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PDB Reference: putative NTP pyrophospho-

hydrolase, 3nl9.

The crystal structure of a putative NTPase, YP_001813558.1 from Exiguo-

bacterium sibiricum 255-15 (PF09934, DUF2166) was determined to 1.78 Å

resolution. YP_001813558.1 and its homologs (dimeric dUTPases, MazG

proteins and HisE-encoded phosphoribosyl ATP pyrophosphohydrolases) form

a superfamily of all-�-helical NTP pyrophosphatases. In dimeric dUTPase-like

proteins, a central four-helix bundle forms the active site. However, in

YP_001813558.1, an unexpected intertwined swapping of two of the helices

that compose the conserved helix bundle results in a ‘linked dimer’ that has not

previously been observed for this family. Interestingly, despite this novel mode

of dimerization, the metal-binding site for divalent cations, such as magnesium,

that are essential for NTPase activity is still conserved. Furthermore, the active-

site residues that are involved in sugar binding of the NTPs are also conserved

when compared with other �-helical NTPases, but those that recognize the

nucleotide bases are not conserved, suggesting a different substrate specificity.

1. Introduction

Nucleoside triphosphate pyrophosphatases (or pyrophospho-

hydrolases; NTPases) perform the important function of hydrolyzing

the �–� phosphodiester bond of nucleoside triphosphates (NTPs)

and are often involved in removing noncanonical nucleotide

triphosphates to prevent their incorporation into DNA or RNA

(Bessman et al., 1996; Wu et al., 2007; Hwang et al., 1999; Minasov et

al., 2000). dUTP pyrophosphatase (dUTPase; EC 3.6.1.23) catalyzes

the hydrolysis of dUTP to dUMP and pyrophosphate. The available

dUTPase structures are classified into three distinct groups based on

their oligomeric state: trimeric, dimeric and monomeric. The crystal

structures of trimeric dUTPases from Escherichia coli (Cedergren-

Zeppezauer et al., 1992; Larsson et al., 1996), human (Mol et al., 1996)

and two mammalian retroviruses (Prasad et al., 1996; Dauter et al.,

1999) possess an all-� fold. Monomeric dUTPases contain all five of

the characteristic sequence motifs present in trimeric dUTPases, but

they are arranged in a different order. The monomeric enzyme from

Epstein–Barr virus (EVB; Tarbouriech et al., 2005) also adopts an

all-� fold and contains three domains and an active site that is very

similar to those of trimeric dUTPases. Dimeric dUTPases, such as

those from Trypanosoma cruzi (Harkiolaki et al., 2004) and

Campylobacter jejuni (Moroz et al., 2004), differ from the monomeric

and trimeric forms and adopt an all-� topology, indicating a different

evolutionary origin.

Dimeric dUTPase and MazG proteins are members of the all-�-

helical NTP pyrophosphatase SCOP superfamily (Murzin et al., 1995;

Andreeva et al., 2008), which also contains the HisE-encoded phos-

phoribosyl ATP pyrophosphohydolase (PRATP-PH) family (Moroz

et al., 2005; Javid-Majd et al., 2008). The �-helical NTP pyrophos-

phatases share a highly conserved four-helix bundle, one face of

which forms the active site, while the other participates in oligomer

assembly (Harkiolaki et al., 2004; Moroz et al., 2004). In some cases,

the four-helix bundle forms upon dimerization (Harkiolaki et al.,

2004) while, in others, it is contained within a single protomer (Moroz

et al., 2004).



Here, we report the crystal structure of NTPase YP_001813558.1

from the extremophile Exiguobacterium sibiricum 255-15 (PF09934,

DUF2166), which was originally isolated from the Siberian perma-

frost (Vishnivetskaya et al., 2000). The structure reveals an interesting

variant of the all-�-helical NTP pyrophosphatase fold family that

contains an unusual intertwined swapping of helical segments,

resulting in an obligatory dimer that cannot dissociate without

unfolding of the monomers. This novel ‘linked dimer’ defines a new

subfamily of the �-helical NTP pyrophosphatase fold and is distinct

from other previously observed domain-swapped dimers. The

YP_001813558.1 gene of E. sibiricum 255-15 encodes a protein with a

molecular weight of 19.1 kDa (residues 2–170) and a calculated

isoelectric point of 4.93. The structure was determined using the

semiautomated high-throughput pipeline of the Joint Center for

Structural Genomics (JCSG; Lesley et al., 2002) as part of the NIGMS

Protein Structure Initiative (PSI).

