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ABSTRACT: Rapid antimicrobial susceptibility testing (AST)
is an integral tool to mitigate the unnecessary use of powerful
and broad-spectrum antibiotics that leads to the proliferation of
multi-drug-resistant bacteria. Using a sensor platform com-
posed of surface-enhanced Raman scattering (SERS) sensors
with control of nanogap chemistry and machine learning
algorithms for analysis of complex spectral data, bacteria
metabolic profiles post antibiotic exposure are correlated with
susceptibility. Deep neural network models are able to
discriminate the responses of Escherichia coli and Pseudomonas
aeruginosa to antibiotics from untreated cells in SERS data in 10
min after antibiotic exposure with greater than 99% accuracy. Deep learning analysis is also able to differentiate responses
from untreated cells with antibiotic dosages up to 10-fold lower than the minimum inhibitory concentration observed in
conventional growth assays. In addition, analysis of SERS data using a generative model, a variational autoencoder, identifies
spectral features in the P. aeruginosa lysate data associated with antibiotic efficacy. From this insight, a combinatorial dataset of
metabolites is selected to extend the latent space of the variational autoencoder. This culture-free dataset dramatically
improves classification accuracy to select effective antibiotic treatment in 30 min. Unsupervised Bayesian Gaussian mixture
analysis achieves 99.3% accuracy in discriminating between susceptible versus resistant to antibiotic cultures in SERS using the
extended latent space. Discriminative and generative models rapidly provide high classification accuracy with small sets of
labeled data, which enormously reduces the amount of time needed to validate phenotypic AST with conventional growth
assays. Thus, this work outlines a promising approach toward practical rapid AST.
KEYWORDS: surface-enhanced Raman scattering, machine learning, deep neural networks, variational autoencoders,
generative deep learning, antimicrobial susceptibility testing, antimicrobial resistance

Worldwide, 700,000 people die annually of bacterial
infections exhibiting antimicrobial resistance.1 A full
third of antibiotics prescribed are to treat bacteria

that are resistant to those therapeutics, or which are otherwise
inappropriate.2 Antimicrobial resistance is a growing problem,
and by 2050 it is expected to cause 10 million deaths per year
and a 3.8% reduction of the total world gross domestic
product.3 While it is a multifaceted problem that will require
many systemic changes to healthcare, the 2016 Review on
Antimicrobial Resistance includes rapid diagnostics, referred to
as antimicrobial susceptibility tests (AST), to reduce the
unnecessary use of antimicrobials as a key intervention for the
reduction of antimicrobial resistance.4 Conventionally, AST
involves acquiring clinical samples from patients, culturing the

samples for 24−72 h,5 and using disk-diffusion or broth
microdilution assays (among other techniques) to identify a
suitable antibiotic for treatment,6 which does reduce hospital
stays and save money despite long culture times.10 Yet AST
results are required within a typical doctor visit for reducing
inappropriate use of antibiotics to mitigate antimicrobial
resistance proliferation while maintaining optimal patient
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outcomes.7−9 Point-of-care genomic AST, using genetic
markers (genes, plasmids, or mutations) associated with
resistance, potentially obviates the need for culturing and has
shown promising results on the time scale of hours. Yet the
presence of resistance genes does not necessarily translate to
expressed (phenotypic) resistance.10,11 Furthermore, genotypic
AST detects only known genes and mutations associated with
resistance, and does not allow for guarding against emergence
of recently evolved resistance mechanisms. For these reasons,
phenotypic AST is considered the gold standard,12 and often
genomic AST still requires phenotypic validation.13−15

Here we present a nanosensor platform for phenotypic AST
using bacterial metabolite profiles post antibiotic exposure and
correlating with antibiotic susceptibility. Metabolomic analyses
of the bacterial response to antibiotic treatment, using standard
methods such as mass spectrometry,16−19 show that the
mechanism of killing of antibiotics generally depends on the
dysregulation of core metabolic function,20−23 and substantial,
yet similar, changes in metabolite profiles of E. coli were
observed within 30 min after treatment with three classes of
antibiotics: β-lactams, aminoglycosides, and quinolones.20

Surface-enhanced Raman scattering (SERS) spectroscopy is a
low-cost alternative to mass spectroscopy able to differentiate
complex mixtures of small molecules with a label-free
approach24−27 and detect concentrations as low as 1 part per
trillion.31 Advanced nanomanufacturing methods, such as the
two-dimensional physically activated chemical (2PAC) assem-
bly method we previously developed,28,29 permit the rapid
acquisition of large datasets from SERS substrates with
controlled plasmonic nanogaps due to their high sensitivity
and consequently short exposure times necessary to acquire
reproducible spectra.30,31 2PAC-fabricated sensors are capable
of measuring single-molecule detection events and, with a
machine learning approach, able to quantify molecular
concentration down to 10 fM.30 SERS has been extensively
used in bacterial detection,32−34 and metabolites identified
with SERS35 have been validated by mass spectroscopy.36

Differential changes in vibrational peak intensity in SERS
spectra without recognition molecules have been correlated
with antimicrobial susceptibility, with minimum inhibitory
concentrations of antibiotics in 1 h after antibiotic exposure,37

and with susceptibility to antibiotics in 2 h in microfluidic
channels.38

Yet, in order for SERS-based AST to enter general use in
healthcare, spectral analysis must be robust enough to capture
the diversity and complexity of the bacterial systems observed
in a clinical setting, i.e., with methods that go beyond specific
peak intensities. Machine learning, especially deep learn-
ing,39−42 is emerging as an important force to revolutionize
healthcare, with these approaches now surpassing the perform-
ance of doctors in computer vision tasks like diagnosing skin,43

breast,44,45 and other forms of cancer.46−48 Raman + deep
learning has shown promise for AST and reports that analysis
can benefit from enhancements in SERS but requires an
approach to overcome lack of reproducibility in SERS data.49

