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We introduce a response theory for open quantum systems within nonequilibrium steady states subject to
a Hamiltonian perturbation. Working in the weak system-bath coupling regime, our results are derived within
the Lindblad-Gorini-Kossakowski-Sudarshan formalism. We find that the response of the system to a small
perturbation is not simply related to a correlation function within the system, unlike traditional linear response
theory in closed systems or expectations from the fluctuation-dissipation theorem. In limiting cases, when the
perturbation is small relative to the coupling to the surroundings or when it does not lead to a change of the
eigenstructure of the system, a perturbative expansion exists where the response function is related to a sum
of a system correlation functions and additional forces induced by the surroundings. Away from these limiting
regimes, however, the secular approximation results in a singular response that cannot be captured within the
traditional approach but can be described by reverting to a microscopic Hamiltonian description. These findings
are illustrated by explicit calculations in coupled qubits and anharmonic oscillators in contact with bosonic baths
at different temperatures.

DOI: 10.1103/PhysRevResearch.3.023252

I. INTRODUCTION

Response theory provides a means of characterizing the
dynamical behavior of systems subject to small perturba-
tions. For physical systems obeying detailed balance, the
fluctuation-dissipation theorem relates a system’s response to
the underlying microscopic correlations [1]. Such fluctuation-
response relations form the basis of molecular spectroscopy
[2–4] and are encoded in properties like the conductivi-
ties of transport devices and sensitivities of sensors [5–7].
For open quantum systems, connections between response
and molecular degrees of freedom are generally unknown in
instances away from thermal equilibrium. Given the ubiqui-
tous presence of open quantum systems, it is desirable to
uncover such relations. Here we work within the Lindblad-
Gorini-Kossakowski-Sudarshan (LGKS) description of an
open quantum system and develop a response theory for dy-
namic perturbations [8–10]. We find that it is not typically
possible to write the response function as a simple corre-
lation function within the system due to the weak-coupling
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approximation and the reduced description of the LGKS for-
malism. Nevertheless, we are able to find practical general
routes to response functions and identify special cases where
Dyson-like expansions of the propagator still exist, resulting
in generalized fluctuation-dissipation relations.

In the linear response regime for systems obeying de-
tailed balance, response theory has revealed the fluctuation-
dissipation theorems that establish a relation between a
system’s response to a small perturbation and a time correla-
tion function of certain observables evaluated at equilibrium.
For a closed quantum system that follows a unitary dynamics,
the linear response function of an observable A to a weak per-
turbation δ̃(t )V (t ) is given by the well-known Kubo formula
[11]

φA(τ − t ) ≡ d〈A(τ )〉
d δ̃(t )

= i

h̄
〈[V (t ), A(τ )]〉, (1)

where V is the perturbation operator added to the original
Hamiltonian, δ̃(t ) is a small time-dependent parameter, and
h̄ is Planck’s constant. The brackets 〈. . . 〉 denote the average
over the stationary distribution of the original Hamiltonian.
Kubo’s result has a classical analog uncovered originally by
Callen and Welton [12] and has been extended to stochastic
nonequilibrium steady states (NESSs) [13–16] and nonlinear
response [17–20]. Recent work has also established relation-
ships between these results and the entropy production within
stochastic thermodynamics [21].

To extend these results to quantum systems that continu-
ously interact with their environment, either the environment
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FIG. 1. Illustration of the perturbations with nonequilibrium
steady states of open quantum systems considered.

needs to be considered explicitly or a suitable reduced descrip-
tion found. While the former are well suited to accounting for
instances of strong system-bath coupling [22–26], describing
nonequilibrium steady states in such formalisms is cumber-
some, as the composite system plus environment represents a
closed system incapable of dissipating energy. If the couplings
between the system and environment can be assumed to be
weak, a reduced description using the LGKS master equation
is appropriate, and a linear response theory can be formu-
lated in the reduced Liouville space [27–33]. However, studies
along these lines have thus far been largely phenomenological.

In this work we introduce a response theory for open quan-
tum systems within the LGKS formalism that is consistent
with an underlying Hamiltonian description of the full sys-
tem, subsystem plus environment. In particular, we study the
response of an open quantum system at equilibrium or NESS
to a small Hamiltonian perturbation. The initial NESS of the
system corresponds to a steady state of a system interacting
with multiple baths. The system, which remains in contact
with the baths at all times, is then subject to a stationary Her-
mitian perturbation that drives it away from its initial steady
state, as illustrated in Fig. 1.

We find that even a small Hamiltonian perturbation with
respect to the system Hamiltonian may result in nonlinear
response, and that unlike the case for closed quantum systems
or classical systems, the corresponding response function is
not simply related to a correlation function of the system.
This occurs when the perturbation is considered small with
respect to the system Hamiltonian but not necessarily small
with respect to the system-bath Hamiltonian. In such cases,
additional timescales emerge within the system whose impli-
cations to the Markovian and secular approximations in the
LGKS formalism must be considered.

In cases where the perturbation is small with respect to the
system-bath Hamiltonian, or when the perturbation influences
only the eigenvectors of the system Hamiltonian, a linear
response relation can be established. However, we find that
the linear response function is subject to corrections over the
closed system result that can be traced to noncommutative
effects between the perturbation and the system-bath coupling
Hamiltonians. Only with the inclusion of these additional
terms is the response thermodynamically consistent.

The observation that the perturbation affects the system-
bath couplings and leads to corrections in the response
function is closely linked to the local and global approaches
to deriving the LGKS master equation [34]. In the local
approach, the dynamics of a quantum system composed of
several subsystems, in which each is coupled to its own

surroundings, is described by a local dissipator that ignores
the couplings between the subsystems. The global approach
takes the intercouplings between the subsystems into consid-
eration when deriving the dissipative part. The validity of the
different approaches has been studied extensively in recent
years and is an ongoing inquiry [34–46]. This study offers
a systematic method to calculate the response functions of
open quantum systems, and, in doing so, bridges the two
approaches. In particular, using a perturbative treatment, we
extend the validity of the local approach without the need of a
full global treatment, which may become complicated and, in
most cases, not analytically feasible.

The manuscript is laid out in the following way. First,
in Sec. II we briefly review the assumptions invoked in the
LGKS framework, paying particular attention to the coarse
graining required to satisfy the Markovian approximation.
Then in Sec. III we develop a response theory for impulsive
system perturbations. This is specialized to instances where
only the eigenvectors change in Sec. III A, with an explicit ex-
ample of such a theory for two anharmonic oscillators coupled
to two heat baths considered in Sec. III B. A response theory
specialized to instances where only the eigenvalues change
is shown in Sec. III C, with an explicit example of such a
theory for two qubits coupled to two heat baths considered in
Sec. III D. The response function of thermodynamic functions
that are state dependent is discussed in Sec. IV. Finally, in
Sec. V we summarize and discuss the main results.

II. FRAMEWORK FOR THE LGKS MASTER EQUATION

We consider a system-bath model with total Hamiltonian
H of the form

H = H0 + δθ (t )V + Hsb + Hb, (2)

where the quantum system of interest is described by the
unperturbed Hamiltonian,

H0 =
∑

n

E (0)
n

∣∣ψ (0)
n

〉〈
ψ (0)

n

∣∣, (3)

in its eigenbasis. While the baths may exist in the thermo-
dynamic limit, we consider explicitly system Hilbert spaces
that are discrete. We focus our analysis on step perturbations
δ̃(t ) = δθ (t ), and δ is a unitless parameter that sets the scale,
θ (t ) is the Heaviside function turned on at t = 0, and V an
arbitrary operator in the system Hilbert space. The system is
weakly coupled to two or more baths held in distinct thermal
states that can generate flows of mass and energy through the
system described by

Hb =
∑

α

∑
j

h̄ωα, j r
†
α, j rα, j, (4)

where r†
α, j rα, j is the number operator for the jth mode of the

αth bath, which is assumed to have a continuous spectrum and
obey bosonic statistics. We will assume that the interaction
with a bath is bilinear such that the interaction Hamiltonian is

Hsb =
∑

α

λαSαRα, (5)

where for the αth bath an operator in the system, Sα , is cou-
pled to a bath operator, Rα , with strength λα .

023252-2
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For a system interacting weakly with each bath in the
absence of the perturbation δ = 0, assuming the baths are
thermal and initially uncorrelated with each other, the reduced
state of the system reads ρ(t ) ≈ ∏

α exp[λ2
αKα (t )]ρ(0), with

[47]

Kα (t )ρ(0) =
∑
ω,ω′

∫ t

0
ei(ω′−ω)udu

∫ t−u

−u
Fα (τ )eiωτ dτ

×
(

Sα (ω)ρS†
α (ω′) − 1

2
{Sα (ω)S†

α (ω′), ρ}
)

,

(6)

where Fα (τ ) = Tr[ραRα (τ )Rα] is the αth bath correlation
function, ρα is the state of the αth bath, and Sα (ω) are the
Fourier decompositions of the operator Sα , which are ex-
pressed using the Bohr frequencies of H0 through

Sα (ω) =
∑
n,m

�(0)
n Sα �(0)

m δ
(
h̄ω − E (0)

m + E (0)
n

)
, (7)

where �(0)
n = |ψ (0)

n 〉〈ψ (0)
n | are the projection operators onto

the energy eigenspace of H0. The sums over ω and ω′ index
the system Bohr frequencies. Written in this form, it is clear
that the system’s eigenstructure is encoded in the propagator.
For details see Appendix A.

