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Defining tropism and activity of
natural and engineered
extracellular vesicles
Wooil Choi1, Dong Jun Park1 and Brian P. Eliceiri 1,2*

1Department of Surgery, University of California San Diego, La Jolla, CA, United States, 2Department
of Dermatology, University of California San Diego, La Jolla, CA, United States
Extracellular vesicles (EVs) have important roles as mediators of cell-to-cell

communication, with physiological functions demonstrated in various in vivo

models. Despite advances in our understanding of the biological function of EVs

and their potential for use as therapeutics, there are limitations to the clinical

approaches for which EVs would be effective. A primary determinant of the

biodistribution of EVs is the profile of proteins and other factors on the surface of

EVs that define the tropism of EVs in vivo. For example, proteins displayed on the

surface of EVs can vary in composition by cell source of the EVs and the

microenvironment into which EVs are delivered. In addition, interactions

between EVs and recipient cells that determine uptake and endosomal escape

in recipient cells affect overall systemic biodistribution. In this review, we discuss

the contribution of the EV donor cell and the role of the microenvironment in

determining EV tropism and thereby determining the uptake and biological

activity of EVs.
KEYWORDS
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Introduction

Extracellular vesicles (EVs) are observed in most biological fluids and are notable for

their wide range of sizes, payloads, and biological activities. As defined by the MISEV 2023

guidelines, we focus here primarily on small EVs that are under 200 nm (1–5). EVs convey

protein, lipid, and RNA payloads to surrounding or distant recipient cells (6–8). EV-

mediated physiological processes affect not only recipient cells but also the surrounding

microenvironment, depending on the heterogeneity of EVs and, consequently, regulate

many physiological systems including the immune system (9, 10). EVs that are secreted by

both non-immune cells and immune cells mediate immune stimulation or suppression.

Tumor-derived EVs contain specific markers, which induce phenotypic changes in

recipient cells. For example, EVs derived from immune cells, specifically antigen-

presenting cells (APCs), carry cargos that can directly induce the peripheral immune

response (11). Studies of EV-mediated immune regulation provide insights for therapeutic
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approaches to treat cancer (12, 13), aging (14) as well as

inflammatory diseases (15, 16). These reports demonstrate the

potential of EVs as physiologically relevant therapeutics that

modulate recipient cells through luminal or transmembrane

payload delivery.

This review focuses on the specific challenges of engineering

EVs to express essential surface molecules to direct tropism. There

have been several excellent recent reviews that provide details on

EVs as therapeutics in wound healing (17). EVs are naturally

occurring nanoparticles that are generally biocompatible and

efficient therapeutics in various systems that provide a foundation

to design and deliver novel cargoes for next-generation

therapeutics. This review addresses the importance of engineering

tropism into the design of EVs that are relevant for biodistribution

that we argue is important because there few clinical studies with

engineered EVs.

Along with the potential for EVs to deliver therapeutic cargo,

several engineering strategies have been reported for luminal

loading or surface display of functional proteins or RNA. EVs can

be engineered with known or screened cargo and enhance the

therapeutic efficacy in disease models (18–21). Here, we review cell

and organ tropism of EVs depending on the source and cellular

target, and engineering strategies for EV surface display for

targeting delivery.
Understanding EV tropism based on
cellular source and relevance to
extracellular microenvironment

In addition to differences in EV payloads, which include proteins

(i.e., enzymes, cytokines, growth factors, and their receptors) and

nucleic acids (mRNA, miRNA, and DNAs), the lipid composition of

EVs is determined by the cell source (22). While many studies identify
Frontiers in Immunology 02
novel proteins that mediate tropism, existing datasets like those

available from ExoCarta (ExoCarta.org) can be mined to establish

relevance from various tissues, cell types, and experimental models.

These molecular signatures provide insight into the interactions of

EVs with target cells and its biological activity. For example, EVs from

different cell sources produce specific transcriptional responses in

recipient cells. Specifically, mesenchymal stem cell (MSC)–derived

EVs induce wound healing, epithelial cell–derived EVs up-regulate cell

adhesion, immune cell–derived EVs activate inflammatory genes, and

most EVs associate with recipient fibroblasts (18). EV composition is

determined largely by the type and physiological state of the producer

cells (19). EVs show a similar lipid profile as the cell that produced

them, including glycosphingolipid, phospholipid, and cholesterol

composition (20, 21, 23). Proteins displayed on the surface of nearly

all EVs include Alix, tetraspanins (CD9, CD63, and CD81), heat shock

protein 70 (24, 25), and other proteins that are often associated with

specific EV subsets (24, 26, 27).

Protein interactions at the interface between EVs and recipient

cells provide the basis for EV uptake and tropism. For example,

enzymatic depletion of heparan sulfate proteoglycans (HSPGs) on

the cell surface or inhibition of endogenous proteoglycan synthesis

attenuated uptake of cancer cell–derived EVs (28). These reports

show that EV uptake is mediated by protein-protein interactions

between EVs and recipient cells, including immune cells (29, 30).

Digestion of surface protein by proteinase K shows significantly

decreased EV uptake (31–33) providing examples of how surface

proteins mediate interactions with recipient cells.

Integrin and tetraspanin proteins, canonical components of

EVs, mediate the interaction of the EV with recipient cell

membranes (Figure 1A and Table 1). Alpha and beta subunits in

the heterodimeric integrin complex determine the specificity for

binding to the extracellular matrix (45, 46). There are over 18 alpha-

subunit variants and eight beta-subunit variants in the integrin

family. Circulating platelet–derived EVs interact with integrin aM
A B

C

FIGURE 1

Schematic illustration of representative EV tropism and modifications based on surface display (created with BioRender.com). (A) Surface display
depending on the cell source determines EVs tropism. (B) Surface display targeting EV tropism by endogenous expression. (C) Summary of
engineering methods for EV surface modification.
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(CD11b) and Tyro3, Axl, and Mer (TAM) tyrosine kinase receptors

on the monocytes and granulocytes in a Ca2+-dependent manner

(34). Exosomal integrin avb6 can regulate the M2 inflammatory

response of CD14+ monocytes (35). Colorectal cancer cells release

integrin b-like 1-rich EVs to the circulation in the blood stream to

activate resident fibroblasts in remote organs. These activated

fibroblasts induce formation of the pre-metastatic niche and

promote metastasis by secreting pro-inflammatory cytokines (36).

