCK;
signal Board_id: integer;

begin

DataRdy <• not Enable ;
MR <• not MRint ;
Enable <· Done and not BusAck ;
BusReq <· not (Done and BusAck) ;
Done<- MRint and MRint'DELAYED(l75 ns);
MRint <• MernReq and (ABus(l6 to 18) • Board_id) /
with Enable select

DBus <•In Data when 'l',
"ZZZZZZZZ" when '0';

block (MRint • 'O' and not MRint'STABLE)

signal Addr_reg: BIT_VECTOR(O to 15) register;

begin

Addr_reg <• guarded ABus(O to 15)
Addr <• Addr_reg;

end block;

end block;
end DataFlow;

Figure 12: VIIDL Description of the Bus Interface Circuit

May 6, 1988 Page 62

.[

11
r

r

Figure 13: Interconnected Flowgraph for Bus Interface Example

May 6, 1988 Page 63

ll
r

r

I
I

I
I
I -

May 6, 1988

I
17

' r

I
_J

I

I
L

Figure 14: Graph Critic Rule Applications

I
I

Page 64

1

2

3

4

3

May 6, 1988

type:
CLOCK

CONST

l type: CLOCK
Tactive_edge: NEGATIVE

Figure 15: Graph Critic Rules

Page 65

r <TA

u

Figure 16: Flowgraph after Optimization

May 6, 1988 Page 66

AL noceJ
Ate: ZJ

HI---------~ AEQ&OCOJ --­
&Otrd. t d(e: ZJ

1(0: UJ

C1k LD

Llfl---<t---~ c

oce: uJ

&Ce: ZJ
A&T&OCeJ

~ddr

tu1Ack

oauce: 7J D1>u1ct1 7J

Figut'e 17: Generic Component Schematic for Bus Interface Exarnple

May 6, 1988 Page 67

entity Businterface is
generic (Board_id: in BIT_VECTOR(O to 2));
port

(ABus: in BIT_VECTOR(O to 32);
DBus: out BIT_VECTOR(O to 7);
MemReq: in BIT;
BusReq: out BIT;
BusAck: in BIT;
DataRdy: out BIT;
Addr: out BIT VECTOR(O to 15);
Data: in BIT VECTOR(O to 7);
MR: out BIT)-

--T Global timing assertions

end Businterface;

architecture 8tructure_View of Businterface is

Component AND2
port (IO,Il: in BIT; 0: out BIT);

Component INV
port (IO: in BIT; 0: out BIT);

Component REG
port (I: in BIT_VECTOR(O to 15);

CLK: in BIT;
0: out BIT_VECTOR(O to 15));

Component CMP
port (A,B: in BIT_VECTOR(O to 2);

AEQB: out BIT);
Component BUF

port (I: in BIT_VECTOR(O to 7);
EN: in BIT;
0: out BIT_VECTOR(O to 7));

Component ONE_8HOT
port (I: in BIT; 0: out BIT);

signal Done,Enable,MRint: BIT;
signal 81,82,83,84: BIT;

begin

Cl: AND port map (81, MernReq, MRint);
C2: AND port map (MRint, 84, Done);
C3: AND port map (Done, BusAck, 82);
C4: AND port map (83, Done, Enable);
CS: INV port map (MRint, MR);
C6: INV port map (82, BusReq);
C7: INV port map (BusAck, 83);
CS: INV port map (Enable, DataRdy);
C9: REG port map (ABus(O to 15), MRint, Addr);
ClO: CMP port map (ABus(l6 to 18), Board_id, Sl);
Cll: ONE_8HOT port map (MRint, 84);
Cl2: BUF port map (Data, DBus);

end 8tructure_View;

Figure 18: VHDL Generic Component Netlist

May 6, 1988 Page 68

11. Conclusions

In this technical report, we have presented a methodology for design

synthesis from a VHDL description. The implementation of this methodology

resulted in a system that increases designer productivity by removing the

requirement of expert knowledge at lower levels of design. Designers can

experiment by modifying design descriptions and parameters in order to evaluate

alternative styles and target technologies.

