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Abstract
Existing parallel MRI methods are limited by a fundamental trade-off in that suppressing noise
introduces aliasing artifacts. Bayesian methods with an appropriately chosen image prior offer a
promising alternative; however, previous methods with spatial priors assume that intensities vary
smoothly over the entire image, resulting in blurred edges. Here we introduce an edge-preserving
prior (EPP) that instead assumes that intensities are piecewise smooth, and propose a new approach
to efficiently compute its Bayesian estimate. The estimation task is formulated as an optimization
problem that requires a non-convex objective function to be minimized in a space with thousands of
dimensions. As a result, traditional continuous minimization methods cannot be applied. This
optimization task is closely related to some problems in the field of computer vision for which discrete
optimization methods have been developed in the last few years. We adapt these algorithms, which
are based on graph cuts, to address our optimization problem. The results of several parallel imaging
experiments on brain and torso regions performed under challenging conditions with high
acceleration factors are shown and compared with the results of conventional sensitivity encoding
(SENSE) methods. An empirical analysis indicates that the proposed method visually improves
overall quality compared to conventional methods.

Keywords
parallel imaging; edge-preserving priors; Bayesian reconstruction; SENSE; graph cuts;
regularization

The use of multiple coils in MRI to reduce scan time (and thus motion artifacts) has become
quite popular recently. Current parallel imaging techniques include, inter alia, sensitivity
encoding (SENSE) (1-3), simultaneous acquisition of spatial harmonics (SMASH) (4,5), and
generalized autocalibrating partially parallel acquisitions (GRAPPA) (6). A good comparative
review was presented in Ref. 7. While all of these methods are mathematically similar, SENSE
is the reconstruction method that performs exact matrix inversion (8) and is the focus of this
work. These schemes use multiple coils to reconstruct (unfold) the unaliased image from
undersampled data in SnFourier or k-space. Successful unfolding relies on receiver diversity
(i.e., each coil “sees” a slightly different image because each coil has a different spatial
sensitivity profile).
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Unfortunately, the conditioning of the encoding system becomes progressively worse with
increasing acceleration factors. Therefore conventional parallel imaging methods, especially
at accelerations above 3, suffer from a fundamental noise limitation in that unfolding is
achieved at the cost of noise amplification. This effect depends on the coil geometry and
acceleration factor, and is best captured in terms of the g-map, which is a spatial mapping of
the noise amplification factor. Reconstructed data can be further degraded in practice by
inconsistencies between encoding and decoding sensitivity due to physiological motion,
misalignment of coils, and insufficient resolution of sensitivity calibration lines. In this paper
we propose a novel Bayesian approach whereby an edge-preserving spatial prior is introduced
to reduce noise and improve the unfolding performance of parallel imaging reconstruction.
The resulting estimation task is formulated as an optimization problem whose solution is
efficiently obtained by graph-based algorithms.

Methods to reduce noise and artifacts can be grouped into two classes: 1) those that handle
sensitivity errors using a maximum-likelihood (9) or total least squares (10) approach, and 2)
those that exploit some prior information about the imaging target via regularization. While
regularization is generally effective for solving ill-posed problems, existing methods rarely
exploit the spatial dependencies between pixels. Most techniques either impose minimum norm
solutions (as in regularized SENSE (11-13)), or require a prior estimate of the target. Temporal
priors for multiframe imaging have been reported (14-16), and a generalized series model was
developed with the use of reduced-encoding imaging with generalized-series reconstruction
(RIGR) (17,18). The limitations of these regularization techniques are clear: regularized
SENSE makes unrealistic assumptions about the image norm, while methods that rely on a
prior estimate of the imaging target (called the mean or reference image) (12,13,17,18) must
be carefully registered to the target. In practice, the use of such strong reference priors is
vulnerable to errors in their estimation, leading to reconstruction artifacts. Temporal priors are
obviously restricted to dynamic imaging. Even though the minimum norm prior reduces noise,
it is unsatisfactory for de-aliasing in parallel imaging because it can be shown by simple algebra
that it favors a solution with equally strong aliases. For example, suppose we have an
underdetermined aliasing system y = x1 + x2. Then the minimum norm solution is x = x2 = y/
2, which amounts to alias energy being equal to the desired signal energy. This is why
conventional regularization techniques are good at reducing noise but countereffective for
removing aliasing. The introduction of spatial priors is essential for the latter task. This is
possible within the Tikhonov regularization framework (13), as long as it is assumed that
intensities vary smoothly over the entire imaging target.

Our approach uses a spatial prior on the image that makes much more realistic assumptions
regarding smoothness. Our prior model is quite general and has very few parameters; hence,
little or no effort is required to find this prior, in contrast to image-based or temporal priors.
The primary challenge in our formulation is a computational one: Unlike regularized SENSE,
there is no closed-form solution, and we need to minimize a nonconvex objective function in
a space with thousands of dimensions. However, we developed an efficient algorithm to solve
this problem by relying on some powerful discrete optimization techniques that were recently
developed in the computer-vision community (19,20,39).

We apply an edge-preserving prior (EPP) that assumes that voxel intensity varies slowly within
regions but (in contrast to smoothness-enforcing Tikhonov regularization) can change
discontinuously across object boundaries (21). Since our piecewise smooth model imposes
relationships only between neighboring voxels, it can be used for a very wide range of images
(for instance, it is applicable to any MR image regardless of contrast or modality). EPPs have
been studied quite extensively in the fields of statistics (22), computer vision (21,23,24), and
image processing (25), and are widely considered to be natural image models.
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The computational challenge of EPPs is too difficult for conventional minimization algorithms,
such as conjugate gradients or steepest descent. However, EPPs have become widely used in
the field of computer vision in the last few years, due primarily to the development of powerful
optimization techniques based on graph cuts (19,20). Graph cuts are discrete methods whereby
the optimization task is reformulated as the problem of finding a minimum cut on an
appropriately constructed graph1. The minimum-cut problem, in turn, can be solved very
efficiently by modern graph algorithms (26).