Exosomal integrins a6b4, a6b1, and avb5 bind lung fibroblasts,

epithelial cells, and liver-resident macrophages, respectively, and

promote inflammatory responses in recipient cells (37). Tropism of

palmitic acid–stimulated hepatocyte-derived EVs to hepatic stellate

cells is an example of a biochemical modification that promotes EV

tropism based on increased expression of integrins avb3 and a8b1
(47). EVs derived from bone-tropic breast cancer show a high

expression of the integrin-binding sialoprotein. These stimulated

EVs have tropism to osteoclasts and promote bone metastasis (38).

The integrin av-VAMP complex–associated protein A (VAPA) on

hepatocellular carcinoma–derived EVs promotes bone metastasis.

EV-mediated integrin–VAPA complexes are activated in the

plasma membrane of recipient osteoclasts and result in actin

cytoskeleton formation in osteoclasts (39).

Tetraspanins function as integral membrane proteins and are

widely studied as canonical EV markers that also provide insights

into how they may be biologically active. For example, tetraspanin 8

(Tspan8), a member of the tetraspanin family of proteins, induces

cellular tropism by forming a complex with other tetraspanins

(CD9 and CD81) or integrins (a4b4) on the EV membrane. EVs

expressing the Tspan8–integrin a4 complex show selectivity for
Frontiers in Immunology 03
CD54 as a major ligand on endothelial and pancreatic cells (40).

CD49d (integrin a4) and CD106 (vascular cell adhesion molecule 1)

on EVs recruited by Tspan8 induce cellular uptake by aortic

endothelial cells, and CD151 and CD49c (integrin a3) are

implicated in EV uptake by lung-resident fibroblast (41). Uptake

of EVs by spleen-resident dendritic cells (DCs) is mediated via

tetraspanins (CD9 and CD81), milk fat globule (MFG)–E8/

lactadherin, and phosphatidylserine on the EVs and integrin

avb3, integrin aL (CD11a), and CD54 (intercellular adhesion

molecule 1) on DCs (42). Suppressing CD9 action with function-

blocking antibodies decreases EV uptake and cargo transfer to

recipient by endocytosis (48). Cell surface CD9 also can mediate

the aggressiveness of pancreatic tumor cell interactions with

annexin A6+ (ANXA6+) EVs. These EVs are derived from

cancer-associated stromal fibroblasts, which induce the MAPK

pathway, cell migration, and epithelial-to-mesenchymal transition

(43). In contrast, lack of CD9 expression on EVs produced by

colorectal cancer cells enhanced interaction between integrin avb1
and its ligand ADAM17 and uptake by recipient cells (44). These

reports suggest that integrins, tetraspanins, and their ligands are

involved in the tropism of EVs. In the context of understanding the

functional role of tetraspanins in the biogenesis of EVs, several

reports have shown that increased expression of tetraspanins

increases the number of EVs formed (49), whereas knockdown of

tetraspanins has led to minimal reductions in EV formation (50,

51). Therefore, more studies are required to understand the

function of specific tetraspanins in inducible and cell-type–

specific genetic systems to better define their role in intercellular

signaling vs. EV biogenesis (52).
TABLE 1 EV surface display, tropism, and target ligands according to literature.

EV source Surface display Tropism Target ligands Reference

Platelet Integrin aM Monocyte and granulocyte TAM tyrosine kinase receptor (34)

Prostate cancer cell Integrin aVb6 Monocyte CD14 (35)

Colorectal cancer cell Integrin b-like 1 Fibroblast TNF-a–induced protein 3 (36)

Tumors Integrin a6b4 Lung fibroblast - (37)

Tumors Integrin a6b1 Lung epithelial cell - (37)

Tumors Integrin avb5 Liver-resident macrophage - (37)

Bone tropic breast cancer cell
Integrin-binding

sialoprotein (IBSP)
Osteoclast cell in bone IBSP receptor (38)

Bone tropic
hepatocellular carcinoma

Integrin av Osteoclast cell
VAMP complex–associated

protein A
(39)

Pancreatic cancer cell Tspan8–integrin a4 Pancreas-resident endothelial cell CD54 (40)

Pancreatic cancer cell CD49d and CD106 Aortic endothelial cell - (41)

Pancreatic cancer cell CD151 and CD49c Lung-resident fibroblast - (41)

Bone marrow dendritic cell
CD9, CD1, and MFG-

E8/lactadherin
Spleen-resident dendritic cell Integrin avb3 and integrin aL (42)

Cancer-associated stromal
fibroblast cell

Annexin A6 Pancreatic tumor cell CD9 (43)

Colorectal cancer cell ADAM17
Colorectal cancer cell and peritoneal

mesothelial cell
Integrin avb1 (44)
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Understanding EV tropism based on
cellular targets

EVs have been demonstrated to improve cellular processes

associated with wound healing, including proliferation, migration,

and angiogenesis. Evidence of this progress is a phase I clinical trial

of healthy volunteer adults that is currently underway to evaluate

safety in the context of wound healing (53, 54). MSC-derived EVs

have been shown to be involved in reduction of échelle d’évaluation

clinique des cicatrices d’acné (ECCA) score, a measure of scarring,

by about 12.6% more than a control group in a small sample set of

25 patients (53). Platelet-derived EVs show evidence for the safety

and therapeutic utility (54). Several reports have focused on their

role as growth factors in tissue repair and regeneration. Vascular

endothelial growth factor A (VEGF-A), fibroblast growth factor 2

(FGF-2), hepatocyte growth factor, and platelet-derived growth

factor are key growth factors that are known to promote wound

healing in various animal models (55, 56). More recently, it has been

proposed that EVs can deliver specific growth factors that may

facilitate their biodistribution and overall pro-reparative activity

(57). For example, it has been reported that EVs with growth factor

payloads can improve tissue regeneration when displayed on the

surface of EVs. FGF-2 bound EVs secreted from dermal fibroblasts

activate the extracellular signal-regulated kinase (ERK) and signal

transducers and activators of transcription (STAT) signaling

pathways and enhance cell proliferation and migration in

recipient cells (58). Endogenous expression of VEGF and

transcription factor EB on EVs derived from endothelial cells

improves vascularization, attenuates muscle injury, and improves

recovery of limb function through VEGF/Vascular endothelial

growth factor receptor (VEGFR) pathway and autophagy-

lysosome pathway in critical limb ischemia mice model (59). In

other studies, adipose tissue–derived EVs that overexpressed VEGF

fused with CD63 on the surface showed increased tube formation,

cell proliferation, and migration of lymphatic endothelial cells.