The VHDL input description language was restricted and extended to

incorporate information necessary for synthesis. A well defined design

representation, the control/data flowgraph, incorporates signal typing and other

attributes. The flowgraph also provides a canonical form for a many to one

mapping of equivalent language constructs to a unique representation. Graph

optimizations are performed at various stages of the synthesis process, leading to

a near optimal design.

This approach to synthesis decomposes the process into two interacting

stages: compilation and optimization. Compilation is procedural in nature and

involves the generation of the design representation (flowgraph) given the input

behavioral description. Emphasis is placed on creating a design data base which

includes sufficient information for synthesis such as signal functionality and

May 6, 1988 Page 69

tirning relationships. Optimizations are heuristic in nature and are performed

most effectively when the necessary information is accessible. Local graph

optimizations such as recognition of signal attributes can modify the

representation so that optimal generic component mapping will result; global

optimizations can be performed more easily if information such as critical path

specifications or propagation delays remain associated with generic structural

components. This avoids the difficult task of attempting to optimize a

structural design which has been synthesized directly from a suboptimal

behavioral description and has lost information during the translation process.

The system remams technology independent through the use of a generic

component library. Unlike systems which assume a limited design model which is

hard coded into the software, the flexibility of this approach allows for the

addition or modification of the generic component library by simply changing

the input generic component table. The design can then be translated to

technology components by a mapper and logic optimizer. Simple redesign to new

technologies can be accomplished by changing the technology specific component

library.

May 6, 1988 Page 70

12. References

[Arms87] J. R. Armstrong, Chip Level Modeling with VHDL, draft, June 1987.

[Arms88] J. R. Armstrong, "Modeling with HDLs", IEEE Design & Test, pp. 8-

18, February 1988.

[Barb81] M. Barbacci, "Instruction Set Processor Specifications (ISPS): The
Notation and Its Applications", IEEE Transactions on Computers, Vol. C-30 no.
1, January 1981.

[Bhas86] J. Bhasker, "Process Graph Analyzer: A Front End Tool for VHDL
Behavioral Synthesis", Proceedings of the 10th Annual Honeywell International
Computer Sciences Conference, Minneapolis, 1986.

[BrHa84] R. K. Brayton, G. D. Hachtel, C. T. McMullen, and A. Gangiovanni­
Vincentelli, EXPRESSO-IIC: Logic Minimization Algorithms for VLSI
Synthesis, Kluwer Academic Publishers, 1984.

[BrRu87] R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli and A. R. Wang,
"MIS: A Multiple-Level Logic Optimization System", IEEE Trans. CAD, Vol.
CAD-6, No. 6, Nov. 1987.

[BrGa86] F. D. Brewer and D. D. Gajski, "An Expert-System Paradigm for ··
Design", 23rd DAC, June 1986.

[dGCo85J A. J. deGeus and W. Cohen, "A Rule-Based System for Optimizing
Combinational Logic", IEEE Design & Test, pp. 22-32, Aug. 1985.

[FoFr85] J. R. Fox and J. A. Fried, "Telecommunications Circuit Design Using
the SILC Silicon Compiler", ICCAD, June 1985.

[Gajs85] D. Gajski, DESCART System, prepared for Gould Research Center,
August 1985.

[GOKB86] D. Gajski, A. Orailoglu, B. Kuhn, C. Bosco, "An Expert Silicon
Compiler", IEEE 1986 Custom Integrated Circuit Conference, pp. 116-119.

[GrBa86] D. Gregory, K. Bartlett, A. deGeus, G. Hatchel, "SOCRATES: A
System for Automatically Synthesizing and Optimizing Combinational Logic",

l\1ay 6, 1988 Page 71

23rd DAC, June 1986.

[JVJC86] A. A. Jerraya, P. Varinot, R. Jamier, and B. Curtois, "Principles of the
SYCO Compiler", 23rd DAC, June 1986.