While graph-cut algorithms can only be applied to a restricted set of problems (19), they have
proved to be extremely effective for applications such as stereo matching (20), where they form
the basis for most of the top-performing algorithms (27). Although standard graph-cut
algorithms (19,20) cannot be directly applied to minimize our objective function, we have
developed a graph-cut reconstruction technique based on a subroutine from Hammer et al.
(36) that is quite promising. Preliminary parallel imaging results indicate the potential and
promise of this algorithm, which we call “edge-preserving parallel imaging with graph-cut
minimization” (EPIGRAM).

THEORY
Summary of Parallel Imaging

Suppose the target image is given by X(r), where r is the 2D spatial vector, and k is a point in
k-space. The imaging process for each coil l (from L coils) is given by

[1]

where y1 is the (undersampled) k-space data seen by the l-th coil, and Sl is its sensitivity
response. For Cartesian sampling it is well known that Eq. [1] reduces to folding in image
space, such that each pixel p in Yl, the Fourier transform of y1, results from a weighted sum of
aliasing pixels in X. If phase-encoding steps are reduced by R times, the N × M image will fold
over into N/R × M aliased coil outputs. This can be easily verified by discretizing Eq. [1] and
taking the Fourier transform. For i=1, K, N;  = 1 , K, N/R; j=1, K, M; define p=(i, j),

. We then have

[2]

where we denote [p] = (mod(i, N/R), j). Note that as defined,  spans the pixels of Yl, and p
spans the pixels of X. This process is depicted in Fig. 1. Over the entire image this has a linear
form:

[3]

where vector x = {xp|p ∈ P} is a discrete representation of the intensities of the target image
X(r), p indexes the set P of all pixels of the image, and vector y contains the aliased images
“seen” by the receiver coils. Matrix E encodes coil sensitivity responses and is a L × R block-
diagonal matrix of the form shown in Fig. 2.

SENSE takes a least-squares approach via the pseudo-inverse of E:

[4]

1A graph is a set of objects called “nodes” joined by links called “edges.” The relationship between graph cuts and optimization problems
is described in more detail at the end of this section, and in Refs. 19 and 20.
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This is the maximum-likelihood estimate under the assumption of additive white Gaussian
noise (28). Unfortunately, inverse problems of this form become progressively ill-posed with
increasing acceleration, leading to noise amplification and insufficient de-aliasing in many
cases. To reduce these effects and stabilize the inversion in SENSE, a Tikhonov-type
regularization is introduced (10,13):

[5]

where the first term enforces agreement with observed data, and the second penalizes
nonsmooth solutions through an appropriate matrix A and some prior reference image xr. Its
closed-form solution is

[6]

Equations [4] and [6] can both be computed very quickly for the Cartesian case because they
readily break up into independent L × R sub-problems (for the standard choice of A = I, the
identity matrix). If there is no reference image (i.e., xr = 0), then with A = I this computes the
minimum norm solution (11), while more general Tikhonov forms of A impose global
smoothness.

Bayesian Reconstruction
Even with regularization there is a noise/unfolding limit. If μ is too small, there will be
insufficient noise reduction. If μ is too high, noise will be removed but residual aliasing will
occur. This fundamental aliasing/noise limit cannot be overcome unless more information
about the data is exploited. This naturally suggests a Bayesian approach, which was the subject
of a recent work (29). Given the imaging process (Eq. [3]), observation y, and the prior
probability distribution Pr(x) of the target image x, Bayesian methods maximize the posterior
probability:

[7]

The first right-hand term, called the likelihood function, comes from the imaging model (Eq.
[3]), and the second term is the prior distribution. In the absence of a prior, this reduces to
maximizing the likelihood, as performed by SENSE. Assuming that n = y − Ex is white
Gaussian noise, Eq. [3] implies a simple Gaussian distribution for Pr(y/x):

[8]

Similarly, we can write the prior, without loss of generality, as
[9]

Depending on the term G(x), this form can succinctly express both the traditional Gaussianity
and/or smoothness assumptions, as well as more complicated but powerful Gaussian or
Gibbsian priors modeled by Markov random fields (MRFs) (23,24). The posterior is maximized
by

[10]

which is the maximum a posteriori (MAP) estimate. Conventional image priors impose spatial
smoothness; hence, this can be viewed as the sum of a data penalty and a smoothness penalty.
The data penalty forces x to be compatible with the observed data, and the smoothness penalty
G(x) penalizes solutions that lack smoothness. Traditionally, only smoothness penalties of the
kind G(x) = ∥Ax∥2 have been used, where A is a linear differential operator. This corresponds

Raj et al. Page 4

Magn Reson Med. Author manuscript; available in PMC 2008 April 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



to Eq. [6] if the reference image xr = 0, and is commonly known as Tikhonov regularization
(28).

However, this smoothness penalty assumes that intensities vary smoothly across the entire
image. Such an assumption is inappropriate for most images because although most image data
change smoothly, they have discontinuities at object boundaries. As a result, the Tikhonov
smoothness penalty causes excessive edge blurring, while we seek an edge-preserving G. To
illustrate this, we show in Fig. 3 a single noisy image row and two possible strategies to denoise
it. The difference in performance between global smoothing (obtained by Gaussian blurring)
and edge-preserving smoothing (via median filtering) is obvious: although both denoise the
signal, one oversmooths sharp transitions while the other largely preserves them.

