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ABSTRACT OF THE DISSERTATION

Signaling Pathways in Living Systems

by

Aravind Rao Karanam

Doctor of Philosophy in Physics with a Specialization in Quantitative Biology

University of California San Diego, 2024

Wouter-Jan Rappel, Chair

Signaling networks are at the heart of most biological processes. In this dissertation, two

classes of models with applications are discussed in the following chapters.

In most signaling networks with several components, either the connections between

the components or the parameters governing the reaction kinetics are not known. Given this

uncertainty, Boolean networks, in which each component is either on or off, have emerged as

viable alternatives. Open-source platforms of Boolean models for community use are desirable.

Here, we present Boolink, a freely available graphical user interface that allows users to easily

construct and analyze existing Boolean networks. We demonstrate its application using a

previously published network for abscisic acid (ABA)-driven stomatal closure in Arabidopsis

xi



thaliana, and by extending the network to include CO2 regulation of stomatal movements.

Predictions of the model were experimentally tested, and the model was iteratively modified

based on experiments showing that ABA effectively closes Arabidopsis stomata at near-zero

CO2 concentrations.

When cells of the social amoeba Dictyostelium discoideum are starved of nutrients they

synthesize, secrete, and relay the chemical messenger and chemoattractant cyclic Adenosine

Mono Phosphate (cAMP), resulting in the establishment of periodic waves. Cells aggregate

through chemotaxis towards the center of these waves. In the process, they experience an elevated

background concentration of cAMP as well as multiple waves of a fixed period. We investigated

in two separate studies the effect of these two changes, using waves of cAMP generated by a

microfluidic device.

We found that the chemotactic ability of the cells increases for small to moderate levels

but collapses to zero for sufficiently high concentrations. Secondly, we found that the chemotactic

ability of cells rises with the number of waves encountered by the cells provided the wave period

is not large. We developed mathematical models to explain the observed trends, building on

earlier work on the Local Excitation Global Inhibition (LEGI) class of models. We showed

that a temporal gradient sensing mechanism underlies the wave-period-dependent rise in the

chemotactic ability. The observed trends in the chemotactic ability are relevant to Dictyostelium

in aiding its aggregation.
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Introduction

Modeling in Biology

“All models are wrong, but some are useful.” – George Box

The purpose of scientific theories is to create a coherent view of the world around us that

can, ultimately, be refined by testing the predictions from the theories against experiments. Since

theories are by design generalizable, the object or phenomenon a theory seeks to describe is an

abstraction of its whole. By abstracting out the irrelevant details, a model captures the essential

facts in the phenomenon it describes. But the abstraction ultimately limits the applicability of

the model. Treating the Sun, the Earth and the Moon as point masses is sufficient to calculate the

periods of revolution but this abstraction cannot explain tides though both are governed by the

laws of gravity.

An useful model is explanatory, quantitative, and predictive. The phenomenon the

modeler seeks to explain should arise out of the dynamics of the components at a lower level of

complexity. The model should be able to make quantitative and falsifiable predictions, which

can be checked against new observations. When one sets out to model biological phenomena

at the cellular level, the spatiotemporal and energy scales situate its constituent processes in

the realms of chemical reactions, classical mechanics, and non-equilibrium thermodynamics.

Elementary reactions that synthesize and modify the chemical composition of cells, transport

processes, elastic and inelastic deformations, and modes of exchange of matter and energy with

the surroundings are the building blocks of higher order form and function.

The evolutionary history shared by organisms across kingdoms means that many bio-
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chemical components, motifs, and their functions are conserved. This leads to two important

consequences for the modeler: one, there is no need to reinvent the wheel for every system; the

underlying biochemistry remains the same. Two, life processes can be treated as modular, and

the complexities in form and function arise out of interactions among the modules.

Decades of systematic studies in biology identified the building blocks of life – such

as DNA sequences, RNA and protein, metabolic and signaling molecules – and established

pathways in which matter is manipulated and information flows. In the next stage, one would

like to quantify this knowledge. This is desirable for a few reasons: quantification puts into

perspective the extent and the relative importance of individual processes, which is a critical

input to modeling; the nature of interactions can, in some cases, be inferred from their kinetics.

When we know which variables are critical and which are not, for an effective description of the

phenomenon at hand, we are able to not only formulate simpler models that can easily be tested

and refined but also obtain ways to manipulate the system for medical or industrial needs.

In the following, I discuss two model paradigms and the underlying biological phenomena

they are applied to. First, I describe a Boolean reaction network modeling the intracellular

processes in guard cells in leaves. Through changes in their shape, guard cells regulate the size

of a tiny pore between them known as stomata through which gas exchange takes place between

the atmosphere and the interior of the leaf. Then, I describe two studies on chemotaxis in the

social amoeba Dictyostelium and show how the motion of the cells can be described by models

of gradient sensing using differential equations.

Boolean Modeling of Guard Cells in Plants

To model a biological pathway, one needs to know the identity of the components and

the topology of their connections. In pathways where strengths of interactions are known in the

form of rate constants, one can construct a detailed model consisting of rate equations for each

component [1, 2]. If a few constants are unknown and the number of components in the model is

not high, the values of the unknown constants can be estimated using data fitting algorithms[3, 4].
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In both cases, the forms of the interaction functions (the right hand side of the rate equation) and

the rate constants yield valuable information on the nature of the pathway.

The level of detail as noted above may not always be available as some parameters may

be hard to measure. If parameters are collectively fit against experimental data, care should

be exercised in interpreting the parameters, as individual parameters often poorly constrained

[5]. Moreover, the desired outcome of a model could just be qualitative (high/low levels of

concentration, or a process being active/inactive) instead of quantitative. Boolean models are a

viable alternative to modeling in these situations [6].

A Boolean model is a network, or a graph, of interactions among the constituent compo-

nents, or nodes, in which each component can be in one of two states at any given time: active (1

or ON) or inactive (0 or OFF). The state of a component depends on the states of the components

it is connected to. The exact dependence is given by the so-called update equations, that are

composed of elementary Boolean functions NOT, OR, and AND. The update equations do not

contain rate constants. Indeed, this is one of the strengths of the Boolean modeling approach in

that one need not input rate constants, which are often difficult to measure from experiments; nor

one does need to perform a cumbersome fitting process to obtain a plausible set of parameters for

a reaction network model. The output of a Boolean network is qualitative in that we only know

the state of the output (active or inactive) when each of the input variables is active or inactive.

Despite these significant simplifications, Boolean models have been shown to provide insights

into genetic [7, 8, 9, 10], protein [11], and cellular regulatory networks [12, 13].

At the base of plant leaves exist tiny pores known as stomatae, through which gas

exchange takes place between the interior of the leaf and the atmosphere. The opening or closing

of each stomata is regulated by a pair of guard cells which change their shape to constrict or

dilate the stomata. Stomatal closure can be triggered by external factors like light and carbon

dioxide (CO2) [14, 15]. Drought results in accumulation of the plant hormone Abscisic Acid

(ABA) in guard cells, which also leads to stomatal closure [16, 17]. The reaction network of

stomatal closure triggered by ABA, established through hundreds of biochemical studies, is quite
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large: it has more than eighty components and more than 150 connections [18]. Modeling the

entire set of reactions as differential equations is not only expensive but also impractical, given

that the kinetic parameters of many reactions are unknown. For these reasons, the signaling

network in guard cells lends itself to Boolean modeling.

We developed a general framework for simulating and analyzing any user-defined

Boolean network through a software package named Boolink [19], which includes a graph-

ical user interface (GUI) to execute the commands and to visualize the network and plot the

simulation results. We used Boolink to simulate a published model of the ABA network [18],

reproduced its findings, and extended it to include the effect of CO2 either by itself or in conjunc-

tion with ABA. Though several components are shared between the two closure pathways, some

components are unique, and the effects of the inputs on intermediate nodes could be different

[20, 21, 22]. Through an iterative process of modeling and simulation, we proposed a pathway

that correctly predicts the effect of ABA and CO2 acting individually (one in the absence of the

other) or together [19].

Gradient Sensing Models in Eukaryotic Chemotaxis

Chemotaxis is the directed motion of cells in response to chemical signals in their

environment. It is shown to be involved in several critical processes such as wound healing,

embryonic development, cancer metastasis, etc [23, 24, 25, 26, 27]. Cells chemotax by either

moving up the gradient of a chemoattractant or down the gradient of a chemorepellent. The

physics of chemoreception, beginning from the dynamics of the chemoattractant binding to the

cell-surface receptors[28, 29] to the cascade of reactions that leads to the cell motion, either by

the rotation of flagellar motors or the deformation of the cell membrane, has been the subject of

several theoretical and experimental investigations [30, 31, 32, 33].

We investigated the chemotactic ability of the eukaryotic model organism, the social

amoeba Dictyostelium discoideum. A population of these cells undergo a transition from a

unicellular to multicellular state when deprived of nutrients. They achieve this by aggregating
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through chemotaxis using a small molecule cyclic Adenosine Mono Phosphate (cAMP) as

a chemoattractant[34]. Each cell in the population acts as a relay of cAMP; it synthesizes

and secretes more cAMP into its surroundings after receiving it through its receptors. At a

population level, this relay process manifests itself as the propagation of a chemoattractant

wave, with successive peaks in cAMP concentration separated by a time period T of 6− 10

minutes[35, 36, 34]. At the same time, cells chemotax towards the source by moving up the

cAMP gradient.

When a Dictyostelium cell encounters a wave, the concentration of cAMP in its surround-

ings rises from a small value to the peak amplitude in the front half and decreases to the earlier

value in the back half. If a cell were to only follow the local gradient of the chemoattractant, it

would oscillate with zero net displacement over one wave period. But cells do have a way of

ignoring or being less sensitive to the gradient in the back half of the wave. Careful observations

of isolated chemotaxing cells have shown that cells display a positive (towards the source of the

wave), zero, or a negative (away from the source of the wave) displacement while experiencing

the falling concentration of cAMP [3, 37, 33]. The development of an internal asymmetric

response to an externally symmetric rise and fall in cAMP concentration, and the development

of a directional memory, albeit with a dependence on the wave period, was modeled by a Lo-

cal Excitation Global Inhibition (LEGI) reaction network motif coupled to a bistable memory

module (M)[3, 37]. Similar memory phenomena have also been reported in other biological

systems, including chemotactic neutrophils [38, 39]. Biomolecules that are plausible candidates

for the components of the LEGI model are idetified[40]: the response element corresponds to

the activated form of Ras, Ras-GTP, which ultimately leads to cellular displacement through

membrane deformation; the activator and the inhibitor are the enzymes that respectively catalyze

the addition and removal of an activated phosphate group to Ras. A candidate for the bistable

memory is yet to be identified.

To further our understanding of the cellular response to chemoattractant waves, we

performed two studies. In the first study, we examined the effect on the chemotactic ability
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of cells upon adding a non-zero concentration of cAMP in background besides presenting the

cells with the chemoattractant wave[4]. In the second study, we examined the effect on the

chemotactic ability of cells upon exposure to multiple waves of a given wave period[41]. The

two profiles of the chemoattractant presented to the cells have significance in the context of

Dictyostelium aggregation through chemoattractant waves. As cells begin to aggregate, the local

density of cells increases; consequently the local concentration of cAMP also increases[42], as

not all cAMP that is produced is degraded [43]. Secondly, every cell experiences several waves

before it reaches the aggregation center[33].

In these studies, we took special care to preclude the effects of neighboring cells and

self-secreted cAMP. Cells were placed on a substrate with one-dimensional tracks. Crossflow

washed away the cAMP secreted by cells during the course of the experiment[44]. cAMP waves

were generated using a bespoke microfluidic device by which the concentration of the wave and

the background level, and the period of the wave can be controlled. By tracking the cells and

computing a measure of chemotactic ability termed chemotactic index (CI)[3], we found that

a small background concentration of cAMP has a positive effect on CI. When the background

concentration is very high, the chemotactic response is entirely shut down. These trends are also

backed up by modeling using a LEGI model coupled to a bistable memory module[4].

In a second study, we studied using a similar setup the effect of exposing the cells to

multiple waves of the same period T . We observed that the chemotactic index of cells improves

significantly as they encounter more waves when the wave period is small. For longer periods,

the improvement is zero or very weak. The improvement is explained by the slow growth in

concentration of a directional memory component over several wave periods. This frequency

dependent growth in chemotaxis shows the presence of a temporal gradient sensing mechanism

operating in parallel with the spatial gradient sensing pathways like LEGI[41]. Our study shows

for the first time the presence of temporal gradient sensing in Dictyostelium . An earlier study

on migrating myeloid cells has shown that those cells too can sense temporal dynamics of

chemoattractant concentrations [45]
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Both experiments suggest that the chemotactic ability of cells increases once cells are

committed to moving to a specific center of cAMP. This has relevance for Dictyostelium cells

in their natural setting. The initial increase increase in cAMP concentration as well as the

occurrence of multiple identical waves in the same direction reinforce the directionality of the

chemotaxing cell. Once the aggregating center is established, it is advantageous for cells to reach

the center as soon and efficiently as possible.

7



Chapter 1

Signaling pathways in guard cells - A
study using Boolean modeling

Introduction

Many cellular processes in biology are controlled by a large number of components that

are part of complex signaling networks [46]. Examples include the pathways controlling cell

polarity, cell motility, cell division, and differentiation as well as the gene networks that underlie

a myriad of biological processes. The biological function in question frequently arises out of the

connections and dependencies among physical and chemical processes which may be relatively

simple and well understood. Technological advances in the last few decades have contributed to

a proliferation of data at the level of individual genes and metabolites [47, 48], paving the way

for synthesizing the knowledge to produce a systems-level understanding.

Models of biological networks attempt to recast the systems in a mathematical form and

their level of detail depends on the amount of available data as well as its requirements [49]. In

its optimal form, quantitative modeling can replace often laborious experiments by carrying out

in silico experiments during which one or more components of the pathway or the interactions

between components are altered. Even if this is not possible, modeling can often reveal the role

of a particular component in the pathway and can, thus, predict the effect of removing or making

it constitutively active.

Constructing models for biological pathways requires knowledge about their topology.
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In other words, one needs to know whether component A affects component B. This is equivalent

to answering the question whether B is downstream or upstream of A. Furthermore, the “sign”

of the interaction between these components is required: does A activate (corresponding to a

positive interaction) or inhibit (negative interaction) B? Ideally, one would also like to know the

strength of the interaction: how much will B increase or decrease when A is present?

For pathways in which all connections and strengths are known, it is possible to construct

a mathematical model that represents concentrations of the pathway components as continuous

quantities that can take on all positive values. This type of model can provide significant insights,

particularly for small systems made up of a handful of simple reactions where all the interactions

are known [1, 2]. For these systems, parameters like rate constants, dissociation and association

constants can be inferred by monitoring the formation of the product or the decay of the substrate.

Often, however, and especially for pathways that contain many components, it is not possible

to quantify the type of interaction and the strength between the different components. After all,

quantifying this for, say, A and B typically requires a systematic variation of the level A and

measuring the response in B. This type of experiment is not always possible for all components

and models with a large number of unknown parameters, and interactions can quickly lose their

predictive and mechanistic value.

An alternative to creating continuous models is to construct Boolean models [6]. In a

Boolean model, each element (alternatively called a node) can only take on one of two values: 0

and 1. The dynamics of these nodes are no longer determined by solving equations that involve

rate constants but are updated using logical operations. These operations encode the connections

between the different components using the elementary logical functions: identity, AND, OR, and

NOT. A Boolean network is then obtained by connecting a number of such nodes in a meaningful

manner. Despite these significant simplifications, Boolean networks have been shown to be

able to provide insights into genetic networks [7, 8, 9, 10], protein networks [11], and cellular

regulatory networks [12, 13]. More importantly, from a practical point of view, Boolean models

have several advantages: they can be simulated relatively quickly, even on daily-use desktop
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computers, and several software packages are freely available [6, 19]; modifying the network

and simulating variants of the original network are easy tasks, and thus Boolean modeling can be

used to i) generate hypotheses that can be tested by experiments, and ii) systematically explore

variants of a network that ‘predict’ or lead to an observed phenotype. These ideas have been

explored in several studies as will be described later [50, 19].

In this chapter, we focus on Boolean modeling in plant biology. We start with a brief

overview of Boolean logic and how one can deduce a Boolean network from rate equations as

well as from experimental data. We then discuss software packages that can be used to simulate

Boolean networks, after which we discuss applications of Boolean modeling to gene regulatory

networks in plants. We then review how Boolean modeling can be used to probe the pathways in

guard cells that lead to stomatal closure in response to the plant hormone Abscisic Acid (ABA)

and carbon dioxide (CO2), and end with a brief conclusion and outlook.

Boolean logic and networks

In this section, we will first describe in more detail how Boolean equations are evaluated,

provide a simple example, and show how truth tables are a convenient way to analyze and

comprehend small Boolean networks. We will then describe how a Boolean network can be

constructed from experimental data and describe the various updating schemes developed for this

type of network. We will also show how one can translate rate equations into Boolean equations

and finish by discussing available software for the simulation of Boolean networks.

Truth tables

The nodes in a Boolean network can only take on values 0 (OFF) and 1 (ON). The ON

state of a variable corresponds to high activity or concentration and the OFF state corresponds to

low activity or concentration. The interactions between the nodes are given by a combination

of the logical functions AND, OR and NOT acting on the input nodes that feed into the output

node. The future state of the output node (say at time t + 1) is obtained by evaluating its
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corresponding Boolean function that takes the current states (say at time t) of its input nodes

as inputs. To simplify notation, we write the output node and the update rule together as an

equation, commonly known as the update equation of the output node. We do not explicitly

specify time because i) the update rules do not change with time, and ii) the states of the input

nodes specify, through the update equation, the state of the output node in the succeeding time

step only.

As a simple example, consider the activation of gene B by a transcription factor A. In

this case, when the concentration of A is high, the gene is on while when it is low, B is off. This

process can be mathematically expressed using an ordinary differential equation, which describes

the rate of change of B, dB/dt, as a function of the concentration of A. In its simplest form, this

differential equation is written as
dB
dt

= f (A)− γB

Here γ is a degradation constant, determining how B is removed, and the function f (A) describes

how the production rate of the gene depends on the transcription factor concentration A. This

function is often taken to be a Hill function f (A) = βAn/(An +Kn), with n the (integer) Hill

coefficient, β the maximum production rate, and K the activation coefficient. If we take n to

be very large, we can approximate f (A) to be a so-called step function: f (A) = 0 if A < K and

f (A) = β if A ≥ K. Thus, when A < K, B will be 0, while for A > K, the time dependence of B

is found by solving the differential equation

dB
dt

= β − γB (1.1)

The steady state value, achieved after a long time, can be found by setting the left-hand side

of this equation to zero, resulting in B = γ/β . Furthermore, assuming that A is set above the

threshold value K at t = 0, the solution of this equation can be found to be B(t) = γ

β
(1− e−γt).