[JoTr86] W. Joyner, Y. Trevillyan, D. Brand, T. Nix, S. Gundersen, "Technology
Adaptation in Logic Synthesis", 23rd DAC, June 1986.

[Kim87] J. Kim, "Artificial Intelligence Helps Out ASIC Design Time", Electronic
Design, June 1987, pp. 107-110.

[KBhNJ S. J. Krolikoski, J. Bhasker, S. Natarajan, "V-SYNTH: A VHDL
Behavioral Synthesis System".

[KoTh85] T. J. Kowalski and D. E. Thomas, "The VLSI Design Automation
Assistant: What's in a Knowledge Base", 22nd DAC, June 1985.

[LiGa87J S. Lin and D. D. Gajski, "LES: A Layout Expert System", 24th DAC,
June 1987.

[McFa78] M. McFarland, "The Value Trace: A Data Base for Automated Digital
Design", Master Thesis, Dept. of Electrical Engineering, Carnegie-Mellon
University, December 1978.

[OrGa86J A. Orailoglu, D. Gajski, "Flow Graph Representation", DAC, 1986.

[PaGa86J B. M. Pangrle and D. D. Gajski, "State Synthesis and Connectivity
Binding for Microarchitecture Compilation", ICCAD, Nov. 1986.

[PaGa87] B. M. Pangrle and D. D. Gajski, "Design Tools for Intelligent Silicon
Compilation", IEEE Trans. on CAD, vol CAD-6, no. 6, Nov. 1987.

[PTSB79] A. Parker, D. Thomas, D. Siewiorek, M. Barbacci, L. Hafer, G. Lieve,
and J. Kim, "The CMU Design Automation System: an Example of Automated
Data Path Design", 16th DAC, June 1979.

[PaKM84J A. Parker, F. Kurdahi, and M. Mlinar, "A General Methodology for
Synthesis and Verification of Register-Transfer Designs", 21st DAC, June 1984.

[PaPM86] A. C. Parker, J. Pizarro, M. Mlinar, "MAHA: a Program for Datapath
Synthesis", 23rd DAC, June 1986.

May 6, 1988 Page 72

[Saun87] L. Saunders, "The IBM VHDL Design System", 24th DAC, June 1987.

[Sout83] J. R. Southard, "MacPitts: an Approach to Silicon Compilation", IEEE
Computer, vol. C-16, Dec. 1983.

[THKR83] D. E. Thomas, C. Y. Hitchcock III, T. J. Kowalski, J. V. Rajan, and
R. A. Walker, "Automatic Data Path Synthesis", IEEE Computer, Dec. 1983.

[TsSi83] C. J. Tseng and D. P. Siewiorek, "Facet: A Procedure for the
Automated Synthesis of Digital Systems", 20th DAC, June 1983.

[TsSi84] C. J. Tseng and D. P. Siewiorek, "Emerald: A Bus Style Designer", 21st
DAC, June 1984.

[TsSi86] C. J. Tseng and D. P. Siewiorek, "Automated Synthesis of Data Paths
in Digital Systems", IEEE Trans. Computer-Aided Design, vol. CAD-5, no. 3,
July 1986.

[TsWe88] C. J. Tseng, Ruey-Sing Wei, et. al., "Bridge: A High Level Synthesis
System in Industry", 25th DAC, June 1988.

[VHDL87] VHDL Language Reference Manual, Draft Standard 1076/ B, IEEE,
June 1987.

[VZGa88] N. VanderZanden and D. Gajski, "MILO: A Microarchitecture and
Logic Optimizer", 25th DAC, Anahiem, CA, June 1988.

[Wei88] R. S. Wei, "BECOME: Behavior Level Circuit Synthesis Based on
Structure Mapping", 25th DAC, June 1988.

[Zimm80] G. Zimmerman, et. al., MDS - The MIMOLA Design Method, Journal
of Digital Systems, Volume IV Issue 3, 1980.

l\.1ay 6, 1988 Page 73

