
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
A scaleable spiking neural model of action planning

Permalink
https://escholarship.org/uc/item/3rb9w1r5

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 38(0)

Authors
Blouw, Peter
Eliasmith, Chris
Tripp, Bryan P.

Publication Date
2016
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3rb9w1r5
https://escholarship.org
http://www.cdlib.org/


A scaleable spiking neural model of action planning

Peter Blouw (pblouw@uwaterloo.ca)

Chris Eliasmith (celiasmith@uwaterloo.ca)

Bryan P. Tripp (bptripp@uwaterloo.ca)

Centre for Theoretical Neuroscience, University of Waterloo
Waterloo, ON, Canada N2L 3G1

Abstract

Past research on action planning has shed light on the neural
mechanisms underlying the selection of simple motor actions,
along with the cognitive mechanisms underlying the planning
of action sequences in constrained problem solving domains.
We extend this research by describing a neural model that
rapidly plans action sequences in relatively unconstrained do-
mains by manipulating structured representations of objects
and the actions they typically afford. We provide an analysis
that indicates our model is able to reliably accomplish goals
that require correctly performing a sequence of up to 5 actions
in a simulated environment. We also provide an analysis of
the scaling properties of our model with respect to the num-
ber of objects and affordances that constitute its knowledge
of the environment. Using simplified simulations we find that
our model is likely to function effectively while picking from
10,000 actions related to 25,000 objects.
Keywords: planning; affordances; spiking neurons; neural en-
gineering framework; semantic pointer architecture

Introduction

Action selection is a topic of long-standing interest for under-
standing human behavior (Shallice, 1982; Daw et al., 2005).
Recent results in neurophysiology have clarified some of
the underlying neural mechanisms. In particular, moment-
to-moment decisions about motor actions such as reaching,
grasping, saccades, etc. appear to arise from parallel compe-
titions among representations in multiple frontal and parietal
areas (Andersen & Gui, 2009; Cisek, 2012).

Accordingly, action decisions are influenced by many fac-
tors (Wolpert & Landy, 2012). Often, a dominant factor is a
larger goal that may be several steps removed from any im-
mediately feasible action (for example, one may have to open
a laptop and start an application before one can type some-
thing). Thus, rapid and frequent multi-action planning is an
important part of life. Planning of action sequences has been
studied extensively in the context of the Tower of Hanoi and
Tower of London tasks, which appear to particularly involve
frontal areas (Goel & Grafman, 1995), but (in contrast with
decisions about immediate actions) the neural mechanisms
are unclear.

Furthermore, compared to more naturalistic tasks (such as
making a sandwich) these tasks are arguably relatively delib-
erative and constrained. In contrast, preparing a meal, clean-
ing up after it, fixing a loose hinge discovered on the cup-
board in the process, etc. require variable (sometimes novel)
action sequences that are assembled with little effort, using
sophisticated knowledge of the many objects involved and
the actions they afford. Human behavior in such contexts is
only loosely related to artificial-intelligence planning meth-

ods (Russell & Norvig, 2003), which produce complex and
optimal plans within narrow domains.

Our goal in this study is to better understand how the
knowledge needed for rapid action-sequence planning might
be stored and processed in the brain. To this end, we de-
velop a spiking-neuron model that plans action sequences by
chaining together action preconditions and effects (Fikes &
Nilsson, 1971) while interacting with a simulated environ-
ment. Each planning step selects from actions that are related
to available objects, in order to constrain each decision and
allow planning to proceed quickly (about 100ms of simulated
time per step).

While this kind of planning process could in principal be
supported by a variety of action representations and model ar-
chitectures (Krüger et al., 2011; Fincham et al., 2002), some
architectures and representations require precision than is un-
available from noisy, spiking neurons, and/or require very
large numbers of neurons. A working spiking neural model
may therefore be a source of insight into constraints on the
brain’s solution to this problem.

In what follows, we present our model and analyze its per-
formance on a naturalistic planning challenge (namely, boil-
ing water in a simulated kitchen environment). We contend
that the model satisfies two important constraints on the pro-
cesses underlying action selection. First, the model gives a
neurally plausible account of the kinds of representations and
processes that underlie planning in cognitive systems. And
second, the model can scale to accomplish goals that require
performing fairly complex sequences of actions in domains
that require an understanding of large numbers of objects.