Continuous EV treatment rescues lymphedema in a mouse model

indicating controlled EV kinetics can be stable in vivo (60). Bone

morphogenetic protein 2 displayed on EVs derived from bone

marrow–derived MSC enhances osteogenic differentiation while

maintaining the function of bone marrow MSC EVs (61). These

studies are consistent with a role for growth factors on EVs in

promoting tissue repair and regeneration and support the further

refinement of the loading and display of specific growth factors

targeting specific cell types relevant in injury and tissue repair (62).

In addition to the display and expression of known peptides like

growth factors, phage display can be used for the discovery of novel

peptides that are focused on naturally occurring peptides that can

be displayed on EVs to target recipient cells. For example,

expression of a fusion of the cardiomyocyte binding peptide with

Lamp2b on EVs results in increased efficiency of EV uptake into

cardiomyocytes and decreased cardiomyocyte apoptosis associated

with higher cell retention (63). A fusion of the Lamp2b protein with

the ischemic myocardium targeting peptide (CSTSMLKAC)

expressed on MSC-derived EVs reduced fibrosis and enhanced

vascular neogenesis, and cardiac function could be monitored in

ischemic heart tissue (64). The therapeutic potential of EVs has
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been observed in skin repair (65) as well as in kidney (66). These

studies show the promise in designing engineered EVs to produce a

synergistic effect on wound healing and tissue regeneration by

expression of growth factor EVs.

Expression of peptides on EVs has been explored as a

mechanism to target EVs to tumor cells. For example,

interleukin-3 (IL-3) expressed on the surface of EVs can be used

to target the delivery of EVs to the IL-3 receptor that is highly

expressed in chronic myelogenous leukemia cells compared with

that in normal hematopoietic cells (67). High expression of EGFR

on tumors of epithelial origin suggests that the EGF-binding

peptide, nanobody, and aptamer (68–70) on the surface of EVs

could be used to target the delivery of EVs for uptake by epithelial

tumor cells. CD19 (71), CD20 (72), integrin (73), and other ligands

are known to be highly expressed on tumor cells and could

potentially be used to target EVs to these cells. In an alternative

approach, EVs may be useful for modifying the immune

microenvironment for cancer immunotherapy (74, 75). TNFR1

stimulation by tumor necrosis factor alpha (TNF-a)–decorated
EVs can induce activation of necroptosis and cell death in cancer

(76). Targeting the APCs via EVs provides specific antigens for

cancer therapy. For example, APCs targeting EVs derived from

tumor cells provide antigen to APCs cells, and it could enhance

tumor recognition (77, 78). Reprogramming of immune cells by

immune cell–targeting EVs shows the potential of EVs as a novel

immunotherapeutic agent (79, 80). EVs derived from macrophages

can modulate the immune microenvironment of tumors.

Reprogramming of tumor-associated macrophages (TAMs) to a

M1 macrophage via targeting TAMs or tumor cells by engineered

M1-derived EVs decorating IL-4 receptor or CD47 via postinsertion

of targeting peptide increased anti-tumor immunity (81, 82). These

reports show the potential of cancer treatment through a direct

tumor targeting strategy loaded with anti-cancer drug and control

of the surrounding immune microenvironment through

modification of EV surface display (Figure 1B).
EV tropism is demonstrated by
recent examples

EV-mediated cargo delivery and EV characteristics such as

toxicity, immunogenicity, and engineerability are being tested in

various diseases models as a cell-free therapy (83, 84). Exploring the

feasibility of engineering the surface composition of EVs is

important to enable cell or organ specific delivery and in vivo

tracking (85, 86). Therapeutic approaches to treat cancer therapy

based on cell source through engineered EV are also being explored

(87). Several approaches to introduce targeting moieties are being

applied directly to EVs or indirectly to cells (88).

In addition to the use of phage display to target cardiomyocytes,

this approach can be used for various other cell types to screen for

peptides that have cell-type–specific affinity. In the example of

targeting ischemic cardiac tissue, phage display was performed

with a fusion with Lamp2b protein on the surface of EVs (64).

EVs engineered with silk fibroin patch (SFP)–biding peptides that

were identified by phage display showed dose-dependent
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accumulation of the SFP and enhanced wound closured efficacy in

the diabetic wound model (89). CD9 and CD63 are known as EVs

markers, and CD63 is a well-known EV scaffold protein that is often

used to endogenously express or decorate foreign peptide (29, 90).

Endogenous display of target binding peptides via CD63 shows

stable expression and specificity. For example, expression of

glycosylation domains on the large extracellular loop of CD63

show specificity toward endothelial cells and DCs (62, 91).

Screened peptides identified by phage display were decorated

using CP05, which directly bind to the CD63 second loop (92).

As another approach, transgenic mice expressing Eµ-myc were used

to select for a Eµ-myc B lymphoma–specific phage sequence

through several bio-panning cycles after intravenous injection.

The malignant B cell–specific sequence recognizes cancer-derived

exosomes (93). Together, several studies have shown the power of

phage display to identify target-specific binding peptides that can be

engineered onto EVs.

Direct modification of the EV surface (Figure 1C) using

hydrophobic anchors, rather than endogenous expression, also

exists. Cholesterol is also one component of EV membrane,

which spontaneously inserts into the membrane via its

hydrophobic moiety (94), and cholesterol-modified RNA

structures can be displayed on the EV surface that improves the

efficiency of delivery of the modified EVs (68). Similarly, ceramide

and dioleoyl phosphatidylethanolamine (DOPE) are being explored

for their lipid anchoring properties with DOPE showing the most

efficient anchoring effect and stable retention (95).

