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Abstract

Species interaction networks, which play an important role in determining pathogen transmission 

and spread in ecological communities, can shift in response to agricultural landscape 

simplification. However, we know surprisingly little about how landscape simplification-driven 

changes in network structure impact epidemiological patterns. Here, we combine mathematical 

modeling and data from eleven bipartite plant-pollinator networks observed along a landscape 

simplification gradient to elucidate how changes in network structure shape disease dynamics. Our 

empirical data show that landscape simplification reduces pathogen prevalence in bee communities 

via increased diet breadth of the dominant species. Furthermore, our empirical data and theoretical 

model indicate that increased connectance reduces the likelihood of a disease outbreak and 

decreases variance in prevalence among bee species in the community, resulting in a dilution 

effect. Because infectious diseases are implicated in pollinator declines worldwide, a better 

understanding of how land use change impacts species interactions is therefore critical for 

conserving pollinator health.

Graphical Abstract

We combined mathematical modeling and data from eleven plant-pollinator networks observed 

along a landscape simplification gradient to elucidate how changes in network structure shape 

disease dynamics. Our empirical data show that landscape simplification reduces pathogen 

prevalence in bee communities via increased diet breadth of the dominant species. Furthermore, 
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our empirical data and theoretical model indicate that increased connectance reduces the 

likelihood of a disease outbreak and decreases variance in prevalence among bee species in the 

community, resulting in a dilution effect.

Keywords

Bombus impatiens; Crithidia bombi; disease transmission; agricultural land use; network 
connectance; diet breadth; basic reproductive number; structural equation models

INTRODUCTION

Landscape simplification driven by agricultural expansion is one of the most significant 

anthropogenic changes to the planet, influencing resource availability, biodiversity, and 

ecosystem functioning (Tscharntke et al. 2005). An important but often overlooked 

consequence of landscape simplification is the deterioration of interaction patterns across 

trophic levels, including host-parasitoid and plant-pollinator networks (Fortuna & 

Bascompte 2006; Tylianakis et al. 2007; Spiesman & Inouye 2013). These interactions 

between species are essential for maintaining ecosystem function and stability (Thébault & 

Fontaine 2010), and they also shape how pathogens are transmitted and spread. Moreover, 

the predictive power of disease spread models is often improved when interaction patterns 

are considered (White et al. 2017). Yet we currently do not understand how landscape 

simplification impacts disease dynamics via changes to interaction networks. This is an 

important knowledge gap given increasing global dependence on pollinators for ecosystem 

service provisioning (Aizen et al. 2008) and the documented links between pathogens and 

bee declines worldwide (Goulson et al. 2015).

The impacts of landscape simplification on network structure have been generally attributed 

to species turnover and reduced specialization (Grass et al. 2013). Plant-pollinator networks 

are characterized by diverse bee species assemblages with frequently overlapping visitation 

patterns (Petanidou et al. 2008; Pocock et al. 2012). Given that generalist floral visitors are 

typically less susceptible to habitat loss (Fortuna & Bascompte 2006), pollinator 

communities in simplified landscapes could be dominated by generalist species. In such a 

scenario, we would expect interaction networks with high proportions of realized links 

between bee and flower species (high connectance), in which interactions occur evenly 

throughout (low modularity), and with few specialists present to interact with generalists 

(low nestedness), which has been found in some (Spiesman & Inouye 2013; Vanbergen et al. 
2014), but not all systems (Redhead et al. 2018; Traveset et al. 2018). Moreover, all of these 

metrics have been highlighted as potential key mediators of disease transmission (i.e. 
connectance/nestedness (Wei et al. 2015), modularity (Sah et al. 2017), and abundance/

diversity (Johnson et al. 2015)). Ultimately, how changes to network structure influence 
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pathogen prevalence in plant-pollinator communities is largely unknown, limiting our 

understanding of how agricultural expansion impacts the health of bee communities.

Dominant species often disproportionately influence ecosystem functions, including disease 

transmission dynamics (Keesing et al. 2010), due to their high abundance, broad diet 

breadth, and/or dispersal abilities. Focusing on dominant species can provide an initial 

assessment of the impact that landscape simplification has on network stability (Hagen et al. 
2012). These dominant species could influence encounter probabilities, subsequent exposure 

to pathogens, and ultimately, disease spread dynamics at the community level (Keesing et al. 
2010). Thus, the way in which dominant species respond to landscape simplification and 

influence plant-pollinator network structure could have significant implications for pathogen 

transmission and prevalence at the community level.