This solution is shown in Fig. 1.1A where we plot B as function of time for different values
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Figure 1.1. A. Comparison of the output of a continuous model (Eq. 1) and a Boolean model
(Eq. 2) for the activation of a gene. In the former, the output can take on any value between 0
and 1 and depends on the model parameters while in the latter the output is either 0 or 1 and
is independent of parameters. B-D: Truth tables of elementary Boolean functions. B. Identity
gate, which copies the value of the input to the output ; NOT gate, which copies the inverted
value of the input to the output. C. OR and AND gates, which take two inputs. D. An example
of a Boolean function that is a combination of the elementary functions. The output X can be
determined by evaluating the parts recursively.

of the degradation constant and using γ/β = 1 for simplicity. When the transcription factor is

turned on, B approaches its steady state value at a timescale that depends on γ . In this description

of gene activation, B can take on all possible values between 0 and 1.

Consider, on the other hand, a simplification of the model in which A and B can only take

on values of 0 or 1 and in which the presence of A causes an instantaneous rise in B from 0 to

1. This model can be simply formulated without any parameters by a Boolean equation, which

defines how the value of B is updated given the value of A. This equation can be compactly

written as

B∗ = A (1.2)

where we have adopted the convention that the variable with an asterisk is being updated. In
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other words, if A = 0, then B is updated to 0, independent of its current state. If A = 1, on the

other hand, B is updated to 1, again independent of its current state. The time course of this

Boolean equation is shown in red in Figure 1.1A, where A is changed from 0 to 1 at t = 0. In

contrast to the differential equation, B is immediately turned on when A is set to 1.

The above example is very simple and does not involve any of the elementary Boolean

functions. To illustrate these functions, let us now consider the nodes A and B as the input nodes

and C as the output node. A useful way to characterize the logical operations is to construct

the so-called truth tables, which list the output values for all possible combinations of input

values. The truth tables for the elementary logical functions are listed in Fig. 1.1B and C. For

example, the AND function (C∗ = A AND B) only returns C = 1 if both A and B are ON and

will return 0 for all other input combinations. Similarly, an OR gate returns an output of 1 if at

least one or both of the inputs is 1. Obviously, the identity gate copies the current state of the

only input node to the future state of the output node. Similarly, the NOT gate only has a single

node as input and it inverts the current state of the node. It can be shown that by compounding

these three elementary gates it is possible to encode all Boolean functions [51], including some

commonly encountered ones in electronics, such as XOR (exclusive OR). In Fig. 1.1C, we show

the truth table of the compound Boolean function X∗ = (NOT A) AND (B OR C). This table also

illustrates how the output node X is updated by evaluating parts of the function recursively.

Update rules

Once a Boolean network is constructed, the nodes are updated following a particular

update scheme. This is a choice the investigator needs to make because a Boolean model contains

neither a natural time scale nor a specified order in which the reactions of the model take place.

In the existing literature on Boolean models, three types of update schemes have been used:

synchronous, asynchronous, and probabilistic update schemes [6]. In synchronous Boolean

models, all the components are updated at the same time, i.e., the states of all the nodes at time

step t +1 are determined by their states at time step t [52, 53, 54, 55]. This also means that the
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evolution of a synchronous Boolean model is deterministic: a particular input will always result

in the same output.

An asynchronous Boolean model orders the updates of the nodes one after another in

either a pre-determined or a stochastic manner. There are a number of ways to implement this

scheme [56, 57, 58, 53]. For instance, one can follow a random order asynchronous update

rule wherein all the nodes are updated exactly once but in a random order in each iteration (also

called time step). This can be done by generating a random permutation of {1,2, . . .n}, where

n is the number of nodes, at the beginning of each iteration. Alternatively, one can follow a

general asynchronous update rule in which the element that is updated is randomly drawn

from the sequence {1,2, . . .n}. Thus, some nodes can get updated, by pure chance, twice or

more before another node gets its turn. These two update methods will result in outcomes that

are stochastic. This is in contrast to the deterministic asynchronous method in which nodes

are updated using a fixed sequence [59, 60] or at pre-determined time steps set by the rates the

corresponding reaction.

For biological applications, the synchronous update scheme is most likely not appropriate;

it is rare that all components in a network change their value at the same time and that all

processes take the same duration of time to be completed. Asynchronous updating can in

principle implement data on timing and kinetics. However, this type of data is not always

available, in which case it is unclear which type of asynchronous updating rule should be used.

For a comparison between synchronous and asynchronous update schemes and its consequences,

we refer to a study by Faure et al [53]. This study applied both schemes to a model for

the mammalian cell cycle and also proposed a hybrid scheme, combining both synchronous

and asynchronous updating. A third method of updating a Boolean model, also resulting

in stochasticity, is through the use of so-called probabilistic Boolean networks [61]. In this

updating method, each node in the network has a set of update equations to choose from. At the

beginning of a time step, an equation for each node is randomly chosen, after which the nodes

are updated synchronously. It thus combines a rule-based determinism for Boolean networks
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Figure 1.2. Examples of Boolean networks. A: Example of an oscillatory network. Arrows
indicate activation and flat-edge symbols indicated inhibition. B: The components of the network
in A as a function of time, modeled using rate equations (Parameter take from Ref. [64]: k1=0.1,
k2=0.2, k3=0.1, k4=0.05, k−1=0.1, S=2, Km=0.01, p=4.). C: Truth table for synchronous updating
of the network shown in A D: Modified network in which Y depends on X and Z. E: Truth
tables for synchronous updating of the network shown in D. F&G: State space and dynamics,
represented by arrows, for asynchronous updating of the networks shown in A and C. Fixed
point attractors are indicated by red dots while the oscillatory cycle is shown by the red arrows.

with stochasticity arising from the uncertainty from the choice of the update equation. For a

review of this type of Boolean model, including its applications, we refer to Trairatphisan et al

[62, 63].

Translating rate equation models into Boolean models

To see how a signaling network may be encoded using Boolean logic, let us examine one

of the simplest three-component systems that can give rise to oscillations [64]. This network is

shown in Fig. 1.2A and has only three components X , Y , and Z. The network is wired such that

X activates Y , Y activates Z, and Z inhibits X . This is shown in the figures, where activation is
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indicated by arrows (→) and inhibition by a line and a perpendicular bar (⊣). This system can be

translated into mathematical equations in which the concentration of the components can take on

arbitrary positive values. The resulting set of ordinary differential equations is written as:

dX
dt

= k1S/(1+Zp)− k−1X

dY
dt

= k2X − k3Y/(Km +Y )

dZ
dt

= k4(Y −Z) (1.3)

In these equations, k1,..., k4 and k−1 are the activation and degradation rates, respectively,

Km is a dissociation constant, p is an integer representing the non-linear inhibition of X , and S is

an input signal [64]. Simulating these equations for particular sets of parameters results in an

oscillatory state as shown in Fig. 1.2B.

To write this network in terms of Boolean operators, it is simplest to examine the diagram

of Fig. 1.2A. Note, however, that there are also more systematic ways to derive Boolean networks

from ordinary differential equations [65, 66]. This diagram can be translated into the following

set of Boolean operators: Y ∗ = X , Z∗ =Y and X∗ = NOT Z. We can then perform simulations of

this Boolean network using synchronous update rules. As mentioned in Sec. 1, for synchronous

updating of small networks, it is most convenient to construct the truth table. The table for

this diagram is displayed in Fig. 1.2C, which shows that it also exhibits oscillatory cycles.

Specifically, starting at (X ,Y,Z) = (0,0,0), the sequence is (0,0,0)→ (1,0,0)→ (1,1,0)→

(1,1,1)→ (0,1,1)→ (0,0,1)→ (0,0,0) while (1,0,1)→ (0,1,0)→ (1,0,1) is also a cycle.

As a second example, let us consider the previous signaling network but now changed

such that the activation of Y depends on both X and Z. This can be easily incorporated by

changing the rate equation for Y into:

dY
dt

= k2XZ − k3Y/(Km +Y ) (1.4)
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while keeping the equations for X and Z unchanged. Now, there are two possible solutions: the

oscillatory state, similar to the one shown in Fig. 1.2B, and a stationary state given by Y = Z = 0

and X = k1S/k−1. The latter is stable and the resulting state of the system depends on the initial

conditions.

The Boolean network corresponding to this slightly altered network is shown in Fig.

1.2D. The only difference between this and the previous network is that the Boolean update

equation for Y is now written as Y ∗ = X AND Z. The truth table for this network, corresponding

to the synchronous update scheme, is given in Fig. 1.2E. This table reveals that (1,0,0) is a

fixed point of the system: once in this state, the network will remain in it indefinitely. Note

however, that this fixed point is only reached for certain initial conditions ((0,0,0), (1,0,0), (0,0,1),

(0,1,1), and (1,1,1) to be precise). Thus, as in the continuous version of the network, the binary

Boolean network displays a steady state solution in which both Y and Z are zero and in which X

has a non-zero value. Obviously, for the continuous system, this value depends on the model

parameters while for the parameterless Boolean network it is simply one. As in the continuous

system, the Boolean network also exhibits an oscillatory state: (0,1,0)→ (1,0,1)→ (0,1,0),

which is reached from initial conditions (0,1,0), (1,0,1) and (1,1,0).

Let us now examine these two Boolean networks using asynchronous update rules. In

this case, each element can be changed independently. Since our networks contain only three

elements, this process can be visualized using the cubes shown in Fig. 1.2F&G, where each node

represents a particular state of the system and the edges represent transitions between the states.

Here, the arrows indicate the transition between the different nodes according to the rules of the

Boolean network. The dynamics of the Boolean network can then be determined by following

these arrows.

For the network of 1.2A, it is easy to see that the asynchronous update scheme also results

in the same oscillatory cycle as the synchronous update scheme. This cycle is shown in Fig.1.2F

by the red arrows. Contrary to the synchronous update scheme, however, the asynchronous

update scheme for the second network does not exhibit an oscillatory state. For this update
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scheme, regardless of the initial conditions, the network always transitions to the same node,

(1,0,0). Thus, the steady state of the system corresponds to a fixed point, indicated by the red dot

in Fig. 1.2G. Finally, we should also point out that is possible to go “backwards” and transform

a Boolean model into a continuous model [67]. The resulting ordinary differential model could

then be used to provide quantitative information regarding, for example, the concentrations of

network components.

Encoding a Boolean network from experiments

The task of encoding a Boolean network based on experimental data is not trivial. It

requires the identification of the relevant components (nodes in the network) as well as the

correct update rules and thus requires biochemical, genetic, and pharmacological data. While

identifying components is typically not that difficult, determining the interactions between these

components is challenging since the number of possible update equations grows exponentially

in the number of nodes in the network [68]. Furthermore, to define these interactions requires

careful consideration of experimental data. This task is especially difficult since available

experimental information is generally incomplete. To elaborate, consider a node in a Boolean

network with n nodes upstream. To formulate the update equation unambiguously, we need

the response of the node for the whole set of 2n inputs. When such information is available,

formulating the equation is straightforward [19]. Generally, however, such extensive data are

unavailable and simplifying assumptions about the nature of interactions are required.

A classical algorithm to infer a Boolean network, called REVerse Engineering ALgorithm

(REVEAL)[69], computes quantities encountered in information theory [70], such as joint entropy

and mutual information. The advantage of REVEAL over earlier methods is that one only needs

a small fraction of all possible input-output relations to obtain a Boolean network with a very

small error rate. The method is, of course, exact when one uses all the 2n input-output relations

for a network of n nodes. To include a more realistic scenario in which one allows for noise in

gene regulation, either inherent or caused by measurement techniques, the so-called Best-Fit
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Extension method [71, 72] can be employed.

Figure 1.3. Inference rules for the construction of Boolean networks. Experimental data is
synthesized to be represented in graphs with the least number of nodes and edges, i.e., as a sparse
representation. This sometimes requires an introduction of an intermediary node, as in graphs 1
and 3, but when additional information becomes available, the graph can in fact simplify, as in
going from graph 1 to graph 2. For further details, see text (From [73]).

We highlight here another approach used in constructing a large network, following an

extensive literature search, to model guard cell dynamics in Arabidopsis in response to ABA

[73, 18]. Mathematically, this approach relies on developing a graph with the smallest number

of nodes and edges consistent with all established qualitative relationships [74]. It formulates a

number of inference-based rules, shown schematically in Fig.1.3. In the first graph, experimental

data have identified that component A promotes B (and is not a directbiochemical reaction) but

also that C promotes the interaction between A and B. In that case, it is assumed that there is an

intermediary node (IN) of the A−B pathway and that C acts on this intermediary node. If it is

also known that A promotes C, then this intermediary node can be identified as C (graph 2 in Fig

1.3). Finally, if A inhibits B and C inhibits the interaction between A and B, then the logical rule

can be interpreted as A promotes an intermediary node IN, which inhibits B, while C inhibits

IN (graph 3 in Fig.1.3). Using these rules, it was shown that the developed network was able to

capture existing experimental data [73, 18].

Dynamics of Boolean Networks

Often, the goal of modeling is to determine the steady state of the system. That is to

say, what is the outcome of the system for long times?Any deterministic Boolean model, when
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simulated for long enough time, converges to a limit cycle or an attractor. A limit cycle is a

subset of the states of the network over which the state of the system repeats over and over in

a cyclical fashion. The length of the limit cycle is the number of states in the limit cycle. An

attractor is a state of the system whose ‘future’ state is identical to the current state; the system

gets locked-in once it reaches an attractor state.

We have already seen examples of these two possible outcomes when discussing the

networks presented in Fig. 1.2. The set of states that converges to a particular attractor constitutes

its so-called basin of attraction. Since the evolution of the network is deterministic, no two

basins of attraction share a common element; they are said to be disjoint. Likewise, a limit

cycle – along with transient states that feed into it – is disjoint with the next one. Thus, the

entire state space can be carved up into disjoint basins of attraction and basins of limit cycles and

each trajectory of the system is a subset of the basin its initial state belongs to. Determining the

number of attractors, together with their basins of attraction, is an active area of research in the

mathematical field of graph theory and we direct the interested reader to several recent studies

[75, 76, 77, 78].

Defining and analyzing the basins of attraction for non-deterministic Boolean networks

(e.g., using random order asynchronous or general asynchronous update methods) is not as

straightforward since the trajectory of the system is no longer deterministic. Furthermore, the

set of attractors and limit cycles found using asynchronous updating can be different from the

ones found using synchronous updating. This was highlighted by Saadatpour et al [56], which

carried out a comparative study of the dynamics and steady states of the ABA-induced stomatal

closure network under synchronous and the three aforementioned asynchronous update schemes.

To enumerate the fixed points and limit cycles, they reduced the system using Markov chains

[79] and by simplifying the Boolean update equations. They found that both types of update

schemes exhibited a fixed point. However, for synchronous updating, they found large basins of

attractions for two limit cycles. These limit cycles, and their basins of attractions, were not found

using asynchronous updating, unless strict limitations regarding the timing of several processes
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were implemented.

Software tools

Once a network and the update schemes are defined, a Boolean network can be simulated

to obtain the trajectory and steady states of the system, to visualize the network, and to determine

the activity levels of its components. A large number of computational tools have been developed

to simulate Boolean networks on personal computers, as reviewed recently by [6]. In addition,

software packages are available to determine and computationally identify the attractors of a

Boolean network [80, 81]. Most of these packages, but not all [82], are open source and can

thus be freely used. Some of these tools, however, do not use a graphical interface, which makes

it more challenging to construct and visualize the network [83, 84, 85, 86, 87, 88, 89]. Other

packages only allow synchronous updating and can thus not implement an asynchronous update

scheme [90, 91]. Finally, some packages are only able to run a single initialization at a time,

which means that probing a large set of initial conditions, especially valuable for large scale

networks with asynchronous updating, is challenging [92, 93].

We have developed Boolink, a simulation platform for Boolean networks that is based on

a graphical user interface (GUI) and is completely open-source [19]. Specifically, the software

allows users to define the nodes and connections in the Boolean network, visualize the network as

a tree, set various simulation parameters including the number of time steps and initial conditions,

plot the activity of a few chosen nodes, and to analyze the trajectory of the system as a whole.

Boolink is written in Python and C++, and the source code is freely available from the GitHub

repository github.com/Rappel-lab/Boolink-GUI, along with its documentation, to use, modify,

and distribute. We have also packaged the software as a Docker container [94], which is a

self-contained system that comes with all the software dependencies and runs straight out of the

box. In its original presentation, Boolink was only able to simulate a Boolean network using the

physiologically relevant asynchronous update scheme. Later, however, we extended Boolink to

include the ability to simulate networks using a synchronous update scheme.
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Boolean networks and gene regulation in plants

Creating a regulatory framework based on the available data on gene expression is

essential to understanding gene expression. A network that is inferred from gene expression

data is termed Gene Regulatory Network (GRN) [95]. Several methods have been developed

to construct GRNs from data sets that are extensively available, including Boolean models,

information-theory based models, machine-learning based models, etc. These methods and their

suitability to different contexts have been reviewed earlier [96, 97, 98, 99]. Here we limit our

discussion to Boolean models. The first application of Boolean modeling was carried out by

Kauffman when he described a genetic network [100]. In a Boolean gene network, a gene is

either turned on (i.e., has value 1) or turned off (with value 0), while the topology of the network

specifies how and if a gene interacts with other genes. In plants, Boolean networks have been

applied to a number of genetic networks. We will discuss here three different examples: Boolean

models for flower development, for induced systemic resistance induced by microbes, and for the

root stem cell niche. These models have introduced modifications to the simple implementations

of Boolean networks described so far. These modifications will be discussed as the systems are

introduced.

Flower development

One of the first examples of Boolean modeling studied early flower development in

the model plant Arabidopsis thaliana [101]. In this model, 12 genes were considered and the

topology of the network was determined based on experimental data. The model was slightly

more involved than the simple Boolean implementation we described in Section 1 in that the

modified model is known as a threshold Boolean model. Each node of the model still takes

binary values (0 or 1) but interactions between any pair of nodes are encoded by weights between

them; excitatory interactions carry a weight of +1 whereas inhibitory interactions carry a weight

of −1. The update equation of a node in this model is not Boolean but algebraic, consisting of

the sum of weighted interaction terms. When a node is updated, the sum of all of its interactions
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with other nodes is calculated. If the sum exceeds the threshold of the node, then the node is

updated to 1; if not, to 0.

The update scheme for this model is in-between the synchronous and asynchronous

update schemes as described before, and is termed semi-synchronic, and block-sequential and

block-parallel in later iterations [102, 59]. Instead of updating all the nodes at once or one after

another in some order, the nodes in the model are grouped into blocks. All the nodes in a block

are updated at once, and the blocks themselves are updated sequentially. This method makes use

of qualitative experimental data, such as the order of activation of different parts of the genetic

network.

The model was found to have 6 attractors, 4 of which were consistent with the gene

expression patterns observed in A. thaliana [101]. One of the remaining two was not able to

flower and the sixth one, while not observed, could be induced experimentally [101]. Since

this Boolean threshold model was published, several studies have further analyzed its dynamics.