The Semantic Pointer Architecture (SPA)

To implement our model, we use the Semantic Pointer Ar-
chitecture (Eliasmith, 2013), a recently developed framework
for constructing neurally plausible models of cognitive phe-
nomena. Previously, the SPA has been used to build Spaun, a
large-scale simulation of the brain that performs a wide range
of cognitive functions (Eliasmith et al., 2012). In what fol-
lows, we provide a condensed description of the SPA drawn
from material found in Stewart et al. 2014.

A typical SPA model defines a set of subsystems corre-
sponding to particular brain regions. Each subsystem is im-
plemented as a collection of simulated spiking neurons (we
use the leaky-integrate-and-fire (LIF) model in this case).
Synaptic connections between the neurons in distinct subsys-
tems are then optimized to compute some desired function
on a latent vector space that is represented by the neurons’

1583



spiking activities.
For example, a common subsystem is a working memory.

Formally, working memory can be described as a differential
equation. The neurons in a working memory subsystem can
be characterized as representing a vector (or scalar) x, and
the input to these neurons can be taken to represent another
vector, u. Assuming that x remains constant when u is zero
(i.e. a memory is stored), and that x changes proportionally
to value of u when u is non-zero, the representational state of
the subsystem can be written as dx/dt = u.

Helpfully, an arbitrary differential equation of this kind can
be approximated with an ensemble of spiking neurons using
the Neural Engineering Framework (NEF; Eliasmith & An-
derson, 2003). This approximation is achieved by randomly
assigning a ‘tuning curve’ to each neuron that specifies its
spike rate in relation to the represented value x. For instance,
a given neuron might fire rapidly when the value of x is zero,
but fire much more slowly when the value of x is positive.
For a given neuron in a SPA model, this tuning curve is as-
signed randomly using a distribution of firing patterns that is
consistent with available empirical evidence.

Once synaptic connections are introduced between two
populations of neurons, it is possible to use a local optimiza-
tion technique to ensure that the tuning curves in each popula-
tion are appropriately related to the variables they are hypoth-
esized to represent. For example, if the tuning curves in the
first population are defined in relation to a variable x, while
the tuning curves in the second population are defined in rela-
tion to a variable y, then it is possible to find a set of connec-
tion weights that approximate the computation y = f (x). In
the presence of recurrent connections, this technique can be
used to approximate any function of the form dx/dt = f (x,u).
The quality of the approximation depends on both the number
of neurons being used and the degree of non-linearity present
in the function.

In general, the SPA suggests that the representations being
manipulated by the brain are semantic pointers (SPs), which
are compressed neural representations that can be identified
with vector variables such as x and y above. In the context
of action planning, however, we need to manipulate symbol-
like, structured information using SPs. Consequently, the
forms of compression that are most relevant are identified by
Vector Symbolic Architectures (VSAs; Gayler, 2004). VSAs
are a set of mathematical formalisms that enable structured
collections of symbols to be represented as high-dimensional
vectors. For example, a symbol corresponding to the concept
of KET T LE could be defined in a VSA as a 500-dimensional
vector (i.e. a distributed representation). These vectors can
be randomly chosen (as they are here), or they can be chosen
such that similar terms (KET T LE and POT , for example)
correspond to similar vectors.

To encode structured combinations of vectors, VSAs in-
troduce a compressive binding operation. Different VSAs
choose different binding operators, and for our work we use
circular convolution, written as ⌦, meaning that this partic-

ular VSA uses holographic reduced representations (HRRs;
Plate, 2003).

To give an example of how structured information is en-
coded using this operator, suppose we want to represent the
knowledge that kettles tend to be used to boil water and tend
to be located in kitchens and staff lounges. We might repre-
sent this as: KET T LE = LOCAT ION ⌦ (KITCHEN +
STAFF LOUNGE) + GOALS ⌦ WAT ER BOILED.
Importantly, VSAs also define an inverse operation:
given an element of the structure, we can determine
the associated representations by computing, e.g.,
KET T LE ⌦ LOCAT IONS�1, which is approximately
equal to KITCHEN +STAFF LOUNGE.

These VSA operations can be computed within the SPA
to create structured semantics pointers. Moreover, the SPA
allows such semantic pointers to be routed between differ-
ent subsystems and manipulated in various ways. For in-
stance, sensory areas can transform stimuli into appropriate
conceptual SPs, and motor areas can take SPs representing
actions and transform them into a sequence of muscle move-
ments (Eliasmith, 2013). In order to implement these kinds
of transformations, the SPA includes a model of the cortex-
basalganglia-thalamus loop that performs (cognitive) action
selection. Connections between cortex and the basal ganglia
compute utilities over a set of possible actions. The basal
ganglia identify the highest utility value, and pass this infor-
mation on to the thalamus, wherein all of the neurons corre-
sponding to actions with lower utility values are suppressed.