Since the use of principal component analysis to demonstrate
single-molecule detection by Le Ru et al.,50 great progress has
been made in applying sophisticated machine learning
techniques to analyze SERS spectra. These include fully
connected artificial neural networks for analyte concentration
regression,51 DNA classification,52 cancer detection,53 convolu-
tional neural networks for classification of metabolite signals,26

support vector machines for classification of drug use from

urine,54 and genetic algorithms for cancer diagnoses.55 From
this discussion, it seems like a deep learning based SERS
approach to AST would be easily implemented due to the
practicality of collecting large SERS datasets of bacterial
metabolites. Yet, in addition to the challenge of fabricating
SERS sensors with reproducible response,26,49,56−58 rapid AST
sensor data must be validated with traditional AST approaches
to be accepted into practical use.12,59 This means that every
antimicrobial resistance status label that corresponds to a SERS
spectrum will require a 24−72 h culturing process.
Considering that deep learning algorithms that tackle health-
care problems may require thousands of labeled examples,60

this timeline represents an enormous barrier for the develop-
ment of SERS AST in a clinical setting.
In this work, we apply deep learning methods, which have

shown promise for healthcare,61,62 to greatly reduce the
amount of labeled data needed for high classification accuracy
in differentiating bacterial metabolite profiles from SERS data.
SERS analysis of cell lysate from Pseudomonas aeruginosa and
Escherichia coli after different antibiotic treatments shows
differential responses when using unsupervised variational
autoencoder methods to derive compact representations of the
data and deep feedforward discriminative networks to analyze
both the dose and temporal responses and derive useful
predictors.54 Deep neural network discriminative models are
able to differentiate metabolic response from treated and
untreated bacteria with greater than 99% accuracy as early as
10 min for both E. coli and P. aeruginosa. Similarly, for the
dosage-varied data, these discriminative models are able to
differentiate treated from untreated bacteria with a very high
accuracy with concentrations as low as 0.1 μg/mL. Conven-
tional growth assays do not exhibit differential responses in cell
density with respect to untreated cells at this antibiotic dose.
Furthermore, this observed differentiation in the models is
observed when they are exposed to antibiotic concentrations
10-fold lower than prior reported values of the minimum
inhibitory concentration for both pathogens. Deep learning
methods are then extended to investigate P. aeruginosa that has
been treated with different antibiotics of varying efficacy. The
generative nature of a variational autoencoder is used to
identify the vibrational regions that collectively demonstrate
the greatest change between antibiotic resistant, susceptible,
and untreated SERS spectra in the AST dataset. Training
algorithms with 63 targeted mixtures of bacterial metabolites in
vibrational regions of interest greatly improve clustering of
SERS AST spectra without any increase of labeled (cell
culture) data. We refer to this as data-informed transfer learning,
where the metabolite mixtures for further training have
vibrational features in the frequency range to improve
downstream model performance. Data-informed transfer
learning achieves greater than 98% accuracy when analyzed
with two different approaches: an unsupervised Bayesian
Gaussian mixture model and a deep convolutional neural
network model, with fewer than 10 examples, i.e., 10 spectra
from each class. This work is an important proof of concept,
demonstrating that deep learning analysis of SERS data
provides a rapid method for clinical AST.

RESULTS AND DISCUSSION
In order to reduce the time required for phenotypic AST, we
pursue a metabolomics approach rather than direct measure-
ment of cell growth or viability, as recent studies on metabolite
responses to antibiotic exposure indicate that a rapid metabolic
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profiling technique is able to detect phenotypic susceptibility
or resistance to antibiotics.20−23,63 Yet, there is an important
price to pay to reduce AST time in this way: metabolomics
approaches introduce an enormous parameter space. Consider
that the E. coli metabolome contains over 2600 different
metabolites.64 Nevertheless, SERS spectroscopy is an ideal
method to address this issue due to the speed and simplicity of
sample preparation of, for example, 2PAC sensor surfaces.29,31

When complemented with machine learning analysis, the rich
vibrational information from 2PAC sensors has been used to
detect and monitor bacterial biofilm formation before some
adapted antimicrobial resistance mechanisms are activated.34

While a deep learning approach is essential, when building
models that capture the complexity of SERS spectra of

bacterial metabolites it is important to determine how to
optimize prediction accuracy with deep neural network models
while minimizing the amount of cell culture data needed for
training. We use feed-forward deep neural network models to
differentiate the treatment conditions with near perfect
accuracy in tandem with deep generative models, i.e., the
variational autoencoder, that give the user insight into the
model’s decision-making.

Development of Deep Neural Network Models for
Antimicrobial Susceptibility Testing. Figure 1 depicts the
scheme for using a variational autoencoder (VAE) for SERS
analysis. The VAE works by encoding a high-dimensional data
point (here, a SERS spectrum) into a low-dimensional latent
space to capture an essential representation of the data. The

Figure 1. (Left) Example of SERS training spectrum. (Center) Depiction of the VAE model where spectra are encoded into the latent space
as Gaussian distributions with mean μ and variance Σ. The encoder and decoder models are deep convolutional neural networks. (Right)
The spectrum shown on the left is encoded, decoded, and plotted as the brown curve. The red curve overlaid here highlights differences in
spectra in clusters in VAE space.

Figure 2. (a, c) VAE latent space depicting analysis of SERS spectra of dose response of P. aeruginosa (a) and E. coli (c) where analysis of 0,
0.1, 0.5, 1, and 10 μg/mL gentamicin dosed lysate are depicted in red, purple, black, blue, and green, respectively. b, d) VAE latent spaces of
temporal response of P. aeruginosa (b) and E. coli (d) where lysate processed after 0, 5, 10, 20, and 40 min of 10 μg/mL gentamicin dosage
are depicted in red, purple, black, blue, and green, respectively.

ACS Nano www.acsnano.org Article

https://dx.doi.org/10.1021/acsnano.0c05693
ACS Nano 2020, 14, 15336−15348

15338

https://pubs.acs.org/doi/10.1021/acsnano.0c05693?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.0c05693?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.0c05693?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.0c05693?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.0c05693?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.0c05693?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.0c05693?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.0c05693?fig=fig2&ref=pdf
www.acsnano.org?ref=pdf
https://dx.doi.org/10.1021/acsnano.0c05693?ref=pdf