Pathogen transmission can occur among multiple bee species when susceptible individuals 

forage on contaminated flowers (Durrer & Schmid-Hempel 1994). Furthermore, bees can 

simultaneously vector multiple pathogens onto flowers, even without developing active 

infections (Graystock et al. 2015). Recently, pathogens known to infect honey bees and 

bumble bees have been detected in a broad array of bee species, including social and solitary 

taxa (Cordes et al. 2012; Evison et al. 2012; Ravoet et al. 2014), highlighting the existing 

knowledge gap in the host range of these pathogens and more generally in bee inter-species 

transmission dynamics. Moreover, differences in pathogen prevalence in bee communities 

across land use gradients (Theodorou et al. 2016; Piot et al. 2019) suggest that changes in 

host density and interaction patterns may be key mediators in how communities respond to 

landscape simplification.

Here, we characterized plant-pollinator networks and bee pathogen prevalence in 11 

replicated wildflower plots established across a landscape simplification gradient in order to 

address three major questions. First, does landscape simplification shape pathogen 

prevalence in bee communities mediated by changes in network structure? Specifically, we 

used structural equation modeling to quantify the role of network connectance, modularity, 

and nestedness, as well as bee abundance, species richness, and diet breadth of the dominant 

bee species. Second, does the role of a bee species in the network predict its likelihood of 

harboring pathogens? To address this question we computed species-level network 

descriptors such as centrality and diet breadth, as well as pairwise interactions between bee 

species mediated by shared floral resources. Finally, what mechanisms underpin the 

empirical relationship between network structure and pathogen prevalence in bipartite plant-

pollinator networks? To shed light on this question, we developed mathematical models 

using empirically derived parameters from our data and additional literature to determine 

drivers of pathogen prevalence and spread.

MATERIAL AND METHODS

Field sites, sample collection, and network assessment

We evaluated the plant-pollinator networks of 11 replicated wildflower plots in upstate New 

York from June 10 to September 26, 2015 (Fig. S1). Each 10 × 15 meter planting was 

established with native perennial wildflower species in 2012 following regional guidelines 
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for species that encompass a broad phenological range and are known foraging resources for 

wild bees (Tuell et al. 2008; Grab et al. 2018). Not all plant species established equally well 

at each of the sites, and the parentheses indicate the number of sites that included each 

species: Silphium perfoliatum (11), Solidago canadensis (11), Penstemon digitalis (11), 
Veronicastrum virginicum (10), Lobelia siphilitica (10), Coreopsis lanceolata (5), and 

Agastache nepetoides (4). Sites were also invaded by weedy species: Erigeron annuus (9), 
Trifolium repens (9), Medicago sativa (7), Trifolium pratens (7), Daucus carota (5), and 

Cirsium arvense (3). Plant species richness was assessed within the planted wildflower plots 

at each site.

We characterized each network by conducting weekly ten-minute visitation surveys at each 

site, where all bee-flower interactions occurring within the site were recorded to the finest 

taxonomic resolution possible. Each site was surveyed 8 to 12 times throughout the summer 

from 08:00 to 17:00 hrs on sunny and low wind days, with temperatures ranging from 16 to 

33 °C, and visited in rotating sequence. During the visitation surveys we recorded 28 bee 

morphogroups via visual assessments, 17 of which were identifiable at the species level, 10 

to genus only, and a few unidentified bees. After each visitation assessment, we collected 

bees actively foraging on the flowers for 1.5 ± 0.5 person hours, depending on foraging 

activity levels. Bees were collected by hand from flowers into sterile vials and a sample of 

each observed flower species was also collected using sterilized 50 ml falcon tubes. Samples 

were immediately placed on dry ice in the field, transported to the laboratory and stored at –

80 °C until processing. Collected bees were used for subsequent pathogen screening and 

species determination using reference materials located in the Cornell University Insect 

Collection, published keys, and barcoding methods (Appendix 2).

Overall, 91% of bee samples were identified to species (46 species). Rarefaction analyses 

indicated sufficient sampling of the pollinator communities (Fig. S2). We compared analyses 

with networks constructed at the taxonomic resolution possible in the field (“unresolved”) 

and those that were later fully resolved to species in the laboratory (“resolved”), finding no 

significant differences for any of our analyses (Table S1); here we present unresolved data to 

minimize assumptions. We screened 12 of the 13 flower species found in the wildflower 

sites for bee pathogens (Appendix 3).

DNA extraction and pathogen screening

We surface sterilized each bee to ensure only pathogens inside of the bees were detected 

(Lacey 1997). The pathogens screened (trypanosomes, neogregarines, Nosema ceranae, and 

Nosema bombi) display broad tissue tropism (Schmid-Hempel 1998), therefore we extracted 

gut, fat body, and Malpighian tubules in each sample. To maximize the amount of nucleic 

acid collected, we also pipetted 20 μl UltraPure™ water (ThermoFisher, Grand Island, NY, 

USA) into the abdomen during dissection. The dissected bee organs and water mixture were 

placed in sterile vials containing two sterilized 2.4 mm steel beads, 100 μl of sterilized 0.1 

mm zirconia beads, and 800 μl of TRIsure™ reagent (BIOLINE, Boston, MA, USA). 