Models constructed using the SPA therefore define a set
of cognitive actions that can be performed (note that these
are distinct from the physical actions discussed throughout
the rest of this paper). Each action is defined in terms
of a set of effects Ei (e.g. the routing of an SP from one
subsystem to another), and a utility function Ui that indicates
when the action ought to be performed. For example, the
following action results in the contents of a subsystem
labeled ultimate goal being routed to a subsystem labeled
immediate goal when a subsystem labeled signal represents
an SP PLAN. This action will be selected by the basal
ganglia if it has the highest utility of all actions.

Ui : signal ·PLAN
Ei : immediate goal ultimate goal

The NEF provides an efficient method for defining these ac-
tions, with each one requiring roughly 300 basal ganglia neu-
rons to implement (Stewart et al., 2014).

A Neural Action Planning Model

Given that the set of actions needed to accomplish a goal de-
pends on the state of the world, and that such actions modify
the state of the world once performed, we define a simple
simulated environment for our model to interact with. This
environment consists of an arbitrary number of entities that
have particular states and locations. For example, a ‘ket-

1584



Figure 1: Functional architecture of the model. Regions sur-
rounded by the dashed lines correspond to broadly individ-
uated components responsible for perception, action, mem-
ory and cognitive control. Regions surrounded by solid black
lines correspond to potentially simpler subsystems of these
components. Arrows between subsystems indicate the main
pathways through which the control system is able to manip-
ulate the flow of information.

tle’ entity might be located on a counter, and might have
the state of being plugged in. At an implementational level,
the environment is a program that the planner interacts with
by sending commands that instruct the program to either re-
turn the state of an entity or execute an action. Importantly,
actions can only successfully modify the state of the envi-
ronment in particular circumstances. For instance, the action
BOIL KET T LE can only be successfully executed if the ket-
tle contains water and is plugged in.

The planner itself comprises five main components: a per-
ceptual system that monitors the the environment, a motor
system that manipulates the environment, a working memory
system that stores goals and planned sequences of actions,
an associative memory system that matches certain locations
and goals to certain actions and objects, and a control system
that controls how all of these components interact with one
another. Each component is implemented using the SPA, as
described above. Figure 1 provides a high-level depiction of
the model’s functional architecture.

Functionally, the model is provided with input in the form
of SPs representing a location and an “ultimate goal” (or
“prior intention”, Jeannerod, 2006), along with an input that
signals the model to start planning. The location and goal rep-
resentations are mapped by an associative memory to an SP
representing a set of objects that are relevant to accomplish-
ing the given goal in the given location. For example, given
the location KITCHEN and the goal WAT ER BOILED, the
model will represent the objects TAP and KET T LE as being
relevant.

Next, this object representation and the goal representation
are mapped by an associative memory to a representation
of an appropriate action, which is then stored in working
memory as the final item in the action plan being constructed.
Here, the action would be BOIL KET T LE, which, simplify-

ing somewhat, would be added to the plan via the following
cognitive action:

Ui : control signal ·GET ACT ION
Ei : stack stack⌦PUSH +action

where PUSH is a random SP that is used to bind action SPs to
particular positions in a structured representation of an action
sequence.

Since the action can only be executed in specific cir-
cumstances, an associative memory is used to map it to a
representation of a set of preconditions that the environment
must satisfy. The immediate goal of planning is then updated
by adding in these preconditions and subtracting out the
effects of the planned action. This operation is performed by
a cognitive action of the form:

Ui : control signal ·SET GOAL
Ei : i goal i goal� e f f ects+ precons

where i goal and precons abbreviate the subsystems labeled
‘Immediate Goal’ and ‘Preconditions’, respectively.

This whole process of finding an appropriate action and
updating the immediate goal of planning is repeated until an
action whose preconditions are satisfied by the environment
is found. At this point, perceptual feedback from the environ-
ment prompts the model to begin executing the actions in the
planned sequence. First, the most recently added action in
the planned sequence is routed to the planner’s motor system,
where it is subsequently presented as a command to the simu-
lated environment. Then, the action just executed is removed
from the planned sequence and the process repeats (i.e. the
next action in the sequence is routed to the motor system etc.):

Ui : control signal ·POP STACK
Ei : stack stack⌦PUSH�1�motor

The representation of the action sequence in working mem-
ory is the VSA equivalent of a stack, and the the process of
executing actions amounts to popping items off of this stack
and routing them through the motor system as commands to
the environment. However, because the SPA makes use of a
compressive binding operator, the stack is not perfect (Plate,
2003). As more actions are added to a planned sequence, the
likelihood of recovering all of the actions drops considerably.
For this reason, our model is designed to execute all of the ac-
tions that can be recovered from the planned sequence, after
which it begins to re-plan in light of the changed environment.