VAE is composed of an encoder network that encodes spectra
as a Gaussian probability distribution in the n-dimensional
latent space, schematically depicted as μ and Σ, and a decoder
network that samples points from the latent space and decodes
them back into the original spectra. The construction of our
VAE using deep convolutional neural networks, architecture,
and training parameters is further described in the Methods.
By encoding spectra as probability distributions in a lower

dimensional latent space, the VAE provides us with three
useful features: (1) Clusteringas all spectra are encoded as
distributions, they will overlap with one another. If overlapping
distributions are not from similar spectra, the model will be
heavily penalized during training. This results in a well
structured latent space that enables the use of simple models to
make predictions from encoded data. (2) De-noisingthe
low-dimensional latent space does not contain enough
information to encode for noise. This improves predictions
made from models trained on encoded data, especially for
small amounts of labeled data. (3) Interpretationencoding
spectra as distributions ensures that the latent space will be a
continuous representation of the different classes of antibiotic
treatments. This allows us to decode spectra and visualize
variations across the latent space to ensure decoded spectra
represents experimental data and identify vibrational features
associated with susceptibility versus resistance.
The VAE latent space enables supervised classification

techniques for clustering of SERS spectra of bacterial lysates
exposed to various antibiotic conditions. The bacterial

response was also characterized with traditional growth assays
to define the minimum inhibitory concentration of antibiotic
which inhibits 50% of growth at control conditions (MIC50) as
the MIC is strongly dependent on cell growth conditions.65

Prior to training the VAE, SERS spectra are pre-processed as
described in the Methods. We first demonstrate VAE
performance for visually differentiating spectra from E. coli
and P. aeruginosa lysate as a function of time and dosage.
Bacterial cultures were prepared as described in the Methods
and re-suspended before treatment in fresh lysogeny broth
(LB) to an optical density at 600 nm (OD600) of 0.5. Encoded
SERS spectra from cellular lysate with varying dose and
temporal response of P. aeruginosa and E. coli when exposed to
gentamicin are plotted in Figure 2. For the dosage data, cells
were processed 30 min post antibiotic exposure. Spectra are
encoded using a VAE trained with the spectral dataset from
bacterial lysate at experimental conditions indicated for each
panel. While these plots are arbitrarily rotated about VAE axes,
differences in the relative location of data within VAE latent
space represent corresponding changes of features within the
spectra. Thus, it is notable that the largest difference in VAE
values, with respect to untreated conditions, are observed in
spectral lysate data above the MIC50, demonstrating that this
approach provides a gradient of phenotypic feedback. When
analyzing the SERS spectra from these bacteria using the VAE
method, one can begin to observe differentiation of P.
aeruginosa and E. coli lysate data in Figure 2a,c at
concentrations as low as 0.1 μg/mL, an order of magnitude

Figure 3. Five-class DNN model confusion matrices (values are listed as percentages). The datasets used are E. coli (a) gentamicin dose and
(b) temporal response dataset, and P. aeruginosa (c) gentamicin dose and (d) temporal response dataset.
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below the MIC50 determined from growth assays. These assays
are shown in Figure S1. Lysate from P. aeruginosa and E. coli
exposed to 10 μg/mL gentamicin, approximately 10 × MIC50,
is analyzed with SERS + deep learning and can begin to be
differentiated from control data in the VAE space as early as 10
min after initial exposure (Figure 2b,d). This is much earlier
than previously reported for SERS AST, where differentiation
begins as early as 1 h.36 Note that while data differentiation is
observed between short time intervals after antibiotic treat-
ment, sample preparation is required to obtain the SERS
spectra, and approximately 1 h elapses between treatment and
measurement.
A support vector machine (SVM), a discriminative model,

was trained on both pre-processed spectra and VAE-encoded
spectra. Figure S5 shows the classification accuracy of the SVM
model of pre-processed and VAE-encoded spectra for the dose
and temporal datasets as a function of training examples where
an example is composed of one spectrum per class. We find
that SVM analysis of VAE-encoded spectra performs much
better than analysis of pre-processed spectra demonstrating the
performance of the VAE for unsupervised data encoding and
visualization. A classification accuracy in discriminating
between the different dose and temporal conditions
approaches 85% with 10 labeled samples, as shown in Figure
S5b−e. It has previously been reported that SVM analysis of
SERS spectra processed with principal component analysis was
not adequate to differentiate variations in different classes from
variations in similar classes in the complex spectral data.66

While the VAE encoding improves SVM classification
performance, the VAE parameters are fit to improve the
reconstruction of input data, and not to reduce misclassifica-
tion. Rapid AST would benefit from higher accuracy.
In order to more accurately determine the dosage and time

point at which differentiating the SERS spectra becomes
possible, we use a deep neural network (DNN) model, a
supervised learning approach, to classify the spectra from E. coli
and P. aeruginosa lysate with respect to their temporal and
gentamicin dosage treatment conditions. In order to avoid
overfitting, the dataset was doubled in size, which increased
data collection time by less than 4 min. The DNN is trained
directly on the raw spectral data and we develop multiple two-
class DNN models with groupings of consecutive treatment
conditions. For example, one experiment for the temporal
datasets would classify the 0 and 5 min treatment conditions

(first class) against the 10, 20, and 40 min treatment
conditions (second class). The resultant classification accuracy
of these experiments are 99% ± 0.1% for both E. coli and P.
aeruginosa. Thus, we are able to detect bacterial response to
antibiotics after 10 min with greater than 99% accuracy.
Examining all two-class model results, Table S1 in Supporting
Information, we can see that the two-class feed-forward DNN
models are able to distinguish between all possible groupings
of temporal conditions with near-perfect mean 10-fold cross
validation accuracy greater than 99% even when grouping the 0
min temporal response alone in a class. Thus, after only 5 min,
bacterial response to antibiotics is clearly evident in the SERS
spectra. The DNN performed equally well on all possible
groupings in the two class analysis of dosage-variant datasets,
also shown in Table S1. Because the two-class models
performed so well, we explored five-class models in order to
analyze the performance of the DNN model for differentiating
each individual condition.
The five-class models achieved comparable accuracy as can

be seen from the confusion matrices for each of the models
(Figure 3). For the P. aeruginosa time variant dataset, we were
able to achieve a mean 10-fold cross validation classification
accuracy of 99 ± 0.2%. For the dosage variant dataset, the
model had a mean 10-fold cross validation classification
accuracy of 98 ± 1.0%. The E. coli temporal and dosage
datasets performed similarly well, with mean 10-fold cross
validation classification accuracies of 99 ± 0.3% and 95 ± 1%
respectively. Looking at the confusion matrices in Figure 3b,d
for both temporal datasets, we can clearly see early
differentiation with the model showing a strong ability to
differentiate classes as early as 5 min. For both models trained
on the dosage datasets, we see clear differentiation with
dosages as low as 0.1 μg/mL. It is important to note that the
majority of misclassification results are for similar dosages or
time points and thus SERS data is able to measure bacterial
response below the MIC and track the temporal evolution of
the bacterial response on a time scale of 5 min with high
accuracy. Classification accuracy, equal to sensitivity, is
considered the primary metric in this work since the goal of
rapid AST is accurate antibiotic treatment. The relationships
between the accuracy values listed in Figure 3 with specificity
as well as sensitivity are provided in Tables S1 and S2.
While Figure 3 demonstrates high predictive accuracy with