EPPs in MRI
A natural class of edge-preserving smoothness penalties is

[11]

The spatial neighborhood system Ns consists of pairs of adjacent pixels, usually the eight-
connected neighbors. The separation cost V(xp, xq) gives the cost to assign intensities xp and
xq to neighboring pixels p and q, and the form of this prior can be justified in terms of MRFs
(23). Typically, V has a nonconvex form, such as V(xp, xq) = λ min(|xp − xq|, K), for some metric
| · | and constants K, λ. Such functions effectively assume that the image is piecewise smooth
rather than globally smooth. Figure 4 shows two possible choices of V: the right one preserves
edges, and the left one does not. For MR data the truncated linear model appears to work best,
and seems to present the best balance between noise suppression (due to the linear part) and
edge-preservation (due to truncation of penalty function). Therefore, neighboring intensity
differences within the threshold K will be treated as noise and penalized accordingly. However,
larger differences will not be further penalized, since they occur, most likely, from the voxels
being separated by an edge. Note that this is very different from using a traditional convex
distance, such as the L2 norm, which effectively forbids two adjacent pixels from having very
different intensities, for the separation cost. Although the L2 separation cost does not preserve
edges, it is widely used because its convex nature vastly simplifies the optimization problem.

A possible problem with the truncated linear penalty is that it can lead to some loss of texture,
since the Bayesian estimate will favor images with piecewise smooth areas over those with
textured areas. In the Discussion we point out examples of this feature and suggest ways to
mitigate it.

Parallel Imaging As Optimization
The computational problem we face is to efficiently minimize

[12]

From Ref. 4 we know that E has a diagonal block structure and decomposes into separate
interactions between R aliasing voxels, according to Eq. [2]. Let us first define for each pixel

 in Yl the set of aliasing pixels in X that contribute to , as follows: For image X
of size M × N undergoing R-fold acceleration, aliasing occurs only in the phase-encode
direction, between aliasing pixels. Then

[13]
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This can be intuitively understood by examining the aliasing process depicted in Fig. 1. After
some rearrangement, this expands to

[14]

where we define the aliasing neighborhood set Na = {(p, p′), [p] = [p′], p ≠ p′} over all aliasing
pairs. Grouping terms under single pixel and pairwise interactions, we get

for appropriately chosen functions b(p), c(p), and d(p,p′). The first term is a constant and can
be removed from the objective function, the next two terms depend only on a single pixel, and
the last term depends on two pixels (both from the aliasing set) at once. This last term, which
we will refer to as a “cross term,” arises due to the nondiagonal form of our system matrix E.

To perform edge-preserving parallel imaging, we need to minimize our objective function:

[15]

Let us first consider the simpler case of our objective function that would arise if E were
diagonal. In this case there would be no cross terms (i.e., d(p,p′) = 0), which appears to simplify
the problem considerably. Yet even this simplification results in a difficult optimization
problem. There is no closed-form solution, the objective function is highly nonconvex, and the
space over which we are minimizing has thousands of dimensions (one dimension per pixel).
Worse still, minimizing such an objective function is almost certain to require an exponentially
large number of steps2.

If E were diagonal, however, the objective function would be in a form that has been extensively
studied in the computer-vision field (10,20,27), where significant recent progress has been
made. Specifically, a number of powerful methods have been designed that employ a discrete
optimization technique called “graph cuts” (20), which we briefly summarize in the next
section. Graph cuts are a powerful means of minimizing E(x) in Eq. [15], and can be easily
applied as long as E is diagonal (19). The presence of off-diagonal entries in E gives rise to
cross terms in our objective function, making traditional graph-cut algorithms (19,20)
inapplicable, and requires an extension, as described in Materials and Methods.

Optimization With Graph Cuts
One can minimize objective functions similar to Eq. [15] by computing the minimum cut in
an appropriately defined graph using the graph-cut technique. This technique was first used
for images by Greig et al. (30), who used it to optimally denoise binary images. A recent series
of papers (19,20) extended the method significantly, and it can now be used for problems such
as stereo matching (20,31) and image/video synthesis (32) in computer vision, as well as
medical image segmentation (33) and fMRI data analysis (34).

2More precisely, it was shown in Ref. 20 to be NP-hard, which means that it is in a class of problems that are widely believed to require
exponential time in the worst case.

Raj et al. Page 6

Magn Reson Med. Author manuscript; available in PMC 2008 April 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The basic idea is to first discretize the continuous pixel intensities xp into a finite discrete set
of labels L = {1, K, Nlabels}. Since we focus on MR reconstruction problems, we will assume
that the labels are always intensities and use the terms interchangeably; however, graph-cut
algorithms are employed for a wide variety of problems in computer vision and graphics, and
often use labels with a more complex meaning. Then instead of minimizing over continuous
variables xp, we minimize over individual labels α= L, allowing any pixel in the image to take
the label α. In practice the dynamic range of intensities may have to be reduced for
computational purposes, although this is not a requirement of our technique. The most powerful
graph-cut method is based on expansion moves. Given a labeling x = {xp|p ∈ P} and a label
α, an α-expansion χ = {χp|p∈P} is a new labeling whereby χp is either xp or α. Intuitively, one
constructs χ from x by giving some set of pixels the label α. The expansion-move algorithm
picks a label α, finds the lowest cost χ, and moves there. This is pictorially depicted in Fig. 5.

The algorithm converges to a labeling where there is no α-expansion that reduces the value of
the objective function E for any α. The key subroutine in the expansion move algorithm is to
compute the α-expansion χ that minimizes E. This can be viewed as an optimization problem
over binary variables, since during an α-expansion each pixel either keeps its old label or moves
to the new label α. This is also shown in Fig. 5. An α-expansion χ is equivalent to a binary
labeling

[16]

Just as for a labeling χ there is an objective function E, for a binary labeling b there is an
objective function B. More precisely, assuming χ is equivalent to b, we define B by

We have dropped the arguments x, α for clarity, but the equivalence between the α-expansion
χ and the binary labeling b clearly depends on the initial labeling x and on α.