The fact that the model is able to switch from acting to
planning in this manner is important for enabling it to recover
from errors. For example, if the planner chooses an incorrect
action representation at a given point in the planning process,
or fails to execute items in the correct order, it will then re-
plan and correct its mistake. The process of re-planning in
this way is typically successful because the model relies on

1585



the perceptual feedback from the environment when decid-
ing whether or not the preconditions of a particular action are
satisfied.

We emphasize that the model does not directly implement
the above logic or symbolic variables. The model consists of
341380 spiking neurons, with synaptic weights that are op-
timized to approximately perform this information process-
ing. An implementation of the model is available online at
https://github.com/pblouw/action-planning/

Results

In what follows, we report results concerning the consistency
with which our model is able to successfully perform a task
over numerous simulations involving different neuron param-
eters. We also report results concerning the scalability of the
model to situations involving large numbers of possible ob-
jects and actions.

First, however, we discuss the results of an example sim-
ulation to provide greater insight into the behavior of the
model. As shown in Figure 2, the model plans by chain-
ing backwards through a sequence of actions and continu-
ally updating its immediate goal. Once an action with pre-
conditions satisfied by the environment is added to the plan,
the model ceases planning and begins acting (this can be ob-
served in the change to the Control Signal representation in
Figure 2). Once no more actions can be extracted from the
current plan, the model stops acting and proceeds to re-plan
until it achieves its ultimate goal.

Goal Completion Analysis

We first test the model by assessing whether or not it is able to
consistently accomplish its ultimate goal when allowed to in-
teract with the environment. Each row of Table 1 reports the
results of an experiment in which the model’s behavior is sim-
ulated for up to 4 seconds over 50 trials. Each experiment in-
volves setting the environment to an initial state that requires
the planner to perform an increasing number of actions. For
example, in the first experiment, only two actions need to be
performed to accomplish the ultimate goal of boiling water.
Each trial involves a unique instance of the model, in that a
new random seed is used to generate all of the LIF neuron
parameters (each instance of the model is accordingly anal-
ogous to a unique experimental subject). A trial is deemed
successful if the model achieves the ultimate goal within the
simulation time. We report the percentage of successful tri-
als, along with the average time needed per trial to achieve
the goal. The time needed to achieve the goal typically varies
due to the differences in the number of actions the model is
able to retrieve from a planned sequence. Occasionally, the
model also makes an error that forces it to re-plan so as to ac-
commodate an unexpected environmental state. Note that the
environment model changes instantaneously, so these time
scales correspond only to the neural model’s internal process-
ing time. Overall, our results indicate that the model is robust
to changes in the environment that increase the number of
actions required to achieve the goal.

Figure 2: A sample run of the model interacting with the en-
vironment. Each colored plot depicts the similarity between
the representational state in the indicated component of the
model and a set of known representational states, shown un-
der each plot. Underneath each representational plot is the
spiking activity from a set of randomly sampled neurons from
the labeled model component.

Table 1: Performance Analysis of Planner over 50 Trials

Sequence Length Success Rate (%) Average Time (s)
2 94 0.48 (SD 0.17)
3 98 0.90 (SD 0.20)
4 94 1.40 (SD 0.51)
5 94 1.92 (SD 0.64)

Scaling Analysis

Given these successful results, we decided to test whether the
action-selection mechanism of this model would work with
human-scale knowledge bases. Our model selects an object
or action from an associative memory if its SP has a high
inner product with an SP that represents the current context
(e.g. location; goal). An unrelated item is unlikely to be ac-
cidentally selected, because random SPs in high-dimensional
spaces tend to be nearly orthogonal. However, if the memory
contains a very large number of entries, the total probability
of an incorrect selection may become problematic. We ex-
plored this issue in simplified HRR models with no neurons.

