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Abstract 

Cognitive control refers to the ability to adjust our thoughts and 
behaviors in order to achieve internalized goals.  In the past, 
researchers have proposed several models of cognitive control 
to account for the characteristic patterns of response times 
observed in the tasks (e.g., Botvinick, Braver, Barch, Carter, & 
Cohen, 2001).  The goal of this study is to evaluate empirical 
validity of such models in an experiment.  To that end, we 
compared two models of cognitive control, the conflict 
monitoring model and the expectancy-based model. Each 
model was implemented in two different modeling 
frameworks, neural networks and simple linear models. The 
relative fits of the four models were then evaluated and 
compared based on observed data from a flanker task 
experiment.  The model comparison results showed that 
performance of the simple linear models was entirely 
comparable to that of the neural network models.  We also 
constructed and fitted hierarchical Bayesian latent mixture 
versions of the linear models to investigate individual 
differences. The result suggests that no single model of 
cognitive control, whether conflict monitoring or expectancy-
based, would be able to account for individual performance on 
the task. 

Keywords: cognitive control; computational modeling; neural 
networks; hierarchical Bayes; latent mixture modeling; model 
comparison. 

Introduction 
The ability to control our attention, which is called cognitive 
control, has been an important topic in the study of human 
cognition.  The conflict-monitoring theory of Botvinick et al. 
(2001) has been one of the most popular approaches to 
account for cognitive control behavior.  The theory posits that 
a conflict monitoring system in the anterior cingulate cortex 
detects conflict and sends out a signal to the dorsolateral 
prefrontal cortex to activate cognitive control.  This theory 
provided a neural network model to reproduce experimental 
data, inspiring other researchers to develop their own models 
of cognitive control (e.g., Verguts & Notebaert, 2008).  The 
neural network model has been believed to be an elegant way 
to explain cognitive control mechanisms and their effects on 
the performance in congruency tasks.  It was also shown by 
simulations that the models fit well the response time data 
reported by other studies that used congruency tasks.  
However, although the models were developed to account for 
observed data, the studies that actually fit those models to 
their data are rarely found.  This suggests that the contribution 
of the models has been somewhat limited to providing a 
theoretical framework, despite their potential usefulness in an 
experimental analysis. 

The present study aims to explore two competing 
theoretical accounts of cognitive control by fitting their 
computational implementations to experimental data.  
Although the conflict-monitoring theory has been one of the 
most influential frameworks for the study of control 
mechanisms, alternative accounts that explain control related 
behaviors have been proposed (Egner, Delano, & Hirsch, 
2007).  Among the alternative explanations of cognitive 
control, in this study we focus on expectancy-based control 
that has been tested by recent experiments (e.g., Duthoo, 
Wühr, & Notebaert, 2013; Jiménez & Méndez, 2013).  The 
expectancy-based control assumes that cognitive control is 
activated according to the probability that the trial type would 
be repeated.  Therefore, we manipulate the probability of 
repetition in a cognitive task to observe the effects of 
expectancy on task performance.  The data is then fitted to 
the two types of models, the conflict monitoring model and 
an expectancy-based model.  The expectancy-based model is 
created as a modification of the conflict monitoring model 
with the assumption of expectancy-based control.  The 
comparison of the two models would indicate which model 
is more likely to reflect the underlying cognitive processes. 

We primarily test the neural network models, but there are 
potential limitations in such models.  The neural network 
models with many parameters that indirectly affect the output 
might be overly complex to account for behavioral 
performance in a cognitive task that only has a few 
dimensions of information (e.g., accuracy rate, response 
time).  In order to test whether the neural network models’ 
complexity is meaningful in experimental studies, we also 
compare them with relatively simple linear models as 
baseline benchmarks.  The neural network models would 
demonstrate their usefulness in hypothesis testing if they 
perform better than the simple models. 

Additionally, we also construct and evaluate a hierarchical 
Bayesian latent mixture model that combines the conflict 
monitoring model and the expectancy-based model in a 
single modeling framework, in order to explore individual 
differences.  This model would estimate how much a 
participant is inclined to a certain control mechanism 
represented by a model. 