Samples were homogenized for 30 seconds at 6.5 m/s using a bead mill homogenizer (Omni 

International, Kennesaw, GA, USA), then immediately placed on ice. The solution was 

transferred to a new sterile vial, taking care to not pipette beads or large tissue fragments. 
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DNA extraction from the TRIsure™ reagent then proceeded using the manufacturer’s 

protocol. Each extraction batch included a negative control. Pathogen DNA on 100 mg of 

floral tissue per species per site was similarly extracted (Appendix 3) using established PCR 

primers (Appendix 3, Table S3 – S4).

Landscape characterization

The 11 replicated wildflower sites were established along a landscape simplification gradient 

in the fall of 2012 (Fig. S1). We used ArcGIS v10 (Environmental Systems Research 

Institute, Redlands, CA, USA) and the 2015 Cropland Data Layer (30 m resolution, USDA 

NASS) to evaluate the landscape composition within a 500, 750, and 1,250 meter radius of 

each site, encompassing the typical foraging range of most wild bees (Greenleaf et al. 2007). 

In North American farmlands, pasture management frequently includes mowing and 

herbicide use (Singh et al. 2006), both of which can affect the distribution of flowering 

plants available for bees at the landscape scale. Thus, we evaluated the proportion of 

agricultural cover (defined as corn, soy, barley, wheat, vegetable crops, alfalfa, orchards, hay 

fields, and grass/pastures) at each of the 11 sites. Agricultural cover was positively 

correlated with cropland (defined as corn, soy, barley, wheat, vegetable crops, alfalfa, and 

orchards: F1,9 = 22.39, P = 0.001; F1,9 = 51.12, P < 0.001; and F1,9 = 55.67, P < 0.001, for 

the 500, 750, and 1,250 meter scales, respectively) and negatively correlated with natural 

area (defined as deciduous, evergreen and mixed forest, woody and herbaceous wetlands, old 

fields, and shrub lands, as well as open and low intensity developed lands, such as roadside 

edges: F1,9 = 10.2, P = 0.011; F1,9 = 3.39, P = 0.100; and F1,9 = 6.33, P = 0.033, for the 500, 

750, and 1,250 meter scales, respectively). As such, we analyzed the effect of agricultural 

cover on network metrics and pathogen prevalence in our system.

Network characterization and statistical analyses

Network characterization and statistical analyses were conducted in R version 3.5.1 using 

the bipartite, vegan, epiR, lme4, ape and piecewiseSEM packages (Paradis et al. 2004; 

Oksanen et al. 2007; Dormann et al. 2008; R Development Core Team 2008; Bates et al. 
2015; Lefcheck 2016), unless otherwise stated. Qualitative and quantitative network indices 

were calculated using the networklevel function in bipartite: connectance, nestedness 

(weighted NODF), and bee species richness (Dormann et al. 2008). Modularity (Q) was 

estimated using the QuaBiMo algorithm (computeModules function; (Dormann & Strauss 

2014)). Module membership, indicating similarity in visitation patterns, was categorically 

determined for each bee morphogroup at each site, hereafter referred to as species (Table 

S5). In modular networks, pathogen transmission is much more frequent within modules 

than in the overall community (Sah et al. 2017). As such, we hypothesized that module 

membership would predict bee pathogen prevalence given the higher likelihood of indirect 

pathogen exposure via flowers for bee species in the same module as those with pathogens. 

Taxon-specific network indices (betweenness centrality and degree) were calculated for bee 

species at each site using the specieslevel function in bipartite. Betweenness centrality, by 

measuring the frequency of shortest paths that pass through a species, can indicate likely 

“hotspots” of pathogen transmission. We expected bee species that most closely connected 

the greatest number of other bee species to have the highest likelihood of harboring a 

pathogen. Bee abundance was calculated by summing the total number of interactions 
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observed at each site throughout the summer (Vázquez et al. 2005; Vázquez et al. 2007; Fort 

et al. 2016).

We evaluated relationships in bee community composition via non-metric multidimensional 

scaling (NMDS with the Bray-Curtis dissimilarity measure on the species-abundance matrix 

following Wisconsin double standardization (Oksanen 2015)). We investigated how the 

proportion of agricultural cover related to the ordination by fitting the agricultural landscape 

variable to the ordination axes (envfit function with 999 permutations to determine 

significance).

Prior to analyses, degree, betweenness centrality, nestedness (weighted NODF), and 

modularity (Q) were standardized based on comparisons to null models (Dormann et al. 
2009; Dormann 2011). We selected the vaznull null model because by maintaining the 

number of links and marginal totals in the null model equal to those of the real world 

network it can more closely mirror real ecological and/or evolutionary processes, including 

the existence of trait mismatching that impedes interactions from occurring (Dormann et al. 