Figure 3 illustrates how such confusion can arise. An asso-
ciative memory was created with 25000 500-dimensional ob-
ject HRRs, each of which contained lists of goal and location
vectors of varying length (drawn from a Poisson distribution
with a mean of 2). The associative memory was then queried
with random goal/location combinations. The inner products

1586



Figure 3: Inner products of 500 random goal/location con-
text HRRs with 25000 object HRRs (each with two goals
and locations on average). Histograms of inner products of
queries with partially matching (open), and matching (filled)
object vectors. There is some overlap between partial and full
matches due to the large number of partial matches (note the
log scale). The non-matches (not shown) have a mean of zero
and do not overlap the matches.

of these queries with the associative memory entries was dis-
tributed around two for correct matches, i.e. for entries that
actually contained both the specified goal and the specified
location (bottom panel), and around zero for entries that did
not contain either the goal or location (top panel), with no
overlap. However, there was some overlap between matches
and partial matches (which contained either the goal or loca-
tion but not both). Because there are a large number of partial
matches, substantial confusion could arise if a small fraction
of them overlap.

Figure 4 estimates the effect of these matching properties
on our model. The top panel shows average numbers of ob-
jects (out of 25000) that match random combinations of loca-
tions and goals (as a function of the mean numbers of goals
and locations per object, which were set equal). Our model
would not perform well if this number rose above about ten,
because the inner product of an HRR x with a sum that in-
cludes x becomes noisy if the sum is large (Plate, 2003). In
these simulations, locations were drawn from a list of 250 and
goals from a list of 1000. The numbers of objects, goals, and
locations were meant to correspond roughly to the numbers of
these things that are familiar to a person. No explicit category
structure is imposed on the object representations, though the
fact that these representations draw on a shared stock of lo-
cations and goals yields varying degrees of representational
similarity.

The center panel shows the precision, i.e. (true positives)
/ (true positives + false positives), of object selection with
various HRR dimensions, over 500 random queries in each
condition, with the threshold set below at least 90% of the
true positives. Higher HRR dimensions improve precision.

Finally, the bottom panel shows the precision of action
selection (with 10000 possible actions), using queries that
combined desired effects (from 2500 possibilities) with sums
of object vectors (including false positives) from the object
queries. The precision is fairly high with higher-dimensional
vectors. The consequence of an error would be to plan ei-

Figure 4: The scaling effects of the average numbers of loca-
tions and goals per object concept. Top: Average numbers of
objects matching goal/location queries. Middle: Precision of
object selection for HRRs of 250, 500, and 1000 dimensions.
Bottom: Precision of action selection based on single effects
and sums of object vectors from the queries in the middle
panel (including false positives). Large HRR vectors are re-
quired for high precision with large numbers of object, goal,
etc. concepts.

ther an irrelevant action or an action that requires an object
that isn’t available. One likely reason precision is lower for
action selection than object selection is that multiple objects
are selected in the first step, and their sum has a somewhat
noisy inner product with the individual-object components of
action vectors in the second step.

Overall, these results demonstrate that the neural model is
likely to function effectively while picking from 10,000 ac-
tions related to 25,000 objects. Preliminary simulations indi-
cate the neural model is able to scale to at least 5000 objects
with no loss of performance in the kettle boiling scenario.
However, additional neural simulations are needed to fully
confirm the scaling analysis provided here.

We also found that somewhat greater precision could be
obtained by restructuring action queries to include effects and
locations, rather than effects and objects. To obtain these re-
sults, we built a memory of 10000 actions, each with one
effect and a Poisson random number of locations. In this
case we performed each query by randomly selecting an ac-
tion with one or more locations, and querying with its effect
and its first location (so there was always at least one correct
match). The precision of these queries was somewhat better
than that of the affordance-based queries.

This simple analysis does not account for a number of
factors, including (for example) correlations between goals
and locations. However, it suggests that the action-selection
mechanism of our spiking model is likely to scale to relatively

1587



complex environments.

Discussion

The main contribution of our work is to present a neurally
plausible model of relatively domain-general action planning.
The model is able to plan both quickly and effectively, and
it is robust to various changes to the planning environment.
The representational properties of the model, moreover, in-
dicate that it is capable of scaling to naturalistic planning
environments in which there are vast numbers of potential
actions that could be relevant to accomplishing a particular
goal. This is an important feature given the degree to which
many existing models in action planning literature are re-
stricted to highly specific problem domains (e.g. the Tower
of Hanoi puzzle). Interestingly, the scope of our model is
closely related to deficits in ideational apraxia (Zadikoff &
Lang, 2005).