2. Materials and methods

2.1. Protein production and crystallization

Clones were generated using the Polymerase Incomplete Primer

Extension (PIPE) cloning method (Klock et al., 2008). The gene

encoding YP_001813558.1 (gi|172057098; UniProt B1YMF4) was

amplified by polymerase chain reaction (PCR) from E. sibiricum

255-15 genomic DNA using PfuTurbo DNA polymerase (Stratagene)

and I-PIPE (Insert) primers (forward primer, 50-ctgtacttccagggcAT-

GAAACAACCGAACTACTATCAGGACG-30; reverse primer, 50-

aattaagtcgcgttaTGCTTTTTCTTTCATTTGGCGCACTAC-30; target

sequence in upper case) that included sequences for the predicted

50 and 30 ends. The expression vector pSpeedET, which encodes

an amino-terminal tobacco etch virus (TEV) protease-cleavable

expression and purification tag (MGSDKIHHHHHHENLYFQ/G),

was PCR-amplified with V-PIPE (Vector) primers (forward primer,

50-taacgcgacttaattaactcgtttaaacggtctccagc-30; reverse primer, 50-gcc-

ctggaagtacaggttttcgtgatgatgatgatgatg-30). The V-PIPE and I-PIPE

PCR products were mixed to anneal the amplified DNA fragments

together. Escherichia coli GeneHogs (Invitrogen) competent cells

were transformed with the V-PIPE/I-PIPE mixture and dispensed

onto selective LB–agar plates. The cloning junctions were confirmed

by DNA sequencing. Expression was performed in a selenomethio-

nine-containing medium with suppression of normal methionine

synthesis (Van Duyne et al., 1993). At the end of fermentation,

lysozyme was added to the culture to a final concentration of

250 mg ml�1 and the cells were harvested and frozen. After one

freeze–thaw cycle, the cells were homogenized in lysis buffer [50 mM

HEPES pH 8.0, 50 mM NaCl, 10 mM imidazole, 1 mM tris(2-

carboxyethyl)phosphine–HCl (TCEP)] and the lysate was clarified by

centrifugation at 32 500g for 30 min. The soluble fraction was passed

over nickel-chelating resin (GE Healthcare) pre-equilibrated with

lysis buffer, the resin was washed with wash buffer [50 mM HEPES

pH 8.0, 300 mM NaCl, 40 mM imidazole, 10%(v/v) glycerol, 1 mM

TCEP] and the protein was eluted with elution buffer [20 mM

HEPES pH 8.0, 300 mM imidazole, 10%(v/v) glycerol, 1 mM TCEP].

The eluate was buffer-exchanged with TEV buffer (20 mM HEPES

pH 8.0, 200 mM NaCl, 40 mM imidazole, 1 mM TCEP) using a PD-10

column (GE Healthcare) and incubated with 1 mg TEV protease per

15 mg eluted protein for 2 h at 295 K and 18 h at 277 K. The protease-

treated eluate was run over nickel-chelating resin (GE Healthcare)