2009). We computed 1000 null models for each network index at each site using the vaznull 
method, which first creates a binary matrix with randomized interaction probabilities 

proportional to each species’ relative abundance, constrained by the connectance of the 

original network. Once the matrix was created with the same number of filled cells as the 

original network, the remaining interactions were distributed among the filled cells, thus 

constraining connectance while including interaction frequency (Vázquez et al. 2007). We 

then calculated the z-score for the network indices observed at each site by comparing to the 

mean and standard deviation of the computed null models. The resulting z-scores were the 

values employed in subsequent statistical analyses. The z-score of connectance was not 

calculated because vaznull constrains connectance.

We employed structural equation models to evaluate the hypothesized indirect effects of 

landscape simplification on pathogen prevalence via network metrics (Appendix 5). Our 

models evaluated whether landscape simplification (proportion agricultural cover at either 

500, 750, or 1250 meters) predicted network-level metrics (connectance, modularity, 

nestedness, bee species richness, and scaled bee abundance), as well as the diet breadth 

(degree) of the dominant species in our system, Bombus impatiens, which is known to vector 

pathogens on flowers and is linked to pathogen spillover from commercial colonies to wild 

bees (Otterstatter & Thomson 2008). All network metrics (including B. impatiens diet 

breadth) were modeled to co-vary a priori because directionality was unclear. The landscape 

and network metrics were based on linear regression of values for each of the sites (n = 11); 

we evaluated model assumptions using the olsrr package (Hebbali 2017). The role of 

landscape simplification and each network metric on pathogen prevalence (trypanosomes, 

neogregarines, Nosema bombi, and/or Nosema ceranae) was evaluated using a Generalized 

Linear Mixed Model (GLMM), which included pathogen presence in individual bees as the 

binary response, all network metrics and proportion of agricultural cover as predictor 

variables, as well as bee species and site as random effects (n = 575). We then simplified our 

model by removing non-significant terms (Appendix 5). Our simplified model, presented in 

the main text, included proportion of agricultural cover at the 500-meter scale, B. impatiens 
diet breadth (degree), network connectance, overall bee abundance, and presence of 
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pathogens in individual bees (Table S1). Results from the full model and the three spatial 

scales are presented in Table S6.

To determine whether each bee species’ position in the network predicted its likelihood of 

harboring pathogens, we conducted a GLMM that included three taxon-specific indices: 

module membership, diet breadth (degree), and betweenness centrality. We calculated the 

variance inflation factor for a model including all three indices and found that module 

membership greatly increased estimate variances; therefore, the impact of module 

membership was analyzed separately from the other two factors. The taxon-specific network 

metrics were evaluated as the explanatory variable for presence of pathogens in bees using a 

binomial GLMM that included site and bee species as random effects. We conducted a 

likelihood ratio test to determine the significance of coefficients by comparing against a null 

model that only included the random effects. The taxon-specific analyses were conducted 

only on bee species for which we had both pathogen and visitation data at a site (14 species). 

Furthermore, we tested the hypothesis that similarity in foraging patterns between bee 

species in a given network predicted similarity in pathogen prevalence using Mantel tests, 

but found that number of shared floral partners was a poor predictor (Appendix 6).

Modelling pathogen transmission in bipartite networks with varying connectance

Existing theoretical models have generally suggested that increasing network connectance 

results in higher rates of disease transmission (Shirley & Rushton 2005; Moslonka-Lefebvre 

et al. 2009; Strona et al. 2018), contrasting with our empirical findings (see Results). 

However, previous models generally assume that a host’s contact rate scales with its network 

degree, corresponding to the niche breadth. This is unlikely to be true for plant-pollinator 

networks, unless floral resources are so scarce that foraging rates become search-time 

limited, and hence warrants a re-evaluation of existing results under a different set of 

assumptions. As such, we developed a new theoretical model parameterized with empirically 

derived values to understand how connectance could impact a pathogen’s basic reproductive 

number (R0), linearized prevalence growth rate (λ), and steady state prevalence based on 

realistic assumptions for the plant-pollinator system.

We considered a simple deterministic susceptible – infected – susceptible (SIS) model with 

demography, assuming no latent period for exposed bees, and that bees and flowers become 

susceptible again after clearing infection. We assumed constant population sizes (equal birth 

and death rates), and that bees emerged uninfected as adults. Here, “infected” bees included 

host and non-host vectors that carry pathogens. Transmission of pathogens was assumed to 

occur only from fecal deposition of infected bees on uncontaminated (“susceptible”) 

flowers, and from susceptible bees ingesting pathogens while foraging on contaminated 

(“infected”) flowers (Figueroa et al. 2019). Within-hive transmission and demographic 

processes were ignored (i.e., we assumed that the population of each bee and flower species 

remained constant).