Equation (6) is a generic result of second-order perturba-
tion theory in the system-bath coupling. To bring it to the
LGKS form, two additional approximations are carried out.
The first approximation assumes that the integral on the left-
hand side samples the function F (τ ) in sufficient accuracy to
justify the Fourier transform on the right-hand side,∫ t−u

−u
Fα (τ )eiωτ dτ ≈

∫ ∞

−∞
Fα (τ )eiωτ dτ, (8)

which defines a time-independent relaxation rate �α (ω):

�α (ω) = λ2
α

∫ ∞

−∞
Fα (τ )eiωτ dτ � 0. (9)

This is the standard Markovian approximation and is valid
for long times such that ωt � 1. The second assumption is
typically a stronger condition than the first,∫ t

0
ei(ω′−ω)udu ≈ tδωω′ , (10)

and is referred to as the secular approximation [48]. This ap-
proximation is valid when min{t |ω − ω′|} � 1. The resultant
Markovian master equation in the Schrödinger picture reads1

ρ̇ = − i

h̄
[H0, ρ] +

∑
α

Dαρ, (11)

with the dissipative part

Dαρ =
∑

ω

�α (ω)

(
Sα (ω)ρS†

α (ω) − 1

2
{S†

α (ω)Sα (ω), ρ}
)

,

(12)

1Here and in the rest of the manuscript we neglected the Lamb-type
shift correction to the Hamiltonian, which can easily be recovered,
see [48].

and the relations Sα (−ω) = S†
α (ω) and �(−ω) = e−β h̄ω�(ω).

For a bosonic bath at thermal equilibrium, one can factor-
ize the relaxation rate, �(ω) = γ (ω)(n + 1) and �(−ω) =
γ (ω)n, where n is the Bose-Einstein distribution and γ (ω) is
determined by the coupling strength and the density of modes
of the bath. Note that the simple additive structure for multiple
baths in Eq. (12) results from linearity of the original Hamil-
tonian and the assumption of no initial correlations between
the baths.

III. RESPONSE THEORY WITHIN THE
LGKS FRAMEWORK

Now we consider adding a constant perturbation at time
t = 0 to the system, which drives the system away from its
current NESS to a new steady state. Our treatment of the
perturbation δV does not constrain it to be the smallest energy
scale in the problem. It is considered small with respect to the
system “bare” Hamiltonian H0; however, it is not necessarily
small with respect to the system-bath couplings, {λα}, which
is assumed to be weak. An exact LGKS master equation de-
scribing the new dynamics would require deriving the master
equation that corresponds to the new Hamiltonian H0 + δV
from first principles. In many cases, this global approach is
convoluted or even impossible. Here we present an approach
based on a perturbative treatment of the LGKS equation in
such a way that is consistent with the approximations in
Eqs. (9) and (10), namely, with the secular and Markovian
approximations.

The perturbative treatment begins by expanding the eigen-
values and eigenstates of the system Hamiltonian and the
perturbation, H0 + δV , in the basis of H0 and in orders of δ,

En = E (0)
n + δE (1)

n + δ2E (2)
n + · · · ,

|ψn〉 = ∣∣ψ (0)
n

〉 + δ
∣∣ψ (1)

n

〉 + δ2
∣∣ψ (2)

n

〉 + · · · . (13)

Given the structure in Eq. (6), the expansion suggests that
the perturbation may influence the master equation in two
ways: (1) modifying the structure of the master equation due
to changes in the eigenvectors, and (2) modifying the Bohr fre-
quencies of the system and the structure of the master equation
due to changes in the eigenvalues. These two modifications
can appear either separately or together, depending on the
timescales of the problem and the details of the perturbation.

A. Response due to changes in the eigenvectors

To start, we consider how changes to the eigenvectors
impact the system’s response. We assume that the Bohr
frequencies ω do not change as a consequence of the per-
turbation. This happens anytime the perturbation shifts all
the energy levels by a constant, or more commonly, when
the perturbation does not affect the eigenvalues at a given
order of δ. For example, whenever the eigenvectors of the
Hamiltonian H0 and the perturbation V are orthogonal, the
first-order correction of the eigenvalues vanishes, E (1)

n = 0.
When only the eigenvectors change, the response theory takes
on a transitional perturbative form.
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Using Eq. (13), the projection operators can be expressed
in orders of δ where �0 = |ψn〉〈ψn|, and the expansion

S(ω) = S(0)(ω) + δS(1)(ω) + · · · (14)

immediately follows. By virtue of Eqs. (12) and (14), the
expansion of the dissipator for each bath in orders of δ,

Dρ = D0ρ + δD1ρ + δ2D2ρ + · · · , (15)

is analogously clear. Here, D j is the δ j-order correction to
the dynamics, and the zero-order term D0 corresponds to the
dissipator of the unperturbed system with the Hamiltonian H0.
More specifically, the explicit form of the first-order correc-
tions is given by

S(1)(ω) = ∣∣ψ (0)
n

〉〈
ψ (1)

n

∣∣S∣∣ψ ′(0)
n

〉〈
ψ ′(0)

n

∣∣ + similar terms (16)

and

D1ρ =
∑

ω

�(ω)

[
S(0)(ω)ρS(1)†(ω)

− 1

2
{S(1)†(ω)S(0)(ω), ρ}

]
+ H.c. (17)

Similar terms in Eq. (16) refer to all terms contributing to
first order in δ. The procedure above provides a scheme to
treat perturbatively complex Hamiltonians within the LGKS
formalism. It is simplified significantly by the constant fre-
quencies entering into the sum, which thus do not alter the
underlying Markovian or secular approximations.

The ability to write the expansion equation, Eq. (15), ad-
mits a quantum response theory for NESS to be developed
in an analogous way for a closed quantum system. After the
perturbation is turned on, the dynamics of a system in contact
with multiple baths follows the master equation,

ρ̇ = − i

h̄
[H0 + δV, ρ] +

∑
α, j=0

δ jDα
j ρ, (18)

where for each αth bath we can expand the dissipator in a
series. The new perturbed state of the system ρ can similarly
be expanded in orders of δ as well,

ρ(t ) = π0(0) +
∑
j=1

δ jρ j (t ), (19)

where at time t = 0 the NESS is ρ(0) = π0. Note that the ρ j

corrections are not proper density matrices in themselves and
satisfy Tr[ρ j] = 0 at each order.

Inserting Eq. (19) into Eq. (18) and keeping only the first
order in δ terms, we have

ρ̇1(t ) = L1π0 + L0ρ1(t ),

L1π0 = − i

h̄
[V, π0] +

∑
α

Dα
1 π0, (20)

L0ρ1(t ) = − i

h̄
[H0, ρ1(t )] +

∑
α

Dα
0 ρ1(t ),

with the formal solution

ρ1(t ) =
∫ t

0
dτeL0τL1π0 (21)

for the first-order correction to the density matrix in δ. Then,
to first order in δ for an arbitrary observable A,

〈A〉δ = 〈A〉 + δ

∫
dτφ

(1)
A , (22)

where the average 〈·〉δ is taken with respect to the perturbed
state. This implies a response function,

φ
(1)
A = 〈L†

1A(τ )〉

= i

h̄
〈[V, A(τ )]〉 +

∑
α

〈
Dα†

1 A(τ )
〉
, (23)

where A(τ ) is the observable propagated according to the
unperturbed dynamics, A(t ) = �

†
0(t )A ≡ eL

†
0t A. Here �

†
0 is

the dynamical map in the Heisenberg picture with the adjoint
LGKS generator L†

0 [48].
Note that this result also holds for an arbitrary initial prod-

uct steady state, including thermal equilibrium, in which π0 ∝
exp[−βH0], with the inverse temperature β = kBT and the
Boltzmann factor kB. Extensions to second and higher order
are straightforward under the assumption that the eigenvalues
do not change.

The response functions derived here are different form
those found in the literature, as they involve a term due to
the rotation of the dissipator into the perturbed eigenvectors
D1. The linear response function now generally has two con-
tributions, φ

(1)
A = φ

(1,1)
A + φ

(1,2)
A , with

φ
(1,1)
A = i

h̄
〈[V, A(τ )]〉,

(24)
φ

(1,2)
A = 〈

D†
1A(τ )

〉
,

where the first term φ
(1,1)
A is expected from Kubo theory. The

additional term φ
(1,2)
A originates from noncommutativity of the

new Hamiltonian, including the perturbation and the system-
bath interaction Hamiltonian, and has no classical counterpart.

For closed quantum systems at thermal equilibrium, which
follow a unitary evolution, the term φ

(1,2)
A vanishes and the

response function φ
(1)
A in Eq. (23) reduces to the standard

Kubo formula, Eq. (1). However, for open quantum systems
this is no longer the case. In Sec. III B, we show that this
additional contribution can become significant and cannot be
neglected.

We point out that a response function which explicitly
includes the dissipative part has been introduced before in the
literature [28,32,49,50]. However, in these studies the LGKS-
based Kubo formula is derived under the assumption that a
Dyson expansion of the full evolution exists, without provid-
ing a microscopic derivation, or that the perturbation itself is
assumed to be represented by a non-Hermitian operator. By
contrast, in this study we show that a Hermitian (Hamilto-
nian) perturbation of an open quantum system, in the limits
discussed above, results in an additional contribution φ

(1,2)
A to

the Kubo formula. Moreover, we provide a method to evaluate
this term explicitly from first Hamiltonian consideration.