In summary, the problem of computing the α-expansion that minimizes E is equivalent to
finding the b that minimizes the binary objective function B. The exact form of B will depend
on E. The minimization of E proceeds via successive binary minimizations corresponding to
expansion moves. The binary minimization subroutine is somewhat analogous to the role of
line-searching in the conjugate-gradient algorithm, where a local minimum is repeatedly
computed over different 1D search spaces. With graph cuts, however, the binary subroutine
efficiently computes the global minimum over 2|p| candidate solutions, where |P| is the number
of pixels in the image. Therefore, in contrast to traditional minimization algorithms, such as
conjugate gradients, trust region, simulated annealing, etc. (28), graph cuts can efficiently
optimize highly nonconvex objective functions that arise from edge-preserving penalties
(19).

Consider a binary objective function of the form

[17]

Here B1 and B2 are functions of binary variables. The difference is that B1 depends on a single
pixel, while B2 depends on pairs of pixels. Graph-cut methods minimize B by reducing the
computation of a minimum cut on an appropriately constructed graph. The graph consists of
nodes that are voxels of the image as well as two special terminal nodes, as shown in Fig. 6.
The voxel nodes are labeled p, q, r, etc., and terminal nodes are indicated as S and T. All nodes
are connected to both terminals via edges, each of which have weights obtained from the B1
terms above. Nodes are also connected to each other via edges with weights obtained from the
pairwise interaction term B2.
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One can solve the binary optimization problem by finding the minimum cut on this graph
(20). A cut is defined as a partition of the graph into two connected subgraphs, each of which
contains one terminal. The minimum cut minimizes the sum of the weights of the edges between
the subgraphs. Fast algorithms to find the minimum cut using max-flow methods (26) are
available. It was shown in Ref. 19 that the class of B that can be can be minimized exactly by
computing a minimum cut on such a graph satisfies the condition

[18]

If B2(x, y) satisfies Eq. [18], then it is said to be “submodular” with respect to x and y, and a
function B is called submodular if it consists entirely of submodular terms3. Single-variable
terms of the form of B1 are always sub-modular. We will refer to the set of all pixel pairs for
which B2(bp, bq) are submodular as the submodular set S.

Previous applications of graph cuts were designed for diagonal E. This leads to no cross terms,
and thus B1 comes solely from the data penalty and B2 comes only from the smoothness penalty.
It was shown in Ref. 20 that if the separation cost is a metric, then B2 satisfies Eq. [18]. Many
edge-preserving separation costs are metrics, including the truncated cost V used here and
shown in Fig. 2b (see Ref. 20 for details). However, the situation is more complicated in parallel
MR reconstruction, where E is nondiagonal. As a result, the data penalty has pairwise
interactions due to the presence of the cross terms d(p, p′) in Eq. [15]. This also follows from
Fig. 1, which shows how this data penalty arises from the joint effect of both aliasing voxels
p and p′ in the image.

It was previously shown (35) that the binary optimization problem arising from Eq. [15] is in
general submodular only for a small subset of all cross terms. This necessitates the use of a
subroutine (from Ref. 36) to accommodate cross terms arising in MR reconstruction, as
described in the next section.

MATERIALS AND METHODS
New MR Reconstruction Algorithm Based on Graph Cuts

The subroutine we use to find a good expansion move is closely related to relaxation methods
for solving integer programming problems (26). In these methods, if the linear programming
solution obeys the integer constraints, it solves the original integer problem. We compute an
expansion move by applying the algorithm of Hammer et al. (36), which was introduced in the
field of computer vision in early 2005 by Kolmogorov and Rother (39). The theoretical analysis
and error bounds presented in Ref. 40 help explain the strong performance of this construction
for MR reconstruction.

For each pixel p, we have a binary variable bp that is 1 if p acquired the new label α, and 0
otherwise. We introduce a new binary variable b̃p, which has the opposite interpretation (i.e.,
it will be 0 if p acquires the new label α, and 1 otherwise). We call a pixel “consistent” if b̃p =
1 ∓ bp . Instead of our original objective function B(b), we minimize a new objective function
b̃(b,b̃), where b̃ is the set of new binary variables b̃ = {b̃p|p∈P}. B ̃(b,b̃) is constructed so that
b̃ = 1 − b ⇒ B̃(b,  b̃) = B(b) (in other words, if every pixel is consistent, the new objective
function will be the same as the old one). Specifically, we define our new objective function
by

3Some authors (21) use the term “regular” instead of “submodular.”
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[19]

Here the functions B1( · ) and B2( · ) come from our original objective function B in Eq. [17].

Importantly, our new objective function B̃(b, b̃) is sub-modular. The first summation only
involves B1( · ), while for the remaining two terms simple algebra shows that

As a result, the last two summations in Eq. [19] contain only submodular terms. Thus B̃(b, b̃)
is submodular, and can be easily minimized using the binary graph-cut subroutine. In summary,
minimizing B̃(b, b̃) is exactly equivalent to minimizing our original objective function B, as
long as we obtain a solution in which every pixel is consistent. We note that our technique is
not specific to MR reconstruction, but can compute the MAP estimate of an arbitrary linear
inverse system under an edge-preserving prior GEP.

While we cannot guarantee that all pixels are consistent, in practice this is true for the vast
majority of pixels (typically well over 95%). In our algorithm we simply allow pixels that are
not consistent to keep their original labels rather than acquire the new label α. However, even
if there are pixels that are not consistent, this subroutine has some interesting optimality
properties. It is shown in Ref. 36 that any pixel that is consistent is assigned its optimal label.
As a result, our algorithm finds the optimum expansion move for the vast majority of pixels.