With the above assumptions, the SIS model was described by the system of equations 

(definitions provided in Table 1):
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ẏq = ∑
k = 1

K
βq, k ⋅ sq ⋅ ck − γq + μq ⋅ yq, sq = 1 − yq,

ċk = ∑
q = 1

Q αq, k ⋅ Mq
Nk

⋅ yq ⋅ uk − ζk ⋅ ck, uk = 1 − ck,

We generated 100,000 random plant-pollinator networks as follows: for each network, we 

sampled the degree of each bee or flower species from a zero-truncated binomial 

distribution, with one binomial proportion used for bees and a different one for flowers. The 

zero-truncated binomial distribution was chosen for its simplicity and because it fit the 

observed degree distributions well, albeit being slightly over-dispersed. The Gale-Ryser 

criterion (Krause 1996) was used to check whether a bipartite network could be constructed 

using the two sampled degree sets; if not, the flower degree set was re-sampled until the 

criterion was satisfied. Edges from bee and flower species were then joined at random while 

ensuring that no parallel edges were created. Changes to the two binomial proportions used 

in the zero-truncated binomial altered the expected degree of each bee or flower species, 

hence allowing connectance to vary. The bee binomial proportions fit from the empirically 

observed degree distributions ranged from 0.13 to 0.31, so we allowed the bee proportion in 

each network to vary between 0.05 and 0.4. The corresponding flower proportion was 

chosen such that the expected value for the sum of flower degrees equaled that of the bee 

degrees. We fixed the number of bee and flower species at Q = 13 and K = 7, based on the 

mean from our empirical networks. Missing edges in each network hence indicated that 

transmission parameters αq,k and βq,k were zero. The two transmission parameters αq,k and 

βq,k in the SIS model were combinations of other parameters defined in Table 1; importantly, 

both contain a multiplicative factor ηq,k, where ∑k = 1
K ηq, k = 1, to account for the division of 

total foraging efforts among multiple flower species, a departure from existing theoretical 

models on the effects of connectance.

The SIS model depended on four combination of parameters αq,k · Mq / Nk, βq,k, γq + μq, 

and ζk. Therefore, to account for heterogeneity among bee and flower species, for example 

between bee species that are non-host vectors versus those that can develop active infection, 

we first calculated reference values of these combinations (Table 1), except without ηq,k for 

the first two combinations. Next, we allowed the values of these combinations for each q and 

k to fluctuate about the reference values by a multiplicative factor of 10 in either direction, 

so that the range of values spanned one order of magnitude. Finally, to complete the first two 

combinations, we randomly generated ηq,k for each bee species q, with the requirements that 

∑k = 1
K ηq, k = 1 and that they were zero if the corresponding edges between q and k were 

missing in the network. This process was repeated for each random network.

To quantify disease transmission, we defined two matrices T and Σ of dimensions 

Q + K × Q + K  with matrix elements
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Ti, j =

βq, k, i = q
j = Q + k

αq, k ⋅ Mq
Nk

, i = Q + k
j = q

0, otherwise

, Σi, j =
−γq, i = j = q
−ζk, i = j = Q + k
0, otherwise

,

For each random network, we then calculated three metrics:

• Reproduction number R0, given by the dominant eigenvalue of the next-

generation matrix -TΣ−−1 (Diekmann et al. 2009).

• Linearized prevalence growth rate λ, given by the dominant eigenvalue of the 

time evolution matrix T + Σ.

• Distribution of steady-state pathogen prevalence among the bee species.

Note that while we have used an SIS model, many pollinator pathogens are believed to cause 

chronic infections. Nonetheless, both SIS and SI models can give similar results once we 

include population dynamics (mortality and reproduction) in the SI model, so that 

reproduction in the SI model plays the same role as recovery in the SIS model in terms of 

recruiting new susceptibles. Therefore, for species that can develop active infection, 

mortality rates replace recovery rates in our model (assuming constant population to balance 

reproduction rates).

All computations were performed in R using the packages extraDistr (Wolodzko 2018) for 

zero-truncated binomial distributions and rootSolve (Soetaert & Herman 2009) for 

numerical evaluation of the steady-state prevalence.

RESULTS

We recorded 2,936 bee visits across 143 plant-pollinator interaction pairs and screened 575 

bees (46 species) and 81 flowers (12 species), finding that 65% of bee species (39% of bees; 

95% Confidence Interval (CI), 35 – 44%) and 75% of flower species (31% of flowers; 95% 

CI, 20 – 43%) harbored at least one of the three pathogen groups (trypanosomes, 

neogregarines, Nosema bombi, and/or Nosema ceranae; Fig. 1, Fig. S3 & S4).

