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Reply to comment by Chu et al. on ‘‘High-dimensional
posterior exploration of hydrologic models using multiple-try
DREAM (ZS) and high-performance computing’’
Jasper A. Vrugt1,2,3 and Eric Laloy4

1Department of Civil and Environmental Engineering, University of California, Irvine, California, USA, 2Department of Earth
System Science, University of California, Irvine, California, USA, 3Institute for Biodiversity and Ecosystems Dynamics,
University of Amsterdam, Amsterdam, Netherlands, 4Institute for Environment, Health and Safety, Belgian Nuclear
Research Centre, Mol, Belgium

1. Introduction

The comment of Chu et al. [2014], hereafter referred to as CYG, raises questions about some of the results
presented in our paper (Laloy and Vrugt [2012], hereinafter LV, which is not to be confused with Las Vegas,
although appropriate concerning the subject of this work on Monte Carlo simulation).

As a preamble, we would like to remark that the work presented in Chu et al. [2010] and LV (2012) concern
two different fields of study. CYG view the model calibration as an optimization problem, and use common
concepts to efficiently find a single realization of the parameter values that minimizes (or maximizes, if
appropriate) some user-defined objective function. Our work, on the contrary, uses Bayesian principles
coupled with MCMC simulation to derive a distribution of parameter values that honor the observed data.
This distribution summarizes parameter and model predictive (simulation) uncertainty, a requirement for
probabilistic analysis, operational forecasting, disentangling error sources, and decision making. The maxi-
mum a posteriori density (MAP) parameter values derived with MCMC simulation should reside in close
vicinity of the ‘‘best’’ solution found with an optimization algorithm, if the exact same data set, prior distribu-
tion, and likelihood (objective) function are used. In this reply, we assume that CYG used a correct imple-
mentation of the MT-DREAM(ZS) algorithm and similar data set, prior and likelihood function as LV.
Otherwise, the comparative analysis is meaningless. We emphasize this for three reasons. First, the results
presented herein contradict CYG and are similar to those reported in LV but now with more trials plotted.
Second, contributions in physics [Horowitz et al., 2012; Toyli et al., 2012; Yale et al., 2013] and geophysics
[Linde and Vrugt, 2013; Laloy et al., 2012, Rosas-Carbajal et al., 2014; T. Lochbuehler et al., Summary statistics
from training images as model constraints in probabilistic inversion, Geophysical Journal International, in
review, 2014] demonstrate proper convergence behavior of MT-DREAM(ZS) on complex and high-
dimensional targets involving hundreds of parameters. Third, to justify their SP-UCI algorithm the original
paper of Chu et al. [2010] portrays misleading results of the predecessor of DREAM, called SCEM-UA. Section
4 of this reply will address this latter issue in more detail.

We now respond to the comments of CYG. We use different sections with numbering corresponding to CYG.

2. Computational Time Unit

CYG find the Computational Time Unit (CTU) diagnostic to be a poor indicator of the performance of MT-
DREAM(ZS). They suggest using the number of function evaluations or clock time instead. The CPU-time (s)
scales linearly with CTU, or CPU 5 a�CTU, where a (s) denotes the average time it takes to complete a sin-
gle function (model) evaluation. As a is dependent on the processor speed (hardware), LV purposely
reported the CTU values. Note that we neglect the actual run time of MT-DREAM(ZS), in the determination
of a, which is appropriate given the intended application of this algorithm to CPU-intensive forward
models.

We purposely do not use the number of function evaluations as performance diagnostic. This metric does not
properly convey the CPU-time (CTU) of parallel algorithms such as DREAM(ZS) or MT-DREAM(ZS). These
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algorithms execute N function (model) evaluations in parallel at the same time a sequential method, such as
SP-UCI performs a single model evaluation. Actually, the main contribution of LV is to introduce an efficient
distributed MCMC algorithm, which achieves a much better computational efficiency than traditional sequen-
tial Metropolis (-Hastings) samplers. The authors argue that SP-UCI could be parallelized, yet this will require
major modifications to the Nelder-Mead search engine. The reflection, expansion, contraction, and/or reduc-
tion (random) step of this Simplex-based heuristic are most effective when executed successively (one after
another), and hence parallel implementation of SP-UCI will require important algorithmic concessions. We
posit that this will deteriorate search efficiency, and favor use of an alternative method for population evolu-
tion. Indeed, distributed computing opens up completely new views on what constitutes an efficient optimi-
zation or sampling method. Search methods that exhibit superior search efficiency on a single processor
might not be easily amenable to distributed implementation, and hence receive the desired performance.