DNN discriminative models when analyzing SERS data as a

Figure 4. (a) VAE space of AST spectra from untreated [−]P. aeruginosa lysate (0.5 h/2 h, light/dark green), 50 μg/mL carbenicillin-treated
[+C] P. aeruginosa lysate (0.5 h/2 h, light/dark red), and 400 μg/mL rifampicin-treated [+R] P. aeruginosa lysate (0.5 h/2 h, light/dark
blue). (b−g) Averaged SERS spectra from each treatment class (lower, blue) and VAE-generated spectra from the center of the class
centroid (upper, orange): (b) [−] 0.5 h, (c) [+C] 0.5 h, (d) [+R] 0.5 h, (e) [−] 2 h, (F) [+C] 2 h, and (g) [+R] 2 h.
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function of antibiotic dosage and exposure time of susceptible
P. aeruginosa and E. coli, it is important to demonstrate that the
SERS + deep learning methods are sufficiently robust to
differentiate between resistant and susceptible antibiotic
responses. SERS spectra of cell lysate from P. aeruginosa
cultures were collected as a function of exposure time and type
of antibiotic. The P. aeruginosa strain, PA14, used here, has
differing susceptibility to carbenicillin [+C] and rifampicin
[+R]. We refer to this data as the AST dataset, where the
antibiotic treatments are performed with 50 and 400 μg/mL of
carbenicillin and rifampicin, respectively. These concentrations
are just below the respective measured MIC50 for these
antibiotics in P. aeruginosa (see Figures S1 and S2).
At these concentrations, P. aeruginosa does not exhibit any

significant growth inhibition over the maximum time of
exposure, 2 h, used for lysate preparations (Figure S2). The
VAE is trained on the AST dataset and shows clear clustering
of the different treatment classes (Figure 4a), albeit with some
variances within sample classes and anisotropy of clusters.
Comparison of VAE generated (i.e., decoded) spectra (blue
curves) to averaged SERS spectra (orange curves) are shown in
Figure 4b−g. The striking similarity between generated and
experimental spectra confirms that the clustering behavior
reflects trends in the experimental data. Additionally, while the
SERS spectra is pre-processed, the VAE de-noises the spectra
even further. This is evident as the VAE generated spectra are
nearly indistinguishable from the averages of experimental
spectra. In agreement with previous work, many of the spectral
features in Figure 4b−g overlap with features associated with
nucleotide degradation metabolites.35,37,67 This has been
attributed to an increase in nucleotide turn over which could
be indicative of higher level of DNA damage.20 Recently,
nucleotide pool disruption has been correlated with antibiotic
lethality network models and biochemical screening.68

When examining the observed clustering in VAE space,
there is a clear observable trend of cell viability across VAE 2,
with small VAE 2 values corresponding to untreated bacteria
[−], intermediate VAE 2 values corresponding to treatment
with rifampicin [+R], and large VAE 2 values corresponding to
treatment with carbenicillin [+C]. The control data time
evolution, shown as light and dark green squares in Figure 4,
provides a reference for how the SERS spectra from lysate
evolve over time for untreated bacteria. This trend tracks with
the expected efficacy of each treatment, with rifampicin being
intermediate between the control and carbenicillin treatment
due to the evident resistance of P. aeruginosa to rifampicin
(Figure S1). The appearance of this trend in the VAE space is
notable, highlighting the ability of the SERS sensors to
successfully differentiate these samples, particularly since all
antibiotic treatments are below their respective MIC and hence
do not inhibit growth over the time scale of exposure
investigated here (Figure S2). It is interesting that larger
relative VAE 1 values are observed for 30 min treatment times
for both treatment classes as compared to 2 h exposure. This is
consistent with OD600 measurements indicating cell recovery
after 2 h in Figure S2. The reason for this trend requires further
investigation, but may be a result of a relative recovery of
normal metabolic activity at these sub-inhibitory concen-
trations after dysregulation of cellular metabolism on short
time scales following initial exposure.20,21,23 Figure S3 depicts a
t-stochastic neighbor embedding (t-SNE) visualization of the
spectra used to build the VAE latent spaces depicted in Figure
4. t-SNE is an unsupervised model that prioritizes preserving

the neighboring distances of spectral data points when
reducing the dimensionality for visualization. The clear
clustering illustrated by t-SNE affirms the conclusion of the
VAE, that there are differences in the SERS spectra of P.
aeruginosa exhibiting a resistant or susceptible response to
antibiotic treatments that are identifiable using unsupervised
algorithms.
The classification accuracy of the pre-processed and VAE-

encoded spectra for the AST dataset as a function of training
examples was also analyzed using a SVM and is shown in
Figure S5a. We find again that SVM analysis of VAE-encoded
spectra performs much better than analysis of pre-processed
spectra. A classification accuracy in discriminating between the
six antibiotic treatment conditions of the AST dataset of 83.7
± 2.6% is achieved for the former case with approximately 10
labeled samples generated from growth assays, as shown in
Figure S3a. This is compared to a performance of 72.9 ± 5.2%
with a SVM trained on spectra that have not been encoded.
While the improvement in accuracy with the VAE encoding is
notable, below we examine methods to increase accuracy
without requiring increased amounts of labeled data.