Convergence Properties
We investigated the convergence properties of the proposed technique using simulated data
from a Shepp-Logan phantom, with intensities quantized to integer values between 0 and 255.
We computed the objective function (Eq. [15]) achieved after each iteration for 3× acceleration
and eight coils.

In Vivo Experiments: Setup and Parameters
High-field-strength (4 Tesla) structural MRI brain data were obtained using a whole-body
scanner (Bruker/Siemens Germany) equipped with a standard birdcage, eight-channel, phased-
array, transmit/receive head coil localized cylindrically around the superior–inferior (S-I) axis.
Volumetric T1-weighted images (1 × 1 × 1 mm3 resolution) were acquired using a
magnetization-prepared rapid gradient-echo (MPRAGE) sequence with TI/TR = 950/2300 ms
timing and a flip angle of 8°. The total acquisition time for an unaccelerated data set was about
8:00 min. In a separate study, images of the torso region were acquired using a gradient-echo
sequence with a flip angle of 60° and TE/TR of 3.3/7.5 ms on a GE 1.5T Excite-11 system.
Several axial and oblique slices of full-resolution data (256 × 256) were acquired with an eight-
channel upper body coil arranged cylindrically around the torso.

To allow quantitative and qualitative performance evaluations, we acquired all data at full
resolution and with no acceleration. The aliased images for acceleration factors of 3–5 were
obtained by manually undersampling in k-space. In each case we also computed the full rooted
sum of squares (RSOS) image after dividing the coil data by the relative sensitivity maps
obtained from calibration lines. We used the self-calibrating strategy for sensitivity estimation,
whereby the center of k-space is acquired at full density and used to estimate low-frequency
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(relative) sensitivity maps. We used the central 40 densely sampled calibration lines for this
purpose. These lines were multiplied by an appropriate Kaiser-Bessel window to reduce ringing
and noise, zero-padded to full resolution, and transformed to the image domain. We estimated
the relative sensitivity by dividing these images by their RSOS. To avoid division by zero, we
introduced a small threshold in the denominator, which amounted to 5% of the maximum
intensity. This also served effectively to make the sensitivity maps have zero signal in
background regions. However, further attempts to segment background/foreground from these
low-frequency data proved unreliable in some cases, and we did not implement background
segmentation.

Algorithmic parameters were chosen empirically. It was sufficient to quantize intensity labels
to Nlabels = 256, since the resulting quantization error is much smaller than observed noise.
Since the computational cost of EPIGRAM grows linearly with Nlabels, fewer labels are
preferable. Model parameters were varied (geometrically) over the range K ∈ [Nlabels/20,
Nlabels/2], λ ∈ [0.01 · max(x), 1 · max(x)] to find the best values. However, we found that the
performance was rather insensitive to these choices, and therefore used the same parameters
for all cases shown in this paper. Graph-cut algorithms are typically insensitive to initialization
issues, and we chose the zero image as an initial guess. All reconstructions were obtained after
20 iterations. Regularized SENSE reconstruction was for comparison with our method. We
chose the regularization factor μ after visually evaluating image quality with a large range of
values in the region μ ∈ [0.01, 0.6]. The images that gave the best results are shown in the next
section, along with those obtained with a higher regularization. We obtained the latter to
observe the noise vs. aliasing performance of SENSE.

Quantitative Performance Evaluation
In addition to the visual evidence presented in the next section, we conducted a quantitative
performance evaluation of the reconstructed in vivo data. For in vivo data the problem of
ascertaining noise estimates or other performance measures is challenging due to the
nonavailability of an accurate reference image. Unfortunately, none of the reconstruction
methods we implemented (RSOS, regularized SENSE, and EPIGRAM) are unbiased
estimators of the target. This makes it difficult to directly estimate noise performance, and the
traditional root mean square error (RMSE) becomes inadequate. We follow instead a recent
evaluation measure for parallel imaging methods proposed by Reeder et al. (37), which
provides an unambiguous and fair comparison of SNR and geometry factor. Two separate scans
of the same target with identical settings are acquired, and their sum and difference are obtained.
The local signal level at each voxel is computed by averaging the sum image over a local
window, and the noise level is obtained from the standard deviation (SD) of the difference
image over the same window. Then

Here the mean and SD are understood to be over a local window (in this case a 5 × 5 window
around the voxel in question). This provides unbiased estimates that are directly comparable
across different reconstruction methods. We perform a similar calculation, with a crucial
difference: instead of acquiring two scans, we use a single scan but add random uncorrelated
Gaussian noise in the coil outputs to obtain two noisy data sets. This halves the acquisition
effort without compromising estimate quality, since uncorrelated noise is essentially what the
two-scan method also measures. Reeder et al. (37) explained that their method can be erroneous
for in vivo data because motion and other physiological effects can seriously degrade noise
estimates. While our modification achieves the same purpose, it does not suffer from this
problem, and hence should be more appropriate for in vivo data. The SNR calculation also
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allows the geometry factor, or g-factor, maps for each reconstruction method to be obtained.
For each voxel p and acceleration factor R:

where SNRRSOS is the SNR of the RSOS reconstruction. The SNR and g-map images appeared
quite noisy due to the division step and estimation errors, and we had to smooth them for better
visualization.