B. Example: Two coupled anharmonic oscillators

In this section we illustrate how a perturbation that changes
only the eigenvectors of the system to first order results in a
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FIG. 2. Response of the a oscillator population. (a) Schematic
illustration of the system of two coupled oscillators. (b) The response
of the occupation a†a in time. The blue and red lines are the contribu-
tions of integrating Eqs. (31) and (32), respectively. The parameters
are γ− = γ , ω = 100γ , g/h̄ = 90γ , ε/h̄ = 5γ , δ = 0.02, Ta = 2 ×
103 h̄γ /kB, and Tb = 2.1 × 103 h̄γ /kB. For these parameters, accord-
ing to Eq. (30), the unperturbed population 〈a†a〉 = 107.4.

linear response determined by both the traditional Kubo term
and the additional force from the baths. In particular, we inves-
tigate the contribution of the different terms of φ

(1)
A in Eq. (24),

illustrating the conditions under which the term φ
(1,2)
A has

non-negligible contributions. The system we consider consists
of two coupled anharmonic oscillators, a and b, subject to
a linear external field. Each of the oscillators are coupled to
a thermal bath with temperature Ta and Tb, respectively, as
shown schematically in Fig. 2(a). The anharmonicity is de-
scribed by a cubic potential δV , which will be considered the
perturbation and is treated within the linear response theory.

The unperturbed system Hamiltonian,

H0 = h̄ω(a†a + b†b) + g(a†b + ab†)

+ ε√
2

(a† + a) + ε√
2

(b† + b), (25)

includes the self-Hamiltonians of the two harmonic oscilla-
tors, a coupling between the modes, and a linear field. Here
ω denotes the frequency of both oscillators, g their bilin-
ear coupling, and ε the linear potential that they both feel.
The system-bath interaction Hamiltonians are assumed to be
bilinear,

Hsb = (a + a†) ⊗ Ra + (b + b†) ⊗ Rb, (26)

with Rα = ∑
j λα, j (rα, j + r†

α, j ) being a sum of displacement
operators of the αth bosonic bath and λα, j the characteristic
interaction scale.

The joint master equation for the harmonic system includ-
ing the linear field is derived using a global approach [34],
which assumes that the intercoupling is strong compared to

the system-bath couplings. The resultant adjoint propagator is

L†
0(O) = i

h̄
[H0, O] +

∑
�=±,α=a,b

Dα†
0,�(O) + D̃α†

0,+(O), (27)

with the Hamiltonian H0 = ω+d†
+d+ + ω−d†

−d− and the dis-
sipators expressed in a normal-mode transformation, d+ =
(a + b)/

√
2 and d− = (b − a)/

√
2, and frequencies ω± =

ω ± g/h̄:

Dα†
0,�(O) = γ�(nα

� + 1)

2

(
d†

� Od� − 1
2 {d†

� d�, O})
+ γ�nα

�

2

(
d�Od†

� − 1
2 {d�d†

� , O})
D̃α†

0,+(O) = εγ+(nα
+ + 1)

2h̄ω+

(
d†

+O + Od+ − 1
2 {d†

+ + d+, O})
+ εγ+nα

+
2h̄ω+

(
d+O + Od†

+ − 1
2 {d+ + d†

+, O}), (28)

where we define the Bose-Einstein distribution nα
� =

[exp(βα h̄ω�) − 1]−1 for each bosonic bath at inverse temper-
ature βα and the decay rates γ�. The term D̃α,†

0,+ arises from the
linear field and can be derived using the perturbation theory
that was introduced above (see Appendix B for details).

We will consider for concreteness the response of the oc-
cupation number of oscillator a to a step perturbation of the
form δV , with

V = �√
8

[a† + a − (b† + b)]3, (29)

which adds a cubic potential, rendering the system anhar-
monic expressible as a sum of the new normal modes. Since
δ sets the scale of the perturbation, we are free to chose
� ≡ h̄ω−. For this choice, the perturbative treatment implies
δ � 1. In the absence of the perturbation, the occupation
number can be calculated using the master equation

〈a†a〉 = 1

4

[ ∑
l=±,α=a,b

nα
� + 2

(
ε

h̄ω+

)2
]
, (30)

which is valid within an arbitrary steady state.
Following the approach described in previous sections, we

find that the first-order corrections to the eigenvalues vanish
and thus the Bohr frequencies remain the same. The eigen-
vectors, however, are modified, leading to corrections of the
dissipator in the format of Eq. (17) (see Appendix B for de-
tails). To calculate the response function φ

(1)
a†a of the observable

a†a, we first calculate the evolution of the operator a†a(τ ) =
eL

†
0τ a†a and then evaluate 〈L†

1a†a(τ )〉. In Appendix B, we
show that the time-dependent operator a†a(τ ) can be ex-
pressed explicitly as a linear combination of operators at time
zero multiplied by time-dependent functions.

To study the contribution from the different terms ∝ δ, we
use the splitting of the response function in Eq. (24). Direct
calculation results in

φ
(1,1)
a†a (τ ) = −3εω−

h̄ω+
(2n̄− + 1) sin(ω−τ )e− γ−τ

2 (31)
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FIG. 3. Steady-state response δ(�(1,1)
a†a

+ �
(1,2)
a†a

) as a function of
the average temperature T̄ . The parameters are γ− = γ , ω = 100γ ,
g/h̄ = 90γ , ε/h̄ = 5γ , δ = 0.02, and the temperature difference is
�T = 50h̄γ /kB.

and

φ
(1,2)
a†a (τ ) = 3εγ−

2h̄ω+
(n̄− − 1)(2n̄− + 1) cos(ω−τ )e− γ−τ

2 , (32)

where both contributions depend on the average Bose distribu-
tion, n̄− = (na

− + nb
−)/2. The response functions scale linearly

with ε. When no linear field is present, the linear response will
vanish completely. Notice that only φ

(1,2)
a†a depends on the ki-

netic parameters describing the coupling to the bath, similar to
the frenetic contributions arising in classically driven diffusive
systems [19,20].

In Fig. 2 we plot the two contributions to the response
of the occupation a†a in time, i.e., the integrated response
functions

�
(1,i)
a†a (t ) =

∫ t

0
dτ φ

(1,i)
a†a (τ ), (33)

for i = 1, 2. In the high-temperature limit illustrated in Fig. 2,
it is clear that the term involving φ

(1,2)
a†a has non-negligible

contributions both in the transient and steady-state regimes.
The significance of this term is also manifested in the

scaling behavior of the steady-state response of a†a with
the average temperature T̄ = (Ta + Tb)/2. Integrating the re-
sponse functions over the interval t = [0,∞],

lim
t→∞ �

(1,1)
a†a = − 3ε

h̄ω+

(
4ω2

−
γ 2− + 4ω2−

)
(2n̄− + 1),

(34)

lim
t→∞ �

(1,2)
a†a = 3ε

h̄ω+

(
γ 2

−
γ 2− + 4ω2−

)
(n̄− − 1)(2n̄− + 1),

yields the steady-state response. In the high-temperature limit,
nα

− ∝ Tα , which implies that the term φ
(1,1)
a†a ∝ T̄ , whereas

φ
(1,2)
a†a ∝ T̄ 2. This change in the scaling with the average

temperature is depicted in Fig. 3, where we plot the total
steady-state response, δ(�(1,1)

a†a + �
(1,2)
a†a ), as a function of the

average temperature. As T̄ increases, the non-Kubo term,
�

(1,2)
a†a , dominates the behavior with a different scaling and a

different sign of the response emerging.
We note that at high occupation number of the oscillator,

the perturbation theory breaks down as the perturbed state

depends explicitly on the level number n. In this case there is
an interplay between the magnitude of δ and n. In particular,
we wish δ � n− 1

2 (see Appendix B).
Interestingly, at zero temperature, when na

− = nb
− = 0, the

steady-state response

�
(1,1)
a†a + �

(1,2)
a†a → − 3ε

h̄ω+
(35)

is independent of γ−, which characterizes the bath and its
coupling to the system.

C. Response due to changes in the eigenvalues

Changes to the eigenvalues En leads to modifications of
the Bohr frequencies, which can be expanded in terms of δ

as well, ω = ω(0) + δω(1) + · · · . The procedure introduced
for deriving the LGKS master equation can now be repeated
using the new perturbed Bohr frequencies and the replacement
of the projectors, �(0)

n → �n, to a desired order. Modifica-
tions to the Bohr frequencies introduce new timescales that
become relevant for the LGKS approximations in Eqs. (9)
and (10) to be carried out. The weak system-bath coupling
limit [47,51] that leads to the LGKS master equation assumes
a time coarse graining of fast oscillating terms with fre-
quencies ν = ω′ − ω. This approximation is valid only when
the system’s relaxation time τ satisfies min{τ |ν|} � 1. The
perturbation may introduce new frequencies; for example, at
first order in δ, τ |ν (1)| � 1, terms oscillating with frequencies
ν (1) = δ(ω′(1) − ω(1) ) are eliminated. Physically, the coarse
graining is carried out when the width of the spectral line is
smaller than the level splitting that is now proportional to δ.