Another approach to engineering EVs is to use functional

moieties that can be engineered onto the surface of EVs that can

then be functionalized by chemical reactions using a technology

termed click reactions. Click reactions can introduce large

molecules on the EV membrane, and a greater amount of

quantitative decoration is possible than via endogenous

expression (96). Over-modification of EV proteins with functional

groups, which are necessary for click reactions, might inhibit their

intrinsic surface properties (97). Another approach being explored

uses a click reaction to attach a targeting moiety to polyethylene

glycol (PEG), and the resulting PEG-anchored peptide inserted in

the EVs to gives functionality (98). In this way, in addition to the

properties of EVs such low toxicity, low immunogenicity, and

functional cargo and surface proteins, EVs with added

functionality through surface engineering are being tried in

various disease models.

To address the translational progress of EV research to the

clinic, we review here recent trials based on a literature search using

the words “extracellular vesicles” in the ClinicalTrials.gov database.

We reviewed a total of 81 registered studies and categorized them

on the basis of the following: 1) biomarker and diagnosis accounted

for 50 cases (62.5%); therapeutics-related studies accounted for 26

cases (32.1%) and 18 cases (22.2%) in phases 1 to 3 as summarized

in Table 2. Various organs were the subject of these studies: lung

(six cases), skin (three cases), gut (three cases), liver (two cases),

heart (one case), eye (one case), ear (one case), and ovary (one case).

Although EVs in clinical trials generally use unmodified MSC-

derived EVs, the future of EV therapies will likely expand to include
Frontiers in Immunology 05
sources from other cell types and utilize engineered EVs (i.e., ones

that enhance tropism and deliver therapeutic payloads).
Tropism based on an understanding
of EV systemic biodistribution

Classical EV tracking studies have relied on fluorescent

membrane dyes, but several reports suggest that such labeling

methods may negatively impact the sensitivity and/or not provide

an accurate demonstration of the distribution in cells and tissues (99).

Several tracers have been assessed to track the biodistribution of EVs

(100), including their off-target distribution, which is important

understand when assessing the therapeutic potential of EVs

(Figure 2A) (101). mCherry red has been used for EV tracking in

vivo, but its utility is limited by a poor signal to noise ratio. However,

DiR [1,1′-dioctadecyl-3,3,3′,3′-tetramethylindotricarbocyanine

iodide; DiIC18 (7)]–labeled EVs and radioisotope-labeled EV

signals are monitored clearly and tend to accumulate in the liver

and spleen (102).

More recent genetic approaches to the study of EV release and

uptake have taken advantage of fusion proteins engineered between

EV tetraspanins and fluorescent reporters like green fluorescent

protein (GFP), tdTomato, and mCherry (103, 104). While there are

some limitations, the ability to follow EV biogenesis with genetic

tools is a powerful technique for in vitro and in vivo models. It is

important to note that, while the expression of tagged tetraspanins

have some limitations (105), recent reports show that luminescent

tagging of CD63-Nluc can be used to their distribution to the lung

and spleen (102). Using a GFP tag, CD63-EGFP–labeled EVs can be

detected in the parenchyma of the liver and spleen after intravenous

injection (105). In vivo EV labeling via transgenic inducible GFP EV

reporter mouse that contain a Cre recombinase–inducible

promoter-driven CD9 fused to GFP provides the insight for EV

distribution that depends on cellular source (106). With the use of

tissue-specific expression of Cre recombinase, transgenic mice can

produce CD81-mNG EVs. These EV can then be used for mapping

cell-type–specific contribution to blood exosome population (107).

These studies show that fluorescent and luminescent reporters

fused with tetraspanins are useful for tracking EV tropism.

EVs of different sizes have their own N-glycosylation, protein,

lipid, and nucleic acid profiles and show different biodistribution

patterns. At 24 h after intravenous injection, a wide range of EV

sizes were taken up by various organs (84% by liver, 14% by spleen,

and 1.6% by bone marrow). Although almost all EVs were taken up

in the liver, large EVs displayed lymph node tropism (108).

Previous reports have summarized the biodistribution of EVs

(109), with many small EVs being cleared from the blood within

1 h. A recent study has examined EVs from multiple cell types and

assessed their biodistribution. In this example, EVs derived from

B16BL6 melanoma, C2C12 myoblast, NIH3T3 fibroblast, MAEC

aortic endothelial cell, or RAW264.7 macrophage were

administered via intravenous injection. This study showed

efficient clearance from the circulation into the liver (110). These

reports help understand the biodistribution of EVs in vivo and in
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A B
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FIGURE 2

Natural tropism of EV and potential applications (created with BioRender.com). (A) Representative EV donor cells in vitro. (B) Summary of EV
biodistribution studies in mouse models. (C) Representative EV’s immune modulation. (D) Summary of applications of surface modified EVs.
TABLE 2 Clinical trials related to EVs as therapeutics (clinicaltrials.gov).

Disease Phase Administration EV source Clinical Trial ID

Burn wound 1 Topical MSCs NCT05078385

Acute respiratory distress syndrome (ARDS) 2 Intravenous Bone Marrow (BM) NCT04493242

ARDS 3 Intravenous BM-MSCs NCT05354141

ARDS 2 Intravenous MSCs NCT06002841

ARDS 2 Intravenous BM-MSCs NCT05127122

Drug-refractory left ventricular 1 Intravenous Cardiovascular progenitor cells NCT05774509

Retinitis pigmentosa 2 Intravitreal BM-MSCs NCT06242379

Mild-moderate COVID-19 2 Intravenous BM-MSCs NCT05125562

Chromic tympanic membrane perforation 3 Topical Blood NCT04761562

Epidermolysis bullosa 2 Topical MSCs NCT04173650

Acute-on-chronic liver failure after liver transplantation 1 Intravenous MSCs NCT05881668