pre-equilibrated with HEPES crystallization buffer (20 mM HEPES

pH 8.0, 200 mM NaCl, 40 mM imidazole, 1 mM TCEP) and the resin

was washed with the same buffer. The flowthrough and wash fractions

were combined and concentrated to 16.5 mg ml�1 by centrifugal

ultrafiltration (Millipore) for crystallization trials. YP_001813558.1

was crystallized using the nanodroplet vapor-diffusion method

(Santarsiero et al., 2002) with standard JCSG crystallization protocols

(Lesley et al., 2002). Sitting drops composed of 200 nl protein mixed

with 200 nl crystallization solution were equilibrated against a 50 ml

reservoir at 277 K for 29 d prior to harvest. The crystallization

reagent that produced the YP_001813558.1 crystal used for structure

solution consisting of 1.4 M trisodium citrate and 0.1 M HEPES pH

7.5. For crystal diffraction screening and data collection, 1,2-ethane-

diol (ethylene glycol) was diluted to 20%(v/v) using reservoir solu-

tion and then added to the crystal drop in a 1:1 ratio as a

cryoprotectant. Initial screening for diffraction was carried out using

the Stanford Automated Mounting (SAM; Cohen et al., 2002) system

and an X-ray microsource (Miller & Deacon, 2007) installed at the

Stanford Synchrotron Radiation Lightsource (SSRL, Menlo Park,

California, USA). The data were indexed in the monoclinic space

group C2. The oligomeric state of YP_001813558.1 was determined

using a 1 � 30 cm Superdex 200 column (GE Healthcare) coupled

with miniDAWN static light-scattering (SEC/SLS) and Optilab

differential refractive-index detectors (Wyatt Technology). The

mobile phase consisted of 20 mM Tris pH 8.0, 150 mM NaCl and
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Table 1
Summary of crystal parameters, data-collection and refinement statistics for
YP_001813558.1 (PDB code 3nl9).

Values in parentheses are for the highest resolution shell.

�1 MADSe �2 MADSe

Crystal parameters
Space group C2
Unit-cell parameters (Å, �) a = 52.09, b = 69.04, c = 50.21, � = 111.8
Mosaicity (�) 0.91

Data collection
Wavelength (Å) 1.0000 0.9798
Resolution range (Å) 39.6–1.78 (1.83–1.78) 39.6–1.78 (1.83–1.78)
No. of observations 43073 43110
No. of unique reflections 15531 15528
Completeness (%) 98.1 (97.9) 98.1 (97.3)
Mean I/�(I) 9.8 (2.1) 8.6 (1.8)
Rmerge on I† 0.069 (0.555) 0.082 (0.563)
Rmeas on I‡ 0.086 (0.687) 0.102 (0.698)
Rp.i.m. on I§ 0.050 (0.401) 0.059 (0.408)
Overall B factor from Wilson plot (Å2) 21.3 21.0

Model and refinement statistics
Data set used in refinement �1 MADSe
Resolution range (Å) 39.6–1.78
No. of reflections (total) 15531
No. of reflections (test) 788
Completeness (%) 97.8
Cutoff criterion |F | > 0
Rcryst} 0.177
Rfree†† 0.222

Stereochemical parameters
Restraints (r.m.s.d. observed)

Bond angles (�) 1.30
Bond lengths (Å) 0.015

Average protein isotropic B value (Å2) 26.0‡‡
Average solvent isotropic B value (Å2) 33.6
ESU§§ based on Rfree (Å) 0.14
Protein residues/atoms 169/1340
Water/cryoprotectant molecules 141/2

† Rmerge =
P

hkl

P
i jIiðhklÞ � hIðhklÞij=

P
hkl

P
i IiðhklÞ. ‡ The redundancy-indepen-

dent (multiplicity-weighted) merging R factor, Rmeas =
P

hkl ½N=ðN � 1Þ�1=2

�
P

i jIiðhklÞ � hIðhklÞij=
P

hkl

P
i IiðhklÞ (Diederichs & Karplus, 1997). § The

precision-indicating merging R factor, Rp.i.m. =
P

hkl ½1=ðN � 1Þ�1=2 P
i jIiðhklÞ � hIðhklÞij=P

hkl

P
i IiðhklÞ (Weiss & Hilgenfeld, 1997; Weiss et al., 1998). } Rcryst =P

hkl

�
�jFobsj � jFcalcj

�
�=
P

hkl jFobsj, where Fcalc and Fobs are the calculated and observed
structure-factor amplitudes, respectively, †† Rfree is the same as Rcryst but for 5.1% of
the total reflections chosen at random and omitted from refinement ‡‡ This value
represents the total B and includes both TLS and residual B components. §§ Estimated
overall coordinate error (Collaborative Computational Project, Number 4, 1994;
Cruickshank, 1999).



0.02%(w/v) sodium azide. The molecular weight was calculated using

ASTRA v.5.1.5 software (Wyatt Technology).