When the Bohr frequencies are modified by the perturba-
tion, the expansion of the dissipator in orders of δ does not
necessarily exist. The Fourier transform of the bath correlation
functions in Eqs. (9) and (12) includes the perturbed Bohr
frequencies �α (ω(0) ) → �α (δω(1) ). This implies that a first-
order correction to the eigenvalues, given the coarse graining
discussed above, already results in all orders of the dissipator,
making the response of the open system nonlinear. Moreover,
in the limit δ → 0 the dissipator will generally be different
from its unperturbed form. The reason is the time coarse
graining, which eliminates terms oscillating with frequencies
ν (1) that are proportional to δ. This discontinuity is a known
phenomena when deriving the LGKS master equation from
first principles [52,53]. The observations above suggest when
the perturbation is small with respect to the system Hamilto-
nian H0 but large with respect to the system-bath interactions,
response theory for open quantum systems cannot be formu-
lated by standard means. The response function can no longer
be associated with correlation functions in the unperturbed
system and requires knowledge of the perturbed state of the
system.

However, when the perturbation is also small with respect
to the system-bath coupling, a generalized fluctuation-
dissipation relation can be derived. When in addition the
first-order correction to the eigenvectors vanishes, a local mas-
ter equation, in which the perturbation does not influence the
dissipator, can be applied. In this limit, when the perturbation
is small with respect to the system-bath coupling, ν (1) � τ−1,
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following the development in Sec. III A,

φ
(1)
A = i/h̄〈[V, A(τ )]〉, (36)

where contributions from a nonlocal dissipator, that previ-
ously were expressed through φ

(1,2)
A , enters as a higher-order

cross term and thus in this instance should be neglected. So
although the response function cannot always be associated
with correlation function in the unperturbed system, a pertur-
bative treatment based on Eq. (13) offers a practical method
for treating complex perturbations which cannot be analyti-
cally solved exactly.

D. Example: Two coupled qubits

In this section we study an example illustrating how a
perturbation that modifies only the eigenvalues to first order
and does not change the eigenvectors leads to an LGKS master
equation that involves higher orders of the perturbation, as
discussed in the previous section. While the perturbation is
assumed to be small compared to the system Hamiltonian,
the response of the system is investigated in two different
limits. The first assumes the perturbation is small compared
to the system-bath couplings, which in terms of timescale
can be translated to ν (1) � τ−1, with τ the typical relax-
ation time of the system. Since the system-bath coupling is
already assumed to be weak, the regime of applicability is
quite restricted and a local approach can be implemented.
The opposing limit, in which the perturbation is assumed to
be large with respect to the system-bath coupling, i.e., ν (1) �
τ−1, leads to new Bohr frequencies and to the coarse-grained
dynamics discussed above.

In this example, the response of the heat current between
the thermal baths and a finite size system is studied. In par-
ticular, we consider a chain of two qubits A and B that are
coupled to two bosonic heat baths with temperature Ta and Tb,
respectively. A schematic of the system is shown in Fig. 4(a).
The unperturbed system Hamiltonian, including the qubits
and the coupling between them, reads

H0 = h̄ω

2

(
σ A

z + σ B
z

) + g

2

(
σ A

x σ B
x + σ A

y σ B
y

)
, (37)

where σi is a Pauli matrix, ω is the transition frequency of
the uncoupled qubits, and g the coupling between them. The
system-bath coupling Hamiltonian is assumed to be bilinear,

Hsb = σ A
x ⊗ Ra + σ B

x ⊗ Rb, (38)

where Rχ = ∑
k λχ,k (rχ,k + r†

α,k ), with χ = {a, b} the
weighted displacement operator for the χ th bath. In
Appendix C we derive the global master equation which
is used to calculate the NESS properties of the system, noting
that the eigenvalues of H0 are ω± = ω ± g/h̄, each with a
twofold degeneracy. The resultant adjoint propagator is given
by

L†
0(O) = i

h̄
[H0, O] +

∑
�=±,χ=a,b

Dχ†
0,�(O), (39)

with

Dχ†
0,�(O) = γ�

(
nχ

� + 1
)(

χ
†
� Oχ� − 1

2 {χ�χ
†
� , O})

+ γ�nχ

�

(
χ�Oχ

†
� − 1

2 {χ†
� χ�, O}), (40)

FIG. 4. (a) Schematic illustration of the system. (b) The steady-
state heat currents with and without (black) the perturbation at low
temperatures, T̄ = 50h̄γ /kB, as a function of the temperature dif-
ference between the baths. The red line corresponds to J a

0 + δJ a
1 ,

and the blue line to J a of Eq. (46). (c) The steady-state heat-current
response as a function of the average temperature T̄ for a fixed
temperature difference �T = 20h̄γ /kB. In red, the first-order cor-
rection δJ a

1 . In blue, the difference, J a − J a
0 , between the new and

old steady-state heat current [subtracting Eq. (42) from Eq. (46)].
The parameters are γ− = γ+ = γ , ω = 103γ , g/h̄ = 2 × 102γ , and
δ�/h̄ = 50γ .

where again, nχ

l = [exp(βχ h̄ω�) − 1]−1 is the Bose-Einstein
distribution at inverse temperature βχ for the χ th bath. The
operators appearing in Dχ

0,� satisfy the relation [H0, χ±] =
−h̄ω±χ±, with χ± being either a± = (σ A

− ∓ σ A
z σ B

− )/2 or b± =
(σ B

− ∓ σ A
−σ B

z )/2. Each channel has a decay rate γ�.
We consider the response of the heat flow through the

system at steady state, J , to a perturbation of the form

V = δ�σ A
z σ B

z , (41)

with � the coupling energy. At first order, this perturbation
changes the eigenvalues, leaving the eigenvectors the same.
The average heat flow from the a bath in the absence of the
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perturbation is given by J a
0 = ∑

�=± 〈Da†
0,�H0〉 [see Eq. (48)

and Appendix C]. At steady state,

J a
0 = γ+h̄ω+(na

+ − nb
+)

4(na+ + nb+ + 1)
+ γ−h̄ω−(na

− − nb
−)

4(na− + nb− + 1)
, (42)

we find heat flows in two channels with energies h̄ω± and cor-
responding rates proportional to γ±. In the high-temperature
limit, the heat current J a

0 ∝ �T scales as the temperature
difference �T = Ta − Tb.

When the perturbation is much smaller than the coupling
to the baths, ν (1) � τ−1, a local master equation with system
Hamiltonian H0 + δV in the commutator and a local dissipa-
tive part D0 can be justified. The basis of this approximation is
neglecting terms of the order O(δ2λ2) and higher in the master
equation and the fact that the first-order correction of the
eigenvectors vanishes. Incorporating such terms in the master
equation would require introducing higher-order corrections
in the system-bath coupling for consistency.

The heat current from the a bath, to first order, is given
by J a

0 + δJ a
1 , where J a

0 is given by Eq. (42), and J a
1 =∑

�=± 〈D†a
0,�V 〉, which is strictly the local contribution of the

perturbation. Here we wish to emphasize that locality does
not refer to individual qubits, as these are treated globally [see
Eq. (42)], but rather to the perturbation itself. At steady state,

J a
1 = −γ−�(na

− − nb
−) + γ+�(na

+ − nb
+)

2(na− + nb− + 1)(na+ + nb+ + 1)
. (43)

Note that J a
1 has the opposite sign as that of J a

0 , and
the overall contribution is determined by the sign of δ. At
the high-temperature limit, J a

0 ∝ �T/T̄ , whereas J a
1 ∝

�T/T̄ 2 with T̄ = (Ta + Tb)/2 the average temperature.
In the opposite limit where the perturbation is much larger

than the coupling to the bath, ν (1) � τ−1, the baths act to ther-
malize a different system with a different spectrum. To first
order in δ, the eigenvalues and the corresponding eigenvectors
read

{E00 = −h̄ω + δ�, E± = ±g − δ�, E11 = h̄ω + δ�}

{|00〉, |±〉 = 1√
2

(|01〉 ± |10〉), |11〉},

which in this case also happens to be the exact correction for
any δ.

The Fourier decomposition of the interaction Hamiltonian
operators can be expressed as

σ A
x = S1 + S2 + S3 + S4 + H.c.

σ B
x = −S1 + S2 − S3 + S4 + H.c., (44)

with the corresponding frequencies

S1 = 1√
2
|00〉〈−|; ω1 = ω− − 2δ�/h̄,

S2 = 1√
2
|00〉〈+|; ω2 = ω+ − 2δ�/h̄,

S3 = 1√
2
|+〉〈11|; ω3 = ω− + 2δ�/h̄,

S4 = 1√
2
|−〉〈11|; ω4 = ω+ + 2δ�/h̄. (45)

Following this decomposition a master equation can be
derived (see Appendix C), and the heat current from the a bath
reads

J a =
4∑

j=1

〈
Da

j H
〉
ρ

=
4∑

j=1

h̄ω j
(−γ j

(
na

j + 1
)〈S†

j S j〉ρ + γ jn
a
j〈S jS

†
j 〉ρ

)
. (46)

An analytic expression of Eq. (46) exists, however, it is too
involved to present here. Note that averages in Eq. (46) are
taken with respect to the new nonequilibrium state. While for
the unperturbed system heat was flowing in two channels, in
the current limit heat flows in four channels that correspond to
the perturbed Bohr frequencies {ω j} of Eq. (45).