Flanker Task 
To evaluate the empirical validity of the models, we used a 
version of the flanker task in which the participants are asked 
to distinguish the direction of the central arrow, while 
ignoring the other flanker arrows on the sides.  The stimuli 
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are called incongruent when the target arrow and the flanker 
arrows are pointing to different directions, and are called 
congruent if all the arrows are the same.  Examples of 
experimental stimuli are shown in Figure 1.  The flanker task 
is very simple, yet feasible of manipulating the designs such 
as proportion congruency and proportion of repetition (e.g., 
Gratton, Coles, & Donchin, 1992).  Mathematical models’ 
predictions can depend upon the designs selected, so it is 
important to choose a design appropriate for the purpose of 
the study. 
 

 
 

Figure 1: Experimental stimuli of an arrow flanker task. 
 
   In the arrow flanker task, the stimuli are more quickly 
responded to when the task-irrelevant flanker arrows are the 
same with the task-relevant central arrow (e.g., >>>>>), than 
when they differ from each other (e.g., <<><<).  This 
difference in the response time between congruent and 
incongruent stimuli is called the congruency effect.  The 
activation of cognitive control is often measured by another 
phenomenon that is called the congruency sequence effect 
(CSE), which indicates a reduction of the congruency effect 
after an incongruent trial (Gratton et al., 1992).  A typical 
response time pattern of the CSE is shown in Figure 2, in 
which the combinations of the previous and the current trial 
type are denoted by the combinations of c (previous 
congruent), i (previous incongruent), C (current congruent) 
and I (current incongruent).  For example, cI indicates an 
incongruent trial after a congruent one.  It is shown that the 
congruency effect after a congruent trial (cI – cC) is larger 
than that after an incongruent trial (iI – iC). 
 

 
 

Figure 2: Illustration of the congruency sequence effect (CSE). 
 

The conflict monitoring account explains this effect by an 
elevated level of control after the detection of a high conflict 
trial (i.e., incongruent trial).  High level of control enhances 

performance in the next trial, reducing the difference in 
response time between incongruent and congruent trials (i.e., 
the congruency effect). An alternative explanation provided 
by the expectancy-based control is that the CSE is generated 
with the repetition expectancy, with which the same trial type 
as the previous one is expected.  This prior belief reduces the 
congruency effect after an incongruent trial, by allocating 
more attention to the task-relevant information in anticipation 
of another incongruent stimulus (Gratton et al., 1992). 

Both of the two control mechanisms can account for the 
CSE, but there is a major difference in the way they do.  The 
expectancy-based control expects the CSE only when a 
repetition is expected.  That is, the CSE would not occur 
under the alternation expectancy.  This difference in the 
prediction is discussed in greater detail in the section below. 

Computational Models 
Again, the purpose of the present study is to discriminate the 
two different theoretical accounts of cognitive control, 
namely, expectancy-based control and conflict-driven 
control, by way of computational modeling of observed data.  
To that end, we employed two models, a conflict monitoring 
model and an expectancy-based model.  Further, each model 
was implemented in yet two different modeling frameworks, 
neural networks and linear models. 

Neural Network Models 
These are the same neural network (NN) models of cognitive 
control proposed by Botvinick et al. (2001), as shown in 
Figure 3. 
   The six input units of the network represent the direction of 
the arrows in the left, the center, and the right position of the 
franker task in Figure 1. They are connected to the 
corresponding output units.  If the input to an output unit 
reaches a threshold, a response is made.  Random noise is 
applied to each unit’s activity level to produce variable 
responses including errors.  The three control units distribute 
attentional resources to each input unit.  When the level of 
control is higher, more attention is allocated to the central, 
target arrow (see Botvinick et al., 2001, for further details).  
Inspired by this neural network model, in the present study 
we created two variations of the model, each implementing a 
different theoretical account of cognitive control, a conflict 
monitoring NN model and an expectancy-based NN model.  
 