Post–COVID-19 syndrome 2 Intravenous BM-MSCs NCT05116761

Acute-on-chronic liver failure 2 Intravenous MSCs NCT05940610

Premature ovarian failure 2 Intraovarian MSCs NCT06202547

Ulcerative colitis 1 Intravenous MSCs NCT05176366

Crohn’s disease 1 Intravenous MSCs NCT05130983

Perianal fistulas 1 Intravenous MSCs NCT05836883

Healthy volunteer 1 Topical MSCs NCT05523011
F
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vitro and help guide the design and testing of future engineered

EVs (Figure 2B).

mNG (mNeon Green)–labeled HEK293 cell–derived EVs

intravenously injected accumulate in hepatocytes. Differential

expression analysis of recipient cells revealed that cells dosed with a

low number of EVs showed gene expression involved in EV

biogenesis, endocytosis, and homeostasis. In cells dosed with a high

number of EV, expressed genes related to lysosome acidification,

assembly, and localization (29). HEK293 cell lines are cells commonly

used for transfection and are derived from human kidney. EVs

derived from the human embryonic kidney cell line HEK293

accumulate in the liver and are used for liver diseases (111, 112).

EVs derived from HEK 293 cells expressing CD9 and CD63 show a

similar biodistribution trend toward the liver and spleen. In addition,

the relative distribution of CD63-positive EVs was enhanced in the

gastrointestinal tract and reduced in the lung (113).

MSC-derived EVs show injury-related organ tropism. MSC EVs

show a homing effect in the lung and liver via integrin-mediated

protein interaction (114, 115). In addition, MSC-EVs accumulate in

ischemic kidney and proximal tubules and affect renal tubule repair

(116). Placental EVs associate with lung interstitial macrophage and

liver Kupffer cells in an integrin-mediated manner. Placental EVs

target maternal immune cells and cause genetic alteration of

maternal immune cells (Figure 2C) (117).

Cancer-derived EVs recognize early-stage neoplastic tissues

with tumor-tropism mimicking the membrane structures of

cancer cells and promote their uptake into tumor (118, 119).

Tumor tropic cancer–derived EVs occur without specificity for

donor cancer types (120). Cancer cells involved in metastasis

produce EVs with tropism for the relevant organ. Lung metastatic

hepatocellular carcinoma exhibits lung tropism. Solute carrier

organic anion transporter family member 2A1, alanine

aminopeptidase, and chloride intracellular channel 1 can be

found to be involved in lung-tropic proteins of EVs (121, 122).

These reports suggest organ distribution according to donor cell

type, and most show tropism to the liver, spleen, lung, and kidney.

Using this cell- or organ-tropism information, it may be possible to

target delivery of EV cargos through direct or indirect strategies that

take advantage of molecules that can be displayed on EVs to

mediate tropism in the appropriate microenvironment (Figure 2D).
Tropism based on
intracellular localization

Cell-to-cell communication by EVs through cargo delivery

begins with EV uptake by recipient cells (123, 124). EV uptake is

mediated by various mechanisms that likely depend on physical

properties such as size and protein and lipid composition of the

membrane (125–127). Clathrin-mediated endocytosis and

micropinocytosis are considered a main route of EV uptake

through a specific pathway but not necessarily through a specific

receptor. In this pathway, uptake occurs as early as 15 min after

introduction in an energy-dependent manner (128–131).

Additionally, depending on the characteristics of EVs, pathways

such lipid raft-mediated endocytosis have also been reported
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(132–134). EVs also indirectly deliver their cargos by fusion

with plasma membrane of recipient cells (32, 131, 135).

Internalization of EVs is captured by integrin b3–interacting
HSPGs. This internalization process is regulated by the

integrin b3–focal adhesion kinase (FAK), which is activated by

EVs in an integrin b3–dependent manner and required for

endocytosis (136).

Endosomal escape of EVs in the recipient cells is an important

intracellular step in the delivery of EV cargo necessary to complete

their function. Internalized EVs form intracellular vesicles that fuse

with endosomes to form early endosomes. These early endosomes

contain EVs that often fuse with lysosomes followed by endo-

lysosome acidification (137). Overall, EV cargos are thought to be

rapidly digested by autophagy in recipient cells (32, 138). Using

CD63-pHluo (pH-sensitive fluorescent)–labeled EV, acidification

of endocytosed EVs occurred in a narrower time range, from 2 min

to 11 min (139). However, internalized EVs that undergo

endosomal escape, these EVs can deliver functional cargos into

recipient cells (140). EV cargo exposure and/or release to the cytosol

occurs when endosomes are acidified by fusion with lysosomes

(129, 141). In this step, endosomal acidification is involved in the

fusion of EV and endosomal membrane followed by cargo release

(32, 129). Chloroquine, which improves endosomal acidification,

results in unstable endosomes and increased release of EV cargo

into the cytoplasm. Bafilomycin A inhibits the proton transfer of

vacuolar type H+-ATPase (V-ATPase) resulting in accumulation of

endosomal cargo and inhibition of releasing EV cargos (142).

Advances in engineering approaches and drugs should lead to

better efficiencies of endosomal escape of macromolecules, such

as proteins, nucleic acids, and lipid nanoparticles (143–145). Recent

examples include ligands such as glycans (146), fusogenic proteins

(147–149), and endocytosis related proteins (150) that can enhance

endosomal escape in recipient cells (151). A study was also reported

to improve target delivery efficiency by depleting integrin b1 to

avoid non-specific clearance (152).