Figure 4(b) illustrates the steady-state heat currents with
and without the perturbation at low temperatures and as a
function of the temperature difference between the two baths.
The black dashed line corresponds to the heat flow of the un-
perturbed system J a

0 . The red and blue lines indicate the heat
flow subject to perturbation calculated when ν (1) � τ−1 and
ν (1) � τ−1, respectively. Note that according to Eq. (46) we
have ν (1) = 4δ�/h̄. When first-order corrections to the Bohr
frequencies are accounted for, we observe a significant am-
plification of the steady-state heat current (blue line), whereas
standard response theory predicts only very small changes to
the heat flow.

An informative comparison between the limits is obtained
by plotting the response of the heat current at steady state as
a function of the average temperature T̄ Fig. 4(c). The red
line corresponds to the first-order correction δJ a

1 and the blue
to the difference between the new and old steady-state heat
flow, J a − J a

0 , of Eqs. (42) and (46). At low temperatures,
the behavior of the heat-current response in the two limits is
substantially different. This clearly indicates that the pertur-
bation has a significant effect on the dissipation caused by the
coupling to the baths. While in both cases the perturbation is
considered small with respect to the system Hamiltonian, its
relation to the relaxation rate results in a different response
behavior. In the high-temperature limit, the correction to the
Bohr frequencies becomes negligible, the heat-current re-
sponses in the two limits coincide and vanish asymptotically,
and the relaxation rate increases with temperature.

The fact that a first-order perturbation, with respect to the
system Hamiltonian, can lead to a nonlinear response of the
heat current is illustrated in Fig. 5. In this figure we plot
the steady-state heat current as function of the perturbation
strength δ. The black dashed line represents the heat current
of the unperturbed system given by Eq. (42), the red line
is the sum J a

0 + δJa
1 of Eqs. (42) and (43) that corresponds

to the limit ν (1) � τ−1, and the blue line is the heat cur-
rent given by Eq. (46) in the apposing limit ν (1) � τ−1. In
the low-temperature limit, small changes in the eigenvalues
lead to pronounced and nonlinear changes in the heat current
with respect to the unperturbed heat current. In the high-
temperature limit, as may be expected, the perturbation has
very little effect on the heat current, as it is dominated by the
temperature.
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FIG. 5. Steady-state heat current as function of perturbation strength. In black, the heat current of the unperturbed system given by Eq. (42).
In red, the sum J a

0 + δJa
1 of Eqs. (42) and (43) which correspond to the limit ν (1) � γ . In blue, the heat current given by Eq. (46) in the

apposing limit ν (1) � γ . The left caption corresponds to a low-temperature limit with the average temperature T̄ = 50h̄γ /kB, whereas the
right caption corresponds to the high-temperature limit with T̄ = 5 × 103 h̄γ /kB. The parameters γ− = γ+ = γ , ω = 103γ , g = 2 × 102γ , and
�T = 20h̄γ /kB.

IV. HEAT FLOWS, ENTROPY,
AND ENTROPY PRODUCTION

As stressed by Alicki and others [34,36,47,53], although
LGKS operators cannot generically be associated with an un-
derling Hamiltonian, a thermodynamic consistency requires
this association, as a consistent microscopic description of
dissipation, is not otherwise possible. To accomplish this
faithfully, the LGKS operators require information on the
eigenstructure of the system whose transitions they promote,
as encoded by the detailed balance relationship between their
transition rates. As we have shown above, to accurately obey
these constraints in the presence of a perturbation requires
care.

To illustrate the thermodynamic compliance of the theory
discussed above, we introduce the response of the heat flows,
entropy, and entropy production. While Eq. (23) provides the
response function of a general quantum observable of the
system, in this section we introduce the response of thermo-
dynamic functions which are state dependent. The entropy
production σ has contributions from changes in the internal
entropy of the system and from the exchange of heat with the
baths at different temperatures:

σ (t ) = d

dt
S(t ) −

∑
j

J α (t )

Tα

. (47)

Here S(t ) = −kBTr[ρ(t ) ln ρ(t )] is the von Neumann entropy
and J α is the heat flow from the α bath:

J α (t ) = −β−1
j 〈Dα† ln πα〉ρ = 〈Dα†H〉ρ. (48)

The state πα appearing in Eq. (48) is the thermal state of the
generator Dα with the temperature β−1

α = kBTα . The average,
on the other hand, is taken with respect to the time-dependent
state, 〈·〉ρ = Tr[ρ(t )·]. Noting that

d

dt
S(t ) = −kBTr[(Lρ(t )) ln ρ(t )], (49)

using D = ∑
α Dα , Eqs. (47) and (48) together with Spohn’s

inequality −Tr[(Lρ)(ln ρ − ln π )] � 0 [54], we conclude

that the entropy production is non-negative σ (t ) � 0 (see
Appendix D). In case the eigenvalues are perturbed, as dis-
cussed in Sec. III C, the modified LGKS generator of each
bath has a unique Gibbs-like stationary state that corresponds
to the perturbed spectrum. This is demonstrated explicitly in
the example of Sec. III D, in which the perturbation treatment
and the global approach coincide. Following similar argu-
ments discussed above, the perturbed entropy production is
non-negative as well. This is detailed in Appendixes C 2 and
D 1. We mention in passing that if particles are also exchanged
between the baths and the system, one needs to account for the
heat carried by them; see, for example, Ref. [55].

Next we derive the linear response for the case discussed
in Sec. III A, when the perturbation changes only the eigen-
vectors. At time t = 0, before the perturbation is applied, the
steady-state heat flow from the α bath is strictly given by
J α

0 = −β−1
α 〈Dα†

0 ln πα
0 〉. The first-order correction, J α

1 =
∂δJ α|δ=0, can be expressed in two useful forms. The first
reads

J α
1 (t ) = −β−1

α

∫ t

0

〈
L†

1�
†
0(τ )Dα†

0 ln πα
0

〉
dτ

−β−1
α

(〈
Dα†

1 ln πα
0

〉 + 〈
Dα†

0 ∂δ ln πα|δ=0
〉)
, (50)

where πα ∝ e−βα (H0+δV ) is a unique stationary state of the
generator Lα , see Appendix D for details. The second form,

J α
1 (t ) =

∫ t

0

〈
L†

1�
†
0(τ )Dα†

0 H0
〉
dτ + 〈

Dα†
1 H0

〉 + 〈
Dα†

0 V
〉
,

(51)

shows clearly that the sum of the heat flow from all the baths
returns the total energy change in the system.

The first-order correction of the von Neumann entropy,

S1 = ∂δS|δ=0 = −kBTr[ρ1 ln π0], (52)
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allows us to calculate the correction for the change in the
internal entropy, see Appendix D:

d

dt
S1(t ) = −kB(Tr[(L0ρ1) ln π0] + Tr[π0L†

1 ln π0])

= −kB

∫ t

0
〈L†

1�
†
0(τ )L†

0 ln π0〉dτ − kB〈L†
1 ln π0〉

= −kB〈L†
1�

†
0(t ) ln π0〉. (53)

In the second equality, we applied Eq. (21), and in the last,
we integrated using the relations �

†
0(τ )L†

0 = ∂
∂τ

�
†
0(τ ) and

�
†
0(0) = 1. Assuming the existence of a new stationary state,

one may observe that, as may be expected, for t → ∞ the
derivative d

dt S1 = 0. To show this, we assume ρ1(∞) = π1

such that L(π0 + π1) = O(δ2). Then, L0π1 = −L1π0, which
implies that for sufficiently long times, the first line in Eq. (53)
vanishes.

At equilibrium, the first-order correction to the entropy
production vanishes at all times σ1(t ) = 0. The change in the
von Neumann entropy equals the entropy flow from the bath.
For systems at NESS, this is no longer the case. The correction
can turn negative or positive.

V. OUTLOOK

Obtaining an accurate description of open quantum system
response to perturbation is imperative for understanding the
dynamics and manipulating the outcome and performance of
quantum devices. In this study we employed a microscopic
Hamiltonian approach based on physical arguments, rather
than a phenomenological approach, to develop a quantum
response theory. This distinction is crucial, as one cannot
associate an arbitrary Hamiltonian with a given dissipator
of the dynamics. The perturbation modifies the system and
the way it is perceived by the surroundings. As a result, the
dissipator is modified, and in the linear response, corrections
to the standard response function φ

(1,1)
A are already expected.

Combining stationary Hamiltonian perturbation theory
with the LGKS formalism, we developed a useful practical
scheme to obtain the response functions for both systems
at equilibrium or NESS. The approach reveals the role of
changes in the eigenvectors and eigenvalues as a result of the
perturbation. Eigenvector modifications lead to corrections of
the dissipator that can be expressed order by order in the per-
turbation parameter. It therefore allows us to derive response
functions that include new non-negligible terms. For closed
quantum systems at thermal equilibrium, our result recovers
the standard Kubo formula. The new terms can be interpreted
as a response to forces induced by the surroundings as a result
of the perturbation.

Changes in the eigenvalues lead to modifications of the
Bohr frequencies and in turn to modifications of the opera-
tors appearing in the dissipator. In this scenario, a distinction
between two limits is appropriate. First, when the system-bath
coupling is small compared to the perturbation, linear changes
to the eigenvalues lead to the system’s nonlinear response.
Although now the response function cannot be expressed by
correlation functions at equilibrium or NESS, the perturba-
tive approach introduces a genuine scheme, treating complex
Hamiltonians within the LGKS formalism.