2.2. Data collection, structure solution and refinement

Multiple-wavelength anomalous diffraction (MAD) data at wave-

lengths corresponding to the low-energy remote (�1) and inflection

point (�2) of a selenium MAD experiment were collected on beam-

line 8.2.2 at Advanced Light Source (ALS, Berkeley, California,

USA). The data were collected at 100 K using an ADSC Q315 CCD

detector. Collection of the two wavelengths was interleaved using a

10� wedge size. The MAD data were integrated and reduced using

MOSFLM (Leslie, 1992) and scaled with the program SCALA

(Collaborative Computational Project, Number 4, 1994). The

diffraction data were anisotropic, with a faster falloff along a*. The

selenium substructure solution, phasing and density modification

were performed with SHELXD (Sheldrick, 2008) and autoSHARP

(Vonrhein et al., 2007), resulting in a mean figure of merit of 0.30 with

four selenium sites. Automatic model building was performed with

ARP/wARP (Cohen et al., 2004), which traced and built side chains

for 161 residues (94% of the structure). Model adjustments and

completion were performed with Coot (Emsley & Cowtan, 2004).

Structure refinement was carried out using REFMAC v.5.5.0110 and

included one TLS group and experimental phase restraints in the

form of Hendrickson–Lattman coefficients from SHARP (Pannu et

al., 1998; Winn et al., 2003). Data-reduction and refinement statistics

for YP_001813558.1 are summarized in Table 1.

2.3. Validation and deposition

The quality of the crystal structure was analyzed using the JCSG

Quality Control server (http://smb.slac.stanford.edu/jcsg/QC). This

server processes the coordinates and data through a variety of vali-

dation tools including AutoDepInputTool (Yang et al., 2004),

MolProbity (Chen et al., 2010), WHAT IF v.5.0 (Vriend, 1990),

RESOLVE (Terwilliger, 2003), MOLEMAN2 (Kleywegt, 2000) as

well as several in-house scripts and summarizes the results. Protein

quaternary structure analysis used the PISA server (Krissinel &

Henrick, 2007). Fig. 1(c) was adapted from an analysis using PDBsum

(Laskowski et al., 2005); all others were prepared with PyMOL

(DeLano Scientific). Atomic coordinates and experimental structure

factors for YP_001813558.1 have been deposited in the PDB (PDB

code 3nl9).

3. Results and discussion

3.1. Overall structure

The crystal structure of YP_001813558.1 was determined to 1.78 Å

resolution using the MAD method (Fig. 1a). Data-collection, model

and refinement statistics for the YP_001813558.1 structure are

summarized in Table 1. The asymmetric unit contains one

YP_001813558.1 molecule (residues 2–170), i.e. one half of the linked

crystallographic dimer (Fig. 1b), two 1,2-ethanediol molecules and

141 water molecules. Residues Gly0 (remaining after cleavage of the

expression and purification tag) and SeMet1 and side-chain atoms of
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Figure 1
Crystal structure of YP_001813558.1 from E. sibiricum 255-15. (a) Ribbon diagram of the YP_001813558.1 protomer in the asymmetric unit, color-coded from the N-terminus
(blue) to the C-terminus (red). Helices H1–H6 are indicated. (b) The novel dimeric assembly of YP_001813558.1 generated by helical segment swapping. Green and red
tracings represent chain A and the symmetry-related chain A0 that form the dimer. The N- and C-termini are labeled. (c) Diagram showing the secondary-structure elements
of YP_001813558.1 superimposed on its primary sequence. The �-helices (H1–H6), �-turns (�) and �-turn (�) are indicated.



Lys2, Gln72, Lys76, Lys79, Glu140 and Ser141 had poorly defined or

no electron density and were omitted from the model. The Matthews

coefficient (VM) for YP_001813558.1 was 2.2 Å3 Da�1, with an esti-

mated solvent content of 44.0% (Matthews, 1968). The Ramachan-

dran plot produced by MolProbity (Chen et al., 2010) indicated that

98.8% of the residues are in favored regions, with no outliers.

YP_001813558.1 is an all-� structure containing six �-helices (H1–H6,

Fig. 1a), with a total �-helical content of 64.5%.

PSI-BLAST (Altschul et al., 1997) and FFAS (Jaroszewski et al.,

2000) searches both detected similarities between YP_001813558.1

and other NTPases, such as the PRATP-PH family NTPases [PDB

codes 1yvw (J. Benach, A. P. Kuzin, F. Forouhar, M. Abashidze, S. M.