Data-Informed Transfer Learning for SERS AST. From
a machine learning perspective one can consider conventional
growth assays as a means of generating labels for response of
bacteria to different antibiotic exposure conditions, and the
SERS spectra as the resultant labeled data. The huge mismatch
between the time for label generation and data generation,
however, provide strong motivation for investigating semi-
supervised and transfer learning approaches for classification.
The correspondence between the VAE-encoded SERS spectra
and the antibiotic treatment classes (Figure 4) indicates that a
semi-supervised approach of the VAE latent space is a
promising solution. The SVM analyses of VAE generated
spectra indeed produce higher accuracy than analyses on
uncoded spectra. Yet the desire for higher accuracy for clinical
applications without increasing the demand for more training
data motivates the investigation of training models from easily
acquired unlabeled data to reduce the time for creating labels.
Traditional transfer learning with deep neural networks is done
by training a model, such as a convolutional neural network
(CNN) with a large dataset, and then fine-tuning the model’s
parameters with a smaller dataset and has been shown to
improve model predictions such as classification accuracy.49,66

The use of a generative machine learning method enables us to
take an informed approach to transfer learning. For example,
the high interpretability of the VAE generated SERS spectra
allows us to identify useful vibrational information which
guides additional targeted data collection to improve
classification accuracy. We refer to this approach as data-
informed transfer learning to differentiate from traditional
transfer learning. By sampling 100 VAE generated spectra
between the average response of the untreated 2 h lysate data
and that of the 0.5 h carbenicillin-treated lysate data plotted in
Figure 4a, it is possible to visualize how spectral features shift
as a result of antibiotic exposure (Supporting Video 1). This
progression shows that the bacterial lysate response to
antibiotics exhibits changes in the 1100−1200 cm−1 bands.
Aromatic functional groups have vibrational features in this
frequency range and provide an easy to acquire unlabeled
dataset for algorithm training. It is important to mention that
our method does not seek to identify or quantify specific
metabolites produced by the bacteria in response to antibiotic
treatment conditions. It is designed to use the overall
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differences in metabolic profile as an assessment of antibiotic
susceptibility observed in other fingerprinting technology69,70

and thus making it generalizable to variations in bacterial strain
response. Based on these observations, six generic, volatile
aromatic bacterial metabolites2-methylnaphthalene, o-cresol,
2-aminoacetophenone, pyrrole, 2-pentylfuran, and indole71
were selected to construct a “metabolite mixture” dataset to
use for data-informed transfer learning. This dataset was
generated by collecting SERS spectra from all 63 aqueous
solution combinations of between 1 to all 6 of these
metabolites at a total concentration of 1 ppm. This approach
of producing easy-to-collect spectra (large, metabolite mixture
dataset) based on observations of difficult-to-collect spectra
(cell culture AST dataset) is an extremely beneficial aspect of
data-informed transfer learning for SERS analysis, and we
depict the virtuous cycle that results in Scheme 1. The

metabolite data, which has vibrational modes producing
spectral features in the frequency range of interest, expands
the VAE space and produces bigger differences between the
encodings of the AST dataset, resulting in improved
classification accuracy as we discuss below. This approach is
motivated by works in natural language processing, where
training on large unsupervised datasets has led to improved
encodings and downstream model performance.72

This combined VAE latent space of metabolite mixtures and
AST dataset is also depicted in Figure S6a; it is constrained to
two dimensions so that it can be easily examined. The
improved clustering, even in two dimensions, of the AST
dataset with respect to Figure 4a is observed in the center right
side of Figure S6a (highlighted with an arrow). Overall these
results demonstrate that culture-free and easily acquired
datasets of bacterial metabolites in aqueous solution can be
leveraged to improve predictive models of complex metabolite
response of bacterial communities and is one of the most
significant advantages of using a generative model.
From here, it is straightforward to build a predictive model.

First, the VAE encoding makes it obvious that some of the
spectra are outliers. These spectra are easily removed with an
isolation forest set to remove 5% of spectra, detailed in the
Supporting Information and shown in Figure S7. An
unsupervised Bayesian Gaussian mixture model of the outlier
removed AST dataset encoded with the combined VAE
visualizes the classification accuracy in Figure 5a. Highly
accurate identification of the different classes, 99.3%, is
achieved for only one training example; the only information
given to the model is that the number of classes to expect is six.
Figure 5a shows that the combined VAE encoding nicely
groups the different antibiotic conditions together with only
one cycle. This clear clustering with a pre-trained model and
only one labeled training example will benefit applications for
AST analysis of clinical datasets. Finally, we further motivate
the significance of the presented data-informed transfer
learning approach by comparing the number of labeled
examples needed with traditional transfer learning to achieve
similar accuracy. Traditional transfer learning is performed
here by taking the six unmixed metabolite datasets (i.e., 2-
methylnaphthalene, o-cresol, 2-aminoacetophenone, pyrrole, 2-
pentylfuran, and indole dissolved in water by themselves) and
training a model with those spectra. The weights of these
trained networks are then fine-tuned with the AST dataset.
Two models are compared, a multilayer perceptron (MLP,

orange triangles), which is a fully connected artificial neural
network with one hidden layer and a CNN (blue circles),
which is composed of four 1D CNN layers. The MLP is
trained with VAE-encoded data and the CNN is trained with
pre-processed SERS spectra without VAE encoding. The
architecture and training details are described in the Methods.
This procedure is performed 10 times for each example
number. The resultant mean and standard deviation of the
model accuracy are plotted in Figure 5b as a function of the
number of training examples. In addition to comparing these
CNN and MLP models with random parameter initialization,
we also use traditional transfer learning for both models, where
the six unmixed metabolite datasets are used to train a
predictive model and then fine-tuned with examples from the
AST datasets as performed with the non-transfer-learned
models, yielding the transfer-learned CNN (green squares)
and transfer-learned MLP (red diamonds). Interestingly, the
transfer-learned MLP (red diamonds) is determined to
produce the best predictions for one-shot learning, with
transfer-learned CNN (green squares) approaching similar
performance as this MLP model for three examples. The mean
accuracy and standard deviation approach 98.5% and 1.1%,
respectively, for 10 examples for the transfer-learned MLP
model. From Figure 5b it is obvious that CNNs are an
incredibly powerful tool for classifying SERS spectra. For
reference, even without transfer learning, a CNN achieves

Scheme 1. Cycle of Data-Informed Transfer Learninga

aTop: VAE-encoded spectra of P. aeruginosa lysate 0.5 h after being
treated with carbenicillin (blue curve) and 2 h untreated (red curve).
In order to dramatically improve the classification performance of the
AST dataset, we take advantage of this information provided by VAE
encoding to select a metabolite mixture dataset to further expand the
training of the VAE latent space. Bottom: SERS spectra of (from
bottom to top) 2-methylnaphthalene, o-cresol, pyrrole, 2-pentylfuran,
2-aminoacetophenone, and indole at concentrations of 1 ppm.
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good results with just four examples (blue circle) far better
than MLP (orange triangle) without transfer learning. Transfer
learning with the CNN improves classification accuracy
regardless of the number of examples but the difference is
most pronounced with few examples. Importantly, none of
these models outperforms our data-informed transfer learning
approach using the simple Bayesian Gaussian mixture model
discussed above.