These studies revealed that it is possible to reduce its complexity while maintaining its steady

state behavior [103, 104] and highlighted the crucial role of the plant hormone gibberellin in

normal flower development [103].

Induced systemic resistance

Recently, the induced systemic resistance (ISR) in A. thaliana plants triggered by ben-

eficial microbes was investigated using Boolean modeling [105]. ISR is an important defense

mechanism of plants against harmful pathogens [106] and the study investigated how the bac-

terium Paraburkholderia phytofirmans PsJN can trigger ISR and protection from the bacterial

pathogen Pseudomonas syringae DC3000 [107, 108]. It used the temporal experimental expres-

sion patterns of 8 key genes following inoculation of PsJN and asked which threshold Boolean

network was able to reproduce the time series data. Parameters of the model, including the

weights among the nodes and their threshold values, were fitted to experimental data using an

algorithm called Differential Evolution [109], which belongs to a class of fitting algorithms
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called Genetic Algorithms [110]. The study inferred 1000 networks from the data. One of

these networks was chosen and pruned using biological reasoning. The robustness of the pruned

network was then tested by determining how mutations of fundamental genes affected the ISR

response. These virtual mutation experiments produced responses that were consistent with

available experimental data [105]. Additionally, the study found that the pruned consensus

network is robust because it requires an unlikely event of a triple mutation to the network before

the ISR is lost. Furthermore, the authors argue that, in the presence of errors in gene expression

data, the Differential Evolution algorithm used to derive the gene regulatory network fared

better than classical algorithms to infer Boolean networks, including REVEAL [69] and Best Fit

Extension [71].

Root stem cell niche

The examples above applied Boolean modeling to determine the most probable network

that is consistent with experimental data. In doing so, these studies found missing links or were

able to determine the most critical network components. As a result, these Boolean models were

often able to predict novel components or connections between components and could suggest

new experiments. To further illustrate the ability of Boolean models to guide experiments, we

focus here on another example of a gene network studied using Boolean modeling, the root stem

cell niche (SCN) in A. thaliana [111, 112]. The root SCN in A. thaliana is well studied and

is located at the root apical meristem [113]. It consists of a so-called quiescent center (QC),

comprised of four infrequently dividing cells, and, in immediate proximity, active stem cells that

are called initials. The divisions of these initials result in different types of differentiated cells

and in tissue growth of the plant [113]. The question thus arises, how can the undifferentiated

cells of the QC give rise to several differentiated cell types?

Modeling, and in particular Boolean modeling, is ideal to address this question. Experi-

mental work has identified a number of molecular and genetic components that play a role in

the maintenance of the SCN [114]. Furthermore, the interactions between some, but not all
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Figure 1.4. Boolean modeling of gene networks. A: Example of a putative network that
maintains the SCN in Arabidopsis. Arrows indicated activation and flat-edge symbols correspond
to repression. For the definition of the different components, see [112]. B: Attractors of the
Boolean network shown in A. Green represents an active and red represents an inactive gene.
The labels at the top of the diagram represent the attractors and correspond to the phenotypes
observed in experiments (CEP: columella epidermis initials, VAS: vascular initials, CEI: cortex-
endodermis initials, QC: quiescent center). (From [112]). C: Modified network based on novel
experimental and computational results. (From [112]).

of the components can also be deduced from experimental work. It is therefore possible to

construct a putative wiring diagram as in Fig. 1.4A, which shows the components along with their

interactions as either arrows, indicating activation, or flat-end symbols, indicating repression.

The dynamics of this network should then allow steady state solutions with gene expression that

is consistent with the different cell types of the SCN. In terms of Boolean modeling, this means

that the network should display attractors corresponding to these different cell types.

Simulating the Boolean network in Fig. 1.4A using synchronous updating revealed

four different attractors as shown in Fig. 1.4B. In this diagram, active genes are displayed in

green while inactive genes are displayed in red. Each of the four attractors correspond to a

different set of genes that are on or off and, thus, to a different cell phenotype. For example, the

gene SCR (SCARECROW) is on (and thus has a value of 1) in the phenotype corresponding to

CEP (columella epidermis initial) and VAS (vascular initial) but is off and has value 0 in CEI

(cortex-endodermis initial) and QC (quiescent center cell). The diagram also shows the size

of the basin of attraction, expressed as the percentage of initial conditions that resulted in the

attractor.

Further testing of this model and comparing the outcomes to experimental results showed
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that certain interactions were missing. For example, this analysis revealed the need for a repressor

of WOX5 (WUSCHEL RELATED HOMEBOX 5) and an additional component with an inhibitory

link was predicted [111]. This prediction was verified in experiments, which showed that WOX5

is negatively regulated by CLE40 (CLAVATA-like-40) [115]. Additional predictions resulted in

the modified network displayed in Fig. 1.4C, where the postulated interactions are shown in red

[111]. After this study and once new experimental findings became available, this network has

been modified and extended further [116]. These studies showed the power of Boolean modeling:

once a Boolean network has been constructed, it is fairly straightforward to modify and extend it

and to generate experimental predictions. These modifications and extensions are much easier

to implement than in continuous models based on rate equations. In those type of models, a

modification typically requires refitting and adjusting the model parameters, which can be an

arduous task [4].

Boolean networks and signaling in plants

Biological signaling pathways can be very complex, containing numerous components

and multiple feedback loops. Such complex pathways can also be addressed by Boolean modeling

and examples include T-cell signaling [117], molecular pathways of neurotransmitters [118],

and cancer pathways [119, 120]. A prime example of a complex signaling network is found in

plants, where the network regulating phytohormone ABA-induced stomatal closure contains a

large number of interconnected components. Below, we will review studies that attempt to cast

this closure pathway into a Boolean network. Furthermore, we will also discuss recent efforts to

extend this signaling network to include CO2 signaling.

ABA signaling network

Stomata are pores in the epidermis of leaves that regulate gas exchange, including CO2

for photosynthesis and loss of water vapor. Each stomata is formed by a pair of guard cells and

its aperture is modulated in response to environmental changes such as light and CO2[14, 15].
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Furthermore, drought results in the accumulation of ABA in guard cells, which leads to stomatal

closure [16, 17]. The network that underlies ABA-induced stomatal closure in A. thaliana is

complex and contains a large number of components (> 80). Consequently, the number of rate

constants is also very large and, not surprisingly, many are not quantified.

We applied Boolink to the ABA-induced stomatal closure network formulated by Albert et

al [18]. The input file for this network, containing all components by name and their interactions,

can be found in the subfolder “sample data files/ ABA data files/” of the repository for the

Boolean equations and for the names of the nodes https://github.com/dyhe-2000/Boolink-GUI or

https://github.com/Rappel-lab/Boolink-GUI. The reconstruction of the published ABA signaling

network [18] within the Boolink interface here, will enable any user to use and manipulate

components of this network and develop experimental predictions, as well as modify the Boolean

network depending on experimental outcomes or to predict outcomes for modified network

models. A screenshot of our implemented network encoded within the Boolink GUI is presented

in Fig. 1.5, with the input ABA node shown in red and the “Closure” output node shown in

green. This network contains 81 nodes, including input and output nodes, and was constructed

by and adapted from Albert et al. [18] following an extensive survey of more than one hundred

peer-reviewed articles. As in the simple example, the interactions between nodes in the GUI are

color-coded, with green arrows representing positive interactions and red arrows representing

negative interactions. Using the Boolink GUI interface, the user can move nodes around by simply

dragging them to a new location. Furthermore, to facilitate examining inter-node connections,

double-clicking on a node reveals all downstream and upstream interactions of that node (e.g.

Fig. 1.5A). (See https://github.com/dyhe-2000/Boolink-GUI or https://github.com/Rappel-lab/

Boolink-GUI; Detailed instructions can be found in the Supplementary Text.)

Results of the Boolink simulations for 25 time steps and averaged over 2,500 initial

conditions are presented in Fig. 1.5B. In this, and subsequent curves, and following Albert et al.

[18], we chose to illustrate the predicted stomatal conductance level as a function of simulation

(time) step. However, this time step does not equate to “real time” and only the steady state
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A B

Figure 1.5. Implementation of ABA into Boolink. A: Visualization of the Boolean network for
ABA-induced stomatal closure, rendered here by the Boolink GUI. The input ABA and output
Stomatal Closure are colored in red and green, respectively. The node denoting cytoplasmic pH
(pHc), colored in orange, has its upstream nodes colored in magenta and downstream nodes in
cyan. Connections for any node can be viewed by double-clicking on the node of interest. B:
Stomatal conductance as a function of time steps in the simulation for wild type and the mutants
ost1 and ghr1, and alteration of cytosolic pH (pHc). A conductance level of 1 corresponds to
maximal (open) stomatal conductance while 0 represents complete stomatal closure. The triangle
shows the point in the simulation where ABA is introduced (except for the case ABA=0).

following a change in network architecture or input can be compared to experimental results.

This conductance level, computed as 1-Closure, varies between 0 (corresponding to closed

stomata and Closure=1) and 1 (corresponding to open stomata and Closure=0) and facilitates

comparison with experiments in which the stomatal conductance is presented (e.g., Fig. ()). In

the absence of ABA, simulated by setting the input node ABA to 0 throughout the simulation,

the output node Closure is 0 for all time steps, corresponding to no stomatal closure and a

conductance level of 1 (orange diamond curve). In the presence of ABA, modeled by changing

ABA from 0 to 1 at time step 5, the network reaches a conductance level of 0 (stomatal closure)

after approximately 15 time steps (blue curve, labeled as wild type (WT)). By implementing

the model of Albert et al. [18], we have also computed the relative stomatal conductance for

several mutants, labeled in Fig. 1.5B, following the introduction of ABA after 5 time steps.

Knocking out the Open Stomata 1 protein kinase (OST1), which corresponds to forcing the

node OST1 to 0 at all times, results in a conductance level that remains 1 (no stomatal closure)
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after setting ABA=1 (orange curve) Furthermore, knocking out GHR1 (Guard cell hydrogen

peroxide resistant 1) results in a conductance level of 0.5 (50% stomatal closure) following the

introduction of ABA (green curve) and manipulating the cytosolic pH through the node pHc

leads to a conductance level of approximately 0.65 (red curve). These control predictions are

identical to the ones obtained in the original publication [18], further validating reconstruction of

this network in our interactive graphical user interface.

B

βCA4

A

Closure

GHR1

ROS ABI2

SLAC1 CaIM

ABA

CO2

HT1
CBC1/
CBC2

MPK12/
MPK4

βCA1

Figure 1.6. Stomata 2.0 and Boolink A: ABA-driven stomatal closure model extended with
a CO2 branch, indicated in blue, which positively regulates GHR1. The box denotes all the
intermediate nodes of the original ABA network shown in Fig. 1.5 with only GHR1 and its
immediate upstream and downstream nodes shown. B: Predicted relative stomatal conductance
levels obtained by implementing Stomata 2.0 into Boolink for two concentration levels of CO2:
low (CO2 = 0; red line and symbols) and high (CO2 = 1; blue line and symbols). The triangle
shows the point in the simulation where ABA is introduced (ABA = 1).
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CO2 network

We next applied our GUI interface to examine and explore the guard cell signaling

network. We used the original ABA network of Albert et al. and first extended it with a putative

branch that models the input of carbon dioxide (CO2). Elevated CO2 triggers stomatal closure

and some elements of CO2 signaling overlap with those of ABA signaling, whereas others affect

stomatal closure through separate pathways [20, 21, 22]. Based on previous experimental data,

we modeled the CO2 branch to be upstream of GHR1 in the ABA network [121, 122]. The added

branch contains CO2 as input, which is then catalyzed by the beta carbonic anhydrases βCA4

and βCA1 in parallel [123, 124]. These then activate the node MPK12/MPK4 via yet unknown

mechanisms. This node inhibits the negative-regulator of CO2-induced stomatal closing HT1,

which, in turn, regulates CBC1/CBC2 either directly or indirectly [125, 121, 126]. Finally,

CBC1/CBC2 enters the ABA network through an assumed inhibitory link to GHR1 (Fig. 1.6 A).

The above summarized CO2 branch can be translated into the following Boolean equa-

tions:

CO2 = CO2

βCA1 = CO2

βCA4 = CO2

MPK12/MPK14 = βCA4 |βCA1

HT 1 =∼ MPK12/MPK14

CBC1/CBC2 = HT 1

GHR1 =∼ ABI2 & ROS & ∼CBC1/CBC2 (1.5)

Note that the equation for GHR1 is adapted from Albert et al and takes into account the

existing connections from the ABA network (from ABI2 and ROS) and the new input from the

CO2 branch. This simplified CO2 signaling model, which can be accessed in the online Boolink
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repository, termed Stomata 2.0, includes presently identified and confirmed early CO2 signaling

mechanisms that have been found to function in the CO2 signaling pathway upstream of the

merging with the ABA-induced stomatal closing pathway [21, 127, 22].

Based on this model, we then determined how the extended network responds in sim-

ulations to ABA under high and low CO2 conditions (Fig. 1.6B), simulated by setting the

input node for CO2 to either 0 (very low concentration) or 1 (high concentration). For CO2=1,

the introduction of ABA at time step 5 results in a decrease of conductance level from 1 to 0

(Fig. 1.6B, blue curve), identical to the WT response shown in Fig. 1.7 (blue curve). This

can be understood as the added CO2 branch having little or no effect on the ABA network

since CBC1/CBC2 is 0 when CO2 = 1.Note that in this model the starting steady-state stomatal

conductance of 1 is similar at each background CO2 concentration, which will be addressed in

updated simulations further below. When simulating very low CO2 conditions, our simulations

predicted that introduction of ABA also induces stomatal closure and, thus, a decrease in the

conductance level. However, the conductance level in the presence of low (nominally zero) CO2,

was found to be reduced from 1 to 0.5 (Fig. 1.6B, red curve).

To test our predictions experimentally, we analyzed ABA-mediated stomatal closure

under either 400 ppm or near 0 ppm ( 1.5 ppm) [CO2] by conducting gas-exchange experiments

with ABA application to the transpiration stream of excised intact leaves [128]. Our results

show that application of 2 µM ABA induced robust stomatal closure in leaves exposed to 400

ppm [CO2] as expected (blue curves Fig. 1.7A-D). As stomatal responses are known to show

biological noise, and as ABA-induced stomatal closing in Arabidopsis thaliana has not been

previously analyzed at near zero CO2, we conducted four independent sets of experiments (Fig

1.7). In all four experiments, leaves exposed to 1.5 ppm [CO2] showed robust stomatal closing in

response to 2 µM ABA, with a degree of expected biological variation (red curves Fig. 1.7A-D).

By analyzing the steady state stomatal conductance in leaves it appears that the response to ABA

at low CO2 was reduced in 3 of these experiments (Fig. 1.7A, C&D). We also compared the

difference (change) in steady-state stomatal conductance before and after applying ABA (Fig.
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1.7 E-H). This analysis shows that independent of whether leaves are exposed to 400 ppm CO2

or 1.5-2 ppm CO2, the ABA responses had a similar magnitude in three of the experiments and a

stronger ABA response in one of the experiments (Fig. 1.7F). Furthermore, our data show that in

the absence of ABA, leaves exposed to low CO2 show a higher stomatal conductance than leaves

exposed to 400 ppm CO2. This is consistent with a reduction in stomatal conductance upon

CO2 elevation. In addition, analyses of an early time point of the ABA response, 10 minutes

after ABA addition, show a slightly, but significantly slowed initial ABA response in 3 of 4

experiments (Fig. 1.7 E,G,H). Taken together, our experimental data show that the steady-state

stomatal conductance responses to ABA in Arabidopsis remain to a large degree intact even at

very low near zero CO2 concentration, and as an approximation indicate a steady-state additive

effect of low CO2 on the stomatal conductance prior to ABA exposure.

A comparison of our experimental results and model predictions in the absence of ABA

reveals that Stomata 2.0 (Fig. 1.6B) is not able to fully capture the dependence of the steady-state

conductance levels on CO2. This suggests that additional modifications of the ABA network

are required to reproduce the observed reduction of stomatal conductance in the presence of

CO2. To explore possible modifications that result in model predictions that are more consistent

with our experimental steady-state response results, we utilized the ability of Boolink to easily

modify, simulate, and visualize modified Boolean network outcomes. We found that we were

able to better reproduce experimental data if we modified the Boolean equations for four network

components (Fig. 1.8A). Specifically, we modified the nodes Ca2c (cytosolic calcium), which is

linked in the ABA model [18] to CaIM (Ca2+ influx across the plasma membrane), Microtubule

(Microtubule depolymerization) and H2OEfflux (water efflux through the plasma membrane) to:
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Ca2c =∼ Ca2ATPase & (CIS | CaIM) | (ABA & CO2)

CaIM =∼ ABH1 & (NtSyp121 | MRP5 | GHR1) | ∼ ERA1 | Actin | CO2

Microtubule = TCTP | Microtubule & ABA

H2OEfflux = AnionEM & PIP21 & KEfflux & ∼ Malate | CO2 (1.6)

where the modifications are shown in boldface. Introducing a CO2 dependence on

calcium signaling was motivated by experimental evidence that cytosolic calcium involved in

CO2-induced stomatal closure [129, 130, 131]. Furthermore, findings that anion efflux and

water efflux functions in the CO2 response and that GHR1 functions in CO2-induced stomatal

closure were included [121, 122]. Addition of an ABA component to microtubule function was

motivated based on recent findings [132, 133]. These modifications, their associated Boolean

logic operations, and their effect on stomatal closure are further detailed in the Supplementary

Text. When simulating this modified and updated network, termed Stomata 2.1, we find that the

steady-state conductance level now depends on CO2 and is reduced for high CO2 conditions (Fig.

1.8B). Furthermore, and also approximately consistent with the experiments, the introduction

of ABA reduces stomatal conductance by similar absolute conductance changes for both low

and high CO2 conditions (Fig. 1.8B). The Stomata 2.1 network is able to better reproduce

experimental results. We have included the network files for both Stomata 2.0 and 2.1 in the

folder sample data files/ in the Boolink repositories. We anticipate that community members

will be able to use Boolink as a starting point to easily introduce modifications and iteratively

test predictions.

Discussion

Large signaling networks are common in biology in general, and plant physiology. The

published ABA signaling network we implemented into Boolink, for example, contains more
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than 80 components [18]. The vast majority of the interaction strengths and kinetic parameters

between these components is not known, making it difficult to formulate mathematical models of

these networks. Motivated by the simplicity and utility of Boolean networks and the challenges

associated with formulating detailed rate equation-based models for these large networks, we

have presented here a software package with a graphical user interface (GUI) that can simulate,

visualize, and plot the results of a user-defined Boolean network. Our package, named Boolink,

is free to use and distribute, and is built from free and open-source software. The interface is

intuitive and users do not require extensive coding knowledge to use it. The Supplementary Text

contains detailed instructions on downloading, installing, and running Boolink on Windows,

Mac, and Linux-based machines. In addition to this open-source version, we also packaged the

software in a Docker container, which allows execution of Boolink in an even more facile and

direct computer operating system-independent fashion. Instructions detailing how to obtain the

Docker container is also provided in the Supplementary Text.