Vorobiev, R. Shastry, X. Rong, T. B. Acton, G. T. Montelione & J. F.

Hunt, unpublished work), 2a7w (J. Benach, F. Forouhar, A. P. Kuzin,

M. Abashidze, S. M. Vorobiev, X. Rong, T. B. Acton, G. T. Montelione

& J. F. Hunt, unpublished work), 1y6x (Javid-Majd et al., 2008), 1yxb

(J. Benach, A. P. Kuzin, F. Forouhar, M. Abashidze, S. M. Vorobiev,

X. Rong, T. B. Acton, G. T. Montelione & J. F. Hunt, unpublished

work)], MazG NTPases [PDB codes 1vmg (Joint Center for Struc-

tural Genomics, unpublished work), 2a3q (Center for Eukaryotic

Structural Genomics, unpublished work), 2q5z and 2q73 (Robinson et

al., 2007)], Bacillus subtilis NTPase YPJD (PDB code 2gta; S. M.

Vorobiev, W. Zhou, J. Seetharaman, D. Wang, L. C. Ma, T. Acton,

R. Xio, G. T. Montelione, L. Tong & J. F. Hunt, unpublished work)

and the RS21-C6 core segment RSCUT, which has been reported to

have NTPase activity (PDB code 2oie; Wu et al., 2007). Super-

imposition of these structures onto the YP_001813558.1 crystal-

lographic dimer shows that the general topology of the four-helix

bundle is conserved; for example, the equivalent secondary elements

of PRATP-PH from B. cereus (PDB code 1yvw) can be aligned with

an r.m.s.d. of 2.5 Å (for 81 of 90 C� atoms). Similarly, MazG from

Sulfolobus solfataricus (PDB code 1vmg) can be superimposed onto

YP_001813558.1 with an r.m.s.d. of 2.3 Å for 77 of 80 C� atoms. MazG

from E. coli can hydrolyze all eight of the canonical ribonucleoside

and deoxynucleoside triphosphates to their respective monopho-

sphates and PPi, with a preference for deoxynucleotides (Zhang &

Inouye, 2002). YP_001813558.1 (170 residues) is significantly larger

than MazG (PDB code 1vmg; 83 residues) and PRATP-PH (PDB

code 1yvw; 95 residues) primarily owing to the presence of two

additional helices, H3 located at the top of the four-helix bundle and

H6 located at the C-terminus, and a long mostly unstructured loop

between H1 and H2 (residues 17–29) that is �-helical and significantly

shorter in both MazG (PDB code 1vmg; residues 23–33) and PRATP-

PH (PDB code 1yvw; residues 23–32) (see Figs. 2a and 2c).

An initial DALI (Holm et al., 2008) search for homologues of

YP_001813558.1 did not identify any significant matches owing to the

unusual segment swapping; however, a search with the MazG dimer

(PDB code 1vmg) revealed structural similarities to the dUTPases

2cic (Z score 10.4; r.m.s.d. 3.3 Å; 139 C� atoms aligned; O. V. Moroz,

M. J. Fogg, D. Gonzalez-Pacanowska & K. S. Wilson, unpublished

work), 1w2y (Z score 10.1, r.m.s.d. 3.4 Å, 139 C� atoms aligned;

Moroz et al., 2004) and 2cje (Z score 8.2; r.m.s.d. 2.9 Å; 121 C� atoms

aligned; O. V. Moroz, M. J. Fogg, D. Gonzalez-Pacanowska & K. S.

Wilson, unpublished work) and, of course, to other MazG NTP

proteins, 2q73 (Z score 8.2; r.m.s.d. 1.5 Å; 77 C� atoms aligned;

Robinson et al., 2007) and 2q5z (Z score 7.8, r.m.s.d. 1.7 Å, 78 C�

atoms aligned; Robinson et al., 2007). Comparison of the super-

imposed YP_001813558.1 and C. jejuni dUTPase (PDB code 1w2y)

structures shows that the H3 helix of YP_001813558.1 is absent in the

1w2y structure and the loops between helices in the two structures are

very different. In addition, 1w2y contains an additional helix at the

C-terminus (Fig. 2b) that is not found in YP_001813558.1.