Comparing EPIGRAM and Regularized SENSE
SNR and g-factor maps obtained by the method described by Reeder et al. (37) and above are
well suited for unbiased reconstructions like unregularized SENSE because they provide
comparable measures of noise amplification. Reeder et al. (37) demonstrated conclusively that
the two-scan method gives comparable estimates to those obtained voxelwise by using
hundreds of identical scans. Unfortunately, neither the SNR nor the g-factor can serve as a
single measure of performance in the case of biased reconstructions like regularized SENSE
and EPIGRAM, or indeed any Bayesian estimate. This is because there are now two quite
different sources of degradation: noise amplification and aliasing. While the former can be
measured accurately by SNR and g-maps using the above technique, the latter cannot. All
regularization or Bayesian approaches come with external parameters, which can be thought
of as “knobs” available to the user (μ for SENSE and λ for EPIGRAM). Depending on how
much the user tweaks those knobs, it is possible to achieve any desired degree of noise
performance. To illustrate this, we show in the Results section the effect of μ, the regularization
parameter in SENSE. We demonstrate that any desired g-factor can be achieved by making
μ large enough. Therefore, for a proper comparison of reconstruction methods, it is important
to fix either aliasing quality or noise quality, and then compare the other measure. In this section
we adopt the following approach: we turn the “knobs” until both EPIGRAM and regularized
SENSE produce approximately similar g-maps and mean g-values. We then visually evaluate
how each method performed in terms of aliasing and overall reconstruction quality. In each
case we tabulate the mean SNR and g-values achieved by the given settings. The results are
given below.

RESULTS
Convergence Result

The convergence behavior of the objective function (Eq. [15]) against the number of iterations
for R = 3, L = 8 is shown in Fig. 7. As is typical of graph-cut algorithms (31), most of the
improvement takes place in the first few (approximately five) iterations. In our initial
implementation of EPIGRAM, which was written primarily in MATLAB, an iteration takes
about 1 min on this data set. Since EPIGRAM is almost linear in the number of nodes, the total
running time approximately scales as N2, the image size.

In Vivo Results
The best parameter values were consistent across all in vivo data sets we tried: K = Nlabels/7,
λ = 0.04 · max(x). The results of several brain imaging experiments with these parameter values
are displayed in Figs. 8 and 9. Figure 8 shows the reconstruction of a MPRAGE scan of a
central sagittal slice, with an undersampling factor R = 4 along the anterior–posterior (A-P)
direction. The RSOS reference image is shown in Fig. 8a, regularized SENSE with (empirically
obtained optimal) μ = 0.08 is shown in b, regularized SENSE with μ = 0.16 is shown in c, and
EPIGRAM is shown in d. Reduced noise is visually noticeable in the EPIGRAM reconstruction
compared to both SENSE reconstructions. Higher regularization in SENSE caused
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unacceptable aliasing, as observed in Fig. 8c. We note that the unregularized (i.e., standard)
SENSE results were always worse than those of regularized SENSE, and consequently are not
shown. Another sagittal scan result is shown in Fig. 9, this time from the left side of the patient.
Image support is smaller, allowing 5× acceleration. The optimally regularized SENSE output
(b) with μ = 0.1 is noisy at this level of acceleration, and μ = 0.2 (c) introduced significant
aliasing, especially along the central brain region. EPIGRAM (d) exhibits some loss of texture,
but on the whole appears to outperform SENSE.

A set of torso images acquired on a GE 1.5T scanner using a GRE sequence and acceleration
factor of 3 (along the A-P direction) were resolved from 40 sensitivity calibration lines (Fig.
10). Various slice orientations (both axial and oblique) were used. These data also show the
practical limitation of SENSE when an inadequate number of calibration lines are used for
sensitivity estimation. The reconstruction quality of SENSE is poor as a result of the
combination of ill-conditioning of the matrix inverse and calibration error. SENSE exhibits
both high noise and residual aliasing. In fact, what appears at first sight to be uncorrelated noise
is, upon finer visual inspection, found to arise from unresolved aliases, as the background in
Fig. 10b clearly indicates. EPIGRAM was able to resolve aliasing correctly and suppress noise,
without blurring sharp edges and texture boundaries. To demonstrate the performance of these
methods more clearly, we show in Fig. 10d-f zoomed-in versions of the images in Fig. 10a-c.

Next we demonstrate the trade-off between noise and aliasing performance. Figure 11 shows
another torso slice along with associated g-maps computed as specified in Materials and
Methods. We investigate the effect of various regularizations of SENSE. The leftmost column
(a and e) shows the SENSE result and its g-map for μ = 0.1. Clearly, there is inadequate noise
suppression (some regions of the image have a g-factor as high as 6). It is easy to reduce noise
amplification by increasing regularization. In the next column, results for μ= 0.3 are shown.
The g-map has become correspondingly flatter, but the reconstruction indicates that this was
achieved at the cost of introducing some aliasing in the image. The rightmost column shows
EPIGRAM results, which indicate significantly lower g-values and lower aliasing artifacts. In
the third column we show that with an appropriate choice of μ it is possible to match the
EPIGRAM g-map (c.f., Fig. 11g and h). However, with this choice of μ = 0.5, SENSE yields
unacceptable aliasing. Table 1 shows the mean SNR and g-factor values for EPIGRAM and
various regularizations of SENSE.

We observe that the regularization needed in SENSE to match the EPIGRAM g-values
(approximately μ = 0.5 in almost all cases) yields unacceptable aliasing. Instead, a more modest
μ must be chosen empirically. The standard RMSE criterion does not really help here. In Fig.
12 we plot the average over all our torso data of the RMSE for various regularization factors.
For this data set, the optimum μ in terms of RMSE was found to be around 0.25, although in
practice the best visual quality was observed below this value, at around 0.1–0.15. This suggests
that the RMSE measure does not capture reconstruction quality very accurately, and in
particular seems to underempha-size the effect of residual aliasing. In all experimental data
shown in this section, the optimum regularization for SENSE was obtained empirically for
each data set by visual inspection as much as possible. To give an idea of the visual quality
corresponding to a certain μ value, Fig. 12 also shows a portion of the resulting SENSE
reconstruction. The mean SNRs and g-factors for all reconstruction examples presented here
are summarized in Table 2. Non-regularized SENSE data are not shown, because they were
always worse than regularized SENSE data.