We employed structural equation models to evaluate the role of landscape simplification on 

network metrics, diet breadth of the dominant bee species, and, subsequently, on pathogen 

prevalence at the community level. In more simplified agricultural landscapes, there were 

fewer foraging bees and the dominant bee species, Bombus impatiens, visited more plant 

species (higher degree: broader diet breadth) (Table S1). Bee species richness did not vary 

along the landscape gradient (Table S6), nor did species composition (NMDS stress = 0.62, 

R2 = 0.07, P = 0.79), indicating that landscape simplification affected interaction patterns 

rather than interaction partners per se (Tylianakis et al. 2007). Consequently, we infer that 

species loss was not the mechanism by which landscape simplification altered interaction 

patterns.
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At sites where B. impatiens visited more plant species, pathogen prevalence in the 

community was lower (Fig. 2 bottom; Table S1). Conversely, bee abundance did not explain 

pathogen prevalence in the bee community (Fig. 2 center; Table S1). We found that in more 

connected networks, bees were less likely to harbor pathogens (Fig. 2 top; Table S1), a 

pattern not driven by landscape simplification. There was no direct relationship between 

agricultural cover and pathogen prevalence in the bee communities (Fig. 2 & Fig. S5). 

Instead, the relationship between landscape simplification and pathogen prevalence was 

mediated by B. impatiens diet breadth (Fig. 2).

We found that modules differed in pathogen prevalence, suggesting that groups of bee 

species with similar interaction patterns were more likely to share pathogens (χ2
29 = 48.1, P 

= 0.01; Fig. S6). However, bee species’ centrality (degree and betweenness centrality) did 

not explain likelihood of harboring pathogens (χ2
2 = 0.98, P = 0.61), nor did similarity of 

pairwise species interaction partners explain similarity in prevalence (number of shared 

interaction partners: r = − 0.31, P = 0.76, Jaccard index: r = 0.30, P = 0.77, and weighted 

Jaccard index: r = 0.35, P = 0.73). Furthermore, network modularity did not predict pathogen 

prevalence at the community level (Table S6).

From our theoretical model with empirically derived parameter values, we found that the 

rate of pathogen spread in the bee community, as measured both by pathogen reproduction 

number (R0) and linearized prevalence growth rate (λ), decreased with connectance in 

bipartite networks (Fig. 3). In the initial pathogen spread phase, before steady-state 

prevalence had been reached, lower R0 and λ in more connected networks suggest reduced 

prevalence. These results are in agreement with our empirical data, which found a negative 

relationship between connectance and pathogen prevalence in the community (Fig. 2). We 

also examined the steady-state pathogen prevalence of each bee species in the networks, 

finding that the outcome was highly dependent on changes to model parameter values within 

realistic ranges. Pathogen prevalence of the most infected species was consistently lower in 

well-connected networks, while prevalence of the least infected species was consistently 

higher (Fig. 4).

DISCUSSION

In this study, we found widespread pathogen prevalence in plant-pollinator networks along 

an experimentally established agricultural landscape gradient. We found that landscape 

simplification can impact pathogen prevalence by altering the visitation patterns of the 

dominant bee species, Bombus impatiens. Empirical and theoretical model results indicate 

that more diverse plant-pollinator interactions dilute pathogen prevalence. In the field, 

networks that were more connected and had dominant species with broader diet-breath had 

lower pathogen prevalence in the bee communities. Similarly, in our newly developed and 

realistically-parameterized SIS models, more connected networks had lower rates of 

pathogen spread and reduced variance in steady-state prevalence within the communities.

The dominant species in our system, Bombus impatiens, visited more plant species in 

simplified landscapes. Others have found that along experimental gradients of floral 

abundance, increased resource availability decreased B. terrestris diet breadth (Fontaine et 
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al. 2008). Thus, along our landscape simplification gradient, the dominant bumble bee 

species may have foraged more generally due to reduced abundance of floral resources at the 

landscape scale (Tscharntke et al. 2005) or within the wildflower plantings (see Appendix 5 

for further discussion). Both possibilities have the potential to alter disease dynamics. For 

example, a recent study found that increases in floral abundance in old-field communities 

reduce prevalence of bee pathogens on flowers, thus decreasing the potential for 

transmission (Graystock et al. 2020). Given that landscape context can differentially 

influence diet breath across bee species (Cusser et al. 2019) and that life histories, including 

diet breadth, dispersal ability, and body size, shape how species respond to habitat 

fragmentation (Hagen et al. 2012), evaluating whether and how these functional traits in 

diverse bee communities mediate the effect of landscape simplification on pathogen 

transmission and spread is highly warranted.

When Bombus impatiens visited more plant species, we found lower pathogen prevalence in 

the community. Others have estimated that infected B. impatiens deposit pathogens on only 

1% of flowers visited (Otterstatter & Thomson 2008), and that bumble bee species differ in 

their transmission potential on flowers (Ruiz-González et al. 2012). The low deposition rate 

may therefore underlie the negative relationship between B. impatiens diet breadth and 

pathogen prevalence. Determining which bee traits, such as deposition rate and host 

competence, contribute to differential dynamics among species is an important future 

direction in pollinator epidemiology. Furthermore, this pattern supports the importance of 

dilution, as a known host visiting a broader array of plants and not concentrating exclusively 

on one hub of disease transmission may have reduced the overall encounter likelihood for 

the next incoming foraging bee.