In the opposing limit, the coarse-graining procedure that
leads to the LGKS master equation is not justified. However,
when the eigenvectors are not influenced by the perturbation
and since the perturbation is a assumed to be small com-
pared to the system-bath coupling, a local master equation
is justified and the linear response is strictly given by φ

(1,1)
A

of Eq. (24). Taking into account higher-order contributions
would make sense only if higher orders in the system-bath
coupling are considered as well. While in this work we fo-
cused on stationary perturbations, there is still a need for a
quantum response theory of time-dependent perturbations that
are derivable from a physical Hamiltonian perspective.
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APPENDIX A: THERMALIZING LGKS MASTER
EQUATION IN THE WEAK-COUPLING LIMIT

We briefly review the main ingredients for deriving the
master equation in the weak-coupling limit. More elaborate
derivations can be found in Refs. [48,51,56]. We assume a
quantum system with the Hamiltonian H0 = ∑

m Em|m〉〈m|
coupled to a thermal bath ρR with the Hamiltonian HR such
that [ρR, HR] = 0, via an interaction Hamiltonian HI = λS ⊗
R. Here, λ represents the coupling strength which is assumed
small, and S and R are linear operators of the system and bath,
respectively. The generalization to a system coupled to several
baths is straightforward and follows the linearization of the
master equation for initially uncorrelated baths.

Working in the interaction picture, the reduced dynamics of
the system is given by the partial trace over the bath degrees
of freedom,

ρ(t ) = �(t )ρ ≡ TrR[UI (t )ρ ⊗ ρRUI (t )†], (A1)

where

UI (t ) = T exp

{
−iλ

∫ t

0
S(s) ⊗ R(s) ds

}
(A2)

is the time-ordered propagator in the interaction picture,
which is defined using

S(t ) = eiH0t/h̄Se−iH0t/h̄, R(t ) = eiHRt/h̄Re−i/HRt/h̄. (A3)

As shown in Refs. [47,52], the dynamical map �(t ) can be
expressed by the cumulant expansion

�(t ) = exp
∞∑

n=1

[λnK (n)(t )]. (A4)

Since we assume the state of the bath is thermal, then
Tr[ρRR] = 0, which implies that the first-order cumulant
K (1) = 0. The Born approximation (weak coupling) consists
of terminating the cumulant expansion at n = 2; henceforth
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we denote K (2) ≡ K and

�(t ) = exp[λ2K (t ) + O(λ3)]. (A5)

One obtains

K (t )ρ =
∫ t

0
ds

∫ t

0
duF (s − u)

×
(

S(s)ρS†(u) − 1

2
{S(s)S†(u), ρ}

)
, (A6)

with the bath correlations F (s) = Tr[ρRR(s)R]. The Markov
approximation (in the interaction picture) means that for long
enough time (or short correlation time) one can use the fol-
lowing approximation:

K (t ) � tL, (A7)

where L is a LGKS generator. To find its form we first decom-
pose S(t ) into its Fourier components, which in the interaction
picture reads

S(t ) =
∑

ω

e−iωt S(ω), S(−ω) = S†(ω), (A8)

where the set {ω = En − Em} contains the Bohr frequencies of
the system Hamiltonian. This decomposition is equivalent to
the requirement [H0, S(ω)] = h̄ωS(ω). Expression (A7) then
reads

K (t )ρ =
∑
ω,ω′

(
S(ω)ρS†(ω′) − 1

2
{S(ω)S†(ω′), ρ}

)

×
∫ t

0
ei(ω′−ω)udu

∫ t−u

−u
F (τ )eiωτ dτ. (A9)

To bring (A9) to the LGKS form, two approximations are
carried out:∫ t−u

−u
F (τ )eiωτ dτ ≈ �(ω) =

∫ ∞

−∞
F (τ )eiωτ dτ � 0,

∫ t

0
ei(ω′−ω)udu ≈ tδωω′ . (A10)

The first approximation assumes the integral on the left-hand
side sample of the function F (τ ) to be of sufficient accuracy
in order to justify the Fourier transform on the right-hand side.
This approximation is valid for long times such that t � 1/ω.
The second assumption is typically a stronger condition than
the first and is referred to as the secular approximation. This
approximation is valid when t � max{1/|ω − ω′|}.

Finally, the Markovian master equation in the Schrödinger
picture reads

dρ

dt
= − i

h̄
[H, ρ] + Dρ,

Dρ ≡
∑

ω

�(ω)

(
S(ω)ρS†(ω) − 1

2
{S(ω)S†(ω), ρ}

)
. (A11)

APPENDIX B: TWO COUPLED ANHARMONIC
OSCILLATORS IN A LINEAR FIELD

1. Two coupled harmonic oscillators in a linear field

We derive the master equation for the unperturbed system,
two coupled harmonic oscillators A and B in a linear field:

H0 = h̄ωa†a + h̄ωb†b + g(a†b + ab†)

+ ε√
2

(a† + a) + ε√
2

(b† + b). (B1)

Each of the oscillators is coupled to a thermal bosonic bath
with temperature Ta and Tb, respectively. The bath Hamilto-
nian and its interaction to the system is denoted by

HB =
∑

j

h̄ω j r
†
a, j ra, j +

∑
j

h̄ω j r
†
b, j rb, j

HI = (a† + a)
∑

j

λa, j (r
†
a, j + ra, j )

+ (b† + b)
∑

j

λb, j (r
†
b, j + rb, j ). (B2)

Performing the transformation

a → 1√
2

(d+ − d−)

b → 1√
2

(d+ + d−), (B3)

the Hamiltonian reads

H0 = h̄ω+d†
+d+ + h̄ω−d†

−d− + ε(d+ + d†
+), (B4)

where ω± = ω ± g/h̄, the commutators [d±, d†
±] = 1, and all

other commutation relations are zero. The system-bath inter-
action Hamiltonian then reads

HI = 1√
2

[d†
+ + d+ − (d†

− + d−)]
∑

j

λa, j (r
†
a, j + ra, j )

+ 1√
2

[d†
+ + d+ + (d†

− + d−)]
∑

j

λb, j (r
†
b, j + rb, j ).

(B5)

Moving to the interaction picture we have

eiH0t/h̄d−e−iH0t/h̄ = d−e−iω−t

eiH0t/h̄d+e−iH0t/h̄ =
(

d+ − ε

h̄ω+

)
e−iω+t . (B6)

Next, the derivation of the master equation in the
weak-coupling limit can now be performed as pre-
sented in Appendix A. When the difference between
the new Bohr frequencies |ω+ − ω−| = 2g/h̄ is greater
than the relaxation rate, terms rotating at that frequency
are neglected and the two bosonic modes d+ and d−
can be considered as independent harmonic oscillators,
where each is coupled to both baths. The joint mas-
ter equation for the harmonic system including the linear
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field is then given by

L†
0(O) = i/h̄[H0, O] +

∑
�=±,α=a,b

Dα†
0,�(O) + D̃α†

0,+(O)

Dα†
0,�(O) = γ�(nα

� + 1)

2

(
d†

� Od� − 1
2 {d†

� d�, O})
+ γ�nα

�

2

(
d�Od†

� − 1
2 {d�d†

� , O})
D̃α†

0,+(O) = εγ+(nα
+ + 1)

2h̄ω+

(
d†

+O + Od+ − 1
2 {d†

+ + d+, O})
+ εγ+nα

+
2h̄ω+

(
d+O + Od†

+ − 1
2 {d+ + d†

+, O}).
(B7)

Here we defined the Bose-Einstein distribution nα
� =

[exp(h̄ω�βα ) − 1]−1, and the decay rates γ� ≡ γ (ω�), with
� = ± and α = a, b. The term D̃α†

0,+ arising from the linear
field can also be derived using the perturbation theory that
was introduced above. In this case, a first-order perturbation
of the linear field recovers the exact master equation, just like
a perturbation theory for the harmonic oscillator in a linear
field of a closed system.

2. Cubic perturbation

We study the linear response of the system above to a cubic
potential of the form

δV = δ�√
8

[a† + a − (b† + b)]3. (B8)

After the transformation,

δV = δ�(d†
− + d−)3. (B9)

Setting � ≡ h̄ω−, the first-order correction for the eigenval-
ues vanishes, whereas the eigenvectors

|ψn〉 = |n〉 − 3δ
√

(n + 1)3|n + 1〉 + 3δ
√

n3|n − 1〉

− δ

3

√
(n + 3)(n + 2)(n + 1)|n + 3〉

+ δ

3

√
n(n − 1)(n − 2)|n − 3〉 + O(δ2), (B10)

where |n〉 is the eigenstate of d†
−d−. Since the eigenstates

depend explicitly on the level number n, the validity of the
perturbation theory at high occupation number is determined
by the interplay between n and δ. At large n, i.e., n � 1,
the lowest order energy correction is proportional to δ2n2,
which should be smaller compared to the zero order that scales
linearly with n, which implies δ � n− 1

2 .
Next, up to first order in δ,

|ψn〉〈ψn| = |n〉〈n| + δ

(
−3

√
(n + 1)3

8
|n〉〈n + 1|

+ 3
√

n3|n〉〈n − 1|
− 1

3

√
(n + 3)(n + 2)(n + 1)|n〉〈n + 3|

+ 1

3

√
n(n − 1)(n − 2)|n〉〈n − 3| + H.c.