One potential concern about our model is that it is only able
to produce short sequences of 1-3 actions before re-planning
(i.e. the stack that stores planned sequences of actions de-
grades easily). This seems unrealistic in the context of a task
such as water-boiling, which most people do with minimal
conscious reflection. Some kind of sequence consolidation
for routine actions is clearly needed (Taatgen & Lee, 2003;
Cooper et al., 2014). However, we are not arguing that the
planning performed by our model is reflective of conscious
deliberation, in which case the time course over which plan-
ning occurs is not implausible.

Finally, given some of the limitations of our model, an im-
portant direction for future work concerns grounding it in a
richer environment. One possibility would involve integrat-
ing the model into a robot that operates in a real kitchen.
Among the many practical challenges this would entail, a key
problem concerns recognizing object states using a model of
the visual system.

Acknowledgments

This work was supported by a NSERC Discovery Grant and
an Ontario Graduate Scholarship. We thank Terry Stewart,
Ashley Kleinhans, Renaud Detry, Benjamin Rosman, Nasim
Mortazavi, and Serge Thill for helpful discussions.

References

Andersen, R., & Gui, H. (2009). Intention, action-planning,
and decision making in parietal-frontal circuits. Neuron,
63(5), 568-583.

Cisek, P. (2012). Making decisions through a distributed
consensus. Current Opinion in Neurobiology, 22(6), 927-
936.

Cooper, R., Ruh, N., & Mareschal, D. (2014). The goal cir-
cuit model: A hierarchical multi-route model of the acqui-
sition and control of routine sequential action in humans.
Cognitive Science, 38, 244–274.

Daw, N., Niv, T., & Dayan, P. (2005). Uncertainty-
based competition between prefrontal and dorsolateral stri-

atal systems for behavioral control. Nature Neuroscience,
8(12), 1704–1711.

Eliasmith, C. (2013). How to build a brain: An architecture
for neurobiological cognition. Oxford University Press.

Eliasmith, C., & Anderson, C. (2003). Neural engineering:
Computation, representation, and dynamics in neurobio-
logical systems. MIT Press.

Eliasmith, C., Stewart, T., Choo, X., Bekolay, T., DeWolf, T.,
Tang, Y., & Rasmussen, D. (2012). A large-scale model of
the functioning brain. Science, 338(6111), 1202- 1205.

Fikes, R. E., & Nilsson, N. J. (1971). STRIPS : A New Ap-
proach to the Application of . Theorem Proving to Problem
Solving ’. Artificial Intellegence, 2, 189 – 208.

Fincham, J., Carter, C., van Veen, V., Stenger, A., & Ander-
son, J. (2002). Neural mechanisms of planning: a compu-
tational analysis using event-related fMRI. Proceedings of
the National Academy of Sciences of the United States of
America, 99(5), 3346–3351.

Gayler, R. W. (2004). Vector Symbolic Architectures Answer
Jackendoffs Challenges for Cognitive Neuroscience. arXiv
preprint cs/0412059.

Goel, V., & Grafman, J. (1995). Are the frontal lobes impli-
cated in ”planning” functions? Interpreting data from the
Tower of Hanoi. Neuropsychologia, 33(5), 623–642.

Jeannerod, M. (2006). Motor Cognition: What actions tell
the self. Oxford University Press.

Krüger, N., Geib, C., Piater, J., Petrick, R., Steedman, M.,
Wörgötter, F., . . . Dillmann, R. (2011). Objectaction com-
plexes: Grounded abstractions of sensorymotor processes.
Robotics and Autonomous Systems, 59(10), 740–757.

Plate, T. (2003). Holographic reduced representations. CSLI
Publications.

Russell, S. J., & Norvig, P. (2003). Artificial intelligence: A
modern approach (2nd ed.). Pearson Education.

Shallice, T. (1982). Specific impairments of planning. Philo-
sophical Transactions of the Royal Society B: Biological
Sciences, 298(1089), 199–209.

Stewart, T., Choo, F.-X., & Eliasmith, C. (2014). Sentence
processing in spiking neurons: a biologically plausible left-
corner parser. In Proceedings of the 36th annual confer-
ence of the cognitive science society (p. 1533-1538). Cog-
nitive Science Society.

Taatgen, N., & Lee, F. (2003). Production compilation: a sim-
ple mechanism to model complex skill acquisition. Human
Factors, 45(1), 61–76.

Wolpert, D., & Landy, M. (2012). Motor control is decision-
making. Current Opinion in Neurobiology, 22(6), 996-
1003.

Zadikoff, C., & Lang, A. E. (2005). Apraxia in
movement disorders. Brain, 128(7), 1480–1497. doi:
10.1093/brain/awh560

1588