  
 

Figure 3: Neural network (NN) model of cognitive control for an 
arrow flanker task. 
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Conflict Monitoring NN Model (CM_NN): This model is 
essentially the same as that proposed by Botvinick et al. 
(2001) with little major modifications.  In the present model 
(CM_NN), the level of control in (𝑡 + 1)  trial is updated 
on each trial as follows:  

 𝐶 =  𝜆𝐶 + (1 − 𝜆)(𝑎𝐸𝒕 + 𝑏) (1) 

where 0 < 𝜆 < 1 , 𝐸𝒕 = −𝑎 𝑎 𝑤 ,   𝑎  and 𝑎  indicate the 
activation of the two output units, and 𝑤  indicates the 
inhibitory weight between them.  For simplicity, 𝑤  is fixed 
to -1 (Blais, Robidoux, Risko, & Besner, 2007).   The 
symbols 𝑎 and 𝑏 represent scaling parameters. 
    The input to the control units are distributed based on the 
value of 𝐶 .  The attention to the central arrow (i.e., the 
control unit “C” in Figure 3) is identical to the 𝐶  value, but 
its range is restricted to (1,3).  The attention to the flanker 
arrows (i.e., the control unit “L” and “R” in Figure 3) are (3-
 𝐶 )/2 each for the left and the right arrows.  Therefore, the 
attention is evenly distributed with minimal control, and 
concentrated to the target arrow with maximal control.  The 
input from the control units are fed to the input units 
according to the connection weights between them.  The 
range of the connection weights we set were (1,4), similar to 
previous studies (e.g., Botvinick et al., 2001). 

Expectancy-based NN Model (EB_NN): In this neural 
network model of expectancy-based control, we modified the 
above model CM_NN so that the level of control would be 
dependent on the expectancy. This idea was previously 
proposed in Yu and Cohen (2008) to account for sequential 
effects in congruency tasks as the effect of repetition 
expectancy.  There are two trial types in the flanker task, a 
congruent type and an incongruent type.  The model assumes 
that subjects believe that there is a fixed probability 𝑢  of 
observing a repetition of either trial type (congruent or 
incongruent).  Let 𝑋  be a set of binary observations 
(𝑥 ,…, 𝑥 ), where 𝑥  = 1 if the congruency is repeated, and 
𝑥  = 0 if the congruency is alternated in the 𝑡  trial.  
According to the model, 𝑢 is updated as, 

 𝑢 =  𝜆𝑢 + (1 − 𝜆)(𝑥 + 𝑎) (2) 

where 0 <  𝜆 < 1, −0.3 < 𝑎 < 0.3, and the initial belief 𝑢  
is set to 0.5.  The range of 𝑢  is constrained to (0,1). The 
symbol  𝑎 in the above equation is a scaling parameter. 
    The input to the control units are determined by the 𝑢 
value.  That is, the input to the unit “C” is 
1+2 p(𝐼𝑛𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡) , where p(𝐼𝑛𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡)  = 𝑢  if the 
previous trial was incongruent, and 1 − 𝑢 if the previous trial 
was congruent.  The attention input to the flanker arrows is 
equal to 1- p(𝐼𝑛𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡) for each for the left and right 
arrows. 

Linear Models 
In addition to the two NN models, we also constructed and 
evaluated two simple linear models to serve as baselines, to 
answer the question of whether the complex structural 

configurations of the NN models are necessarily justified to 
account for behavioral data. 
 
Conflict Monitoring Linear Model (CM_LN): In this 
model, the level of conflict from the previous trial, 𝐸 , is 
simplified to a binary value, as 𝐸  is 0 if the previous 
(𝑡 − 1)  trial was congruent, and 1 if it was incongruent.  
The perceived level of conflict in the current trial is defined 
as 

 𝐶 =  𝜆𝐶 + (1 − 𝜆)(𝐸 + 𝑎) (3) 

where 0 < 𝜆 < 1 and −0.3 < 𝑎 < 0.3.  𝐸  in this model is 
simplified to be 0 after a congruent trial, and 1 after an 
incongruent trial.  The range of 𝐶  is constrained to (0,1). The 
symbol 𝑎 is a scaling parameter. 
    In the conflict monitoring model (Botvinick et al., 2001), 
a high level of conflict accelerates the response to an 
incongruent trial, and decelerates the response to a congruent 
trial, on average.  The response time 𝑅𝑇  in the linear model 
follows the same concept: 

𝑅𝑇 = 𝛽 + 𝛽 𝐶 + 𝛽 𝐼(𝑖𝑛𝑐𝑜𝑛𝑔)(1 − 𝛽 𝐶 ) + 𝜀 (4) 

where 𝛽 > 0, 𝛽 > 0, 𝛽 > 0, 0 < 𝛽 < 1,  and 0 < 𝐶 <
1.  As in the expectancy-based model, 𝐼(𝑖𝑛𝑐𝑜𝑛𝑔) is 1 for an 
incongruent trial, and 0 for a congruent trial, and  𝜀  is a 
normal error following Normal (0,𝜎 ). 
 