)

+ O(δ2). (B11)

The Fourier decomposition of the interaction Hamiltonian
with frequency ω− reads

S(ω−) =
∑

n

|ψn〉〈ψn|(d†
− + d−)|ψn+1〉〈ψn+1|

= d− + δ(d†2
− − 3d2

− + 6d†
−d− + 3)

≡ d− + δJ− (B12)

and satisfies

[H0 + δV, S(ω−)] = −h̄ω−S(ω−) + O(δ2)

[H0 + δV, S†(ω−)] = h̄ω−S†(ω−) + O(δ2). (B13)

Other frequencies will not contribute to the first order. Keep-
ing the order of δ we arrive at

L†
1(O) = i/h̄[V, O] +

∑
α=a,b

Dα†
1,−(O)

Dα†
1,−(O) = γ−(nα

− + 1)

2

(
d†

−OJ− − 1
2 {d†

−J−, O})
+ γ−nα

−
2

(
J−Od†

− − 1
2 {J−d†

−, O})
+ γ−(nα

− + 1)

2

(
J†
−Od− − 1

2 {J†
−d−, O})

+ γ−nα
−

2

(
d−OJ†

− − 1
2 {d−J†

−, O}). (B14)

Here we defined J− = (d†2
− − 3d2

− + 6d†
−d− + 3) and the

relaxation rate γ− ≡ γ (ω−).

a. Response of the observable a†a

To evaluate the response of the observable a†a to the an-
harmonicity, we first need to calculate a†a(t ), which takes the
analytic form

a†a(t ) = eL
†
0t a†a → eL

†
0t (d†

+d+ + d†
−d− − u)

= f 1
t d†

−d− + f 2
t x− + f 3

t y− + f 4
t u + f 5

t v

+ f 6
t d†

+d+ + f 7
t x+ + f 8

t y+ + f 9
t . (B15)

Here f i
t are time-dependent functions and we used the short

notation x± = d†
± + d±, y± = i(d± − d†

±), u = d†
+d− + d+d†

−
and v = i(d†

+d− − d+d†
−). Since L†

1 acts only on the manifold
(−), the terms of f 6

t to f 9
t will vanish. In order to calculate

φ
(1)
a†a(τ ) = 〈L†

1(a†a(τ ))〉, (B16)

we are left with evaluating

L†
1(d†

−d−) = −i(d†
−J− − J†

−d− + d†
−K− − K†

−d−)

+
∑

α=a,b

γ−
4

[(d†
−K− + K†

−d−)

− (d†
−J− + J†

−d−) − 12nα
−x−]

L†
1(x−) =

∑
α=a,b

γ−(nα
− + 1)

4
(J− + J†

−) − 3γ−(2nα
− + 1)

L†
1(y−) = 6ω−x2

− +
∑

α=a,b

γ−(nα
− + 1)

4
i(J− − J†

−)
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L†
1(u) = 3ω−y+x2

− − 3
γ−(2nα

− + 1)

2
x+

+
∑

α=a,b

γ−(nα
− + 1)

4
(d†

+J− + d+J†
−)

L†
1(v) = 3ω−x+x2

− + 3
γ−(2nα

− + 1)

2
y+

+
∑

α=a,b

γ−(nα
− + 1)

4
i(d†

+J− − d+J†
−), (B17)

with K− ≡ 2d†2
− + 6d2

−. Upon averaging with respect to the
NESS we are left with

〈L†
1(d†

−d−)〉 = 0

〈L†
1(x−)〉 =

∑
α=a,b

3γ−(nα
− + 1)〈d†

−d−〉

− 3γ−(3nα
− + 1)

2

〈L†
1(y−)〉 = 12ω−〈d†

−d−〉 + 6ω−

〈L†
1(u)〉 =

∑
α=a,b

6γ−(nα
− + 1)

4
〈x+〉〈d†

−d−〉

− 3γ−(3nα
− + 1)

4
〈x+〉

〈L†
1(v)〉 = 3ω−〈x+〉(2〈d†

−d−〉 + 1), (B18)

and using the steady-state averages

〈d†
−d−〉 = na

− + nb
−

2

〈d†
+d+〉 = na

− + nb
−

2
+

(
ε

h̄ω+

)2

〈d+〉 = − ε

h̄ω+
, (B19)

we arrive at the result

φ
(1)
a†a = φ

(1,1)
a†a + φ

(1,2)
a†a

φ
(1,1)
a†a (τ ) = f 3

τ 〈L†
1(y−)〉 + f 5

τ 〈L†
1(v)〉

φ
(1,2)
a†a (τ ) = f 2

τ 〈L†
1(x−)〉 + f 4

τ 〈L†
1(u)〉, (B20)

where

f 2
τ = ε

2h̄ω+

(
cos(ω−τ )e− γ−

2 τ − cos(2gτ/h̄)e− γ−+γ+
2 τ

)
f 3
τ = − ε

2h̄ω+

(
sin(ω−τ )e− γ−

2 τ + sin(2gτ/h̄)e− γ−+γ+
2 τ

)
f 4
τ = −1

2
cos(2gτ/h̄)e− γ−+γ+

2 τ

f 5
τ = −1

2
sin(2gτ/h̄)e− γ−+γ+

2 τ . (B21)

APPENDIX C: PERTURBED TWO COUPLED QUBITS

1. Unperturbed system

We derive the master equation for two coupled qubits with
the Hamiltonian Eq. (37). Each of the qubits A and B is

coupled to a heat bath with temperature Ta and Tb, respec-
tively, and is given by the Hamiltonian σ A

x ⊗ Ra + σ B
x ⊗ Rb

with Rχ = ∑
k λα,k (rχ,k + r†

χ,k ). The global master equation
reads

d

dt
ρ = −i/h̄[H0, ρ] +

∑
χ=a,b

∑
�=±

Dχ

0,�ρ, (C1)

with

Dχ

0,�ρ = γ j
(
nχ

� + 1
)(

χ�ρχ
†
� − 1

2 {χ†
� χ�, ρ})

+ γ�nχ

�

(
χ

†
� ρχ� − 1

2 {χ�χ
†
� , ρ}). (C2)

Here nχ

� = [exp(βχ h̄ω�) − 1]−1, with inverse temperature βχ

of the χ bath and ω± = ω ± g/h̄. The operators appearing in
Dχ

0,l satisfy the relation [H0, χ±] = −h̄ω±χ± with χ = a, b
and

a+ = (
σ A

− − σ A
z σ B

−
)
/2 a− = (

σ A
− + σ A

z σ B
−
)
/2

b+ = (
σ B

− − σ A
−σ B

z

)
/2 b− = (

σ B
− + σ A

−σ B
z

)
/2. (C3)

2. The limit ν(1) � τ−1

In this limit, oscillating terms with frequencies 4δ�/h̄ van-
ish and the master equation takes the form

d

dt
ρ = −i/h̄[H0 + δV, ρ] +

∑
i=a,b

4∑
j=1

Di
jρ, (C4)

with

Di
jρ = γ j

(
ni

j + 1
)(

S jρS†
j − 1

2 {S†
j S j, ρ})

+ γ jn
i
j

(
S†

j ρS j − 1
2 {S jS

†
j , ρ}). (C5)

Note that each generator Di
j has a unique Gibbs-like sta-

tionary state with temperature Ti and frequency ω j given in
Eq. (45). According to the proof presented in Appendix D 1,
it follows that the entropy production of the perturbed system
in this example is non-negative.

APPENDIX D: ENTROPY PRODUCTION
AND HEAT FLOWS

1. Entropy production and heat flows of a quantum system
coupled to multiple baths

In the weak-coupling limit, energy and entropy flows from
the baths can be associated to changes in the energy of the
quantum system determined by the partial generators Lα of
the α bath. The change in the energy of a quantum system
with Hamiltonian H can be written as〈

d

dt
H

〉
= Tr[ρL†H] =

∑
α

Tr[ρLα†H]

=
∑

α

Tr[ρDα†H] ≡
∑

α

J α. (D1)

Since we assume that Lα ≡ −i/h̄[H, ·] + Dα is the thermal
generator of the α bath, each Lα is a unique Gibbs-like
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stationary state πα ∝ e−βαH and we can write

J α = −kBTαTr[ρLα† ln πα] = −kBTαTr[(Lαρ) ln πα].
(D2)

At steady state the sum of all heat flows vanish as expected.
The change in the von Neumann entropy reads

d

dt
S = −kBTr[(Lρ) ln ρ]. (D3)

Putting these together we see that the entropy production is
always positive,

σ (t ) = d

dt
S −

∑
α

J α

Tα

=
∑

α

−kbTr[(Lαρ) ln ρ] + kBTr[Lα ln πα] � 0. (D4)

The inequality follows from the Spohn inequality
−Tr[(Lρ)(ln ρ − ln π )] � 0 that apply to any LGKS gener-
ator with a stationary state π . Since any Lα has a unique
stationary state �α then also the sum over α in Eq. (D4) is
non-negative.