3.2. Linked dimer

The crystallographic structure of YP_001813558.1 displays a very

unusual interlaced segment-swapped dimer, which implies that this

obligatory dimer assembly is important for its function (Fig. 3). Size-

structural communications

1240 Han et al. � YP_001813558.1 Acta Cryst. (2010). F66, 1237–1244

Figure 2
Superposition of the YP_001813558.1 biological dimer (gray) with other �-helical
NTPases (blue): (a) S. solfataricus MazG (PDB code 1vmg; biological dimer), (b)
C. jejuni dUTPase (PDB code 1w2y; single protomer, i.e. half of the biological
dimer), (c) B. cereus PRATP-PH (PDB code 1yvw; dimer, i.e. half of the biological
tetramer).



exclusion chromatography combined with static light scattering

confirmed that the dimer is the major oligomeric state in solution.

Initial concerns that the segment-swapped dimer may have arisen

from incorrect tracing of the model were eliminated by independent

tracing of a SAD data set collected from a different crystal, which

also resulted in a segment-swapped dimer. Interestingly, this inter-

twined dimer does not result in a knotted protein. In other words, the

polypeptide chain would not form a knot if the C-terminus of chain A

were joined to the N-terminus of chain B and the N- and C-termini of

the resulting structure were pulled apart. This is notable because

some knotted proteins are believed to have evolved by gene dupli-

cation and fusion of intertwined dimers (Bolinger et al., 2010). In the

present case, such a duplication would not lead to a knotted structure,

despite the highly intertwined nature of the chains.

A surface area of 5104 Å2 per monomer is buried upon dimer

formation. The conserved central four helices that form part of the

active site are helices H2 (residues 30–52) and H4 (residues 86–111)

from chain A and the equivalent helices from its symmetry-related

partner (chain A0) and are assembled in a down–up–down–up

topology (Fig. 4a). The core of the S. solfataricus MazG (PDB code

1vmg) structure also consists of a dimeric four-helix bundle with each

monomer contributing two helices (Fig. 4b), but in a different

arrangement that appears to represent a minimal functional unit for

dUTPases (Moroz et al., 2004). The four-helix bundle of the C. jejuni

dUTPase (PDB code 1w2y) is contained within a single protomer

(Fig. 4c); thus, dUTPases are thought to have evolved from MazG-

like ancestors by gene duplication (Moroz et al., 2005). The central

core four-helix bundle from PRATP-PH also reveals a similar down–

up–down–up topology, as shown in Fig. 4(c).

3.3. Putative metal-binding site predicted from the homolog

structures

The location of the potential metal-binding site in YP_001813558.1

and MazG was deduced based on homology with the structure of

C. jejuni dUTPase with a substrate analog bound to the active site.

Divalent cations, preferably magnesium, are essential for NTPase

activity (Nyman, 2001). Interestingly, although the YP_001813558.1

active site assembles quite differently from those of the other

NTPases, the putative metal-binding sites in all three proteins are

absolutely conserved, except for a one-residue offset of Asp95 in

YP_001813558.1. This potential metal-binding site is formed by

Glu43 and Glu47 in H2 of chain A and by Asp95 and Asp99 in H4 of

the symmetry-related chain in the dimer (Fig. 5a). A symmetry-

related site is obviously formed on the opposite side of the dimer

from the twofold operation. The metal-binding residues in

S. solfataricus MazG (PDB code 1vmg) are Glu35, Glu38, Glu54 and

Asp57 (Fig. 5b). In dUTPase (PDB code 1w2y), which is related to

MazG (PDB code 1vmg) by an ancestral duplication, the metal-

binding residues are Glu46, Glu49, Glu74 and Asp77 (Fig. 5c). The

metal-binding residues, 20-deoxyuridine 50-�,�-imidodiphosphate

(DUN) and waters participate in the octahedral coordination of Mg

ions with distances that range from 1.86 to 2.25 Å.