Expectancy-based Linear Model (EB_LN): In this model, 
given the observations up to (𝑡 − 1)  trial, 𝑋 , the belief 
p(𝑥 |𝑋 )  about the 𝑡  trial is transformed into the 
response time 𝑅𝑇  as follows: 

𝑅𝑇 (𝑥 ) = 𝛽 + 𝛽 [1 − p(𝑥 |𝑋 )] + 
𝛽 𝐼(𝑖𝑛𝑐𝑜𝑛𝑔) + 𝛽 [1 − p(𝑥 |𝑋 )]𝐼(𝑖𝑛𝑐𝑜𝑛𝑔) + 𝜀 

(5) 

where 𝛽 > 0, 𝛽 > 0, 𝛽 > 0, 𝛽 > 0, 𝑥 = {0,1} , 
p(𝑥 = 1|𝑋 ) = 𝑢 , and p(𝑥 = 0|𝑋 ) = 1 − 𝑢 . In the 
above equation, 𝐼(𝑖𝑛𝑐𝑜𝑛𝑔) is equal to 1 for an incongruent 
trial and 0 for a congruent trial, and  𝜀  is a normal error 
following Normal (0,𝜎 ). 

Model Predictions 
All four models introduced above, with appropriate choices 
of model parameters, can be shown to reproduce the 
congruency sequence effect (CSE) in Figure 1. Interestingly 
however, expectancy-based control can also yield a reversed 
CSE.  To show how, if an alternation of trial types is observed 
for most trials, the subject would expect a congruent trial after 
an incongruent trial, and expect an incongruent trial after a 
congruent trial.  This alternation expectancy would then lead 
to a stronger cognitive control and thus a smaller congruency 
effect after a congruent trial, as opposed to the standard 
CSE.  Consistent with this hypothesis, the CSE was observed 
only when the repetition of trial types was expected, in an 
experiment where subjects explicitly reported their 
expectations (Duthoo et al., 2013).   
    Examples of model predictions are shown in Figure 4.  The 
linear models in Eqs. (4) and (5) were used for simulating 
response time, with the parameter values fixed as 𝛽   = 450, 
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𝛽  = 60, 𝛽  = 150, 𝛽  = 0.7, 𝜆 = 0.7, 𝑎 = 0.1, and 𝜎 = 50 for 
CM_LN, and as 𝛽  = 450, 𝛽  = 60, 𝛽  = 40, 𝛽  = 40, 𝜆 = 0.8, 
𝑎 = 0.1, and 𝜎 = 50 for EB_LN. 
 

 
 
Figure 4: Predicted response time patterns by the conflict 
monitoring linear model (CM_LN) and the expectancy-based 
linear model (EB_LN).  The percentages below the x axis indicates 
the proportion of repeating trials in the simulations. 
 
    Note Figure 4 that the conflict monitoring model generated 
the CSE regardless of the proportion of repetition, whereas 
the expectancy-based model generated the CSE only when 
the proportion of repetition is high (70%). Under 30% 
proportion of repetition, the expectancy-based model 
generated a reversed CSE.  It is straightforward to show that 
these qualitative patterns are also predicted by their neural 
network counterparts, CM_NN and EB_NN. 

Experiment 
A flanker task experiment was conducted to empirically 
evaluate two different theoretical accounts of cognitive 
control, namely, conflict monitoring and expectancy-based.  
The computational implementations of the hypotheses and 
their predictions, as discussed in the previous section, suggest 
that the key is to experimentally manipulate the proportion of 
repeating stimuli.  We therefore varied the proportion of 
repetition in the arrow flanker task.  Specifically, we used 
30% proportion of repetition for a half of the experimental 
blocks, and 70% for the other half. 

Participants: Twenty-four undergraduate students at the 
Ohio State University participated in the experiment.  All 
subjects had normal or corrected-to-normal vision. 

 

Stimuli: Stimuli were controlled by the PsychoPy module in 
Python.  The stimuli presented were similar to those in Figure 
1.  At the beginning of each trial, a white fixation cross (+) 
was presented at the center of the screen for 800 ms.  White 
colored target stimulus appeared at the same location after 
200 ms from the disappearance of the fixation cross, with 
white flanker arrows on the sides.  The arrows remained on 
the screen for 200 ms.  The next trial started after 2 seconds 
from the onset of the stimulus.  All stimuli were presented on 
a grey background on a LCD monitor. 