2. First-order correction of the heat flows

The first-order corrections for the heat flow can be derived
in two ways. In the first, the starting point is by considering the
total energy change of the system. The first-order correction
reads

∂δTr[ρL†H]|δ=0 = Tr[ρ1L†
0H0] + Tr[π0L†

1H0] + Tr[π0L†
0V ]

= 〈L†
1�

†
0H0〉 + 〈L†

0V 〉. (D5)

In the last equality we used Eq. (21) for ρ1, the relation
∂τ�

†
0H0 = �

†
0L

†
0H0, and taking the integral explicitly. One

can also note that at steady state, ρ1 → π1, the energy change
vanishes as expected. This is an immediate consequence of the
relation L0π1 = −L1π0, which holds at steady state. Based on
the first equality in (D5) we can identify the correction from
the α bath:

J α
1 = Tr

[
ρ1Lα†

0 H0
] + Tr

[
π0Lα†

1 H0
] + Tr

[
π0Lα†

0 V
]

= −kBTα

(∫ t

0

〈
L†

1�
†
0(τ )Lα†

0 ln πα
0

〉
dτ + 〈

Lα†
1 ln πα

0

〉)

+ 〈
Lα†

0 V
〉
. (D6)

The second approach is by expanding Eq. (D2), which
gives

J α
1 = ∂δJ α|δ=0

= −kBTα

(∫ t

0

〈
L†

1�
†
0(τ )Lα†

0 ln πα
0

〉
dτ + 〈

Lα†
1 ln πα

0

〉)

− kBTα

〈
Lα†

0 ∂δ ln πα
∣∣
δ=0

〉
, (D7)

where πα is the new steady state of the generator Lα . As-
suming the α-bath generator Lα has a unique stationary state
πα ∝ e−βα (H0+δV ), Eqs. (D6) and (D7) become identical.

3. First-order correction of the entropy and entropy production

To prove Eq. (52) for the first-order correction of the von
Neumann entropy, we note that

S1 = ∂δS|δ=0 = −kbTr[ρ1 ln π0] − kbTr

[
ρ

d

dδ
ln ρ|δ=0

]
= −kBTr[ρ1 ln π0]. (D8)

To show that the term Tr[ρ d
dδ

ln ρ|δ=0] = 0, we use the
expansion

ρ(δ)
d

dδ
ln ρ(δ) = dρ

dδ
+ 1

2
ρ−1

[
ρ,

dρ

dδ

]

+ 1

3
ρ−2

[
ρ,

[
ρ,

dρ

dδ

]]
+ · · · , (D9)

the trace property, and the fact that Tr[ρ1] = 0.
Taking the time derivative and keeping first-order correc-

tions, we arrive at

d

dt
S1(t ) = −kB(Tr[L0(ρ1(t )) ln π0] + Tr[L1(π0) ln π0])

= −kB

(∫ t

0
〈L†

1�
†
0(τ )L†

0 ln π0〉dτ + 〈L†
1 ln π0〉

)

= −kB〈L†
1�

†
0(t ) ln π0〉. (D10)

In the second equality, we used Eq. (21), and in the last equal-
ity we used �

†
0(τ )L†

0 ln π0 = ∂
∂τ

�
†
0(τ ) ln π0 and �

†
0(0) = 1.

Assuming the existence of a new new stationary state, one
can note that for t → ∞ the derivative d

dt S1 = 0. To see
this we assume ρ1(∞) = π1 such that L(π0 + π1) = 0. Then,
L0π1 = −L1π0, which implies that for long enough times the
first line in Eq. (D10) vanishes.

The first-order correction to the entropy production σ1(t ) is
now given by

σ1(t ) = d

dt
S1 −

∑
j

J α
1

Tα

= −kB

∑
α

Tr
[
Lα

0 (ρ1(t )) ln π0
] + Tr

[
Lα

1 (π0) ln π0
]

+ kB

∑
α

Tr
[
Lα

0 (ρ1(t )) ln πα
0

] + Tr
[
Lα

1 (π0) ln πα
0

]
+ Tr

[
Lα

0 (π0)∂δ ln πα|δ=0
]

= −kB

∑
α

∫ t

0

〈
L†

1�
†
0(τ )Lα†

0

(
ln π0 − ln πα

0

)〉
dτ

+ 〈
Lα†

1

(
ln π0 − ln πα

0

)〉 − βα

〈
Lα†

0 V
〉
. (D11)

It is worth noticing that at equilibrium (single bath), the first
order of the entropy production σ1(t ) = 0. The change in the
von Neumann entropy equals the entropy flow from the bath.
For nonequilibrium systems this is no longer the case.

023252-14



RESPONSE THEORY FOR NONEQUILIBRIUM … PHYSICAL REVIEW RESEARCH 3, 023252 (2021)

[1] R. Zwanzig, Nonequilibrium Statistical Mechanics (Oxford
University Press, Oxford, England, 2001).

[2] R. Kubo, A stochastic theory of line-shape and relaxation, in
Fluctuation, Relaxation and Resonance in Magnetic Systems,
edited by D. Ter Haar (Oliver & Boyd, Edinburgh, 1962),
Vol. 23.

[3] J. Klauder and P. Anderson, Spectral diffusion decay in spin
resonance experiments, Phys. Rev. 125, 912 (1962).

[4] S. Mukamel, Principles of Nonlinear Optical Spectroscopy
(Oxford University Press, New York, 1995), Vol. 6.

[5] R. Kubo, M. Toda, and N. Hashitsume, Statistical Physics
II: Nonequilibrium Statistical Mechanics (Springer Science &
Business Media, New York, 2012), Vol. 31.

[6] J. Hone, M. Whitney, C. Piskoti, and A. Zettl, Thermal con-
ductivity of single-walled carbon nanotubes, Phys. Rev. B 59,
R2514 (1999).

[7] S. K. Vadlamani, S. Agarwal, D. T. Limmer, S. G. Louie,
F. R. Fischer, and E. Yablonovitch, Tunnel-FET switching is
governed by non-Lorentzian spectral line shape, Proc. IEEE,
108, 1235 (2020).

[8] G. Lindblad, Expectations and entropy inequalities for finite
quantum systems, Commun. Math. Phys. 39, 111 (1974).

[9] V. Gorini, A. Kossakowski and E. C. G. Sudarshan, Completely
positive dynamical semigroup of N-level system, J. Math. Phys.
17, 821 (1976).

[10] V. Gorini and A. Kossakowski, N-level system in contact with a
singular reservoir, J. Math. Phys. 17, 1298 (1976).

[11] R. Kubo, J. Phys. Soc. Jpn. 12, 550 (1957).
[12] H. B. Callen and T. A. Welton, Irreversibility and generalized

noise, Phys. Rev. 83, 34 (1951).
[13] G. Agarwal, Fluctuation-dissipation theorems for systems in

non-thermal equilibrium and applications, Z. Phys. A 252, 25
(1972).

[14] G. Bochkov and Y. E. Kuzovlev, Nonlinear fluctuation-
dissipation relations and stochastic models in nonequilibrium
thermodynamics: I. Generalized fluctuation-dissipation theo-
rem, Physica A 106, 443 (1981).

[15] P. Hänggi and H. Thomas, Stochastic processes: Time evo-
lution, symmetries and linear response, Phys. Rep. 88, 207
(1982).

[16] U. M. B. Marconi, A. Puglisi, L. Rondoni, and A. Vulpiani,
Fluctuation–dissipation: Response theory in statistical physics,
Phys. Rep., 461, 111 (2008).

[17] D. Andrieux and P. Gaspard, Fluctuation theorem for transport
in mesoscopic systems, J. Stat. Mech. (2006) P01011.

[18] U. Basu, M. Krüger, A. Lazarescu, and C. Maes, Frenetic as-
pects of second order response, Phys. Chem. Chem. Phys. 17,
6653 (2015).

[19] C. Y. Gao and D. T. Limmer, Nonlinear transport coefficients
from large deviation functions, J. Chem. Phys. 151, 014101
(2019).

[20] D. Lesnicki, C. Y. Gao, B. Rotenberg, and D. T. Limmer, Field-
Dependent Ionic Conductivities from Generalized Fluctuation-
Dissipation Relations, Phys. Rev. Lett. 124, 206001 (2020).

[21] U. Seifert and T. Speck, Fluctuation-dissipation theorem in
nonequilibrium steady states, Europhys. Lett. 89, 10007 (2010).

[22] A. Bruch, M. Thomas, S. Viola Kusminskiy, F. von Oppen,
and A. Nitzan, Quantum thermodynamics of the driven resonant
level model, Phys. Rev. B 93, 115318 (2016).

[23] M. A. Ochoa, N. Zimbovskaya, and A. Nitzan, Quantum ther-
modynamics for driven dissipative bosonic systems, Phys. Rev.
B 97, 085434 (2018).

[24] A. Bruch, C. Lewenkopf, and F. von Oppen, Landauer-Büttiker
Approach to Strongly Coupled Quantum Thermodynamics:
Inside-Outside Duality of Entropy Evolution, Phys. Rev. Lett.
120, 107701 (2018).

[25] W. Dou, M. A. Ochoa, A. Nitzan, and J. E. Subotnik, Universal
approach to quantum thermodynamics in the strong coupling
regime, Phys. Rev. B 98, 134306 (2018).

[26] W. Dou, J. Bätge, A. Levy, and M. Thoss, Universal approach
to quantum thermodynamics of strongly coupled systems under
nonequilibrium conditions and external driving, Phys. Rev. B
101, 184304 (2020).

[27] R. Chetrite and K. Mallick, Quantum fluctuation relations for
the Lindblad master equation, J. Stat. Phys. 148, 480 (2012).

[28] L. Campos Venuti and P. Zanardi, Dynamical response the-
ory for driven-dissipative quantum systems, Phys. Rev. A 93,
032101 (2016).

[29] M. Mehboudi, A. Sanpera, and J. M. Parrondo, Fluctuation-
dissipation theorem for non-equilibrium quantum systems,
Quantum 2, 66 (2018).
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