CONCLUSION

We have demonstrated that the response of P. aeruginosa and
E. coli bacterial communities to antibiotics is rapidly detected
in SERS spectral data when using sensor surfaces with
controlled nanogap spacing and chemistry. A VAEa self-
supervised deep generative machine learning modelhas well-
behaved latent space and produces clusters of SERS spectra
that differentiate untreated cells from antibiotic-stressed cells.
Deep learning analysis of SERS data is able to differentiate the
response of untreated cells from those exposed to antibiotics in
10 min post exposure with greater than 99% accuracy and
temporally follow the evolution with 5 min resolution with
greater than 99% accuracy, significantly faster and more
accurate than current SERS AST methods.38,73,74 The bacterial
response to varying antibiotic doses is differentiated with
greater than 96% accuracy from untreated bacteria, even when
treated with antibiotic dosages up to 10-fold lower than the
minimum inhibitory concentration observed in conventional
growth assays. Furthermore, the generative nature of the VAE
enables facile visualization of the important vibrational features
differentiating resistance versus susceptibility to antibiotics
within the SERS spectra in the frequency range associated with
vibrational modes of aromatic rings. A dataset of mixtures of
metabolites in aqueous solution with similar vibrational
features is chosen for data-informed transfer learning. This
additional unlabeled training data greatly improves the
classification accuracy of the SERS AST spectra. Unsupervised
Bayesian Gaussian mixture analysis achieves 99.3% classifica-
tion accuracy differentiating susceptibility versus resistance to
antibiotics when a single spectrum from each category is used

as an input. These results show that the need for time-
consuming 24+ hour cell culture, which is necessary to
generate labels for training SERS AST, can be minimized,
along with sample volume, when using 2PAC SERS sensors +
deep learning based AST. One can foresee that analysis when
conducted with data-informed transfer learning can look at a
small number of labeled samples from individual patients, and
that the response of susceptible bacteria to antibiotics can be
detected before observable changes in cell growth assays, in
under 90 min. The high classification accuracy/sensitivity and
specificity in following temporal response of monocultures and
differentiating susceptibility and resistance demonstrates the
SERS + deep learning approach described here makes this
method a promising candidate for use in clinical samples for
rapid AST. In future works, we seek to use these methods to
analyze bacterial heteroresistance in polymicrobial samples,
which we view as one of the key challenges for SERS AST to
overcome in order to be used in a clinical setting.

METHODS
Materials. Random copolymer poly(styrene-co-methyl methacry-

late)-α-hydroxyl-ω-tempo moiety (PS-r-PMMA) (Mn = 7400, 59.6%
PS) and diblock copolymer poly(styrene-block-methyl methacrylate)
(PS-b-PMMA) (Mn = 170-b-144 kg mol−1) were purchased from
Polymer Source, Inc. (Dorval, Canada). 40 nm diameter lipoic acid
functionalized gold nanospheres were purchased from Nanocomposix
(San Diego, CA). Si(001) wafers with a resistivity of 0.004 Ω·cm were
purchased from Virginia Semiconductor (Frederickburg, VA). Hydro-
fluoric acid (HF) was purchased from Fisher Scientific (Pittsburgh,
PA). 2-(N-Morpholino)ethanesulfonic acid (MES) 0.1 M buffer, 1-
ethyl-3-[3-(dimethylamino)propyl]carbodiimide hydrochloride
(EDC), N-hydroxysulfosuccinimide (s-NHS), dimethyl sulfoxide
(DMSO), ethylenediamine, benzenethiol, toluene, ethanol, isopropyl
alcohol (IPA), potassium carbonate, and 52-mesh Pt gauze foil were
purchased from Sigma-Aldrich (St. Louis, MO). Nanopure deionized
(DI) water (18.2 MΩ cm−1) was obtained from a Milli-Q Millipore
System. LB Lennox and bacteriological agar were purchased from IBI
Scientific (Dubuque, IA). Carbenicillin disodium salt was purchased
from Sigma-Aldrich (St. Louis, MO). Gentamycin sulfate was
purchased from VWR Life Science (Radnor, PA). Rifampicin was
purchased from Frontier Scientific (Logan, UT). Dimethyl sulfoxide
was also purchased from Alfa Aesar (Haverhill, MA). Phosphate

Figure 5. (a) Bayesian Gaussian mixture analysis of data-informed VAE-encoded P. aeruginosa AST test spectra. (b) Comparison of different
models’ performance as a function of number of training examples. Each model is evaluated 10 times, and the standard deviation is plotted
along with the mean prediction accuracy. Transferred model CNN (green squares) and MLP (red diamonds) weights are trained using the
unmixed metabolite dataset and fine-tuned with examples from the AST dataset, and then model classification accuracy is evaluated on test
spectra. The same architectures, CNN (blue circles) and MLP (orange triangles), are evaluated without transfer learning using standard
Xavier weight initialization for comparison. The inputs for CNN models are pre-processed SERS spectra, and the inputs for MLP models are
spectra encoded using the combination VAE. The unsupervised Bayesian Gaussian mixture method (depicted as purple dashed line)
achieves the highest accuracy at 99.3% with only one training example.
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buffer solution (pH = 7.4) was purchased from Fisher Scientific
(Waltham, MA).
Surface-Enhanced Raman Scattering (SERS) Sensor Fab-

rication. Sensor fabrication has been described in depth in previous
work.29 First, we prepare block copolymer templates for Au
nanosphere assembly attachment. Random PS-b-PMMA block
copolymer is spin-coated onto a HF-cleaned Si wafer and annealed
for 72 h. [Caution: HF has serious potential to cause severe injury which
mandates extreme care during treatment.] The wafer is rinsed with
toluene, and lamella-forming PS-b-PMMA block copolymer is spin-
coated onto the wafer, which is annealed for another 72 h. This
process is described elsewhere.75 Next, PMMA regions within the
block copolymer are selectively functionalized with amine terminated
end groups by immersing a 1 cm × 1 cm piece of the wafer in DMSO.
This substrate is then transferred into an ethylenediamine/DMSO
solution (5% v/v). Both immersions are performed for 5 min without
rinsing between steps. The functionalized template is then rinsed with
IPA for 1 min and dried under nitrogen for immediate use.
An electrohydrodynamic flow-driven assembly of Au nanospheres

is used to generate assemblies with the following method: Au
nanosphere solution (0.1 mg/mL, 3 mL) is added to a clean 10 mL
glass beaker. s-NHS (20 mM) in MES (0.1 M) buffer (35 μL) is
added to the nanosphere solution and swirled. Next, EDC (8 mM) in
MES (0.1 M) buffer (35 μL) is added to this solution and swirled.
The solution is brought to and maintained at 60 °C with a hot plate.
The functionalized block copolymer-coated Si substrate is placed
vertically into the solution and held in place with alligator clips, taking
care to avoid any contact of the alligator clips with the solution. A 1
cm × 1 cm Pt mesh is placed in parallel 1 mm away from the
substrate. 1.2 V is applied across the mesh and substrate using a DC
power supply for 10 min. Everything is then rinsed with IPA for 1 min
and dried under nitrogen. The process is repeated with the same
substrate and a fresh nanosphere solution, but with 25 μL of s-NHS
and EDC solution.
Bacterial Culture Preparation. Pseudomonas aeruginosa (strain