3.4. Nucleotide-binding site

In C. jejuni dUTPase, Asp77 plays a central role in substrate

binding. In addition to coordinating the Mg2+ ion and binding the

terminal phosphate of the substrate analog 20-deoxyuridine
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Figure 3
Simplified traces of the YP_001813558.1 linked dimer. Stereoview of the crystallographic dimer with the same orientation and color scheme as in Fig. 1(b) showing the inter-
linked dimer. Note that in this representation the N- and C-termini of each monomer are joined in order to highlight the linked dimer. The linked N- and C-termini are
marked with an asterisk. Smoothed curves were calculated as described previously (Norcross & Yeates, 2006).

Figure 4
Comparison of the core four-helix bundles from the �-helical NTPase superfamily.
These four-helix bundles either assemble upon dimerization or are present in a
single monomer, resulting in the same down–up–down–up topology. White
numbers are closest to the viewer and black numbers are farthest away. (a)
Ribbon diagram showing the dimer of YP_001813558.1. (b) Ribbon diagram
showing the central four helices of S. solfataricus MazG. (c) Ribbon diagram
showing the central four helices from a single protomer of C. jejuni dUTPase.



50-�,�-imidodiphosphate (DUN), Asp77 also binds the ribosyl 30-OH

group (Moroz et al., 2004). In Mus musculus RS21-C6, the binding

mode of the terminal phosphate is significantly different compared

with that of C. jejuni dUTPase, presumably owing to the absence of

magnesium ions. However, Asp98 (equivalent to Asp77) is located

close to the bound 2-deoxy-5-methylcytidine-50-(tetrahydrogen

triphosphate) and binds to the ribosyl 30-OH group of the nucleoside

moiety via a water-mediated interaction (Wu et al., 2007). Therefore,

it is thought that the corresponding conserved residues, Asp99 in

YP_001813558.1 and Asp57 in S. solfataricus MazG, perform similar

roles in these enzymes. Another important residue for recognition of

the substrate ribosyl 30-OH in C. jejuni dUTPase is Asn179. This

residue is conserved in both YP_001813558.1 (Asn126) and

M. musculus RS21-C6 (Asn125), but not in S. solfataricus MazG.

In YP_001813558.1, the putative sugar-binding residues are Tyr102

and Phe103, between which the sugar moiety is sandwiched, and

Asn126, which discriminates between deoxyribose and ribose

(Fig. 5e). The latter is conserved in most members of the all-�-helical

NTP pyrophosphatase superfamily that have been shown to have a

preference for dNTP (the dUTPase, dCTPase and RS21-C6 families),

but is not conserved in the ribonucleosidetriphosphate-hydrolyzing

HisE and EcMazG families (Nonaka et al., 2009; Robinson et al.,

2007). Neither the YP_001813558.1 nor the S. solfataricus MazG

structures have known biological ligands in their nucleotide binding
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Figure 5
(a–c) Comparison of the active sites of YP_001813558.1, S. solfataricus MazG and C. jejuni dUTPase. The putative conserved active-site metal-binding residues are shown as
stick models. Note that Asp95 in YP_001813558.1 is offset by one residue when compared with the other two structures. No metal was found in YP_001813558.1. One Li+ ion
(red ball) is bound in MazG based on the crystallization conditions. Three Mg2+ ions (red balls) are bound in the C. jejuni dUTPase structure. The nucleotide-binding sites
contain either a 1,2-ethanediol (EDO) molecule (YP_001813558.1), an unknown ligand (UNL; S. solfataricus MazG) or 20-deoxyuridine 50-�,�-imidodiphosphate (DUN;
dUTPase; PDB code 1w2y) and are represented in red. (d) Comparison of the nucleotide-recognition site in YP_001813558.1 (green), S. solfataricus MazG (light blue) and
C. jejuni dUTPase (pink) as a stereoview. The EDO molecule from YP_001813558.1 (red sticks), UNL from S. solfataricus MazG (blue balls) and DUN from C. jejuni
dUTPase (purple sticks) are shown. Mse12 is modeled as three conformations in the MazG structure. (e) Stereoview of the superposition of the substrate analogs DUN
(purple) from C. jejuni dUTPase and 2-deoxy-5-methylcytidine-50-(tetrahydrogen triphosphate (yellow) from M. musculus RS21-C6 and the EDO (red) molecule bound to
the YP_001813558.1 structure. Hydrogen bonds are shown as dotted lines. The key residues from YP_001813558.1 that are predicted to be involved in substrate binding are
presented as a green stick model.



sites (Fig. 5d). The YP_001813558.1 structure contains a 1,2-ethane-

diol molecule and the S. solfataricus MazG structures contain an

unidentified ligand (UNL) in the nucleotide-binding site. Since those

ligands could mimic nucleotide substrates (Fig. 5d), we speculate that

both YP_001813558.1 and S. solfataricus MazG enzymes can function

as dNTPases.