In all of these examples there are regions in the EPIGRAM data with some loss of texture, as
well as regions of low signal that appear to have been “washed out” by a uniform value. Both
effects result from the piecewise smooth assumption imposed by the prior. We discuss ways
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to mitigate this problem below, but note that it is typical of most applications in which MRF
priors are applied.

DISCUSSION AND CONCLUSIONS
The experimental data shown above indicate that EPIGRAM shows promise for providing
improved performance and visual quality. This is a direct result of our use of a powerful EPP
model, and the efficient implementation of the associated Bayesian problem using graph-cut
algorithms. An exhaustive clinical evaluation is needed to further characterize the method and
identify specific clinical applications, and such work is ongoing. It is also desirable to develop
appropriate quantitative measures for comparing the reconstruction performance of various
methods. Conventional measures, such as SNR and g-factors maps, do not serve this purpose
well. We have argued that looking solely at the reduction in noise as a measure of regularization
performance is inadequate because it does not account for the introduction of concomitant
aliasing artifacts (e.g., see Fig. 11). In fact, g-factor maps on their own might mislead one to
conclude that large regularizations are always good because they produce small g-factors.
Further work is therefore needed to devise more suitable quantitative measures of performance,
such as a statistically sound diagnostic score obtained blindly from a panel of experts.

We currently do not consider sensitivity errors or temporal information, but such information
can be easily incorporated within our objective function. In particular, the use of graph-cut
minimization for temporal or multidimensional data is very attractive. The graph-cut-based
cost-minimization approach should be readily generalizable to other parallel imaging methods,
such as GRAPPA. Since GRAPPA also performs essentially a least-squares fit via the
optimization of some objective function, its implementation using graph-cut-based
minimization appears possible. Currently the method is implemented only for Cartesian
sampling. Extending EPIGRAM to non-Cartesian trajectories is an interesting but challenging
task.

A shortcoming of our method is the possible loss of texture due to the piecewise smooth
assumption. In this work the model parameters K,λ were determined heuristically and assumed
to be constant over the entire image. An inappropriate choice of either of these parameters can
adversely affect the reconstructed data. If λ is too large, it will force low signal areas to become
uniformly zero, or remove informative texture from nonsmooth regions. Both of these effects
can be observed in our example reconstructions. Decreasing λ can remove this to some extent,
but the most effective approach may be an adaptive and locally varying choice of parameters.
Although our experimentation produced the best results for the chosen truncated linear prior
model, other models (e.g., truncated quadratic or piecewise linear) are possible. The power of
the truncated linear model appears to be well substantiated by research in computer vision;
however, future work in MR could conceivably yield better edge-preserving models that
preserve textures and low signal regions. Further work on different prior models and their
parameters will most likely improve the results shown here. However, it is important to note
that the EPIGRAM algorithm can continue to be used in its current form because it is formulated
for arbitrary objective functions of the kind shown in Eq. [15].

It is also noteworthy that Bayesian reconstruction can sometimes produce images that appear
different from or even better than the best available reconstruction (in our case the RSOS).
This is an interesting case of a Bayesian estimate fitting the prior better than the best RSOS
estimate. This is a well known phenomenon in Bayesian estimation, and can be explained by
the fact that our MRF prior models the target image—not the RSOS reconstruction. Another
example of this can be seen in the g-factor maps of EPIGRAM, which show some regions with
g < 1. This counterintuitive phenomenon results from the fact that the prior imposes smoothness
to such an extent that the Bayesian estimate becomes less noisy than the unaccelerated image
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in some places. In the extreme case when μ, λ = ∞, both SENSE and EPIGRAM will simply
reproduce their respective priors and we will have g = 0 everywhere! Of course, such a result
will be of no real use since it is independent of the observed data.

Comparison With Other Prior-Driven Approaches
It is instructive to compare our EPP model with other prior models. Some very interesting and
impressive results from dynamic imaging models (e.g., RIGR) were presented in Refs. 17 and
18, which used a powerful generalized series to model k-space truncation, and dynamic and
static parts of the MR data. Our Bayesian approach is an interesting counterpoint to that body
of work. RIGR imposes a priori constraints in the form of a detailed generalized series model.
This approach works best for dynamic imaging and requires a good, well-registered, high-
resolution reference image. This technique certainly has significant value for many imaging
situations, but it suffers from high sensitivity to modeling errors, patient motion, and the
difficulty of obtaining correct model parameters from partial data. Our prior model is simpler
and does not need a reference image. The advantage of our approach is that it is basically
parameter-free, apart from the particular choice of separation cost. Since the EPP model relies
solely on spatial coherence, it is effective under widely varying imaging conditions and should
be robust against artifacts caused by geometric distortion, B1 intensity variations, excessive
noise, and even small amounts of motion. Furthermore, in theory, it appears to be possible to
incorporate RIGR-type priors within the minimization framework proposed here. Another
interesting approach that has the potential to improve conventional regularization schemes is
the total variation (TV) method (38). Both EPIGRAM and TV are novel and basically unproven
techniques for MR, and it will be interesting to analytically and empirically compare the two.