Boolink platform and advantages

As reviewed by Schwab et al. [134], a number of computational platforms exist that are

able to simulate Boolean networks. These platforms utilize a variety of programming languages,

both high-level and low-level, including Python [91, 84, 89, 87], Java [135, 93, 92, 136, 137, ?],

MATLAB [82], R [88], and C++ [85, 86]. Our platform is distinct from these platforms for several

reasons. First, it is the only C++-based platform that offers a GUI interface. Implementation

in a low-level programming language like C++ renders simulations faster than implementation

in higher level languages, including Java and Python [138, 139]. This can become particularly

attractive for large-scale networks that need to be run multiple times, as is the case for our

CO2 signaling network. Coupled to a user-friendly graphics interface, our C++ implementation

should thus provide a fast and user-friendly platform for the exploration of Boolean networks.

Furthermore, our platform is operating system independent and can be installed on Linux,

Windows, and Mac operating systems. The explicit instructions and the Docker container
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we provide should facilitate this installation. Finally, our platform implements asynchronous

updating, chooses the order randomly, and does not require the explicit specification of the order

of node updates.

Boolink uses asynchronous and random order of updates, which is best suited to simulate

a network of chemical reactions in which the outcome of one reaction then affects the outcome of

another in the near future (hence asynchronous), and when the relative rates of different reactions

in the network are unknown (hence random order of update). Besides nodes and connections,

users may also specify the number of time steps or iterations to run the simulations and the

number of initial conditions to get a statistically robust sample output. Once a system is defined,

it may be visualized as a network in Boolink. Visualization includes identifying the upstream

and downstream nodes of a given node and the type of connections (activating or inhibiting)

between them, by simply double-clicking on the node of interest. The steady states of nodes of

the system after simulation can be quickly plotted within Boolink. The trajectory of the entire

simulation is stored in a NumPy array; a Jupyter notebook is provided with the package that

can be used to further analyze the system starting from the NumPy array, including producing

publication-ready plots of the simulation.

Guard cell CO2 signaling iterative modeling

We first tested and verified Boolink using a published advanced model for stomatal

closure in guard cells as mediated by abscisic acid (ABA) and verified that our simulations were

consistent with those of Albert et al. [18]. We then extended the network to include the effects

of CO2 on stomatal movements. Previous research indicated that CO2 might mediate signal

transduction via the OST1 protein kinase, as ost1 mutant leaves were impaired in their stomatal

response to CO2 elevation [140, 141]. However, more recent studies unexpectedly showed that,

in contrast to abscisic acid, CO2 elevation does not activate the OST1 protein kinase [21, 22].

This research further provided experimental evidence that basal OST1 protein kinase activity

and basal ABA signaling are required for WT-like CO2-induced stomatal closure [21, 22] (Figs.
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1.6 and 1.7). Thus, merging CO2 signaling into the extant ABA signaling model is reasonable.

The biochemical link by which CO2 signaling merges with ABA signaling is proposed to lie

downstream of the OST1 protein kinase, but remains unknown. In the present study, to test a

simplified model merging the ABA signaling and CO2 signaling networks, we modeled this link

to occur at the level of the transmembrane receptor-like (pseudo)kinase GHR1 [142, 143].

The simulations of this simplified network predicted that the response to ABA should

depend on the CO2 concentration (Fig. 1.6). This prediction was then subsequently analyzed and

ABA-mediated stomatal closure of intact Arabidopsis leaves was measured while leaves were

either exposed to ambient 400 ppm [CO2] or near zero (1.5 ppm) [CO2] (Fig. 1.7). Interestingly,

our data show that leaves exposed to 1.5 ppm [CO2] showed a robust response to ABA. Under

low CO2 conditions the stomatal conductance remained higher prior to ABA application at steady

state than at 400 ppm CO2 (Fig. 1.7A). When comparing true steady state stomatal conductance

responses, it appears that CO2 and ABA may in part have additive responses in Arabidopsis

as a first order approximation (note that basal ABA signaling amplifies or accelerates the CO2

response [21], such that the starting stomatal conductance was much higher at low CO2 due to

the lack of CO2-induced stomatal conductance reduction (Fig. 1.7A).

In contrast to our experimental data (Fig. 1.7), Stomata 2.0 predicted identical con-

ductance levels for low and high CO2 concentration in the absence of ABA (Fig. 1.6B). In

an illustration of the use of Boolink, we modified the ABA network further, with as goal to

incorporate CO2 dependence on steady-state conductance levels when ABA is absent. Creating

this updated network, Stomata 2.1, was greatly facilitated by the ability of Boolink to easily

implement changes and generate predictions. We introduced CO2 dependence on calcium signal-

ing based on experimental evidence that cytosolic calcium is involved in CO2-induced stomatal

closure [129, 130, 131]. Furthermore, it is well-established that anion efflux and water efflux

from guard cells are essential for the CO2–induced reduction in stomatal conductance. Further-

more, findings that GHR1 functions in CO2-induced stomatal closure [121, 122] were expanded

to include GHR1 predictions of the original ABA signaling model [18]. Addition of an ABA
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component to microtubule function was motivated based on recent findings on roles of guard

cells microtubules [132, 133]. The output of Stomata 2.1 was able to better incorporate effects

of CO2 and the present experimental data (Fig. 1.6B). As described earlier, important gaps exist

in the understanding of the CO2 signaling pathway, including that the primary CO2/bicarbonate

sensors remain unknown in guard cells and the mechanisms by which HT1, CBC1 and CBC2

link to one-another and to stomatal closing mechanisms are unknown. Expansion of the present

model will be required.

In the present study, ABA responses were analyzed at near-zero CO2 in the C3 model

plant Arabidopsis thaliana. The robust decrease of steady-state stomatal conductance at near-zero

CO2 by ABA addition was also found in the C3 species Avena sativa, Gossypium hirsutum, and

Xanthium strumarium, but was not found in the C4 species Amaranthus powelli and Zea mays

[144], suggesting a species variability in the response. The converse response was also analyzed

in which CO2 responses were analyzed in the absence of exogenously added ABA in these C3

and C4 species [144]. Interestingly, a variation among species was detected, in which either

CO2 responses proceeded in the C4 species or were impaired in the C3 species [144]. These

findings are consistent with recent findings that CO2 signaling requires basal ABA signaling and

would be predicted to depend on variation in basal levels of ABA in guard cells depending on

plant species and growth conditions [21, 22]. These classical findings [144, 145] correlate with a

model in which ABA and basal ABA signaling plays an important role for other stomatal closing

stimuli.

Our proposed additions to the existing ABA network, which illustrate the potential use

of Boolink, are meant as a starting point for further explorations and further research is needed

to determine the precise mechanism by which CO2 signaling merges with abscisic acid signal

transduction. Nevertheless, several improvements can be suggested. First, it is conceivable that

CO2 affects yet unknown mechanisms. Second, the CO2 pathway may contain feedback loops,

which can be easily implemented within Boolink. Finally, we should point out that Boolean

networks do not incorporate explicit rate constants and contain nodes that can only take one of
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two values (0 or 1). Therefore, these networks are not able to address the time-dependence of

responses nor how they respond to graded inputs.

Importantly, the GUI platform and stomatal signaling model developed here can be used

and altered by users to test diverse predictions and to add expanded components or to modify the

ABA and CO2 signaling models. Furthermore, the methods and software tools presented here

can be of interest to the wider plant biology community interested in physiological pathways.

Materials and methods

Software

Boolink is implemented using Python and C++ and can be freely downloaded from the

GitHub repository https://github.com/Rappel-lab/Boolink-GUI. It requires a current version

of Python and C++, and a detailed manual, including installation instructions, is provided in

the GitHub repository. These instructions are provided for Windows, Mac, or Linux-based

computers. Boolink can also be run as a Docker container, a self-contained environment that

includes all the required packages and utilities, on MacOS and Linux-based systems. The

advantage of this method is that users only need to install the desktop client for Docker and

not the dependencies like C++ and Python. A detailed explanation of instructions to install the

Docker client and the required script to run the container is given in the Supplementary Text and

in the GitHub repository.

Experiments

Plants of the Arabidopsis thaliana accession Columbia (Col-0) were grown as described

in [21]. Stomatal conductance (Gs) measurements in response to ABA were performed in

detached intact leaves of 5.5- to 7-week-old plants in Arabidopsis leaves following the procedure

described previously [128] using a LI-6800 Portable Photosynthesis System with an integrated

Multiphase Flash Fluorometer (6800-01A; LI-COR Biosciences, Lincoln, NE, USA). Detached

leaves were clamped in the leaf chamber and kept at ∼ 1.5 ppm or 400 ppm [CO2], 135 µMm2/s
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red light combine with 15 µMm2/s blue light, 70 ± 0.5% or 65 ± 0.5% relative air humidity,

21 ◦C heat exchanger temperature, and 500 µMs−1 incoming air flow rate for at least 2 hour

until stomatal conductance is equilibrated and stabilized. Stomatal conductances were recorded

every 30 sec under ∼1.5 ppm or 400 ppm [CO2] for 10 min. ABA (2 µM) was then added to

the transpiration stream via the petiole, and stomatal conductances were recorded as shown in

the figure panels. In each independent set of experiments, intact leaves from independent plants

were analyzed per experimental condition.

1.1 Supplementary Information

Installing and running Boolink

Boolink, the graphical user interface (GUI) developed to simulate user-defined Boolean

networks, is free to download, use, and distribute. Detailed instructions to install the software

and its dependencies for all operating systems – Windows, MacOS, and linux distributions –

are available on the GitHub page of the project at github.com/Rappel-lab/Boolink-GUI. We

recommend using the Docker container option. Docker provides a self-contained environment

for the software wherein all the dependencies and their right versions are already installed. The

instructions to install and run the Docker container can also be found on the GitHub project page.

Stomata 2.1

As detailed in the main text, our initial attempt Stomata 2.0 to include CO2 signaling

into the ABA network involved a branch upstream of GHR1. However, the experimental results

are inconsistent with the results of Stomata 2.0, which motivated us to seek ways to improve

the network. Our experimental results showed that the steady-state conductance level in the

absence of ABA is higher for low CO2 than for high CO2. In the Boolean simulations, we

vary the input nodes ABA and CO2 between 0 and 1, corresponding to low and high values,

respectively. The output is the node Closure, which can be related to stomatal conductance
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through Conductance=1-Closure. Thus, we want the model to reflect the following experimental

observations:

1. Leaves equilibrated at low CO2 concentrations have a higher conductance than those

equilibrated at high CO2 concentrations prior to the application of ABA. This should

correspond, in the model, to higher conductance for (CO2=0, ABA=0) than for (CO2=1,

ABA=0). Our experimental data suggest that the stomatal conductance for low CO2

concentrations is approximately twice as large as for high CO2 concentrations.

2. The steady state conductance of the leaves after the application of ABA is greater for the

lower CO2 concentrations than for higher CO2 concentrations. This should correspond, in

the model, to higher conductance for (CO2=0, ABA=1) than for (CO2=1, ABA=1). Our

experimental data suggest that the stomatal conductance for low CO2 is roughly identical

to the stomatal conductance for high CO2 before the application of ABA.

To translate these experimental findings into a quantitative Boolean state of the output node, we

require the model to reproduce the following observations:

ABA CO2 Closure / Conductance

0 0 0

0 1 0.5

1 0 0.5

1 1 1

The Closure node in the ABA network model is affected by two nodes, Microtubule

and H2OEfflux, through the equation Closure = H2OEfflux AND Microtubule. To achieve an

intermediate level of closure, required for the conditions ABA=0, CO2=1 and ABA=1, CO2=0,

we need one of the two nodes at 100% activity and the other at 50% activity (fluctuating between

0 and 1). For full closure, we need both nodes at 100% while for full conductance we need both

nodes at 0. In Stomata 2.1, this is achieved through the following modifications:
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Ca2c =∼ Ca2ATPase & (CIS | CaIM) | (ABA & CO2)

CaIM =∼ ABH1 & (NtSyp121 | MRP5 | GHR1) | ∼ ERA1 | Actin | CO2

Microtubule = TCTP | Microtubule & ABA

H2OEfflux = AnionEM & PIP21 & KEfflux & ∼ Malate | CO2 (1.7)

where the modifications are shown in boldface. As a reminder, the symbol & represents AND

logic and the symbol | represents OR logic.

The motivation for these modifications can be described as follows

1. In the original Albert version of the model, Ca2c (cytosolic calcium) has 50% activity due

to oscillations between Ca2c and Ca2ATPase, if and only if ABA=1. Since the original

network has no CO2 input, this is independent of the state of CO2. We added input from

CO2 so that Ca2c has 100% activity if both ABA=1 and CO2=1. Adding CO2 to calcium

was motivated by evidence that cytosolic calcium is involved in CO2-induced closure.

2. CO2 is added to CaIM through an OR gate to ensure that Microtubule=0.5 when CO2=1,

even in the absence of ABA.

3. In the original ABA network model, Microtubule was always either 0 (if ABA=0) or 1 (if

ABA=1), even though Ca2c=0.5. This is because of the feedback loop from Microtubule

onto itself. To achieve Microtubule=0.5, we make the feedback loop dependent on ABA.

As a result, Microtubule=0.5 if ABA=0 and CO2=1 but Microtubule=1 when both ABA

and CO2 are 1.

4. In the original ABA network model, H2OEfflux is 0 if ABA is absent, independent of the

state of CO2. With this modification, H2OEfflux=1 when ABA=0 and CO2=1.

As a result of these modifications, the network is able to reproduce the experimental
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results (See Fig. 1.8). It is straightforward to simulate and visualize the network using Boolink,

which can be used to analyze the response:

When ABA=1 and CO2=1, H2OEfflux = 1 as all the terms are 1. Furthermore, Ca2c oscil-

lations are superseded by a sustained activation because of the ABA&CO2 term in modification

#1. Hence Microtubule is maintained at 1 as well and Closure=1.

When ABA=1 and CO2=0, H2OEfflux is at 50% since AnionEM is at 50%, and PIP21,

KEfflux, and Malate are at 100% activation. Ca2c is at 50% (due to oscillations) in the absence

of CO2 but the positive feedback of Microtubule is activated in the presence of ABA, making it

100% active. Thus, Microtubule=1, H2OEfflux=0.5, and Closure=0.5.

When ABA=0 and CO2=1, H2OEfflux=1 due to the CO2 branch implemented in Stom-

ata 2.0 and also present in Stomata 2.1. Similarly, the addition of the CO2 branch to CaIM

causes Ca2c oscillations even in the absence of ABA. Thus, Ca2c is at 50% activity and Micro-

tubule=0.5, as the positive feedback is shut down in the absence of ABA. Thus, Microtubule=0.5,

H2OEfflux=1, and Closure=0.5.

When ABA=0 and CO2=0, both H2OEfflux and Microtubule are shut down, and there

will be no activity of closure. In other words, Microtubule=0, H2OEfflux=0, and Closure=0.

Chapter 1, in part, is a reprint of the material as it appears in Plant Physiology 2021 and

Quantitative Plant Biology 2022. Karanam, A., He, D., Hsu, P.K., Schulze, S., Dubeaux, G.,

Karmakar, R., Schroeder, J.I. and Rappel, W.J., 2021, Plant Physiology 2021, and Karanam,

A. and Rappel, W.J., 2022, Quantitative Plant Biology 2022. The dissertation author was the

primary investigator and author of both papers.
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Figure 1.7. ABA-mediated stomatal closing responses of WT leaves during CO2 “starvation”.
A–C, Intact excised leaves of wild-type plants (n = 3 to 4 independent leaves per treatment and
experimental set) were equilibrated at 400 ppm CO2 or ∼ 1.5 ppm CO2 for 60 min prior to
stomatal conductance measurements. Stomatal conductances were measured with the LI-6400XT
Portable Photosynthesis System. D, Time-resolved stomatal conductance responses to ABA in
the intact excised leaves (n = 5 independent leaves per treatment) equilibrated at ∼ 2 ppm CO2 or
400 ppm CO2 for 2 hr prior to ABA application. Experiments were carried out using the LI-6800
Portable Photosynthesis System. In each experimental set, 2 µM ABA was applied through
the transpiration stream via the petiole at time = 0 min. CO2 concentrations in the intercellular
spaces of leaves (Ci) equilibrated under CO2 starvation were computed using the gas exchange
analyzer (see Methods), with Ci values < 20 ppm (A to C) and < 3 ppm (D) before application
of ABA. E to H, Changes (differences) in stomatal conductance at the indicated time points after
ABA application compared to 0 min. Data present mean ± SEM. ∗P < 0.05 and ∗∗P < 0.01
student’s t-test in E to H.
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Figure 1.8. Stomata 2.1 and Boolink A: ABA-driven stomatal closure model extended with a
CO2 branch, indicated in blue, which positively regulates GHR1, and additional modifications
represented by the orange links (see Text for details). B-C: Predicted relative stomatal conduc-
tance levels obtained by implementing Stomata 2.1 into Boolink for two concentration levels
of CO2: low (CO2 = 0; red line and symbols) and high (CO2 = 1; blue line and symbols). The
triangle shows the point in the simulation where ABA is introduced.
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Chapter 2

Cellular memory in eukaryotic chemotaxis
depends on the background chemoattrac-
tant concentration

Introduction

Chemotaxis, the movement of cells guided by chemical gradients, plays an important role

in many biological processes including tumor dissemination, wound healing, and embryogenesis

[26, 146, 147, 148]. One of the most studied chemotaxis model organisms is the social amoeba

Dictyostelium discoideum. Following starvation, Dictyostelium cells secrete a chemoattractant,

cAMP, in a periodic fashion [34]. This chemoattractant signal is relayed by neighboring cells

resulting in waves that sweep over the cell population with periods that range from 6-10 minutes

[35, 36, 34]. These waves spontaneously organize themselves in spiral or target waves, leading

to large-scale patterns of cell migration and eventually generating aggregation centers that attract

tens of thousands of cells. Within the resulting aggregates, cells differentiate, with the majority

turning into spore cells.