Land use change is often associated with a reduction in specialists, which are 

disproportionately lost along habitat fragmentation gradients (Hagen et al. 2012). On this 

basis we had expected an increase in network connectance in simplified habitats. However, 

we did not see a change in bee species richness or composition along our landscape gradient, 

nor in network connectance. Our results are in agreement with recent studies showing that 

network connectance does not always respond to landscape simplification (Redhead et al. 
2018). Evaluating the importance of land use histories, ecoregions, and gradients of 

landscape simplification are important future directions in the field of plant-pollinator 

network ecology.

Our model found that greater connectance decreased both the rate of pathogen spread as 

well as variance in the prevalence distribution across species (Fig. 3 – 4). Given that steady-

state prevalence is sensitive to the non-linear structure of the model, rates of pathogen spread 

are likely better indicators of observed prevalence. Thus, our theoretical prediction that 

increased connectance leads to slower pathogen spread is in agreement with the negative 

relation between connectance and prevalence in our empirical results (Fig. 2). Both 

theoretical results can be explained as follows. First, in a highly connected network, an 

infected bee would visit and hence contaminate more plant species; however, assuming a 

constant contact rate, the contamination would be distributed among more flowers, thus 

decreasing the probability that a susceptible bee will encounter a contaminated flower 

(“dilution”; Fig. 5). This slows disease spread among the competent host species that usually 
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drive disease growth rate. We note that others (Moslonka-Lefebvre et al. 2009; Strona et al. 
2018) have predicted opposite patterns, where increased connectance enhances transmission. 

However, existing models assume that a host’s contact rate scales with its degree, hence 

undoing any dilution. Given that we expect the foraging rate of an individual pollinator to 

remain roughly constant regardless of diet breadth (assuming similar search and handling 

times), our model is more appropriate for plant-pollinator networks. Second, high 

connectance facilitates pathogen transmission from competent hosts to other species within 

the network by increasing indirect interactions via flowers (“amplification”; Fig. 5); this 

raises the prevalence in other species toward that of the competent hosts, thus reducing the 

variance across species (Fig. 4).

Modules often form in ecological networks, within which interactions occur more frequently 

than in the overall community. Highly modular networks have the potential to structurally 

suppress pathogen spread (Gilarranz et al. 2017). While we found that modules differed in 

pathogen prevalence (Fig. S6), network modularity did not predict overall pathogen 

prevalence nor did bee species’ centrality predict likelihood of harboring pathogens. 

Furthermore, pairwise similarity between bees’ interaction partners did not explain 

similarity in prevalence. Our data and models suggest that an understanding of how all 

species interact (e.g., network connectance) is more informative than the interaction patterns 

of any given pair. Disentangling the role of foraging behavior, phylogeny, and susceptibility 

to infection in diverse bee communities is an important future direction for pollinator 

epidemiology.

The development of cost-effective pollinator conservation strategies across landscapes is of 

pressing global concern given documented bee declines and increasing dependence on crop 

pollinators (Aizen et al. 2008; Goulson et al. 2015). Our data and model illustrate that while 

pathogens can spread more slowly in highly connected plant-pollinator networks due to a 

“dilution” effect, resulting pathogen prevalence varies among bee species. These results 

suggest that management for species of conservation concern may differ from community-

wide approaches and those targeting dominant species. Currently, one of the predominant 

strategies for promoting pollinators is the establishment of wildflower plantings (Williams et 
al. 2015). Given our results showing that connectance is a key mediator of pathogen spread 

in bee communities, we recommend evaluating this metric in bee communities vulnerable to 

disease outbreaks, for example those in wildflower strips near apiaries or commercial 

bumble bee operations (Otterstatter & Thomson 2008; Furst et al. 2014), and adjusting seed 

mixes accordingly. Thus, wildflower plantings promoting pollinator health could be 

designed to maximize food resources while minimizing disease spread.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Pathogen prevalence is widespread in plant-pollinator networks.
Composite quantitative bipartite network of f3"interactions (links) between bees (top bars) 

and flowers (bottom bars). Width of bars reflects relative abundance of bees and flowers, and 

width of links indicates interaction frequency. Color intensity of bars indicates pathogen 

prevalence in bees and on flowers (links colored according to prevalence in bees). Gray bars 

indicate species that were not screened. At least one screened pathogen (trypanosomes, 

neogregarines, Nosema ceranae, and Nosema bombi) was present in 65% of bee species and 

75% of flower species. There were 42 bee species in the resolved network and 28 bee 
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morphogroups in the unresolved network. Fig. S3 provides pathogen-specific depictions of 

prevalence across networks.
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Fig. 2. Landscape simplification indirectly influences pathogen prevalence in bee communities by 
altering the diet breadth of the dominant species, Bombus impatiens.
Unstandardized coefficients are shown for each path due to differences in sample sizes (n 
=11 for site-level comparisons compared to n = 575 for pathogen prevalence calculations). 