In conclusion, we have argued that Bayesian estimation with edge-preserving image priors is
an effective means of breaking out of the fundamental noise vs. aliasing trade-off in
conventional parallel imaging without causing over-smoothing. We showed that this Bayesian
estimate is a minimization problem that is closely related to problems that have been addressed
in the computer-vision community. We demonstrated that standard graph-cut optimization
methods (19,20) cannot be applied directly to our problem, and instead proposed a new MR
reconstruction technique relying on a subroutine based on Ref. 36. The resulting MR
reconstruction algorithm, which we call EPIGRAM, appears promising both visually and
quantitatively. The resulting gains can potentially be exploited to further accelerate acquisition
speed in parallel imaging, or to achieve higher reconstruction quality at the same speed.
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FIG. 1.
Schematic of the pixelwise aliasing process for a single pair of aliasing pixels p and p′, for 2×
acceleration using three coils. The aliased observations Yl are obtained by a weighted sum of
the aliasing pixels, weighted by coil sensitivity values Sl. To simplify the figure, aliasing is
shown in the horizontal direction. [Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]
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FIG. 2.
The L × R block-diagonal structure of matrix E. Each sub-block sensitivity-encodes one
aliasing band in the image. Matrix E is a concatenation over all coil outputs, as shown by the
coil labels. [Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]
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FIG. 3.
Typical performance of edge-preserving and edge-blurring reconstruction on a noisy image
row. Image b was obtained by globally smoothing via a Gaussian kernel, and image c was
obtained with an edge-preserving median filter. [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]
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FIG. 4.
Two natural separation cost functions for spatial priors. The L2 cost on the left usually causes
edge blurring due to an excessive penalty for high-intensity differences, whereas the truncated
linear potential on the right is considered to be edge-preserving and robust. For MR data, the
truncated linear model appears to work best. While the L2 separation cost does not preserve
edges, its convex nature vastly simplifies the optimization problem.
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FIG. 5.
The expansion move algorithm. Start with the initial labeling of the image shown by different
shades “light”, “medium” and “dark” in (a), assuming only 3 labels. Note that here labels
correspond to intensities, although this need not be the case in general. First find the expansion
move on the label “dark” that most decreases objective function E, as shown in (b). Move
there, then find the best “light” expansion move, etc. Done when no a-expansion move
decreases the cost, for any label α. Corresponding to every expansion move (b) is a binary
image (c), where each pixel is assigned 1 if its label changes, and 0 if it does not.
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FIG. 6.
Graph construction to minimize a given binary objective function. The graph consists of nodes
corresponding to image voxels, as well as two special “terminal” nodes S and T. Edges between
nodes represent single-voxel (B1) and pairwise (B2) cost terms. A minimum cut on this graph
solves the binary minimization problem. [Color figure can be viewed in the online issue, which
is available at www.interscience.wiley.com.]
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FIG. 7.
Convergence behavior of the modified graph-cut algorithm (EPIGRAM) for acceleration factor
R = 3, L = 8 coils, on GRE torso data. The vertical axis shows the value of objective function
(Eq. [15]) achieved after each outer iteration, which represents a single cycle through Nlabels
= 256 expansion moves. [Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]
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FIG. 8.
Brain A: In vivo brain result with R = 4, L = 8. Views were acquired vertically. a: Reference
image. b: SENSE regularized with μ = 0.08. c: SENSE regularized with μ = 0.16. d: EPIGRAM
reconstruction.
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FIG. 9.
Brain B: In vivo brain result with R = 5, L = 8. Views were acquired vertically. a: Reference
image. b: SENSE regularized with μ = 0.1. c: SENSE regularized with μ = 0.2. d: EPIGRAM
reconstruction.
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FIG. 10.
Cardiac A: In vivo result with R = 3, L = 8. Views were acquired horizontally. a: Reference
image. b: SENSE regularized with μ = 0.16 (optimal). c: EPIGRAM reconstruction. Zoomed-
in portions of a–c are shown in d–f.
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FIG. 11.
Cardiac B: In vivo result with R = 3, L = 8, showing the effect of regularization on g-factor
maps. Views were acquired horizontally. a and e: SENSE reconstruction and its g-map for μ
= 0.1. There is inadequate noise suppression, with a g-factor as high as 6. Results for μ = 0.3
are shown in b and f. The g-maps has become correspondingly flatter, but at the cost of aliasing.
The rightmost column (d and h) shows EPIGRAM results, which indicate significantly lower
g-values as well as lower aliasing artifacts. SENSE with μ = 0.5 (c and g) matches the
EPIGRAM g-map but yields unacceptable aliasing.
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FIG. 12.
Average RMSE of regularized SENSE reconstruction of torso data. The optimum was observed
at around 0.25, although visual quality was found to be best for smaller values, in the region
[0.1–0.2]. Three example torso reconstructions are also shown. Observe that as regularization
increases, residual aliasing artifacts and blurring both become worse. Also note that
nonregularized SENSE (i.e., μ = 0) gives a substantially worse RMSE.
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FIG. 13.
Plot of the SNRs achieved by EPIGRAM and SENSE for various data sets. SNR values were
taken from Table 2. Observe that large μ gives higher SNR, but, as demonstrated by the
displayed images, this comes at the cost of unacceptable aliasing. [Color figure can be viewed
in the online issue, which is available at www.interscience.wiley.com.]
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Table 1
Mean Reconstructed SNR and Mean g-Factor Values of Reconstructed Data for Various Regularization Factors,
with R = 3 and L = 8*

Cardiac B Brain A

Mean SNR Mean g Mean SNR Mean g

RSOS 42 1.0 59 1.0
SENSE, μ = 0.1 15 3.3 21 3.7
SENSE, μ = 0.3 18 2.3 26 2.5
SENSE, μ = 0.5 24 1.4 30 1.9
EPIGRAM 36 1.4 40  1.85

*
Two datasets, Cardiac B and Brain A were used. The means are over object foreground. RSOS mean g value is 1 by definition.
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