Multiple aspects of this biological system have been investigated using computational

and mathematical modeling [149]. Models have addressed instabilities responsible for large scale

migration patterns [150, 151], the coupling between intracellular signaling and morphological

changes [152, 153, 154], and the topology of signaling pathways responsible for guided motion

[155, 156, 157]. Furthermore, models have addressed potential mechanisms of gradient sensing
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Figure 2.1. (a): Left: Schematic of the microfluidic wave device, with observation region
indicated by black box (Scale bar: 3 mm). Right: Snapshot of cells moving on the micropatterned
substrate, with symbols f corresponding to cells identified by the machine learning algorithm
(red circles: cells used in our analysis; blue X’s: excluded cells that are too close to one another;
the blurry spots are out-of-focus dirt particles and other irregularities that are not identified as
cells by the machine learning algorithm; scale bar: 100 µm). (b-c): Spatial (b) and temporal
profile (c) of the cAMP wave, determined from the fluorescent intensity of the dye, and the
result of the Gaussian fit. (d-e): Images of the two substrate patterns used in this study, with
green highlighting the location of the PEG-gel stripes. The pattern consists of either 4 narrow
(∼ 10µm) and 1 wide (∼ 25µm) untreated stripes (d) or of 6 variable width stripes, ranging
from ∼ 6µm to ∼ 25µm (e). In both patterns, the untreated stripes are separated by 30 µm
wide non-adhesive PEG-gel stripes. Scale bar: 50 µm. (f-g): The CI as a function of time for
the current experiment using a micropatterned substrate (f) and in a previous study [3], using a
non-patterned substrate (g). The results are qualitatively similar, indicating that restricting the
cells to 1D stripes does not affect their chemotactic behavior.
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Figure 2.2. (a-i) Experimentally determined average CI as a function of time (measured relative
to peak of wave) for different concentrations of background cAMP (0-150nM). In each panel,
gray dots represent the CI of individual cells, the black curve is the binned average over N=3-4
different experiments, and the dashed red line is the cAMP concentration of the wave. (j) Average
x-component of the velocity of cells for different concentrations of background cAMP. Time is
binned in intervals of 0.5 min. Error bars in this figure represent the standard error of the mean
obtained using bootstrapping.

[158, 149] while a number of studies have examined the role of noise in the chemotactic

response[159, 160, 161].

Several experimental and modeling studies have also addressed the so-called back-of-the-

wave problem in the chemotactic response to traveling waves [33, 162, 3]. If cells respond only to

spatial gradients, they would move forward in the front and backward in the back of the traveling

wave, preventing aggregation. These studies have shown that cells exhibit memory, responding

directionally to the front but not the back of the wave, enabling them to move efficiently toward

the wave source [162, 3]. For wave periods shorter than 10 min, this memory completely

prevented reversals of cell migration, whereas for longer periods, cells started reversing their

migration direction in the back of the wave [3]. A mathematical model, consisting of an upstream

adaptive module and a downstream bistable module, was able to explain the response of cells to

periodic waves of chemoattractant [3]. Similar memory phenomena have also been reported in

other biological systems, including chemotactic neutrophils [38, 39].

In the experimental studies of memory in Dictyostelium chemotaxis, the cAMP waves

were applied exogenously, with the cAMP concentration reaching nearly zero in the troughs of the
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waves. In cAMP waves that are endogenously produced by starving populations of Dictyostelium

, however, the background cAMP concentration, [cAMP]bg, increases from cycle to cycle [42].

This increase occurs because secreted cAMP is not completely removed by phosphodiesterases

(PDEs), enzymes that are responsible for the degradation of cAMP and that are also secreted by

the cells [43]. Hence, the question how a non-zero [cAMP]bg affects chemotaxis is relevant to the

aggregation, sporulation, and survival of Dictyostelium . Naively, one would expect a decrease in

the cell’s ability to migrate towards the source of the wave since the fractional gradient across the

cell body, and thus the signal-to-noise ratio, decreases for increasing [cAMP]bg[163]. Another

possibility is that the cells fully adapt to [cAMP]bg, rendering the ability of cells to respond to

gradients independent of the background concentration [164].

To experimentally study this question, we used a modified version of the microfluidics

device from Ref. [3] in which a traveling, bell-shaped wave of cAMP with a peak of 1000 nM

periodically sweeps across a gradient channel at a constant speed (Fig. 2.1a; see Appendix A

for further details). The fluorescent intensity profile with [cAMP]bg=0 was well fitted using

a Gaussian (Fig. 2.1b-c and Section 2.1) and the resulting wave profile is similar to the one

measured for natural waves of cAMP [165, 166]. Importantly, and in contrast to previous studies,

the background concentration of cAMP was a variable parameter. Another major modification

was that the glass substrate in the gradient channel was micropatterned with ∼1.5 µm thick

stripes of cell adhesion-blocking polyethylene glycol (PEG) gel. Examples of the two types of

micropatterned substrates used in this study are shown in Fig. 2.1d-e. These substrates limit the

adhesion and migration of Dictyostelium cells to ∼6-∼25 µm wide stripes of non-PEG treated

glass oriented in the x-direction, along the gradient and perpendicular to the flow. A detailed

description of these micropatterned substrates can be found in Ref. [44], where it was shown that

cells are nearly exclusively constrained to glass stripes. As a result, cell migration was effectively

one-dimensional (1D), either up or down the gradient (positive or negative x-direction), greatly

facilitating the collection and analysis of data as compared to 2D chemotaxis on a standard glass

substrate.

48



In our experiments, we exposed cells to repeated waves of cAMP and recorded their

movement, excluding the first wave. We used cells of the axenic Dictyostelium discoideum strain

AX4 that were transformed to express a fusion of GFP to LimE (∆ coil LimE-GFP) and a gene

encoding a fusion of RFP to Coronin (LimE GFP/corA RFP) [167]. The cells were grown in

submerged shaking culture in HL5 medium (35.5g HL5 powder (Formedium, Norfolk, UK) and

10mL Penicillin-Streptomycin (10,000 U/mL; Gibco, Thermo Fisher Scientific, USA) per liter

of DI water) [168]. For starvation, when cells reached their exponential growth phase (3-4 ×

106 cells/mL), they were harvested by centrifugation at 3000 rpm for 5 min, resuspended in

KN2/Ca buffer (14.6 mM KH2PO4, 5.4 mM Na2HPO4, 100 µM CaCl2, pH 6.4), collected by

centrifugation, and re-suspended in KN2/Ca at 107 cells/mL. Cells were developed for 5 h with

pulses of 50 nM cAMP added every 6 min. Differential interference contrast (DIC) images were

taken every 15 s in four fields of view spanning the width of the chemotaxis channel, 2800 µm

away from the cAMP inlet, on a spinning-disk confocal Zeiss Axio Observer inverted microscope

using a 10X objective and a Roper Cascade QuantEM 512SC camera. Images were captured and

analyzed by using Slidebook 6 (Intelligent Imaging Innovations).

Cells were tracked with a custom-made machine-learning algorithm detailed in Section

2.1. Only cells that were at least 33 µm from neighboring cells were used in the analysis (marked

by red circles in Fig. 2.1a) while cells that were part of clusters were not taken into account

(marked by blue crosses in Fig. 2.1a). This algorithm was able to capture more than 90% of

single cells, as determined by manual counting. Using cell tracks, we quantified the directional

response by computing the chemotactic index CI, defined as ratio between the velocity in the

x direction and the speed, computed as the difference in the x-position 3 frames prior and 3

frames forward (a 90 s interval): CI=Vx/V. Thus, this quantity ranges from +1 (cells with velocity

perfectly aligned to the +x direction), to -1 (cells with velocity perfectly aligned to the −x

direction).
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Experimental Results

We first examined how cells responded to chemoattractant waves with a period of 10

minutes and very low background concentration; [cAMP]bg=0 and 0.01 nM). This wave period

was chosen since it corresponds to the largest period for which the CI in 2D assays remained

positive in the back of the wave [3]. The CI for these background concentrations, shown as

a black line in Figs. 2.2a and b, computed by averaging over different experiments and over

30s time-intervals, was nearly zero for cells ahead of the wave front, steeply increased to a

maximum of ∼0.7 as cells were exposed to the wave front, stayed high after the peak of the

wave has passed, and gradually decayed to near zero but never became negative. The response

for zero background is qualitatively similar to that in 2D Dictyostelium chemotaxis assays on

plain substrates [3], indicating that constraining the cells to narrow stripes does not change their

behavior and that the cellular memory reported in 2D assays is fully manifested in 1D assays as

well (Fig. 2.1f-g).

Next, we exposed cells to the same periodic waves but with larger background con-

centrations ([cAMP]bg=0.5, 3, 5, 30, and 60 nM) (Fig. 2.2c-g). We found that the average

CI improved for these values of [cAMP]bg: the CI remained much greater than 0 during the

entire wave cycle. Furthermore, the CI showed a clear minimum after the peak of the wave

has passed and increased towards the end of the wave cycle even though [cAMP]bg was at its

lowest level. For the two largest values of [cAMP]bg tested, [cAMP]bg=150 nM and 300 nM,

the CI was reduced and remained close to zero throughout the entire wave cycle (Fig. 2.2h-i).

Both the increase in average CI for small values of the background concentration (0.01 to 0.5nM

transition) and the decrease in average CI for large values of the background concentration (60

to 150nM transition) were significant (p < 10−4, using a z-test). Thus, the background cAMP

concentration has a profound effect on the chemotactic response, with intermediate/large values

of [cAMP]bg enhancing/suppressing the response.

The effect of the background concentration was also evident from the quantification of
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(a)

Figure 2.3. (a) Schematic diagram of the chemotactic model, consisting of a receptor R, an
activator E, an inhibitor I, a response element S, and a memory component M. Simulations
are carried out in a 1D geometry (top drawing). As indicated by the bottom bar, M is bistable,
with a low and a high state, determined by parameters a and b. (b-e) Model results for different
background cAMP concentrations added to a periodic wave, shown as a dashed red line. The
black line represents the CI, the blue (light gray)/red (dash-dotted) line is the response S at the
front/back of the cell, and the dotted magenta line corresponds to the memory M at the front.
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the x-component of the velocity, Vx. This quantification is shown in Fig. ??e where we plot Vx,

also averaged over different experiments and over 30s time-intervals, as a function of time for

different [cAMP]bg. While this velocity component remained positive or close to zero during

the entire cycle for all values of [cAMP]bg, its maximum value is clearly larger for intermediate

values of [cAMP]bg than for [cAMP]bg=0nM. Furthermore, Vx is significantly reduced for the

large background concentrations ([cAMP]bg=150 nM).

Model Results

To investigate plausible mechanisms for this enhanced cellular memory, we turned to

modeling. Specifically, we asked whether the cellular memory model developed by Skoge et

al. [3] can reproduce the experimental results. This model describes the chemotaxis pathway

in terms of abstract variables, although, for some, identification with biochemical components

may be possible. Key features of this model are perfect adaptation upon uniform stimulation

and cellular memory in gradients [40, 3]. It is schematically shown in Fig. 2.3a and contains

an adaptive module, which incorporates an incoherent feedforward Local Excitation Global

Inhibition (LEGI) mechanism [156, 155] and consists of a receptor R, an activator E, an inhibitor

I and a response element S (Fig. 2.3a). In addition, the model contains a memory module,

which is assumed to be bistable such that its component M can be either in a low or high state.

The transition between these state is determined by two thresholds, a and b and M feeds back

to S. Importantly, this feedback depends on R and this non-adaptive link may be thought of

as representing parallel pathways for chemotaxis described in experimental studies [169]. For

simplicity, we neglect the detailed morphology of the cell and model it as a 10 µm line with the

two endpoints representing the front and back, respectively (Fig. 2.3a). At the front, the model is
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written as

dR f

dt
= kR(cAMP+ cAMPbg)(Rtot

f −R f )− k−RR f (2.1)

dE f

dt
= kER f − k−EE f (2.2)

dM f

dt
= −kMemM f (M f −Mtot

f )

(
M f −Mtot

f
b− s f

b−a

)
(2.3)

dS f

dt
= kSE f

Stot
f −S f

Km1 +Stot
f −S f

− k−SI
S f

Km2 +S f
+ kS2M f R f

Stot
f −S f

Km3 +Stot
f −S f

(2.4)

and a similar set of equations applies for the components at the back, labeled with subscript b.

The first equation describes the binding/unbinding dynamics of cAMP to the receptor with on

and off rates kR and k−R, respectively. Here, cAMP is the time-varying concentration due to

the wave and its dynamics is taken from a Gaussian fit to the wave profile (Fig. 2.1b-c). The

second equation models the activator dynamics, parametrized by the activation rate kE and the

degradation rate k−E . The third equation describes the bistable memory module, which has two

stable steady states 0 and Mtot
f . The output of the model, S, obeys Michaelis-Menten kinetics

and is activated with rate kS by the activator E. It is de-activated with rate k−S by an inhibitor I,

which diffuses within the interior of the cell. We will assume that I is uniform throughout the

cell, corresponding to a high diffusion rate, and is activated by the average of R between the front

and the back Rav = (R f +Rb)/2, along with a small basal activity kbasal , and can spontaneously

degrade with rate k−I:
dI
dt

= kI(kbasal +Rav)− k−II (2.5)

We set the Michaelis constants, Km1 and Km2, to be small (Km1,Km2 ≪ 1) to achieve near zero-

order ultra-sensitivity, which, consistent with experiments, can result in the amplification of

shallow external cAMP gradient[170, 171]. The last term in the equation for S f describes the

feedback from the memory module to the activation of S f , parametrized by the activation rate

kS2 and Michaelis constant Km3. For simplicity, we will take Mtot
f = Mtot

b = Stot
f = Stot

b = Rtot
f =
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Rtot
b = 1. The equations were simulated using an adaptive Runge-Kutta method with variable

step size. To prevent the memory from becoming trapped in a fixed point, we reset M f and Mb

every t=15s to δ or 1−δ if their values are smaller than δ or larger 1−δ (δ=0.01).

Model parameters were determined using a fitting procedure (detailed in Section 2.1),

which minimized a loss function L that compared simulation results (xsim) to experimental results

(xexp) with uncertainty σexp: L = ∑
N
n=1 |xexp − xsim|/(Nσexp). Here, N = 56 with 46 data points

chosen from previous experiments using different microfluidic devices [40, 3] and the remaining

10 data points chosen from the current experiments. Details of the previous data points used in

the fitting are presented in Section 2.1 while the new data points consisted of data for [cAMP]bg

of 0, 0.01, 0.5, 60, and 150nM that were chosen since they represent the three qualitatively

distinct responses observed in the experiments. Specifically, in our fitting we required that M f 2.5

minutes before and 5 minutes after the peak to be either 0, corresponding to a small experimental

value of CI, or 1, corresponding to a high CI in the experiments. Simulated annealing was

used to find possible global minima, followed by a pattern search to obtain the local minima

using the Matlab routine patternsearch. Importantly, the parameter values for the bistable and

adaptive module were taken from previous studies [40, 3] and only parameters associated with

the memory module (a, b, kMem, kS2 and Km3) were adjusted. The parameter values obtained by

our fitting procedure are listed in Table 2.1 while a fit to previous data is shown in Fig. 2.4a-b.

Simulation results for [cAMP]bg=0 (Fig. 2.3b) show that the chemotactic response,

quantified by CI (computed, following our earlier study [3], as a linear combination of S and M:

CI= 0.1831(M f −Mb)+ 0.8169(S f − Sb) is in qualitative agreement with the experimentally

measured CI (cf. Fig. 2.2a). In this case, as the wave approaches the cell, the small difference

in cAMP between the front and back is greatly amplified because of the ultra-sensitivity of the

response. The resulting large increase in S f (blue (light gray) line) causes a transition of M f

(dotted magenta line) to the high state. Since Sb (dash-dotted red line) remains low, Mb stays in

the low state, and the CI is high (black line). After the wave sweeps over the cell, S f decreases

while M f remains high for several minutes, resulting in cellular memory and an elevated CI.
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(a)

(b)

(c)

Figure 2.4. (a-b): Comparison between experimental results from Ref. [40] (symbols) and model
results. Shown are the maximum change in intensity Ipeak (a) and its corresponding time Tpeak (b)
as a function of the uniform change in cAMP concentration for two different cAMP pretreatment
concentrations. (c): Average CI (red symbols) versus background cAMP concentration.

Eventually, however, the low values of S f cause a transition of M f to its low state and the CI

decreases to zero (see below and Fig.2.5).

Intermediate values of [cAMP]bg ([cAMP]bg=0.5-69 nM) result in higher values of S f ,

maintaining M f in a high state for the entire wave period (Fig. 2.3c-d). This increase in S f is

due to the feedback from M f to S f , which is, through the non-adaptive link, proportional to

the receptor occupancy R f . Since this occupancy is an increasing function of [cAMP]bg, the

feedback loop between S f and M f contributes to a sustained positive CI throughout the entire

wave cycle (Fig. 2.3c-d), in agreement with the experimental results. This feedback from high

M f is also responsible for the increase of S f in the back of the wave (Fig. 2.3c-d). As a result,

the CI shows a distinct increase near the end of a cycle, which is, again, consistent with the

experimental results.

For [cAMP]bg>69 nM, both S f and CI remain close to 0 during the entire cycle, which

is consistent with the experimental results for [cAMP]bg=150 and 300 nM. The reason for this is

that the amplification of S f due to the ultra-sensitivity of the response is reduced for increased

values of [cAMP]bg (see below and Fig. 2.5). As a result, the value of S f is not sufficiently large

to bring M f to its high state. Consequently, M f remains in the low state, leading to a short and

weak response of S f and an overall low CI (Fig. 2.3e). Note that for our parameter values, the
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Figure 2.5. A: Steady-state value of S f as a function of uniform [cAMP]bg for the case
M f =1. B: S f and M f as a function of time in the full model for a value of [cAMP]bg that
does ([cAMP]bg=0.5nM; dashed lines) and does not ([cAMP]bg=0.4nM; solid lines) result in
persistent memory. C: Maximum value of S f and M f in a wave as a function of [cAMP]bg.
There is a sharp, switch-like transition at [cAMP]bg≈69nM. D: Response of the full model for
[cAMP]bg just below ([cAMP]bg=69nM; solid lines) and just above ([cAMP]bg=70nM; dashed
lines) the switch-like transition.

dissociation constant for the receptors is Kd ≈ 408nM. Thus, the absence of a strong chemotactic

response for high values of [cAMP]bg is not due to receptor saturation but is directly linked to

the bistability and the ultra-sensitivity of the pathway.

We also used the modeling results to compute the chemotactic index averaged in time

over the entire wave cycle, ⟨CI⟩. The dependence of ⟨CI⟩ on [cAMP]bg has three distinct regimes

(Fig. 2.4c). For very small values of [cAMP]bg ([cAMP]bg< 0.5 nM) ⟨CI⟩ remains close to its

value at [cAMP]bg=0. For these values of [cAMP]bg, the memory is only turned on during part

of the wave cycle. In contrast, for intermediate values of [cAMP]bg (0.5 nM ≤ [cAMP]bg ≤ 69

nM), M f is in the high state during the entire cycle, resulting in a nearly constant and high ⟨CI⟩.

Finally, for [cAMP]bg > 69 nM, M f is always in the low state and ⟨CI⟩ is close to 0. Notably,

due to the bistable dynamics of our memory module, the transitions between these regimes are

very abrupt and switch-like. To determine whether our experimental data also exhibited this

switch-like behavior, we computed the average CI in the experiments. The results are plotted

as symbols in Fig. 2.4c and are close to the results of the model (line). Most importantly, ⟨CI⟩

decreases in a switch-like fashion from as much as ∼0.6 at [cAMP]bg=60nM to as little as ∼0.1

at [cAMP]bg=150nM, in agreement with the bistable dynamics of the memory module.