Advances in the tracking EV release from cells have been largely

guided by technology. In early EV studies, electron microscopy,

along with immunogold staining, was the standard for high-

resolution imaging (153, 154). More recently, genetic reporters

such as GFP or luciferase have been expressed as fusion proteins

with classic tetraspanins (155). These studies have greatly advanced

the ability to identify which cells express EVs and, in some studies,

assess the uptake of those EVs where advanced high-resolution

imaging is used because single EVs are smaller than the resolution

of standard light microscopy (156). In another example of advances

in technology, to identify the release of EVs upon release, pHlourin

reporters have been used because they are pH-dependent

ratiometric reporters. With this kind of reporter, as an EV is

trafficked to the neutral extracellular space, fluorescence is

increased upon neutralization and thereby tracked in various in

vitro models (139) and in vivo (156) models. We and others have

recently shown how cell-type–specific promoters can be used to

direct the expression of such fusion reporters (i.e., CD9-GFP) in

specific cell types in mice (106, 107, 157). As these tools develop

more sophisticated reporters and cell-type–specific promoters and

access more advanced imaging increases, we anticipate that the
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visualization of engineered EVs will become more useful

and prevalent.
Regulation of immune
microenvironment by EV tropism

EVs are known to regulate cell-to-cell communication in the

microenvironment of injury and cancer, with immune cells having a

major role in modulation of the inflammation responses associated

with wound repair and blockade of tumor progression. Here, we

focus on examples of tissue injury where macrophage-derived EVs

regulate fibroblasts in the wound bed (157) and on changes in EVs

draining in mesenteric lymph–regulating immune responses in

sentinel lymph nodes (158, 159) and tumor microenvironments.

In cancer, one of the earliest observations was that integrins had a

major role in conditioning the metastatic niche (37). Additional

examples included studies on the role of EVs derived from triple-

negative breast cancer cell bearing CSF-1 that accelerated

differentiation of monocyte to pro-inflammatory macrophages

(160). Plant-derived EVs likely also have interesting but poorly

defined surface proteins that were shown to promote the

reprogramming of tumor-TAMs to induce the anti-tumorigenic

infiltration of CD8+ T cells (161). The tropism of TAM-derived EVs

can also be modified by display cyclic RGD peptides to deliver

payloads that attenuate PD-L1 expression and enhance the

activation of CD8+ T cells (162). Myeloid-derived suppressor cells

(MDSCs) were also important regulators of the “cold” tumor

microenvironment based on studies showing that MDSC-derived

EVs dysregulated Wnt/b-catenin signaling pathway and decreased

anti-tumoral responses (163).
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Among the most well-defined immune cell crosstalk responses

in immunology is the interaction between regulatory T cells (Treg),

CD8+ cytotoxic T cells, and DCs. Therefore, as the EV field

develops within the field of adaptive immunity, consideration of

EV tropism, EV cell source, and EV uptake will need to be

addressed in more detail. Interesting interactions include EV-

mediated transfer of miRNA contents that regulate IL-10 and IL-

6 production (164) and MSC-derived EVs suppressing antigen

uptake by immature DCs (165). EV tropism may also influence

dysfunctional immune responses based on tissue-specific

microenvironments. Therefore, engineered EVs that reverse these

responses may yield pro-reparative, anti-inflammatory, and anti-

tumorigenic immune responses depending on the disease

state (Figure 3).
Conclusions

EVs are key players in cell-to-cell communication, mediating

various physiological signals in the body. Recent advances in the

field have focused on understanding the biological activity of EVs

and utilizing their internal cargo to apply EVs as therapeutics.

However, a lack of understanding of tropism limits their clinical

utility. Understanding the EVs tropism, from their surface

composition by cell source and microenvironment to cellular

uptake and systemic biodistribution, provides a pivotal junction

between EV applications and clinical approaches. Depending on the

EV source and recipient cells, there is an emerging literature that

supports the translational potential of engineered EVs that consider

the natural specificity of uptake pathways and surface

display technologies.
FIGURE 3

Regulation of immune microenvironment by EVs mediated immune cell crosstalk (Created with BioRender.com).
frontiersin.org

https://BioRender.com
https://doi.org/10.3389/fimmu.2024.1363185
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Choi et al. 10.3389/fimmu.2024.1363185
Author contributions

WC: Conceptualization, Investigation, Visualization, Writing –

original draft, Writing – review & editing. DP: Writing – review &

editing. BE: Conceptualization, Funding acquisition, Project

administration, Supervision, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This work

was supported by the National Institutes of Health grant (1R01-

GM140137) (BE).
Frontiers in Immunology 09
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
References
1. Welsh JA, Goberdhan DC, O'Driscoll L, Buzas EI, Blenkiron C, Bussolati B, et al.
Minimal information for studies of extracellular vesicles (MISEV2023): From basic to
advanced approaches. J extracellular vesicles. (2024) 13:e12404. doi: 10.1002/jev2.12416

2. Cheng L, Hill AF. Therapeutically harnessing extracellular vesicles. Nat Rev Drug
Discovery. (2022) 21:379–99. doi: 10.1038/s41573-022-00410-w

3. Cocucci E, Meldolesi J. Ectosomes and exosomes: shedding the confusion between
extracellular vesicles. Trends Cell Biol. (2015) 25:364–72. doi: 10.1016/j.tcb.2015.01.004

4. Nam GH, Choi Y, Kim GB, Kim S, Kim SA, Kim IS. Emerging prospects of
exosomes for cancer treatment: from conventional therapy to immunotherapy.
Advanced Materials. (2020) 32:2002440. doi: 10.1002/adma.202002440

5. Holm MM, Kaiser J, Schwab ME. Extracellular vesicles: multimodal envoys in neural
maintenance and repair.Trends Neurosciences. (2018) 41:360–72. doi: 10.1016/j.tins.2018.03.006

6. Zierden HC, Marx-Rattner R, Rock KD, Montgomery KR, Anastasiadis P, Folts L,
et al. Extracellular vesicles are dynamic regulators of maternal glucose homeostasis
during pregnancy. Sci Rep. (2023) 13:4568. doi: 10.1038/s41598-023-31425-x

7. Yates AG, Pink RC, Erdbrügger U, Siljander PRM, Dellar ER, Pantazi P, et al. In
sickness and in health: The functional role of extracellular vesicles in physiology and
pathology in vivo: Part I: Health and Normal Physiology. J extracellular vesicles. (2022)
11:e12151. doi: 10.1002/jev2.12151

8. Takeuchi T, Suzuki M, Fujikake N, Popiel HA, Kikuchi H, Futaki S, et al.
Intercellular chaperone transmission via exosomes contributes to maintenance of
protein homeostasis at the organismal level. Proc Natl Acad Sci. (2015) 112:E2497–
506. doi: 10.1073/pnas.1412651112