Procedure: Subjects were required to press the “x” key on 
the keyboard with their left index finger if the target arrow 
was pointing to the left, and the “.” key on the keyboard with 
their right index finger if the target arrow was pointing to the 
right.  They were instructed to make a response as quickly 
and as accurately as possible.  If they failed to respond within 
1500 ms after the presentation of the stimuli, or if they made 
an incorrect response, they heard a beep indicating the error.  
There was a practice block consisting of 20 trials, followed 
by 6 experimental blocks of 40 trials each.  The practice block 
had 50% proportion of repetition and 50% proportion 
congruency. For a half of the participants, the proportion of 
repetition was 30% for the first three blocks, and 70% for the 
latter three.  To counterbalance the order of the combinations, 
the other half of the participants performed the task in the 
reversed order (i.e., 70% before 30%).  The proportion of 
congruent trials was fixed to 50% in every block. 

Model Evaluation and Comparison 
The four models were fitted to the data using the subplex 
algorithm in the MATLAB programs provided by Bogacz 
and Cohen (2004).  Model generalizability was evaluated in 
6-fold cross-validation using 5 blocks as training data, and 
the remaining block as test data, which repeated six times.  
Parameter values were found through multiple optimization 
runs, each with a randomly chosen starting value. 
    The model fit was measured by the cost function value as 
defined: 

 
𝑐𝑜𝑠𝑡 =  

𝑒 − 𝑚

𝑒
 (6) 

where 𝑚  is a predicted statistic value and 𝑒  is an observed 
one.  A lower cost value indicates a better model fit.  The test 
statistic included the accuracy rate, the response time (RT) 
for cC, iC, cI, and iI trials each, and the standard deviation.  
The statistics were separately calculated for the data from 
different proportion of repetition.  For the linear models, the 
accuracy rate was assumed to be 100%, because they only 
generate response time as the output. 
   Model fits of the four models to observed RT data were 
evaluated in terms of their cost function values.  For the two 
neural network models, the average cost function values over 
24 participants were 0.049 (SD = 0.092) for the conflict 
monitoring model (CM_NN) and 0.060 (SD = 0.036) for the 
expectancy-based model (EB_NN), whereas for the two 
linear models, the average values were 0.020 (SD = 0.024) 
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and 0.025 (SD = 0.029) for CM_LN and EB_LN, 
respectively. In short, the result shows that performance of 
the linear models is entirely comparable to (and even better 
than) that of neural network models. This somewhat 
unexpected finding suggests that the neural network models 
might be too overly complex to be considered necessary to 
account for cognitive control behavior in the flanker task. 

However, this does not mean that we can simply replace 
the neural network models with the linear models in the 
general context.  The advantages of the former, unlike the 
latter, lie in their ability to describe within-trial dynamics of 
behavioral data that can be associated with brain activity.  For 
the present study, the linear models were sufficient because 
they were used primarily to model the behavioral data from a 
single task. 

Hierarchical Bayesian Modeling 
The modeling analysis above revealed considerable 
individual differences. That is, some subjects showed lower 
cost function values with the conflict monitoring models, 
while others showed lower values with the expectancy-based 
models.  To evaluate theoretical significance of the individual 
differences, we developed a hierarchical Bayesian latent-
mixture model by combining the two linear models.  (The 
neural network models are not amenable to Bayesian 
modeling, since they do not have explicit likelihoods.)  
Hierarchical Bayesian latent-mixture modeling is ideally 
suited for our purpose as it allows us to represent and estimate 
the relative compositions of multiple cognitive processes in a 
unified and integrated manner (Lee & Wagenmakers, 2014).  
For instance, we can get an estimate of the probability that a 
participant’s data is consistent with the expectancy-based 
model vs the conflict monitoring model. 
   The hierarchical Bayes model is shown in Figure 5.  The 𝑧  
~ Bernoulli ( ∅ ) parameter is an indicator variable that 
determines which of the two models to use to predict the 
behavior of the 𝑖  subject.  The conflict monitoring linear 
model (CM_LN) is used if  𝑧  = 0, and the expectancy-based 
linear model (EB_LN) is used if 𝑧  = 1.  The observed 
response time 𝑦  of each subject is predicted by the 𝑅𝑇  of 
the selected model.  𝑅𝑇  in Eq. (4) and (5) is rewritten as  𝑅𝑇  
= 𝜇  + 𝜀 , where 𝜀  ~ Normal (0,𝜎 ).  The parameters 
related to the effect of control, 𝛽 , 𝛽 , 𝜆, and 𝑎 are given a 
hierarchical structure that determines their distribution, 
Normal (𝜇 ,𝜎 ).  Each parameter 𝜃 had hyper parameters 𝜇  
and 𝜎  that constrain the parameter distribution of all 
subjects.  The parameter distributions are truncated based on 
the parameter ranges shown in the descriptions of the linear 
models above. 
    The hierarchical Bayesian model in Figure 5 was fit to the 
data using Markov Chain Monte Carlo (MCMC) sampling, 
using 100,000 posterior samples after a burn-in of 5,000.  A 
plot of the mean 𝑧  for each subject, that represents the 
probability of expectancy-based control, is shown in Figure 
6.  