CYG find the calculation of CTU confusing. We respectfully disagree with this assertion. In DREAM or
DREAM(ZS), one generation (update of all of the N chains) simply equals one CTU. In MT-DREAM(ZS), a single
update of all the chains requires a proposal and reference step. Thus, two CTUs are required for a single
update of all N chains. If, for instance, 10,000 CTUs are required to achieve convergence to a limiting distri-
bution, then the wall-time is approximately similar to 10,000 times the time it takes to complete a single
function evaluation, pending the assumption that the model run time is independent of parameterization
used. For most finite-element (volume) models, this latter assumption is, of course, not very realistic.

If one continues to focus on the number of function evaluations (as CYG inadvertently do), then one CTU in
DREAM or DREAM(ZS) equals N function evaluations. In MT-DREAM(ZS), the proposal and evaluation step
each require a different number of function evaluations. This simply follows from multitry Metropolis sam-
pling. If we create k candidate points in each chain, then the proposal step (1 CTU) is equivalent to N�k func-
tion evaluations. The reference step (1 CTU) requires N�(k 2 1) function evaluations because the posterior
densities of the current states of the chains are known. Thus, in MT-DREAM(ZS) one CTU amounts to on aver-
age, N�(k – 1=2) function evaluations (see also paragraph 22 in LV). Thus, it is easy to derive one performance
metric from the other. Yet, in practice the CTU values (and thus CPU-time) best portray the computational
efficiency of a parallel algorithm.

3. Computational Results

We are puzzled why CYG reports such different outcomes than those presented in our paper. The MATLAB
code of MT-DREAM(ZS) we shared with them (multiple different versions that differ in user-friendliness) and
many others gives the exact same statistics, convergence diagnostics, and trace plots as those presented in
LV. For instance, consider Figure 1 that presents the evolution of the best RMSE values sampled with MT-
DREAM(ZS) for 10 consecutive trials with the SAC-SMA model (case study 3 in LV). To facilitate comparison
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Figure 1. Trace plots of the best RMSE values sampled with MT-DREAM(ZS) for the SAC-SMA model and 2 years of daily discharge data
from the Leaf River watershed in Mississippi. A Gaussian likelihood function is used with measurement error invoked jointly with the SAC-
SMA model parameters. Each different trial is coded with a different color and/or line style. The ‘‘3’’ symbol at the right hand side plots a
RMSE value of 13.2 m3/s.
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with the results of CYG, we plot on the x axis the number of function evaluations rather than CTU. Each trial
of MT-DREAM(ZS) converges to RMSE values of about 13.2 m3/s (posterior range of 13.1–13.45) which is sub-
stantially lower than values of about 13.8 m3/s shown in Figure 2c of CYG. We suspect that CYG incorrectly
treated the upper bound of the measurement error of the discharge data, a latent variable that LV estimates
jointly with the model parameters, and whose MAP value is similar to the posterior mean RMSE value (not
shown herein). Note that Figure 2a of CYG confirms the findings of LV that SP-UCI converges prematurely
to RMSE values of about 14.0–14.3 m3/s. The inferences CYG make in their comment about the optimized
value of UZTWM are therefore rather meaningless. Indeed, Figure 2 of CYG confirms that SP-UCI converges
prematurely, and it is therefore not surprising that some of the calibrated parameter values will deviate
from their actual MAP values. The prospects for regionalization would of course be diminished if the param-
eter values are calibrated toward wrong values.