The uracil-recognition site of C. jejuni dUTPase is formed by

Gln14 N"2, Asn18 O�1 and Asn22 N�2 and is not conserved in

YP_001813558.1 or S. solfataricus MazG. The corresponding residues

in YP_001813558.1 are Val10, His14 and His19; His14 N"2 is hydrogen

bonded to the O2 atom of a 1,2-ethanediol molecule in the ligand-

binding site. The corresponding region in the S. solfataricus MazG

structure contains Mse12, which adopts three side-chain conforma-

tions, Tyr16 and Asp20, where Asp20 O�1 and Asp20 O�2 interact

with the O7 and O9 atoms of the UNL ligand, respectively. Thus, it

appears that YP_001813558.1 and S. solfataricus MazG may not bind

uracil (Fig. 5d). The major determinant of the substrate specificity

involved in base recognition in YP_001813558.1 would be Arg36,

where Arg36 N�1 and Arg36 N�2 interact with the O1 and O2 atoms

of the 1,2-ethanediol molecule, respectively (Fig. 5e). Arg36 provides

two hydrogen-bond donors that could interact with two adjacent

acceptors on the base. Of the canonical bases, only cytosine would

satisfy these conditions for making two hydrogen bonds. Therefore,

potential substrates for YP_001813558.1 include dCTP and its deri-

vatives (e.g. 5-methyl or 5-hydroxymethyl dCTP). In addition, the two

modified bases O4-methylthymine and 8-hydroxyguanine are also

predicted to interact in the same manner as cytosine. These modified

bases could provide additional hydrogen bonds from O4 of O4-

methylthymine (or O6 of 8-hydroxyguanine) to His19 and/or Arg32

of YP_001813558.1.

The pyrophosphate-recognition residues of C. jejuni dUTPase are

mostly conserved in YP_001813558.1 and S. solfataricus MazG,

except for the C-terminal region. Lys175 of C. jejuni dUTPase is

structurally equivalent to Val122 of YP_001813558.1 and Lys80 of

MazG. This residue is located in the loop region near the C-terminus

of C. jejuni dUTPase, which also contains the pyrophosphate-

recognition residues Arg182, Tyr187, Lys194 and Asn202. This region

does not superimpose well in YP_001813558.1 and is absent in

MazG. The corresponding pyrophosphate-recognition loop in

YP_001813558.1 is located between H5 and H6. This loop and the two

neighboring C-terminal helices (H5 and H6) of YP_001813558.1 are

in an open conformation and are more exposed to solvent compared

with the equivalent region in C. jejuni dUTPase, which may suggest

an induced-fit mechanism for substrate binding involving movement

of the C-terminal region.

4. Conclusions

We report a very unusual segment-swapped linked-dimer structure of

a dUTPase from E. sibiricum 255-15, which implies that this obliga-

tory dimer assembly is important for its function of adaptation to an

extreme cold environment. Unusual, covalently interlinked dimeric

structures have been implicated previously in stabilizing proteins

(Boutz et al., 2007; Duff et al., 2003). Structural analysis and

comparisons indicate that YP_001813558.1 is a dNTPase that

potentially prefers dCTPs or its derivatives. Further biochemical

analyses are needed to confirm these predictions. The availability of

further sequences and structures of NTP pyrophosphohydrolases

should shed light on the evolutionary history of this intriguing protein

family. The information presented here, in combination with further

biochemical and biophysical studies, should yield valuable insights

into the functional role of YP_001813558.1. Additional information

about YP_001813558.1 is available from TOPSAN (Krishna et al.,

2010) at http://www.topsan.org/explore?PDBid=3nl9.
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