9. Buzas EI. The roles of extracellular vesicles in the immune system. Nat Rev
Immunol. (2023) 23:236–50. doi: 10.1038/s41577-022-00763-8

10. Robbins PD, Morelli AE. Regulation of immune responses by extracellular
vesicles. Nat Rev Immunol. (2014) 14:195–208. doi: 10.1038/nri3622

11. Marar C, Starich B, Wirtz D. Extracellular vesicles in immunomodulation and
tumor progression. Nat Immunol. (2021) 22:560–70. doi: 10.1038/s41590-021-00899-0

12. Chen J, Yang J, Wang W, Guo D, Zhang C, Wang S, et al. Tumor extracellular
vesicles mediate anti-PD-L1 therapy resistance by decoying anti-PD-L1. Cell Mol
Immunol. (2022) 19:1290–301. doi: 10.1038/s41423-022-00926-6

13. Hou P-p, Chen H-z. Extracellular vesicles in the tumor immune
microenvironment. Cancer Letters. (2021) 516:48–56. doi: 10.1016/j.canlet.2021.05.032

14. Yin Y, Chen H, Wang Y, Zhang L, Wang X. Roles of extracellular vesicles in the
aging microenvironment and age-related diseases. J Extracellular Vesicles. (2021) 10:
e12154. doi: 10.1002/jev2.12154

15. Shen Q, Huang Z, Yao J, Jin Y. Extracellular vesicles-mediated interaction within
intestinal microenvironment in inflammatory bowel disease. J advanced Res. (2022)
37:221–33. doi: 10.1016/j.jare.2021.07.002

16. Xu F, Fei Z, Dai H, Xu J, Fan Q, Shen S, et al. Mesenchymal stem cell-derived
extracellular vesicles with high PD-L1 expression for autoimmune diseases treatment.
Advanced Materials. (2022) 34:2106265. doi: 10.1002/adma.202106265

17. Prasai A, Jay JW, Jupiter D, Wolf SE, El Ayadi A. Role of exosomes in dermal
wound healing: a systematic review. J Invest Dermatol. (2022) 142:662–678.e8.
doi: 10.1016/j.jid.2021.07.167

18. Mancini L, Guirao B, Ortica S, Labusch M, Cheysson F, Bonnet V, et al. Apical
size and deltaA expression predict adult neural stem cell decisions along lineage
progression. Sci Adv. (2023) 9:eadg7519. doi: 10.1126/sciadv.adg7519
19. György B, Hung ME, Breakefield XO, Leonard JN. Therapeutic applications of
extracellular vesicles: clinical promise and open questions. Annu Rev Pharmacol
toxicology. (2015) 55:439–64. doi: 10.1146/annurev-pharmtox-010814-124630

20. Fyfe J, Casari I, Manfredi M, Falasca M. Role of lipid signalling in extracellular
vesicles-mediated cell-to-cell communication. Cytokine Growth Factor Rev. (2023).
doi: 10.1016/j.cytogfr.2023.08.006

21. Fyfe J, Malhotra P, Falasca M. Modified lipidomic profile of cancer-associated
small extracellular vesicles facilitates tumorigenic behaviours and contributes to disease
progression. Adv Biol Regulation. (2023) 87:100935. doi: 10.1016/j.jbior.2022.100935

22. Kooijmans SA, Schiffelers RM, Zarovni N, Vago R. Modulation of tissue tropism
and biological activity of exosomes and other extracellular vesicles: New nanotools for
cancer treatment. Pharmacol Res. (2016) 111:487–500. doi: 10.1016/j.phrs.2016.07.006

23. Su H, Rustam YH, Masters CL, Makalic E, McLean CA, Hill AF, et al.
Characterization of brain-derived extracellular vesicle lipids in Alzheimer's disease. J
extracellular vesicles. (2021) 10:e12089. doi: 10.1002/jev2.12089

24. Karimi N, Dalirfardouei R, Dias T, Lötvall J, Lässer C. Tetraspanins distinguish
separate extracellular vesicle subpopulations in human serum and plasma–
Contributions of platelet extracellular vesicles in plasma samples. J extracellular
vesicles. (2022) 11:e12213. doi: 10.1002/jev2.12213

25. Nolan JP, Duggan E. Analysis of individual extracellular vesicles by flow
cytometry. Flow cytometry Protoc. (2018) 1678:79–92. doi: 10.1007/978-1-4939-7346-
0_5

26. Cheng AN, Cheng L-C, Kuo C-L, Lo YK, Chou H-Y, Chen C-H, et al.
Mitochondrial Lon-induced mtDNA leakage contributes to PD-L1–mediated
immunoescape via STING-IFN signaling and extracellular vesicles. J immunotherapy
cancer. (2020) 8:e001372. doi: 10.1136/jitc-2020-001372

27. Sun N, Zhang C, Lee YT, Tran BV, Wang J, Kim H, et al. HCC EV ECG score: an
extracellular vesicle-based protein assay for detection of early-stage hepatocellular
carcinoma. Hepatology. (2023) 77:774–88. doi: 10.1002/hep.32692

28. Christianson HC, Svensson KJ, Van Kuppevelt TH, Li J-P, Belting M. Cancer cell
exosomes depend on cell-surface heparan sulfate proteoglycans for their internalization
and functional activity. Proc Natl Acad Sci. (2013) 110:17380–5. doi: 10.1073/
pnas.1304266110

29. Hagey DW, Ojansivu M, Bostancioglu BR, Saher O, Bost JP, Gustafsson MO,
et al. The cellular response to extracellular vesicles is dependent on their cell source and
dose. Sci advances. (2023) 9:eadh1168. doi: 10.1126/sciadv.adh1168

30. Czernek L, Chworos A, Duechler M. The uptake of extracellular vesicles is
affected by the differentiation status of myeloid cells. Scandinavian J Immunol. (2015)
82:506–14. doi: 10.1111/sji.12371

31. Inder KL, Ruelcke JE, Petelin L, Moon H, Choi E, Rae J, et al. Cavin-1/PTRF
alters prostate cancer cell-derived extracellular vesicle content and internalization to
attenuate extracellular vesicle-mediated osteoclastogenesis and osteoblast proliferation.
J extracellular vesicles. (2014) 3:23784. doi: 10.3402/jev.v3.23784