What is also puzzling are the results plotted in Figure 2c of CYG. Although the final sampled RMSE values
with the MT-DREAM(ZS) algorithm are clearly lower than their values of SP-UCI, most of the different trials
shown in the trace plot exhibit erratic downward spikes. We have never observed this rather awkward sam-
pling behavior. Yet, it does demonstrate the presence of solutions with much lower RMSE values than those
reported in CYG for SP-UCI.

CYG argue that SP-UCI is two orders of magnitude more efficient than MT-DREAM(ZS). This is another puz-
zling comment. First, how can SP-UCI be more efficient if it converges to the wrong solution? Second, Figure
1 presented herein illustrates that the slowest trial of MT-DREAM(ZS) needs about 14,000 SAC-SMA model
evaluations to find RMSE values lower than 14 m3/s. The worst trial of SP-UCI (pink line in Figure 2 of CYG)
terminates prematurely after about 7500 model evaluations with a RMSE of approximately 14.1 m3/s. We
hence fail to understand how CYG conclude that SP-UCI is two orders of magnitude more efficient than MT-
DREAM(ZS)? Note that the convergence rate of MT-DREAM(ZS) for the SAC-SMA model is easily enhanced by
changing some of the values of the algorithmic parameters. However, settings that promote rapid conver-
gence for relatively simple sampling and/or calibration problems, such as the SAC-SMA model, might not
necessarily provide the explorative capabilities needed to solve high-dimensional search problems.

We invite others to verify the numerical results of DREAM, DREAM(ZS), and MT-DREAM(ZS) by downloading
the different codes from our website: http://faculty.sites.uci.edu/jasper/sample/. The toolbox contains 17
example problems that have been reported in the hydrologic, vadose zone, (atmospheric) physics,
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Figure 2. Histograms of the marginal posterior distribution of UZTWM (mm) derived from the last 10% of the sampled Markov chains.
Each different subplot displays the outcome of a different trial with MT-DREAM(ZS). The marginal distributions of UZTWM appear very simi-
lar and range between 10 and 50 with a MAP value of about 25. Note that the similarity of the marginal distributions would be further
enhanced if more posterior samples are used/generated.
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statistical, and pedometrics literature. These papers demonstrate excellent convergence results on a wide
range of parameter dimensionalities and model complexities. Other contributions in physics [Horowitz et al.,
2012; Toyli et al., 2012; Yale et al., 2013] and geophysics [Linde and Vrugt, 2013; Laloy et al., 2012, Rosas-Car-
bajal et al., 2014] demonstrate similar findings.

The results of SP-UCI reported in our paper originate from the code that was kindly emailed to us by Dr.
Chu in November 2010. We used default values for the algorithmic variables, but did additional numerical
testing to maximize SP-UCIs performance. We also added a routine for boundary handling, which is used in
the DREAM package to honor the feasible parameter space. Note that our version of SP-UCI provides
actually somewhat better results for the SAC-SMA study than those reported in Figure 2a of CYG. One of
the 25 trials of SP-UCI reported in LV was able to find RMSE values of around 13.2 m3/s—which is substan-
tially lower than the minimum value of about 14 m3/s presented in CYG.

3.1. SAC-SMA Model (13 Parameters)
The SAC-SMA study considered in LV (2012) was inspired by the study of Tang et al. [2006] who demon-
strated that SP-UCI’s predecessor, the well-known SCE-UA algorithm [Duan et al., 1992] converged inad-
equately for the 2 year Leaf River data set under consideration.

Again, we are surprised that CYG report a quite different behavior of our algorithms. Figure 1 has demon-
strated that MT-DREAM(ZS) converges consistently to RMSE values of 13.2–13.25 m3/s for the SAC-SMA
model and 2 year calibration data set. Similar results as in LV are observed for DREAM and DREAM(ZS) and
we omit these findings from our reply as they have been discussed extensively in other publications. We
did compile a table that summarizes the performance of the DREAM, DREAM(ZS), and MT-DREAM(ZS) algo-
rithms for 25 consecutive trials with the SAC-SMA model. This rather large table can be obtained from the
first author upon request along with the software from our website.