Solid lines indicate significant relationships (P < 0.05), dashed lines indicate a non-

significant relationship (P > 0.05), black indicates positive relationships, and red indicates 

negative relationships. Ultimately, 76% of overall bee abundance, 40% of Bombus impatiens 
diet breadth (degree), 12% of overall pathogen prevalence, and 6% of network connectance 

variance was explained by the model. * P < 0.05, ** P < 0.01, * ** P < 0.001.
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Fig. 3. (a) Connectance reduces pathogen reproductive number (R0).
Based on results from a SIS model run on 100,000 random networks of varying 

connectance. (b) Connectance reduces pathogen linearized prevalence growth rate (λ). 
Results from a SIS model run on 100,000 random networks of varying connectance show 

that λ decreases with increasing connectance. Lower R0 and λ imply lower pathogen 

prevalence during the early stages of an outbreak. The solid line is a smoothing curve fitted 

through median values of R0 and λ for each connectance bin.
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Fig. 4. Connectance reduces variance in the distribution of steady-state pathogen prevalence 
within a network.
Steady-state pathogen prevalence of all bee species from a sample of 5,000 networks are 

shown, with the more infected species in each network shown as points in purple (top) and 

the less infected species in yellow (bottom). Points are slightly jittered in the horizontal 

direction to reduce overlap. For each bee species, a smoothing curve of the same color is 

fitted through the median prevalence values for each connectance bin. Connectance 

decreases the prevalence level of the more infected species while increasing that of the less 

infected ones.
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Fig. 5. Conceptual diagram illustrating how connectance can influence bee pathogen 
transmission in bipartite plant-pollinator networks.
Low connectance networks (top row) are represented by two realized links between bees and 

plants, while high connectance networks (bottom row) have four realized links. Bees of the 

same species always forage on the same set of plant species (left column), while bees of 

different species can have either overlapping (center column) or non-overlapping (top right 

column) visitation patterns. Here, the bee vectoring pathogens will “infect” two flowers 

before clearing the infection. Under dilution scenarios (left and center columns), 

connectance reduces the probability that an incoming susceptible bee will encounter an 

infected flower because the total number of possible flowers increases. Conversely, under 

the amplification scenario, connectance increases diet overlap between infected and 

uninfected bees, resulting in greater encounter probability (right column).
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Table 1.
Variables, parameters, and their definitions in the SIS system of equations.

Parameter values are realistic for plant-pollinator networks. The only exception is Nk, which was adjusted to 

reproduce realistic values of R0, λ, and mean steady-state prevalence in the models. The value of Nk is much 

higher than the observed floral abundance in the wildflower plots, due to the fact that the SIS model assumes a 

closed system, whereas the bees observed did not forage exclusively inside the plot. Therefore, the correct Nk 

should be one where the plot area has been sufficiently extended to support the population of bees.

Variables and 
parameters Short description Central value, comments, and reference

yq and ck
Fractions of infected/contaminated individuals of bee 
species q and flower species k

sq and uk
Fractions of susceptible/uncontaminated individuals of 
bee species q and flower species k

Q and K Bee and flower species richness Mean from empirical data

q and k Labels for bee and flower species

Mq and Nk Abundance of bee species q and flower species k
Bee abundance 50, order-of-magnitude estimate based on 
observations at the wildflower plots. Flower abundance 
2000 (see caption).

1 / (γq + μq) Reciprocal of the sum of bee recovery and mortality rates

3 days. Central value between species that are non-host 
vectors (recovery time < 1 day) and species that can 
develop active infections (if chronic, life expectancy of ~1 
month; however, not all exposed individuals become 
infected, so we chose an intermediate value of 10 days).

1 / ζk Flower decontamination time 3 hours (Figueroa et al. 2019)

αq,k

Rate at which uncontaminated flowers of species k 
become contaminated when foraged on by an infected 
bee of species q

Combination of other parameters 
αq, k = ηq, k ⋅ fq ⋅ rq ⋅ ϕq, k

βq,k

Rate at which a susceptible bee of species q becomes 
infected when foraging on contaminated flowers of 
species k

Combination of other parameters 
βq, k = ηq, k ⋅ fq ⋅ rq ⋅ ψq, k

ηq,k
Fraction of foraging time a bee of species q spends on 
flowers of species k We require that ∑k = 1

K ηq, k = 1

fq Fraction of day bee species q spends foraging 2 hours / day (Otterstatter & Thomson 2008)

rq Foraging rate for a bee of species q 5 flowers / minute, order-of-magnitude estimate based on 
observations

q,k

Bee-to-flower transmission: probability of an infected 
bee of species q contaminating a single flower of species 
k when foraging on it

0.01 (Otterstatter & Thomson 2008)

ψq,k

Flower-to-bee transmission: probability of a bee of 
species q becoming infected when foraging on a 
contaminated flower of species k

0.01 (Truitt et al. 2019)
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