32. Bonsergent E, Grisard E, Buchrieser J, Schwartz O, Théry C, Lavieu G.
Quantitative characterization of extracellular vesicle uptake and content delivery
within mammalian cells. Nat Commun. (2021) 12:1864. doi: 10.1038/s41467-021-
22126-y

33. Charoenviriyakul C, Takahashi Y, Morishita M, Nishikawa M, Takakura Y. Role
of extracellular vesicle surface proteins in the pharmacokinetics of extracellular vesicles.
Mol pharmaceutics. (2018) 15:1073–80. doi: 10.1021/acs.molpharmaceut.7b00950
frontiersin.org

https://doi.org/10.1002/jev2.12416
https://doi.org/10.1038/s41573-022-00410-w
https://doi.org/10.1016/j.tcb.2015.01.004
https://doi.org/10.1002/adma.202002440
https://doi.org/10.1016/j.tins.2018.03.006
https://doi.org/10.1038/s41598-023-31425-x
https://doi.org/10.1002/jev2.12151
https://doi.org/10.1073/pnas.1412651112
https://doi.org/10.1038/s41577-022-00763-8
https://doi.org/10.1038/nri3622
https://doi.org/10.1038/s41590-021-00899-0
https://doi.org/10.1038/s41423-022-00926-6
https://doi.org/10.1016/j.canlet.2021.05.032
https://doi.org/10.1002/jev2.12154
https://doi.org/10.1016/j.jare.2021.07.002
https://doi.org/10.1002/adma.202106265
https://doi.org/10.1016/j.jid.2021.07.167
https://doi.org/10.1126/sciadv.adg7519
https://doi.org/10.1146/annurev-pharmtox-010814-124630
https://doi.org/10.1016/j.cytogfr.2023.08.006
https://doi.org/10.1016/j.jbior.2022.100935
https://doi.org/10.1016/j.phrs.2016.07.006
https://doi.org/10.1002/jev2.12089
https://doi.org/10.1002/jev2.12213
https://doi.org/10.1007/978-1-4939-7346-0_5
https://doi.org/10.1007/978-1-4939-7346-0_5
https://doi.org/10.1136/jitc-2020-001372
https://doi.org/10.1002/hep.32692
https://doi.org/10.1073/pnas.1304266110
https://doi.org/10.1073/pnas.1304266110
https://doi.org/10.1126/sciadv.adh1168
https://doi.org/10.1111/sji.12371
https://doi.org/10.3402/jev.v3.23784
https://doi.org/10.1038/s41467-021-22126-y
https://doi.org/10.1038/s41467-021-22126-y
https://doi.org/10.1021/acs.molpharmaceut.7b00950
https://doi.org/10.3389/fimmu.2024.1363185
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Choi et al. 10.3389/fimmu.2024.1363185
34. Fendl B, Eichhorn T, Weiss R, Tripisciano C, Spittler A, Fischer MB, et al.
Differential interaction of platelet-derived extracellular vesicles with circulating
immune cells: Roles of TAM receptors, CD11b, and phosphatidylserine. Front
Immunol. (2018) 2797. doi: 10.3389/fimmu.2018.02797

35. Lu H, Bowler N, Harshyne LA, Hooper DC, Krishn SR, Kurtoglu S, et al.
Exosomal avb6 integrin is required for monocyte M2 polarization in prostate cancer.
Matrix Biol. (2018) 70:20–35. doi: 10.1016/j.matbio.2018.03.009

36. Ji Q, Zhou L, Sui H, Yang L, Wu X, Song Q, et al. Primary tumors release
ITGBL1-rich extracellular vesicles to promote distal metastatic tumor growth through
fibroblast-niche formation. Nat Commun. (2020) 11:1211. doi: 10.1038/s41467-020-
14869-x

37. Hoshino A, Costa-Silva B, Shen T-L, Rodrigues G, Hashimoto A, Tesic Mark M,
et al. Tumour exosome integrins determine organotropic metastasis. Nature. (2015)
527:329–35. doi: 10.1038/nature15756

38. Wu K, Feng J, Lyu F, Xing F, Sharma S, Liu Y, et al. Exosomal miR-19a and IBSP
cooperate to induce osteolytic bone metastasis of estrogen receptor-positive breast
cancer. Nat Commun. (2021) 12:5196. doi: 10.1038/s41467-021-25473-y

39. Zhang S, Liao X, Chen S, Qian W, Li M, Xu Y, et al. Large oncosome-loaded
VAPA promotes bone-tropic metastasis of hepatocellular carcinoma via formation of
osteoclastic pre-metastatic niche. Advanced Science. (2022) 9:2201974. doi: 10.1002/
advs.202201974

40. Rana S, Yue S, Stadel D, Zöller M. Toward tailored exosomes: the exosomal
tetraspanin web contributes to target cell selection. Int J Biochem Cell Biol. (2012)
44:1574–84. doi: 10.1016/j.biocel.2012.06.018

41. Nazarenko I, Rana S, Baumann A, McAlear J, Hellwig A, Trendelenburg M, et al.
Cell surface tetraspanin Tspan8 contributes to molecular pathways of exosome-
induced endothelial cell activation. Cancer Res. (2010) 70:1668–78. doi: 10.1158/
0008-5472.CAN-09-2470

42. Morelli AE, Larregina AT, Shufesky WJ, Sullivan ML, Stolz DB, Papworth GD,
et al. Endocytosis, intracellular sorting, and processing of exosomes by dendritic cells.
Blood. (2004) 104:3257–66. doi: 10.1182/blood-2004-03-0824

43. Nigri J, Leca J, Tubiana S-S, Finetti P, Guillaumond F, Martinez S, et al. CD9
mediates the uptake of extracellular vesicles from cancer-associated fibroblasts that
promote pancreatic cancer cell aggressiveness. Sci Signaling. (2022) 15:eabg8191.
doi: 10.1126/scisignal.abg8191

44. Cardeñes B, Clares I, Toribio V, Pascual L, López-Martıń S, Torres-Gomez A,
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