To understand the transition in the model behavior for small values of [cAMP]bg, shown
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in Fig. 2.4c, it is useful to examine the response of S f with M f = 1. For this case, we plot in

Fig. 2.5a the steady state solution for S f as a function of uniform [cAMP]bg(i.e., in the absence

of a wave). S f increases from 0 to approximately 0.6 as the background cAMP concentration

increases. This increase is due to the feedback from M f to S f , which is proportional to the

receptor occupancy R f , an increasing function of [cAMP]bg. The dependence of S f on [cAMP]bg

explains why for small values of [cAMP]bg the chemotactic index CI reduces to zero following

the wave (see Fig. 2.3a and Fig. 2.4c). This is further illustrated in Fig. 2.5b where we plot S f

and M f for [cAMP]bg=0.4nM and [cAMP]bg=0.5nM. For [cAMP]bg=0.4nM, S f remains close

to the lower threshold of the bi-stable module (indicated by the dotted line), which causes M f

to transition from the high to the low state, resulting in a vanishing CI. For [cAMP]bg=0.5nM,

however, the feedback from M f results in higher values of S f such that the memory stays in its

high state.

To analyze the switch-like behavior of Fig. 2.5, we can compute the maximum value

of S f in a wave as a function of [cAMP]bg. The result is plotted in Fig. 2.5c, both for the full

model (solid line) and for the case without feedback from M f , i.e. kS2 = 0 (dashed line). As a

result of the ultra-sensitivity of the equation, the asymmetry in the response of S is much larger

than the asymmetry in the external gradient and the receptor occupancy. As is evident from the

plot, this amplification of S f is a decreasing function of [cAMP]bg. Therefore, above a critical

value of [cAMP]bg, S f is no longer able to cause a transition of M f from the low to the high state.

For the values of [cAMP]bg above the critical value, the CI will thus remain low (see Fig. 2.4).

Furthermore, due to the bi-stability of the memory module, M f exhibits a switch-like transition

at a critical value of [cAMP]bg (magenta (light gray) line). This is also shown in Fig. 2.5d where

we plot the response of the full model for a value of [cAMP]bg just below and just above the

critical value. For [cAMP]bg=70nM, above the critical value, M f does not transition to the high

state and S f remains close to 0 for the second half of the wave. For [cAMP]bg=69nM, on the

other hand, M f switches from its low to its high state, which leads to an increased response.

After the wave passes, S f decreases but then increases to ≈0.6 due to the persistent memory at
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the front.

The switch-like transitions are also clearly visible when examining the phase diagram of

the response of the model in the a-b parameter plane (corresponding to the two thresholds in the

memory module). Here, we plot the time averaged difference between the memory at the front

and back of the cell, ⟨M f −Mb⟩, for different values of a and b using a color scale (Fig. 2.6).

Since we take a ≤ b we only present one-half of the space. The parameter values corresponding

to Table 2.1 and used in our study are indicated by the symbol. For [cAMP]bg=0nM (left panel),

the sharp transitions between three different regions are clearly visible. In the dark blue regions,

corresponding to large values of b, neither the front nor the back memory is activated, resulting

in ⟨M f −Mb⟩= 0. For intermediate values of b and small values of a, the memory at the front

is permanently activated while Mb = 0, which results in ⟨M f −Mb⟩= 1 (yellow region). In the

other regions, the front memory is activated only during part of the wave, giving rise to values of

⟨M f −Mb⟩ that are between 0 and 1. Note that our parameters fall within this region of the phase

space. For [cAMP]bg=60nM, the sharp boundary of the yellow region has moved to larger values

of a, such that our parameter values now fall within the region in which ⟨M f −Mb⟩= 1 (middle

panel). Finally, for [cAMP]bg=150nM, the yellow region has almost completely disappeared and

nearly the entire phase diagram, including our parameter set, correspond to ⟨M f −Mb⟩= 0.

Summary

In summary, we find that the background concentration of the chemoattractant, [cAMP]bg,

has a profound effect on the cellular memory of chemotaxing Dictyostelium cells. For intermedi-

ate values of [cAMP]bg this memory is greatly enhanced, leading to substantially more efficient

chemotaxis under periodic waves of cAMP. It is worth noting that the experimentally estimated

value of [cAMP]bg during the natural aggregation process of Dictyostelium cells is ∼10nM

[42]. This value is within the intermediate range, suggesting that aggregation may be facilitated

by increased cellular memory due to accumulating cAMP. For larger values of [cAMP]bg, the

chemotactic response and cellular memory are suppressed. Our experimental results, and in
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Figure 2.6. Phase diagram in the a−b space quantifying ⟨M f −Mb⟩ for three different values
of [cAMP]bg. Three regions, with sharp transitions, can be identified: ⟨M f −Mb⟩= 1 (yellow
regions) for which the front memory is always high while the back memory is always low,
⟨M f −Mb⟩= 0 (dark blue regions) corresponding to low memory at the front and the back, and
intermediate values of ⟨M f −Mb⟩ for which the front memory is high during part of the wave.
The values of a and b corresponding to our study are marked by a red X.

particular the switch-like behavior of the average CI, are fully consistent with our mathematical

model. Crucial elements of this model are a bistable memory module, which allows cells to

ignore the back of the wave, an ultra-sensitive response, responsible for the amplification of

the chemoattractant gradient, and a direct, non-adaptive link between input signal and response,

which explains the long-lasting memory for intermediate values of [cAMP]bg. Future work will

be required to identify the precise biochemical components that are responsible for the observed

behavior.

2.1 Supplementary Information

Microfluidic device, device preparation, and experimental setup

The microfluidic system produces bell-shaped pulses of concentration that periodically

sweep over cells on the substrate, thus emulating the spatial and temporal pattern of concentration

in a periodic traveling wave. The microfluidic system is comprised of a microfluidic device and a

flow-driving setup, which are modified versions of the device and setup described in our previous

publication [3]. The microfluidic device consists of a micromachined polydimethylsiloxane

(PDMS) chip and a #1.5 microscope cover glass substrate with a periodic micropattern of stripes
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of polyethylene glycol (PEG) gel. The PEG-gel stripes are all ∼1.5 µm high and ∼30 µm wide

and one of two substrate patterns are used: 1) one 25 µm wide glass (non-treated) stripe for

every four 10 µm wide glass stripes or 2) variable width stripes, repeated every 6 stripes, ranging

from ∼ 6µm to ∼ 25µm (Fig. 2.1d-e). We have verified that our results are independent of the

stripe width. Because developed Dictyostelium cells cannot adhere to the surface of PEG-gel,

adherent Dictyostelium cells are confined to glass stripes, making their migration along the 10

µm wide glass stripes nearly one-dimensional (1D) [44].

The microfluidic device has three inlets (A-C) and one outlet (see Fig. 2.1). Its main

functional area is an ∼100 µm deep chemotaxis channel with a width of 2200 µm and an ∼7

mm long rectilinear part. At the entrance of the chemotaxis channel, a ∼200 µm wide stream of

a concentrated solution of cAMP (coming from inlet C) is squeezed (hydrodynamically focused)

between two streams of plain buffer or of cAMP solutions with a lower concentration (coming

from the inlets A and B), which together fill the rest of the 2200 µm wide chemotaxis channel.

As the focused stream of cAMP advances down the chemotaxis channel (along the y-axis), the

diffusion of cAMP molecules across the boundaries of the stream gradually changes the lateral

(across the flow, x-axis) profile of cAMP from its initial rectangular shape to a bell-shaped curve.

At the standard experimental conditions, [cAMP] in the concentrated solution is 1400 nM, the

mean flow velocity in the gradient channel is ∼300 µm/s, and the chemotaxis is observed ∼3

mm downstream from the gradient channel entrance, where the maximal [cAMP] is reduced

to ∼1000 nM, and the effective width of the stream of concentrated cAMP (full width at half

height) is increased to ∼230 µm, both due to diffusion of cAMP across the stream [3]. The

microfluidic system operates in a cyclic fashion. In the beginning of a cycle, the volumetric flow

rate of the stream of buffer (or low-concentration cAMP solution) from inlet B to the right of

the cAMP stream is low, and the volumetric rate of flow of buffer from inlet B to the left of

the cAMP stream is high, thus placing the cAMP stream close to the right wall of the gradient

channel. The flow rate of the buffer stream on the right linearly increases with time, while the

flow rate of the buffer on the left linearly decreases with time, with the total flow rate remaining
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nearly unchanged. As a result, the high concentration cAMP stream (which is squeezed between

the buffer streams) linearly drifts from right to left, and, at a given y-axis position, a bell-shaped

pulse of cAMP is sweeping from right to left (in the negative x-axis direction) at a constant

speed. The length of the sweep is l≈1425 µm that for a duration of the sweep T=10 min results

in a speed of 2.5 µm/s for the motion of the cAMP pulse across the gradient channel (note that

it takes 30s for the wave to be reset, such that the effective duration is 570s). At the end of a

sweep, the flow of the concentrated cAMP solution is turned off, making the concentrated cAMP

to completely disappear from the gradient channel, and then the flow rates from inlets A and B

restored to their initial values. After that, the flow of the concentrated cAMP solution is turned

on again, making the stream of concentrated cAMP reappear at its initial location close to the

right wall of the gradient channel, and the next cycle begins. Importantly, the cAMP stream is

effectively moved from its final to initial location without directing it (even transiently) anywhere

else in the chemotaxis channel. Also, because of the relatively large length of the sweep, and

fast decay of [cAMP] with the distance from the peak of the bell-shaped profile, there is ∼500

µm wide region near the middle of the gradient channel, where [cAMP] is very close to the

background concentration, both in the beginning and end of each cycle. As a result, all cells in

this region are exposed to the same periodically repeating spatiotemporal pattern of [cAMP] and

can be pooled and analyzed together, after accounting for a time difference within a cycle of

∆t = ∆x/vx, where ∆x is the distance between cells along the x-axis. Therefore, large sets of data

on chemotactic indices (CIs) and velocities of individual cells at different time points (phases) of

the repeated cAMP wave cycle can be collected.

Further details on the operation of the microfluidic device and flow setup and on the

experimental procedure as well as a detailed mathematical analysis are provided in SI of Ref.

[3]. The following modifications were made to the original experimental setup and procedure

of Ref. [3]. (1) Because flow in the microfluidic device is driven and controlled by applying

differential pressures between the inlets and the outlets, it is necessary to have substantial fluidic

resistances between the inlets and the outlet. In the original device, those resistances were
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implemented in 100 µm deep and 60 µm wide channels, making the device easy to fabricate

(all channels had the same depth), but requiring the resistance channel lines to be long, because

of their relatively low fluidic resistance per unit length. In the present device, the resistance

lines are ∼30 µm deep and ∼30 µm wide channels, which have an ∼40 larger fluidic resistance

per unit length, greatly reducing the footprint of the microchannel network (at the expense of

making the fabrication of the device somewhat more involved). (2) The reduced footprint of the

microchannel network makes it possible to seal the PDMS chip against the coverglass with the

micropattern of PEG-gel stripes using the application of vacuum (∼ -30 kPa) to a deep (100 µm)

and wide (4 - 6.5 mm) O-shaped grove around the microchannel network that acts as a vacuum

cup. This vacuum-assisted sealing is essential, because it allows keeping the micropatterned

substrate wet at all times, thus preserving the structure and functionality of the PEG-gel stripes

(that Dictyostelium cells cannot adhere to). (3) The possibility of attaching the microfluidic chip

to a wet substrate also enables direct plating of Dictyostelium cells onto the substrate. The PDMS

chip is attached to the substrate only after cells settle and adhere to glass stripes. As a result, cell

plating is substantially simplified and streamlined as compared with the original microfluidic

device, where cells needed to be delivered to the gradient channel through a dedicated inlet and

connecting microchannel that are both absent in the present device.

Microfluidic chips were cast in polydimethylsiloxane (PDMS, Sylgard 184 by Dow

corning) using a microfabricated master mold, a 5 inch silicon wafer with a micro-relief of

UV-curable SU8 photoresist (by MicroChem) produced with UV photolithography [44]. First,

an ∼30 µm thick layer of SU8 2015 photoresists was spin-coated onto the wafer, pre-backed,

exposed to collimated UV-light through a photomask, and post-baked. Next, the wafer was

spin-coated with SU8 2050 photoresist to a total thickness of 100 µm, pre-baked, exposed to

UV-light through a second photomask, post-baked, and developed, revealing a micro-relief with

30 µm and 100 µm tall micro-ridges. The 30 µm deep micro-grooves on the PDMS replica

of the mold produced the 30×30 µm resistance channels, and 100 µm deep micro-grooves

produced all other flow channels and the O-shaped vacuum cups. The PDMS cast was cut into
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individual chips, and the inlet and outlet holes in the chips were punched with a Luer stub.

To verify the wave profile computed from numerical simulations of the diffusion process

[3], we added Alexa FluorTM 594 Hydrazide (Invitrogen), a fluorescent dye, to the cAMP

solution. The fluorescent intensity profile with [cAMP]bg=0 was well fitted using a Gaussian

cAMPGauss(x) = Ae
−(x−x0)

2

2σ2

where the wave peak position was given by x0, the wave width was given by σ and its amplitude

by A. Using the numerical simulations, this amplitude was determined to be 1000 nM at

the experimental field of view [3]. An example of a fit is given in Fig. 2.1b-c. From these

fits, we determined σ = 115 µm, corresponding to a full width at half maximum of 230 µm.

Furthermore, by using a linear fit to x0 as a function of time, we verified that the wave speed

is v = 2.5 µm/s. For non-zero [cAMP]bg the cAMP concentration was the Gaussian profile

plus a constant equal to the value of [cAMP]bg such that the total cAMP profile is given by

cAMP(x) = cAMPGauss(x)+ cAMPbg .

Cell tracking

A machine learning (ML) model was developed for reliably tracking the complex move-

ment of the Dictyostelium cells. 20 videos of cells moving in response to chemical gradients

were provided for training of the model. In order to avoid having too many repeated or similar

images, only one in every thirty frames was used for training and validating the model, resulting

in 140 images. Each of the images, of size 256x256 pixels representing 25% of the full field

of view, was assumed to be completely independent. Images were converted to grayscale and

normalized. The model used was a U-Net convolutional neural network, which can be trained on

very few images and outperforms most existing methods [172]. The model consisted of three

rounds of convolution and max pooling, followed by a fully connected layer with 512 elements,

and finally three rounds of convolution and upsampling. The convolution layers were 3x3 with
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32, 64, and 128 filters. Rectified linear unit (Relu) activation was applied after each convolution.

The pooling and upsampling layers were 2x2. Data augmentation, including shifting and flipping

of the images, was used during model training to increase the size of the dataset. A labeled

dataset was obtained by marking the centroid of cells in a small number of images using human

input. A U-Net model was then trained on this small sample and then used to aid in marking

further images. This process was repeated several times until the entire dataset was marked.

The labeled dataset was then split with 80% of all images used for training, and 20% used for

validation set. In order to avoid target leakage, the model’s parameters and hyperparameters

were reset and trained only on the new training dataset. Data augmentation was again used to

increase the size of the training dataset. The final model consistently tracked 90% of all cells

in the validation dataset. Finally, the model was tested on a new set of videos not seen in the

original dataset. A comparison between blinded, manual marking of cells and the ML algorithm

showed that approximately 97% of cells were tracked by the automated procedure (5623 vs.

5487).

Once cell positions were determined, we computed cell trajectories by connecting nearest

points in consecutive frames. Only cells that were within a 300 µm wide region at the middle

of the gradient channel were considered. These cells experienced a full cAMP wave, starting

and ending at the background concentration. Furthermore, we only included cells that were

continuously recognized for more than 3.5 min, that were moving with an average speed of

at least 0.16 µm/min, and that were at least 33 µm from the neighboring cells (these cells are

marked by red circles in Fig. 2.1). In addition, although rarely observed, cells moving on the

PEG-gel stripes were also excluded. Data from the first cAMP wave was excluded to eliminate

any initial differences in cells.

The cell’s velocity in the x-direction for a given frame, Vx, was computed as the difference

in the x-position 3 frames prior and 3 frames after the given frame, divided by the time interval

between these frames (90s). The time with respect to the passage of the cAMP peak (phase)

was assigned by measuring the distance of the cell from the location of the peak of the wave
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Table 2.1. Model parameters

Parameter
(Units) Value Parameter

(Units) Value

kR 0.002463 nM−1 · s−1 k−R 1.006 s−1

kE 0.159 s−1 k−E 0.159 s−1

kI 0.139 s−1 k−I 0.139 s−1

kbasal 0.000015 nM kMem 0.2550 nM−2 · s−1

a 0.0239 nM b 0.3550 nM
kS 2000 s−1 Km1 0.018 nM
k−S 2048 s−1 Km2 0.001 nM
kS2 149.4 s−1 Km3 0.0366 nM
Mtot

f 1 Mtot
b 1

Rtot
f 1 Rtot

b 1
Stot

f 1 Stot
b 1

relative to the extent of the sweep. The CI as a function of time was computed by averaging data

points in equally spaced bins of width 0.5 min. The time averaged CI, ⟨CI⟩, was computed by

averaging CI in time over the entire wave cycle. The time average of Vx, ⟨Vx⟩, was calculated in

a similar fashion. Experiments were repeated at least three times for each [cAMP]bg. For each

[cAMP]bg, a distribution (N = 10,000 trials) of sample mean was generated by bootstrapping

over the replicate experiments, and the experimental averages and error bars reported in this

study were the mean and standard deviation of this resampled distribution.

Parameter fitting

As mentioned in the main text, the loss function L = ∑
N
n=1 |xexp − xsim|/(Nσexp) is

minimized to find the optimal parameters. This loss function compares N=54 experimental data

points to simulation data (see main text). We take 46 discrete points from previous experimental

data (detailed in Ref. [3]) and 8 points derived from the current study. As in Ref. [3], σexp was

taken as the standard deviation of the experimental data or 50% of xexp where standard deviations

were not available.

Following Ref. [3], the 46 data points using previous studies were chosen as follows: 24

data points were taken from uniform dose response data where cells were exposed to uniform
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stimulus switching from 0nM or 100nM to higher concentrations [40]. The peak amplitudes,

peak times and the state of memory module M were fitted (see also Fig. 2.4a-b). Additionally, 15

data points were chosen from gradient-to-uniform data obtained from experiments in which cells

were first exposed to a gradient (0-100 nM across a 70 µm wide channel), followed by a uniform

concentration of 0, 1, 10, 20 or 50nM [3]. These experiments, detailed in Ref. [3], quantified the

localization of activated Ras, a directional sensing marker, using the Ras-binding domain of Raf

tagged to GFP (RBD-GFP). The times for disappearance and reappearance as well as the ratios

of fluorescence intensity before and after the switching from gradient to uniform concentration

were fitted. As indicated from the experiments, we required the memory M f to stay high (i.e.,

M f = 1) for a uniform concentration of 10, 20 and 50 nM and to become low (M f = 0) for 0

nM . The final 7 data points were chosen from gradient reversal data where the initial gradient

was switched to a reversed gradient of 100-0 nM, 75-25 nM or 60-40 nM across the gradient

chamber. The ratios of fluorescent RBD-GFP intensity before and after the switching were fitted.