We like to suggest that the SAC-SMA convergence problems may in large part be due to poor numerics
[Kavetski et al., 2006; Kavetski and Clark, 2010; Schoups et al., 2010]. The use of an implicit rather than explicit
numerical solver for the partially structured differential and algebraic equation systems of the SAC-SMA
model would significantly enhance the smoothness of the response surface and resolve many of the optimi-
zation difficulties reported in the literature.

3.2. Groundwater Model Calibration (241 Parameters)
CYG claim that SP-UCI actually exhibits better behavior than reported in our paper. Again, our results are
based on the code that was emailed to us by Dr. Chu in 2010. We conducted a few trials, and reported their
outcome in Figure 6 of LV. The original analysis in LV and the results presented in the top panel of Figure 3
of CYG, illustrate that SP-UCI converges prematurely. Indeed, the problem of population degeneration is
very difficult to resolve, which contradicts statements made in the original paper of Chu et al. [2010]. For
instance, consider the first sentence of their paper, which reads ‘‘An innovative algorithm, shuffled complexes
with principal components analysis (SP-UCI), is developed to overcome a critical deficiency of the shuffled com-
plex evolution scheme: population degeneration.’’ In paragraph 8, the authors explicate that this critical defi-
ciency is particularly evident in ‘‘. . .high-dimensional or complex cases.’’

CYG argue that DREAM(ZS) and MT-DREAM(ZS) converge inadequately for the groundwater calibration
problem, and present a figure to illustrate this in more detail. Unfortunately, CYG terminated their
DREAM(ZS) and MT-DREAM(ZS) trials prematurely using a number of function evaluations (FEs) that is much
smaller than originally used in LV (details in next section). Our results are based on CTUs rather than the
number of FEs (see our first response). Note that our paper reports the outcome of a single trial. For any
241-dimensional problem, variations are expected in the convergence rate between different trials. Indeed,
additional runs demonstrate that MT-DREAM(ZS) needs between 100,000– 500,000 CTUs for one of the Mar-
kov chains to find WSSR values of around 200. Thus each of the additional trials converges to the approxi-
mate same WSSR values as reported in Keating et al. (2010) and derived after several months of calculations
with a variety of different search approaches, including singular value decomposition, and manual interven-
tion. The SP-UCI algorithm on the other hand again converges prematurely (see Figure 3 of CYG and Figure
6 of LV), and MT-DREAM(ZS) finds the approximate same WSSR values as reported in Keating et al. [2010]
and derived from several months of calculations with a variety of different search approaches, including sin-
gular value decomposition, and manual intervention.
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Our experience suggests that population degeneration is very difficult, if not impossible, to avoid with any
optimization method. If the response surface is nonideal (and very high dimensional), optimization methods
will often exhibit difficulty to maintain an adequate population diversity, a requirement to find the global
optimum. The word adequate is important here. The diversity of the population should carefully balance
exploration (ability to traverse the search space; large trial moves) with convergence (ability to refine exist-
ing solutions; small trial moves). A too large diversity of the population complicates convergence, whereas
insufficient diversity diminishes the explorative capabilities of the algorithm to traverse the search space in
pursuit of the global optimum.

Multichain MCMC methods are less prone to population degeneration, a requirement for successful conver-
gence. To explore the target distribution, MCMC methods can accept trial moves with lower density than
the current state of the chain(s). This helps to escape from local areas of attraction. Moreover, because of
detailed balance requires the chains are forced to always jump from their last position. This promulgates
sample diversity, and avoids collapse of the population to a single point.

4. Effectiveness of MT-DREAM(ZS)

Determining when Markov chains have converged to a limiting distribution is a very difficult problem that
has received a lot of interest in the statistical literature. Various diagnostics have been developed, some of
which are reported in Tables 1, 2, and 4 of LV. In practice, visual inspection of the sampled chain trajectories
can help to determine when convergence has been achieved. Indeed, Figure 5 of LV demonstrates that the
chains sample the approximate same WSSR values, and mix relatively well. This, along with trace plots of
the sampled parameters, inspires confidence that the MT-DREAM(ZS) algorithm has converged to a limiting
distribution after about 1.5 million CTUs (see Figure 6 of LV).