 
 
Figure 5: Hierarchical Bayesian latent-mixture implementation of 
the linear models in Eqs. (4) and (5). 
 

 
Figure 6: Probability of expectancy-based (EB) control estimated as 
mean 𝑧  values based on the hierarchical Bayesian latent mixture 
model in Figure 5. The label ‘CM’ on the y-axis stands for conflict 
monitoring. 
 
    Each of the 24 subjects was then classified into either a 
conflict monitoring (CM) or expectancy-based (EB) group, 
using the threshold of 0.5.  There were 15 participants in the 
conflict monitoring group, and 9 participants in the 
expectancy-based group.  Figure 7 depicts the RT profiles for 
each group. 
    The solid lines in Figure 7 are observed data, and the dotted 
lines are the posterior predictive means from the latent-
mixture model in Figure 5. Each group showed the patterns 
similar to the corresponding model prediction in Figure 4.  
Participants in the conflict monitoring group seemed to show 
the CSE in both conditions of the proportion of repetition.  On 
the other hand, the expectancy-based group had a tendency to 
show a reversed CSE when the proportion of repetition was 
30%. 

One limitation of this classification scheme is that there are 
a few participants whose model probabilities are close to 0.5 
(see Figure 6).  The data from those participants may be 
explained better by a model without the CSE than by either 
the CM model or the EB model.  This suggests that the 
classification would not be accurate if the behaviors are not 
predicted well by the selected set of models. 
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Figure 7: Posterior predictive and observed response times. The 
predictions are based on the hierarchical Bayesian latent mixture 
model in Figure 5. The error bars indicate standard errors of the 
mean. 

 
To summarize the computational modeling results, the 

linear models performed as well as the neural network 
models, differentiating the behaviors based on the model 
predictions. The hierarchical Bayesian latent-mixture model 
showed significant individual differences in the model 
probabilities, suggesting multiple control mechanisms 
underlie the flanker task.  

Conclusion 
The primary goal of the present study was to explore the 
empirical validity of two different theoretical accounts of 
cognitive control, namely, conflict monitoring and 
expectancy-based, by way of computational modeling.  To 
achieve the goal, we designed and conducted an experiment 
in which the proportion of repeating trial types was 
manipulated in an arrow flanker task.  We also instantiated 
each theoretical account of cognitive control in a 
computational model couched in two modeling frameworks, 
i.e., neural network modeling and linear modeling.  The 
results taken together showed that the simple linear models 
can provide equally comparable fits and thus explanations to 
the data as the neural network models do.  An implication is 

that the neural network models, while popular and widely 
used given their appeal as a flexible modeling framework, 
may be overly complex to account for behavioral data in the 
flanker task. Another main finding of the present study was 
rather significant individual differences in cognitive control.  
It seems that there are at least two groups of participants that 
exhibit different types of cognitive control.  This result 
suggests that there might be a tendency for each individual to 
prefer a certain control strategy (Braver, 2012).  Finally, from 
the computational modeling standpoint, hierarchical 
Bayesian latent-mixture analysis employed in the present 
study could be a useful modeling tool for parsing potentially 
multiple mechanisms underlying cognitive control on an 
individual participant (and even trial-by-trial) basis. 
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