The memory was required to reverse in the 100 to 0nM profile and remain unchanged in the 60

to 40nM profile. Further details of these data points can be found in Ref. [3].

The “new” 10 data points were chosen from the current background experiments with

[cAMP]bg= 0, 0.01, 0.5, 60 and 150 nM. To match with the experimental results, which showed

that cells have a high CI during the front of the wave for [cAMP]bg= 0 and 0.01 nM, persistent

high CI for [cAMP]bg= 0.5 and 60 nM, and significantly reduced CI for [cAMP]bg= 150nM,

we required the front memory, M f , at 2.5 minutes before the peak of the wave, when cells

experienced a positive gradient, to be high for [cAMP]bg= 0, 0.01, 0.5 and 60nM and low for

150nM. At 5 minutes after the peak, at a near-zero cAMP concentration, M f was required to be

low for [cAMP]bg= 0, 0.01 and 150nM and high for [cAMP]bg= 0.5 and 60nM.

We fitted the five parameters (a, b, kMem, kS2 and Km3) related to the memory module

using the lower bound constraints of [0.001, 0.001, 0.005, 20, 0.0001] and upper bound con-

straints of [1, 1, 5, 200000, 1] in units of [nM, nM, nM−2s−1, s−1, nM]. To minimize L we

used simulated annealing, which avoids trapping in local minima of the parameter space, and
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uses an artificial temperature that is decreased during the parameter search such that sampling

becomes more and more selective. In each iteration, a new parameter set was generated from the

previous one with a step size based on this artificial temperature. The difference in the value

of the loss function between the new and previous iteration was then computed. For a negative

difference the new parameter set was automatically accepted while for a positive difference the

new parameter set was accepted with a chance that ranged between 0 to 50% and which was

based on the loss function difference and the artificial temperature. The search was carried out in

log space to cover the wide range of parameter values and the algorithm was concluded when

the difference in loss function became smaller than 0.01 for more than 500 iterations. Multiple

runs of simulated annealing were conducted with randomized initial parameter values. At the

end of each run, pattern search was applied to obtain more precise local minima, using Matlab

routine patternsearch. In each iteration, this algorithm attempts parameters values at a fixed step

from the previous parameters. If the loss function was reduced, the step size would be doubled in

order to explore a wider space. If the loss function did not reduce, the step size would be halved.

The parameter search terminated when both the change in loss function became smaller than

0.01 and the absolute step size became smaller than 0.0001 in log10 space.

The final parameters are listed in Table 2.1 and correspond to L = 0.556. As in Ref. [3]

(Fig. S5b in that study), we can compare the simulation results with experimental results of

Takeda et al. [40], which recorded the intensity of RBD-GFP following a sudden change in

uniform cAMP concentration. In Fig. 2.4a-b, we plot the numerically computed intensity peak,

Ipeak, and the time corresponding to the maximum peak amplitude, Tpeak as lines. These results

are in good agreement with the experimental results, plotted as symbols. When we consider the

loss function L′ that includes only the 46 data points from the previous experiments, the current

parameter set gives L′ = 0.655 while the original parameter set results in L′ = 0.731.

Chapter 2, in full, is a reprint of the material as it appears in the Physical Review E 2021.

Karmakar, R., Tang, M.H., Yue, H., Lombardo, D., Karanam, A., Camley, B.A., Groisman, A.

and Rappel, W.J., American Physical Society, 2021. The dissertation author was a co-author of
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this paper.

68



Chapter 3

Eukaryotic chemotaxis under periodic
stimulation shows temporal gradient de-
pendence

Introduction

Chemotaxis, the chemically guided motion of cells, is critical to several biological

processes such as foraging, wound healing, embryonic developement, and cancer metastasis

[23, 24, 25, 26, 27]. The social amoeba Dictyostelium discoideum is a well-characterized model

organism to study chemotaxis. It displays a unicellular to multicellular transition in its life

cycle when starved of nutrients, by aggregating through chemotaxis [173, 149]. Chemotaxis of

Dictyostelium cells is driven by the chemoattractant cyclic Adenosine Mono Phosphate (cAMP),

a small molecule that is internally synthesized and secreted by the cells [174]. The multicellular

aggregate then forms a stalk and a fruiting body, which contains spores that can later be dispersed

[175, 176].

During the aggregation process, Dictyostelium cells not only produce the chemoattractant

but also relay the signal, resulting in cAMP waves that sweep through the population [42]. This

signal-relay process is also present in other chemotactic systems [177, 178] and ensures the

recruitment of cells over large distances. Initially, the cAMP waves arise spontaneously from

many locations in the population. As development continues, sources with high frequencies

dominate and become stable centers to which cells aggregate [179]. A large number of models
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of the aggregation process have been proposed, ranging from qualitative excitable system models

to more biochemically oriented ones [165, 180, 181, 150, 182]. In addition, a significant number

of modeling studies have been published which attempt to describe the chemotactic response of

a single cell to chemoattractant gradients [156, 31, 158].

Traditionally, most experimental and modeling chemotaxis studies have focused on the

response of cells to static gradients [183, 184]. More recently, using microfluidic devices, it

has become possible to expose cells to carefully controlled complex and time-varying gradients

[185, 167, 186, 39, 187, 4]. For example, experiments that generated chemoattractant waves

of controlled speed have shown that cells can be more sensitive to the positive gradient in the

incoming half of a wave and less sensitive to the negative gradient in the back half of the wave

[3, 37]. The extent of this bias of cell motion has been shown to depend on the period of the

chemoattractant waves [3, 37] as well as the background concentration of the chemoattractant

[4]. These studies also support the involvement of a Local Excitation Global Inhibition (LEGI)

module in chemotaxis [3, 37]. In this module, the stimulus produces both a membrane bound

localized activator and a globally diffusible inhibitor, with fast and slow kinetics, respectively

[32, 156].

These previous studies did not determine whether cell motion depends on temporal

sensing. Furthermore, it did not address the question of the exposure to multiple waves, a

question relevant given the aggregation process of Dictyostelium. In this study, we investigate

the effect of exposure to multiple waves of identical amplitude and frequency on the chemotactic

ability of Dictyostelium cells. Our results show that this ability is enhanced upon exposure to

multiple waves of a short period (6 min) and remains low and unchanged when the period is long

(15 and 20 min). Furthermore, using modeling, we show that our result supports a mechanism

for temporal gradient sensing and rectification, working in parallel with a mechanism for spatial

gradient sensing in the form of a LEGI model, and explains the observed trend in the chemotactic

ability of the cells.

We exposed cells of the axenic strain AX4 [168] that are developed for 5 hours to multiple
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(a) (b)

Figure 3.1. (a) Chemotactic Index (CI) as a function of time for time periods T = 6min, 15 min,
and 20 min, each with several cycles. Each data point represents the average CI of all the cells in
the time bin-width ∆t. Error bars represent the standard error of the mean. ∆t is taken to be the
same as the frame rate of the image capture, i.e., 15 s for T = 6min and 30 s for T = 15min and
20 min. Also shown is the cAMP profile concentration for each wave period. (b) Average CI
plotted against cycle number for all periods. Markers represent an average over all tracked cells
and error bars represent the standard error of the mean. Lines correspond to the fits from the
model.

identical cycles of cAMP waves with a uniform speed. These traveling waves were generated

using a microfluidic device, detailed in an earlier study [4]. In short, a stream of cAMP is swept

across an observation channel, resulting in a bell-shaped wave profile that is similar to the one

measured for natural waves of cAMP [165, 166]. The speed of the wave can be controlled such

that each wave sweeps through the substrate in a fixed time period T . The period was set to either

6 minutes (hereafter referred to as short period), corresponding to a physiologically relevant

value [34], or to higher values, namely 15 and 20 minutes (hereafter referred to as long periods).

Cells were plated on a micropatterned substrate consisting of one dimensional patterns, which

was also used in an earlier work [44]. As a result of this patterning, cells were confined to move

along only one dimension, either along or opposite the direction of wave propagation, facilitating

cell tracking. For each wave period, we carried out experiments on at least three different days.

The motion of the cells was captured by Differential Interference Contrast (DIC) mi-

croscopy. The cells in the resulting images were smoothened, segmented through edge detection,

and binarized. Then, cell tracks were constructed by identifying the nearest neighbor for each

cell in the subsequent frame. Only isolated cells were considered for tracking to preclude the

effects of crowding and cell contacts on chemotaxis. Furthermore, we only analyzed cells that
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were tracked for at least two successive waves. The total number of cells tracked for each cycle

and period ranged from 125 to 648. To keep the total time experimentation time equivalent, we

exposed cells to 7, 4, and 3 cycles of T = 6, 15, and 20 minutes, respectively.

Once the tracks of isolated cells were constructed, we computed a measure of the

chemotactic ability of the cells called the Chemotactic Index (CI), defined as the ratio of the

velocity of the cell in the direction of the source to the magnitude of its speed, averaged over

a moving time-window of a certain length (2τ) [3]. It follows, then, that CI takes on values

between −1 (motion exactly away from the source) and +1 (motion exactly towards the source).

In the current one-dimensional context, where cells move only in the x-direction, the CI of a cell

at time t is the ratio of its displacement to its path length over the duration 2τ .

CI(t) =
x(t + τ)− x(t − τ)∫ t+τ

t−τ
|dx|

(3.1)

In this study, we have taken the moving window duration 2τ to be 2 minutes. After obtaining the

time-series, we computed the average chemotactic index, ⟨CI⟩, for each cycle, which allowed us

to determine the dependence of ⟨CI⟩ on the number of waves experienced by the cells.

Figure 3.1-a shows the CI vs time data for all the wave periods and cycles used in the

study. For the T = 6 minute waves, the CI increases uniformly during the first few cycles, and

then saturates. In contrast, the CI for the longer wave periods remains almost unchanged for each

cycle. This is also evident in Figure 3.1-b, which plots the average CI as a function of the wave

cycle. From this figure, it is clear that ⟨CI⟩ increases substantially (by about 50%) for T = 6min

and it remains roughly the same for the longer wave periods. We have verified that the increase

in CI is due to an increase in the directionality of the cell motion: the (undirected) cell speed is

roughly the same (∼ 3−4µmmin−1) for all cycles and periods (see Fig 3.4).

To determine whether the increase in the chemotactic ability was due to an increase in

development time, we repeated the experiments using cells that were developed for only four

hours. These cells also exhibited a significant increase in ⟨CI⟩ for T = 6min waves, similar to 5 h
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Figure 3.2. Variation with time of the concentration and temporal gradient of R for different
periods, for one cycle. cAMP concentration is shown in the top panel with dashed lines. For all
wave periods, cAMP and R have the same amplitude, but since the wave takes different times to
sweep through the substrate, their temporal gradients are different. A wave with a short period
has a higher temporal gradient, as shown in the bottom panel. This plot shows the values at the
front of the cell; those at the back take on similar values with a small time lag.
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(a) (b)

Figure 3.3. (a) Schematic of the model, by extending the LEGI+M model to include X that
is activated by the temporal gradient of cAMP with a threshold. See Section 4 in the SI for
equations. (b) CI vs time for multiple periods and all cycles as predicted from the model
(α = β = γ = 0.15). The plots overlap for T = 15min and 20 min.

developed cells (see Fig. 3.5). We should note that carrying out experiments for cells that were

developed for 6 hours or more was challenging since these cells displayed increased adhesion

and started to clump into small aggregates. In summary, our experiments show that for short

periods, the chemotactic ability of cells markedly improved as the number of waves increased,

independent of the development time. In contrast, for longer wave periods, the chemotactic

ability was found to be independent of the wave cycle.

We next attempted to address our experimental findings within a modeling framework.

The starting point for this is our previous model, which consists of a LEGI module, together with

a bistable memory module M [3] (see Figure 3.3-a). In this LEGI+M model, external cAMP

binds to the receptor R, which then activates both a membrane-bound activator, E, and a global

inhibitor I. The membrane-bound response element S of the LEGI module is activated by E and

inhibited by I and feeds into the memory module. The component of this module feeds back to S

and this feedback depends on E. This model was able to explain how cells are able to chemotax

toward the wave source, even though the spatial gradient reverses direction in the back of the

wave. It was shown that for short period waves the memory at the front, but not the back, is

activated, resulting in a continued response in the direction of the original wave [3]. Specifically,

the CI was assumed to be determined by a linear combination of the difference in front and back
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value of M and S. Importantly, in this study, the parameter values of the LEGI and M modules

are identical to the ones used in our previous study and are listed in Table 3.1.

Here we extend the model with a new, local signaling component, X , whose dynamics

is assumed to be a function of the fraction of bound receptors R and the memory module M.

(Figure 3.3-a, see Section 3.1 for explicit equations). The model is implemented in a one-

dimensional geometry, consisting of a line, representing the interior of the cell, and the two

ends corresponding to the back (b) and front (f) of the cell. Thus, all components, including

X , are solved for both at the front and at the back, except for the global inhibitor I. This

global component diffuses within the interior of the cell and we will assume that the diffusion

coefficient for I is large, so that its concentration can be taken as uniform within the cell.

Finally, the definition of CI is extended to include a contribution from X in addition to M and

S: CI = α(M f −Mb)+β (S f − Sb)+ γ(X f −Xb), where α , β , and γ are parameters that were

adjusted to fit the experimental data.

We propose the kinetics of X in order to increase the chemotactic response for cells

that are exposed to multiple short period waves but not for long period waves. This will be

accomplished if X f −Xb grows as a function of cycle number only for T = 6 minute waves. A

simple way to arrest the growth of X for large wave periods is to introduce a time scale for the

decay of X that is larger than the short period but smaller than the long period. This would readily

work if the activation terms for X for both short and long period waves lead to similar increases

in the level of X after each cycle. A closer look at the wave profile reveals that such an activation

cannot depend on the magnitude of the cAMP concentration or any other quantity that directly

depends on it, such as the receptor fraction R. Figure 3.2 (top panel) shows the concentration of

cAMP (dashed lines) and R (bold lines) a cell experiences as a function of time for all three wave

periods. Since the difference between the short and long period waves is the speed with which

the wave moves over the cells, the profiles of cAMP and R have the same amplitude but different

widths (in time). Thus, cells exposed to long period waves experience high values of cAMP

concentration for a prolonged period of time. Therefore, if the activation of X is proportional to
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the cAMP concentration or depend on a threshold value, than it will reach higher values for long

periods than for short periods. Since the chemotactic response is proportional to X , this increase

will then lead to an elevated CI, in disagreement with our experimental findings. Further details

of models that fail to predict the observed trend are described in Section 3.1.

Cells sense the cAMP concentration through receptor binding, and examining the profiles

of R experienced by cells reveals that the temporal gradient of R is greater for a short wave period

than for a long period (see Figure 3.2, bottom panel). This suggests that the response of cells

may involve the temporal gradient of the R. Therefore, we propose that X is activated only by a

temporally increasing cAMP. Specifically, we assume that the dynamics of X at the front of the

cell can be written as
dX f

dt
=

k1M f

1+ exp
(
−p(dR f

dt −θ)
) − k2X f (3.2)

with a similar equation for Xb, the component at the back. Here, M, X , and R are the respective

de-dimensionalized concentrations of the respective components in the model. They take values

between 0 and 1 at the front as well as at the back. The first term describes the activation of X

through a sigmoidal function of the temporal concentration dR
dt of the activated receptor with a

positive threshold θ , which acts as a rectifier and places a lower bound on the temporal gradient

for the activation of X f to occur. The parameter p is the multiplicative factor that controls

the steepness of the sigmoidal function. The second term describes the decay of X f following

first-order kinetics.

We simulated the model shown in Figure 3.3-a with the above expression for the dynamics

of X for the three different wave periods. For the threshold parameter θ we chose a value such

that X only gets activated for the short wave period (θ = 5× 10−3 s−1). The parameter k1

determines the magnitude of X while the value of k2 determines the timescale of the decay of X

in one cycle, and therefore of the slow increase of X over several cycles. For the chosen value of

θ , the activation term of X is appreciably different from 0 for approximately 50 s, equating to

roughly 14% of the total cycle duration for T = 6min. It is then easy to determine that a value
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of k2 = 2.5×10−3 s−1 results in an increase in average CI that saturates after 6 cycles. Since the

values of dR
dt and θ are of the order of 1×10−3 s−1, p is chosen to be equal to 1×103 s to make

the argument of the sigmoid of the order of unity. To determine the values of α , β , and γ , we

chose the simplest case of giving M, S, and X equal weightage in the definition of CI. The values

α = β = γ = 0.15 resulted in the best fit with the experimental data. We should note that the

value of γ is dependent on k1 which determines the amplitude of the activation of X .

The resulting CI for the different wave periods is shown in Fig. 3.3-b as a function of

time. Consistent with the experimental results, the CI for the short wave period shows in increase

for the first several cycles and then saturates. In contrast, the CI for the long periods is unchanged

for each cycle. The difference between the short and long period responses can be understood

when examining the dynamics of X f −Xb as a function of time (Figure 3, SI). For the short

period waves, the time derivative of R exceeds the threshold value θ . Since the memory M at

the front of the cell is non-zero and is zero at the back, only the front value of X increases. The

decay of X f is not rapid enough to reset it to its original value, resulting in an increase of X f for

the first few wave cycles, after which its mean value no longer changes. For the long periods,

the time derivative does not exceed the threshold value and X does not accumulate appreciably.

Thus, for these periods, X f −Xb does not increase and does not contribute significantly to CI.

This is also evident from the computed average CI for each cycle, shown as solid lines in Fig.

3.3-b. The model is able to replicate both the experimentally observed slow increase in CI data

as well as the cycle-independent response for long periods.

Our experimentally observed enhancement of chemotactic ability of cells due to repeated

exposure to waves has clear relevance to the aggregation of Dictyostelium. When waves of

cAMP initially arise spontaneously from random locations, they pass through the cells in all

directions; the period of these waves is usually large. Over time, the wave frequency and the

cAMP concentration rise [34, 182], and the center with the highest frequency or the lowest

period (generally T ∼ 6min), dominates the rest [179]. Then, waves with a fixed direction and

frequency pass through cells. At this point, enhanced chemotaxis under periodic stimulation
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would help cells to reach the wave center sooner. This, combined with our earlier observations

that the chemotactic ability improves as the background cAMP concentration increases [4], then

leads to more optimal aggregation and, thus, better chances of survival.

Our proposed model has modules for both spatial and temporal gradient sensing that

operate in parallel and independently. Temporal gradient sensing is the determinant player for

bacteria, which are too small and move too fast to employ spatial sensing [188]. Since eukaryotes

are large enough to sense and respond to spatial gradients [189, 190], most studies have focused

on their response to spatial gradients. Our study uniquely provides evidence for the dependence

of chemotaxis in Dictyostelium on the temporal dependence of chemoattractant gradient. These

results are consistent with a recent study, which shows that migrating myeloid cells can also

sense temporal dynamics of chemoattractant concentrations [45].