CYG draw conclusions that MT-DREAM(ZS) has not adequately converged for the 241-dimensional ground-
water case study. Yet their analysis in Figure 3 has stopped after about 2 million function evaluations, which
is roughly equivalent to about 150,000 CTUs (with N 5 3 chains and k 5 5 parallel trials). This is substantially
smaller than the 300,000 CTUs and 1,500,000 CTUs that are plotted in Figures 5 and 6 of LV! The same holds
for Figure 4 in CYG that shows the evolution of the R-statistic. Note that if one limits attention to the first
150,000 CTUs plotted in Figures 5 and 6 of LV, then a very similar pattern of sampled WSSR values emerges
as presented in CYG. CYG just terminated their run prematurely.

CYG also argues (Figure 5) that different trials of MT-DREAM(ZS) lead to different posterior distributions of
the SAC-SMA parameters. This finding is incorrect. Figure 1 presented herein has clearly demonstrated that
all consecutive trials with MT-DREAM(ZS) converge to the approximate same posterior RMSE values of about
13.2 m3/s. This corresponds to a stable marginal distribution of UZTWM (Figure 2). These findings yet again
contradict the findings of CYG. The convergence behavior of MT-DREAM(ZS) has been studied extensively in
different case studies reported in the literature, and has been verified numerically by independently partici-
pants of our short courses. Again, we invite others to confirm our findings by downloading the respective
algorithms from our website.

5. Final Comments

The original paper of Chu et al. [2010] misleads the WRR readership by presenting an inappropriate compar-
ison between SP-UCI and SCEM-UA, a predecessor of DREAM. Their paper lists RMSE values of SCEM-UA for
the SAC-SMA model and Leaf River watershed of 21.6 m3/s (Table 1), which is substantially higher than the
value of 17.98 (m3/s) derived with SP-UCI. This comparison with SCEM-UA appears to be an important
theme of the paper (Table 1, Figures 7 and 11, and main text), but fails to mention that the SCEM-UA-
derived MAP parameters, listed in Table 1 of Chu et al. [2010], are derived using a 3 year (1952–1954) cali-
bration data period. This is clearly stated in caption of Table 2 of Vrugt et al. [2006] from which these values
have been taken. Their SP-UCI counterparts, on the contrary, correspond to an 11 year (1953–1963) calibra-
tion data set. Hence, it is no surprise that the results of SP-UCI are superior. If we use the same 11 year data
set with SCEM-UA (DREAM), then equivalent MAP values of the RMSE of about 18 m3/s are found along with
a sample of the posterior parameter distribution! Many statements made in Chu et al. [2010], for example in
the abstract ‘‘. . . SP-UCI . . .retrieves the optimal parameter values with the lowest recorded root-mean-squared
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error of simulated daily runoff against the observation’’ or paragraph 6 ‘‘. . .Therefore, experiments in this study
demonstrate that SCE-UA achieves much better parameter sets than that achieved by SCEM-UA’’ are conse-
quently wrong and misleading.

We believe that the problem of interest is not so much to identify the optimum values of some model
parameters. The hydrologic community has moved on to quantification of uncertainty, and in particular
diagnosis of model inadequacy. This necessitates the use of sampling rather than optimization methods.
The SAC-SMA study in LV was simply used to demonstrate the convergence behavior of MT-DREAM(ZS) for a
widely studied model and data set. A comparison with SP-UCI was deemed appropriate to benchmark the
validity of the MAP values sampled with MT-DREAM(ZS).

Finally, we believe that emphasis should shift to process-based calibration. The very construction of the like-
lihood function—as a summary variable of the (usually averaged) properties of the error residuals—dilutes
and mixes the available information into an index having little remaining correspondence to specific behav-
iors of the system [Gupta et al., 2008]. This has inspired Vrugt and Sadegh [2013] to introduce ‘‘likelihood-
free’’ inference as vehicle for diagnostic model evaluation. This class of methods is also referred to as
Approximate Bayesian Computation (ABC) and relaxes the need for an explicit likelihood function in favor
of one or multiple different summary statistics rooted in environmental theory that together have a more
compelling diagnostic power than some aggregated measure of the size of the error residuals.
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