PA14 wild type) and Escherichia coli (strain MC4100, K-12, F−
araD139Δ(argF-lac)U169 rspL150 relA1 f lbB5301 fruA25 deoC1
ptsF25)76 cultures were revived by streaking from a frozen culture
stock onto LB Lennox agar (IBI Scientific) plates and incubated at 37
°C for 24 h. Individual colonies from these plates were used to
inoculate solutions of 100 mL of LB in triplicate, which were
subsequently grown for 18 h at 37 °C and shaking at 230 rpm. The 18
h cultures were centrifuged at 5000 rpm for 5 min, then re-suspended
in fresh LB at an optical density at 600 nm (OD600) of 0.50 as
measured by a BioChrom Colourwave CO7500 colorimeter.
Antibiotic Dose−Response Curves. Carbenicillin disodium salt

(Sigma-Aldrich), gentamicin sulfate (VWR Life Science), and
rifampicin (Frontier Scientific) stock solutions were prepared to a
final concentration of 10 mg/mL in water for the former two and 20%
(v/v) DMSO (Alfa Aesar)/ H2O for the latter. These stock solutions
were diluted and 20 μL each added into 180 μL of E. coli or P.
aeruginosa re-suspension in a 96-well plate such that nine separate 10-
fold dilutions of each antibiotic starting at 1000 μg/mL final
concentration in the culture were achieved. Vehicle controls using
pure water for carbenicillin and gentamicin and 20% (v/v) DMSO/
H2O for rifampicin were also created in the same 96-well plate. These
plates were then incubated at 37 °C for 24 h with 230 rpm shaking,
after which OD600 measurements were taken with a SpectraMax M2
Plate Reader (Nova Biotech).
Antibiotic Exposure. Cell re-suspensions of 40 mL in 50 mL

conical tubes were treated with specified concentration of antibiotics
for the indicated time in a shaking incubator at 37 °C and 230 rpm.
Lysate Extraction. After the specified time of growth, cell cultures

were washed twice with phosphate buffer solution (PBS, Fisher
Scientific, pH = 7.4) by centrifugation at 5000 rpm for 5 min and re-
suspension in 40 mL of PBS. After the second wash, the cells were
pelleted a third time and then re-suspended in 100 μL of sterile
ultrapure water and heated at 100 °C for 30 min. The resulting
suspension was centrifuged at 12 000 rpm for 10 min, and the

supernatant was collected and stored at −20 °C for subsequent SERS
analysis.

Metabolite Mixture Preparation. Metabolite mixtures are
prepared as follows: 2-methylnapthalene, o-cresol, 2-amino-
acetophenone, pyrrole, 2-pentylfuran, and indole are dissolved in
ethanol at a concentration of 100 ppm. Then 1 ppm solutions are
prepared in water from these ethanol stock solutions. The 63
combinations of metabolites are prepared by mixing the water stock
solutions to maintain a total metabolite concentration of 1 ppm.

SERS Spectroscopy. All SERS spectroscopy measurements are
conducted using a confocal Renishaw InVia micro Raman system with
a 785 nm diode laser, a laser power of 14 μW, an exposure time of 0.5
s, and a 60× water immersion objective with a 1.2 numerical aperture.
Bacteria cell lysate or metabolite mixture solutions are used as the
immersion media. After soaking the SERS substrate in the sample for
15 min, Raman maps are collected with a spacing of 4 μm spacing
between points. For each sample one 20 × 20 pixel Raman map is
acquired.

Spectra Pre-processing. Spectra are pre-processed in three
steps: (1) smoothing, (2) background subtraction, and (3) scaling, all
done using the Python 3.3 programming language. Smoothing was
done with the Savitzky−Golay method77 as implemented in Scikit-
Learn using an 11 pixel window and polynomial order 3. Background
subtraction was done with the asymmetric least-squares method78 and
was implemented in NumPy with λ = 10000, p = 0.001. Spectra were
scaled to have a minimum value of 0 and maximum value of 1 with
Scikit-learn’s MinMaxsScaler.

Feed-forward Deep Neural Network. The four datasets used in
these experiments (E. coli temporal, E. coli dose, P. aeruginosa
temporal, and P. aeruginosa dose) were all pre-processed using the
spectra pre-processing method outlined above. 800 spectra from each
condition are used to train the model. The DNNs were trained using
10-fold cross validation. For each cross fold the data was divided into
a training, validation, and test set. As a supervised machine learning
method, training data is used to fit the parameters of the DNN;
knowledge of the class that each point of training data belongs to is
necessary. The validation set for each cross fold is unique and is a
random 20% subset of the training set of that cross fold. The DNNs
used in this study are feed-forward layered networks with fully
connected layers and a logistic output for the two-class models or a
softmax output for the five-class models. We used the python
hyperparameter optimization library SHERPA in combination with
10-fold cross validation to select the best hyperparameters and
architecture based on mean cross validation accuracy.79 All of the
models utilize the Adam optimizer with a learning rate of 0.001 and a
batch size of 20. The DNN architectures used have 1−3 hidden layers
with 10−500 neurons per layer, and rectified linear unit (ReLU)
activation functions. The loss function used for the two-class models
was binary cross entropy and the loss function used for the five-class
models was categorical cross entropy. Due to the relatively small
number of samples compared to the very large number of features, we
use Scikit-learn to perform principal component analysis (PCA) with
an explained variance of 99% for dimensionality reduction.