Our temporal sensing is formulated in terms of abstract variables, without specific

identification of biochemical components. Such identification is challenging since a large

number of components play a role in chemotaxis [191, 192] and additional studies are required

to determine the exact biochemical components. Furthermore, we have chosen the simplest

functional forms for activation thresholding and decay kinetics in Equation 3.2. More elaborate

schemes may be possible and future work is needed to investigate this. Finally, it would be

possible to further probe the temporal sensing module experimentally. Specifically, if the width

of the Gaussian wave profile is decreased, keeping all else equal, the magnitude of the temporal

gradient increases. Our model predicts that for these narrower profiles the CI will increase as

a function of cycle number more rapidly for the short wave periods and may even increase for

longer wave periods.
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3.1 Supplementary Information

Experimental Setup

We used cells of the axenic Dictyostelium discoideum strain AX4, transformed with

LimE-GFP (delta coil LimE-GFP) and Coronin-RFP (LimE GFP/corA RFP). Cells were grown

in submerged shaking culture in HL5 medium (35.5 g HL5 powder (Formedium, Norfolk, UK)

and 10 ml penicillin-streptomycin (10,000 U/ml; Gibco, Thermo Fisher Scientific, USA) per

liter of DI water. When cells reached their exponential growth phase (3−4×106 cells/mL), they

were harvested by centrifugation at 3000 rpm for 5 minutes, resuspended in KN2/Ca2+ buffer

(14.6 mM KH2PO4, 5.4 mM Na2HPO4, 100 µM CaCl2, pH 6.4), and washed once with the same

buffer. The cells were resuspended in KN2/Ca2+ at 107 cells/mL and developed for 4 and 5 hours

with pulses of 50 nM cAMP added every 6 minutes.

We exposed cells to repeated waves of cAMP and recorded their movement. We per-

formed the experiments at three different wave speeds, corresponding to a wave period of 6, 15,

and 20 minutes. The microfludic wave generator is identical to the one used in an earlier study

[4].

Differential Interference Contrast (DIC) images were taken every 15 seconds (for 6

minute waves) or 30 seconds (for 15 and 20 minute waves) in four fields of view spanning

the width of the chemotaxis channel, 2800 µm away from the cAMP inlet, on a spinning-disk

confocal Zeiss Axio Observer inverted microscope using a 10X objective and a Roper Cascade

QuantEM 512SC camera. Images were captured by using Slidebook 6 (Intelligent Imaging

Innovations).

Cells were plated on a glass substrate that was micropatterned with ∼ 1.5µm thick stripes

of cell adhesion-blocking polyethylene glycol (PEG) gel, as detailed in Ref.[44]. The pattern

consists of 4 narrow (∼ 10µm) and 1 wide (∼ 25µm) untreated glass stripes separated by

30 µm wide nonadhesive PEG-gel stripes. These substrates limit the adhesion and migration

of Dictyostelium cells to ∼ 6− 25 µm wide stripes of non-PEG treated glass oriented in the
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x-direction, along the gradient and perpendicular to the flow. Thus, cell migration was effectively

one-dimensional (1D), either up or down the gradient (positive or negative x-direction). This

greatly simplified the collection and analysis of data as compared to 2D chemotaxis on a standard

glass substrate.

Cell and Wave Tracking

The image analysis pipeline from DIC movies to computing chemotactic indices for

the tracked cells is as follows: For each image in the movie, we applied the Scharr filter from

Python’s Scikit-Image package. The filtered image is further smoothened using Gaussian blurring

and was binarized to separate the cells from the background. This method of pre-processing

DIC images is similar to that used in Ref. [193]. To segment the cells, we started at a pixel

labeled as a cell but not segmented thus far and built a region around it by recursively including

other hitherto uncounted cell-pixels that were contiguous with the current region. The region

stopped growing once all contiguous pixels were identified. This process was repeated until all

the cell-pixels are counted and numbered. To avoid objects that were too small or too large, we

chose a lower and upper cutoff for the area of individual and isolated cells, based on a histogram

of areas of all identified cells.

In order to construct tracks of individual cells, the region of a given cell in the current

frame is separately used as a filter on the next frame. The region in the next frame with the

highest overlap is considered to correspond to the given cell. Among the constructed cell tracks,

only tracks that last at least two periods and at least three quarters of the duration of each period

were considered for the next step. This was done so that we tracked the same set of cells over

a prolonged period of time. Furthermore, if at any point in the track, a cell gets closer than a

cutoff distance of 12 µm to another cell, that time point is excluded from the track. This is done

to preclude any effects of cAMP produced by neighboring cells on chemotaxis. Once the cell

tracks were constructed and selected, the chemotactic index (CI) of each cell as a function of

time was calculated using Equation 1 in the main text. The average CI of the population for a
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given wave was then computed as the area under the CI-time curve divided by the number of

bins, averaged over all the tracks in that cycle.

To visualize the cAMP wave, a fluorescent dye, Alexa Fluor 594 Hydrazide (Invit-

rogen), was added to the central stream along with cAMP at a concentration of 1000 nM.

The fluorescence intensity in each frame was fitted to a univariate Gaussian profile I(x) =

Aexp
(
− (x−b)2

2σ2

)
+ d, where x is the distance from the peak of the wave along direction of

propagation, and A, b, σ , d are, respectively, the amplitude, position of the peak, width of

the Gaussian, and the background intensity. I(x) is the intensity along the direction of the

propagation after averaging in the perpendicular direction. While simulating the wave, we used

the function

cAMP(x, t) = Aexp
(
−(x− vt)2

2σ2

)
(3.3)

where A = 1000nM, v = 1400µm/T where T is the wave period in seconds (1400 µm is the

distance a wave moves in each period from start to finish), σ = 120µm.

Trends in Chemotactic Index

The mean value of Chemotactic Index (defined in Equation 1 in the main text) in a cycle

increases upon exposure to multiple waves if the wave period T is short and remains low and

unchanged if T is large. This is due to an increase in the directionality of cells when T is small;

the (undirected) cell speed remains roughly the same (∼ 3− 4 µmmin−1) for all cycles and

periods, as shown in Figure 3.4.

When the chemotaxis experiments were repeated with cells that were developed for

four hours, the cells still showed a significant increase in the mean chemotactic index for the

T = 6min waves, similar to the cells developed for five hours, suggesting that the increase in the

chemotactic ability is in response to exposure to the chemoattractant waves, and not merely the

passage of time. See Figure 3.5.
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Figure 3.4. The average undirected cell speeds remain roughly the same for all cycles and wave
periods. Error bars in the plot denote the standard error of the mean.
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Figure 3.5. Average CI increases as a function of cycle number when cells were developed for
four or five hours prior to the exposure of cAMP waves.
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Model Description

The complete model used is an extension of the LEGI+M model along with Equation 2

of the main text. We used the LEGI+M model as detailed in an earlier study [3]. The entire set

of equations and the parameters are reproduced here for completeness.

External cAMP activates the receptors on the surface of the cell. Two kinds of receptors

R1 and R2, differing in their binding affinities and constitutive activations are considered. The

two types of receptors have the same downstream effect, so their sum R = R1 +R2 is considered

in the rest of the model. R activates E and I, which respectively excite and inhibit the response

element S following zeroth-order ultrasensitivity kinetics, so that a weak gradient in R and E

is amplified to a strong gradient in S. S also promotes the switching of the bistable memory

module M from 0 (low) to 1 (high), which feeds back to activate S, particularly on the back half

of the wave. The new component X is activated when M is high and when the temporal gradient

of R is above a positive threshold θ . All the components of the model except I are localized

at the membrane. Thus they take two values, one at the front and one at the back, denoted by

the subscripts f and b respectively. Equation 3.4 shows the equations governing the kinetics of

(global) I, the model components at the front of the cell, and the definition of the chemotactic

index (CI). A corresponding set of equations exists for the components at the back of the cell.
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dR1 f

dt
= kR1(cAMP f + r1)(Rtot

1 −R1 f )− k−R1R1 f

dR2 f

dt
= kR2(cAMP f + r2)(Rtot

2 −R2 f )− k−R2R2 f

R f = R1 f +R2 f

dE f

dt
= kER f − k−EE f

dI
dt

= kI

(
kbasal +

R f +Rb

2

)
− k−II

dM f

dt
=−kmemM f (M f −Mtot)

(
M f −Mtot b−S f

b−a

)
dS f

dt
= kSE

Stot −S f

Km1 +Stot −S f
− k−SI

S f

Km2 +S f
+ kS2M f R f

Stot −S f

Km3 +Stot −S f

dX f

dt
=

k1M f

1+ exp
(
−p(dR f

dt −θ)
) − k2X f

CI(t) = α(M f −Mb)+β (S f −Sb)+ γ(X f −Xb)

(3.4)

The parameters of the model are shown in Table 3.1. The concentration of cAMP is

measured in nM and the rest of the components are de-dimensionlized or unitless.

The model equations are integrated using MATLAB’s ODE solver ode23tb [194], which

is an adaptive Runge-Kutta method with a variable step size. The cell is assumed to be one-

dimensional with a length of L = 10µm. The cAMP stimulus is provided according to Equation

3.3. The center of the cell is assumed to be at x = 0 and t ranges from −T/2 to T/2 for each

cycle. To prevent M from getting stuck at the extrema M = 0 and M = 1, a “kick” is given to M

every 15 s in the simulation: M is set to 0.05 if M = 0 and to 0.95 if M = 1.

Spatial versus Temporal Sensing

We have argued in the main text, along with Figure 2 therein, why a model for the

activation of X that depends on the concentration of cAMP or any other component downstream

of it fails to reproduce the experimental trend in ⟨CI⟩. Here we explicitly show the results of
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Table 3.1. Parameters of the extended LEGI+MX model. The values of Mtot, Stot are set to 1 at
the front as well as at the back.

Parameter
(Units) Value Parameter

(Units) Value

kR1 (nM−1s−1) 2.67×10−3 k−R1 (s−1) 0.16
kR2 (nM−1s−1) 2.44×10−3 k−R2 (s−1) 1.1
r1 (nM) 0.012 r2 (nM) 0.115
Rtot

1 0.1 Rtot
2 0.9

kE (s−1) 0.159 k−E (s−1) 0.159
kI (s−1) 0.139 k−I (s−1) 0.139
kbasal 1.5×10−5 kM (s−1) 0.360
a 0.058 b 0.5
kS (s−1) 2000 km1 1.8×10−2

k−S (s−1) 2048 km2 1×10−3

kS2 (s−1) 116.7 km3 0.127
k1 (s−1) 2.5×10−2 k2 (s−1) 2.5×10−3

α 0.15 β 0.15
γ 0.15 θ (s−1) 5×10−3

p (s) 1×103

integrating a model where the rate equation for X obeys simple mass action kinetics dependent

on concentrations. Consider the model with an equation for X f given by

dX f

dt
= k1M f (X tot −X f )− k2X f (3.5)

with a similar equation for Xb. Equation 3.4 is integrated along with this equation, and the

resulting time series of X f −Xb is plotted as a function of time in Figure 3.6 (top panel). The

levels of X f −Xb for long periods exceed that for the short period. As explained in the main

text, this happens because in the case of long periods, the cells perceive high levels of M for a

prolonged amount of time, and that leads to stronger activation. This is contrary to our purpose

of introducing X as a means to explain rising ⟨CI⟩ for short period only. On the other hand, the

temporal model shows, in Figure 3.6 (bottom panel), that the values of X f −Xb stay higher for

the short period than for the long periods.

Chapter 3, in full, is a reprint of the material as it is submitted for publication and as it
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Figure 3.6. Comparison of time series of X f −Xb when the kinetics of X is given by equation
3.5 of the spatial model (above) and the temporal model (below). For the spatial model, k1 =
1.0×10−3 s−1, k2 = 2.5×10−3 s−1, and X tot = 1. The parameters for the temporal model are as
defined in Table 3.1.

may appear in the Physical Review Letters, 2024. Karmakar, R., Karanam, A.R., Tang, M.H.

and Rappel, W.J., American Physical Society, 2024. The dissertation author was the primary

investigator and author of this paper.
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Chapter 4

Conclusion

In the preceeding chapters, I described new studies on guard cell dynamics leading to

stomatal closure in plants [19], and on gradient sensing mechanisms in Dictyostelium leading

to chemotaxis [4, 41]. Through a combination of modeling and experiment, we advanced our

knowledge of the mechanisms by which these processes are driven. The choice of model in each

study is informed, among other considerations, by the size of the reaction pathway, availability

of quantitative biochemical information, and the desired precision from the model predictions.

On the modeling front, software for analyzing cell motion and wave progression in chemotaxis

experiments, and for the design and simulation of Boolean networks was developed. The latter

was packaged in a user-friendly manner and shared with the community.

Large signaling networks with incomplete information are common in biology in general,

and plant physiology. As an example, the published ABA signaling network discussed in chapter

1 contains more than 80 components [18]. The vast majority of the interaction strengths and

kinetic parameters between these components is not known, making it difficult to formulate

mathematical models of these networks. Motivated by the simplicity and utility of Boolean

networks[6, 195] and the challenges associated with formulating detailed rate equation-based

models for these large networks, we have presented here Boolink [19], a software package with a

graphical user interface (GUI) that can simulate, visualize, and plot the results of a user-defined

Boolean network. Boolink is free to use and distribute, and is built from free and open-source
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software. The Supplementary Text contains detailed instructions on downloading, installing,

and running Boolink on Windows, MacOS, and Linux-based machines. In addition to this open-

source version, we also packaged the software in a Docker container, which allows execution of

Boolink in an even more facile and direct computer operating system-independent fashion.

Using Boolink, we reproduced the findings of the model published in Ref. [18] and

then extended the network to include the influence of CO2 on stomatal closure. Our proposed

additions to the existing ABA network, which illustrate the potential use of Boolink[19], are

meant as a starting point for further explorations and further research is needed to determine

the precise mechanism by which CO2 signaling merges with abscisic acid signal transduction.

Nevertheless, several improvements can be suggested. First, it is conceivable that CO2 affects

yet unknown mechanisms. Second, the CO2 pathway may contain feedback loops, which can be

easily implemented within Boolink. Finally, we should point out that Boolean networks do not

incorporate explicit rate constants and contain nodes that can only take one of two values (0 or

1). Therefore, these networks are not able to address the time-dependence of responses nor how

they respond to graded inputs.

In chapter 2, we investigated the effect on the chemotactic ability of Dictyostelium cells

upon adding a non-zero background concentration of the chemoattractant in addition to a wave

stimulus[4]. We find that the background concentration of the chemoattractant has a profound

effect on the cellular memory of chemotaxing cells. As the background concentration of cAMP

is raised, the average of the chemotactic index (CI), which is a measure of the orientation of

the cell towards the wave source, undergoes two qualitative changes. Firstly, at intermediate

cAMP concentrations, ⟨CI⟩ increases from its value at zero background. At very high cAMP

concentrations, chemotaxis, and thus ⟨CI⟩ shuts down altogether. In the model, the rise in

⟨CI⟩ is seen as a result of sustained activation of the bistable memory M at intermediate cAMP

concentrations. At very high background cAMP levels, the response element S decays to zero

after a transient rise and does not activate M at all. The two switch-like transitions in ⟨CI⟩

predicted by the experiments are in very good agreement with the experiments. It is worth noting
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that the experimentally estimated value of [cAMP]bg during the natural aggregation process of

Dictyostelium cells is ∼10nM [42]. This value is within the intermediate range, suggesting that

aggregation may be facilitated by increased cellular memory due to accumulating cAMP. Future

work will be required to identify the precise biochemical components that are responsible for the

observed behavior.

In chapter 3, the effect on chemotaxis of exposure to multiple identical chemoattractant

waves was studied. This study uncovered the presence of a temporal gradient sensing mechanism

that raises the chemotactic ability of cells, measured as CI, through a rise in the concentration of

a component X in the model over multiple waves [41]. The increase in the chemotactic ability of

cells upon exposure to multiple waves was observed when the wave moves faster, i.e., the period

T is small, but not when the wave moves slower, i.e., the period T , and so, the time of exposure

to a gradient is large. This strongly hints at the role of a rate of change instead of exposure time

in building long-term memory. Any mechanism for the development of long-term memory that

is based on concentrations of components upstream of X will act stronger for the large wave

periods, as we have shown.

A temporal gradient sensing ability has not been reported in Dictyostelium before to the

best of our knowledge. A study on migrating myeloid cells has shown that those cells too can

sense temporal dynamics of chemoattractant concentrations [45]. Further studies are required to

understand the temporal gradient sensing mechanism in greater detail. We proposed potential

tests to the hypothesis: if the width of the cAMP wave is reduced keeping the same amplitude

the model predicts a a greater rise in the levels of X – a narrower wave implies a faster rise in

concentration, which implies a greater rise in the levels of X . Secondly, the mechanism and the

molecular players involved in temporal gradient sensing are unexplored.

Taken together, the three studies demonstrate that quantitative modeling of signaling

processes in biological systems can be successfully employed to uncover the topology of signaling

pathways and the nature of interactions among the components in the reaction network. The

models can be improved through an iterative process of generating predictions from models and
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testing them by experiments, which inform the next steps in modeling.

In the studies on eukaryotic chemotaxis, the predictions also show quantitative agreement

with the experiments. It is important to highlight the progress that is achieved in understanding

biology by going across the boundaries of traditionally defined disciplines, by approaching it

through concepts and tools developed in physics, mathematics, and computation.
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[73] Song Li, Sarah M Assmann, and Réka Albert. Predicting essential components of signal
transduction networks: a dynamic model of guard cell abscisic acid signaling. PLoS Biol,
4(10):e312, 2006.

[74] Alfred V. Aho, Michael R Garey, and Jeffrey D. Ullman. The transitive reduction of a
directed graph. SIAM Journal on Computing, 1(2):131–137, 1972.

[75] Julio Aracena, Adrien Richard, and Lilian Salinas. Number of fixed points and dis-
joint cycles in monotone Boolean networks. SIAM journal on Discrete mathematics,
31(3):1702–1725, 2017.

[76] Alan Veliz-Cuba and Reinhard Laubenbacher. On the computation of fixed points in
Boolean networks. Journal of Applied Mathematics and Computing, 39(1):145–153,
2012.

96



[77] Peter Krawitz and Ilya Shmulevich. Basin entropy in Boolean network ensembles. Physi-
cal review letters, 98(15):158701, 2007.

[78] Fumito Mori and Atsushi Mochizuki. Expected number of fixed points in Boolean
networks with arbitrary topology. Physical review letters, 119(2):028301, 2017.

[79] Sheldon M Ross. Introduction to probability models. Academic press, 2014.
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Parity and time reversal elucidate both decision-making in empirical models and attractor
scaling in critical Boolean networks. Science Advances, 7(29):eabf8124, 2021.
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Attraction basins as gauges of robustness against boundary conditions in biological
complex systems. PloS one, 5(8):e11793, 2010.

[104] Gonzalo A Ruz, Eric Goles, and Sylvain Sené. Reconstruction of Boolean regulatory
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