In order to avoid overfitting, we used early stopping in combination
with data augmentation. Early stopping is a technique used to halt
model training when the loss of the validation set starts to increase
compared to the training loss, indicating overfitting. For our
experiments, we used a patience of 10. Additionally, in some of the
networks we utilized dropout and L2 regularization to combat
overfitting. For data augmentation we used the Synthetic Minority
Oversampling Technique (SMOTE) to combat the problem of class
imbalance.80 Although the original dataset does not have significant
class imbalance between the five classes, when we split the data into
two groups for our two-class models we introduced class imbalance.
For example, one of the two-class models is 0 min, 5 min, 10 min, 20
min as one class (3200 data points) and 40 min as one class (800 data
points). SMOTE augments the data by synthesizing training examples
in the minority class. Specifically, SMOTE chooses a random data
point from the minority class and a random neighbor from its five
nearest neighbors, and then a synthetic example is created at a
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randomly selected point between the two examples in feature space.
Data augmentation was only performed on the training set; the test
set was not augmented.
To measure the performance of each of the models, we used 10-

fold mean cross validation accuracy.
Variational Autoencoder Implementation. All artificial neural

network models are implemented in keras and use the adam
optimizer.66

Prior to use in the variational autoencoder81 (VAE), spectra are
pre-processed as described above. These 1011 dimensional spectra are
padded with zeros to 1024 dimensions and reshaped to a dimension
of examples (1024, one for use in one-dimensional convolutional
neural network (1D CNN) layers). All 1D CNN layers have a kernel
window of 8 pixels, a stride of 2, are regularized with a maximum
kernel norm of 3, have parametric ReLU activations, are batch
normalized, and followed with a 30% dropout layer. Early stopping is
implemented with test loss, and the batch size used is 32. VAE models
use a loss function defined as KL divergence + mean absolute error *
80. A total of 400 spectra from each condition are used to train the
VAE, with 20% of the spectra randomly removed from the training
dataset and used as the test dataset. We do not condition the VAE
space on condition labels (e.g., 0.5 h control, 2 h rifampicin, etc.), so
we implement the VAE here as a fully self-supervised method.
The VAE is implemented differently for the antimicrobial

susceptibility testing (AST) dataset and the AST and metabolite
mixture combined dataset. For the smaller AST dataset, the encoder
network is composed of 4 1D CNN layers with 32, 32, 64, and 64
filters. This output is flattened and sent to a 128-node fully connected
layer with parametric ReLU activation, batch normalization, and 30%
dropout and sent to a 32-node fully connected layer with parametric
ReLU activation, and finally to fully connected layers with two nodes
that represent the mean and standard deviation of the encoded input.
The decoder is similar, with a 1344-node fully connected layer,
reshaped and sent to four 1D transposed CNN layers with 64, 64, 32,
and 32 filters. This is output to a 1D transposed CNN with stride 1,
sigmoid activation, and a stride of 1.
For the larger combined dataset, the encoder network is composed

of six 1D CNN layers with 32, 32, 64, 64, 128, and 128 filters, with
40% dropout. This output is flattened and sent to a 256 node fully
connected layer with parametric ReLU activation, batch normal-
ization, and 50% dropout and sent to a 64 node fully connected layer
with parametric ReLU activation, and finally to fully connected layers
with two nodes that represent the mean and standard deviation of the
encoded input. The decoder is similar to a 2048 node fully connected
layer, reshaped and sent to eight 1D transposed CNN layers with 256,
256 (stride 1), 256, 256 (stride 1), 128, 128, 64, and 64 filters. This is
output to a 1D CNN with one filter, sigmoid activation, and a stride
of 1.
Semi-supervised Learning Using Support Vector Machines.

The models in Figure S3 are evaluated as follows. Examples (one pre-
processed SERS spectrum per class) are pulled from the test dataset
used in training the VAE described above. These are used to train
support vector machine (SVM) models with Scikit-learn using default
settings. The SVM models are trained using pre-processed spectra
with dimension 1011 and the accuracy is evaluated using the rest of
the test dataset. The VAE SVM models were evaluated with the same
examples projected into the latent space of the trained AST VAE and
evaluated with the same dataset. This process is done 50 times and
the mean and standard deviation of the model accuracy on the
remaining spectra are depicted.
Transfer Learning. This section describes the methods used to

produce Figure 5. First for data-informed transfer learning, after
analyzing the AST dataset and highlighting features with large
variations between categories, the AST and metabolite dataset are
encoded into a two-dimensional latent space producing a combined
VAE. Outliers are removed by training an isolation forest82 on the
training dataset. Isolation forest is implemented in Scikit-learn with
the default settings and an outlier fraction of 5%. The outlier removed
training dataset is then used to train a Bayesian Gaussian mixture
model, which is implemented in Scikit-learn with the default settings

and six components,83 and evaluated on the test dataset, where on
training example is a single processed SERS spectra per category. The
results of Bayesian mixture analysis is plotted in Figure 5a.

Traditional transfer learning is performed by taking the six unmixed
metabolite datasets (i.e., 2-methylnaphthalene, o-cresol, 2-amino-
acetophenone, pyrrole, 2-pentylfuran, and indole dissolved in water by
themselves) and training a model with those spectra. The weights of
these trained networks are then fine-tuned for various numbers of
examples from the AST dataset, where each example is composed of
SERS spectra, one from each category. The neural network models
evaluated in Figure 5b are evaluated with categorical cross entropy
loss and have the following architectures. (1) The first network model
is a deep CNN trained on the full dimensional pre-processed data and
is composed of four 1D CNN layers with filters of 16, 16, 32, and 32
that are followed by 50% dropout layers and batch normalized. This
output is flattened and set to a six-node fully connected layer with
softmax activation. (2) The second network model is a multilayer
perceptron, which is composed of two fully connected layers with 8
and 16 nodes with ReLU activation and batch normalization. This
output is sent to a fully connected layer with six nodes and softmax
activation. It is trained on the VAE-encoded unmixed metabolite
dataset, and then the weights are fine-tuned with the AST dataset with
outlier spectra removed.

Additionally, these CNN and MLP network models are evaluated
without transfer learning for comparison using only the AST dataset
with standard Xavier initialization of the weights. The accuracy of all
the models are evaluated, as a function of the number of examples and
repeated 10 times per example number to obtain a mean and standard
deviation of the model accuracy and plotted in Figure 5b. MLP,
without transfer learning, does not yield good predictions from the
VAE space, likely due to underfitting as there are only two features.
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