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Abstract

We classify ΛQCD/mb power corrections to nonleptonic B → M1M2 decays, where M1,2 are

charmless non-isosinglet mesons. Using recent developments in soft-collinear effective theory, we

prove that the leading contributions to annihilation amplitudes of order αs(mb)ΛQCD/mb are real.

The leading annihilation amplitudes depend on twist-2 and the twist-3 three parton distributions.

A complex nonperturbative parameter from annihilation first appears at O
[

α2
s(
√

Λmb)ΛQCD/mb

]

.

“Chirally enhanced” contributions are also factorizable and real at lowest order. Thus, incalculable

strong phases are suppressed in annihilation amplitudes, unless the αs(
√

Λmb) expansion breaks

down. Modeling the distribution functions, we find that (11± 9)% and (15 ± 11)% of the absolute

values of the measured B̄0 → K−π+ and B− → K−K0 penguin amplitudes come from annihilation.

This is consistent with the expected size of power corrections.
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I. INTRODUCTION

Nonleptonic charmless B decays are important probes of the standard model. They

are sensitive to the CP violating phase γ (or α) via the interference of tree and penguin

contributions, and to possible new physics that could modify the penguin amplitudes. They

also provide a powerful laboratory to study strong interactions, the understanding of which

is crucial if one is to claim sensitivity to new physics in these decays.

The theory of nonleptonic B decays underwent important progress in the last few years.

Factorization theorems for B →MM ′ decays have been proven to all orders in αs at leading

order in Λ/mb, for decays when M is a light (charmless) meson and M ′ is either charmed

or charmless [1, 2, 3, 4, 5]. Here Λ ∼ ΛQCD ∼ 500 MeV denotes a typical hadronic scale. An

important difference between the various approaches to making predictions for the charmless

B → M1M2 decay rates [2, 5, 6, 7, 8, 9, 10, 11, 12, 13] is how certain O(Λ/mb) power

suppressed corrections are treated. In particular, it was observed that so-called annihilation

diagrams (as in Fig. 2) give rise to divergent convolution integrals if one attempts calculating

them using conventional factorization techniques [7]. In the KLS (or pQCD) approach [7],

these are rendered finite by k⊥ dependences, which effectively cut off the endpoints of the

meson distribution functions. KLS found large imaginary parts from the jet scale,
√
mbΛ,

from propagators via Im [xm2
b − k2

⊥ + iε]−1 = −πδ(xm2
b − k2

⊥) [14]. They also found that

for the physical value of mb the power suppression of these terms relative to the leading

contributions was not very significant. In the BBNS (or QCDF) approach [2, 10, 11], the

divergent convolutions are interpreted as signs of infrared sensitive contributions, and are

modeled by complex parameters, XA =
∫ 1

0
dy/y = (1 + ρAe

iϕA) ln(mB/Λ), with ρA ≤ 1 and

an unrestricted strong phase ϕA. In Ref. [15] annihilation diagrams were investigated in the

soft-collinear effective theory (SCET) [16] and parameterized by a complex amplitude. When

annihilation is considered in SU(3) flavor analyses a complex parameter is also used [17]. In

the absence of a factorization theorem for annihilation contributions, a dimensional analysis

based parameterization with Λ/mb magnitude and unrestricted strong phases is a reasonable

way of estimating the uncertainty. In order not to introduce model dependent correlations,

a new parameter could be used for each independent channel.

It was recently shown by Manohar and Stewart [18] that properly separating the physics

at different momentum scales removes the divergences, giving well defined results for convo-

lution integrals through a new type of factorization which separates modes in their invariant

mass and rapidity. The analysis involves a minimal subtraction with the zero-bin method

to avoid double counting rapidity regions, and with the regulation and subtraction of diver-

gences for large p+ and p− momenta that behave like ultraviolet divergences. Additional

subtractions would correspond to scheme dependent terms, so the minimal subtraction is
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the usual and simplest choice. We refer to this as MS factorization.1 In this paper we

classify annihilation contributions to B →M1M2 decays and demonstrate how this rapidity

factorization works for the leading terms of order O[αs(mb)Λ/mb]. These leading order anni-

hilation contributions are real despite the presence of endpoint divergences. We also classify

which terms can involve a nonperturbative complex hadronic parameter, and show that they

first show up for annihilation at higher order in perturbation theory, O[α2
s(
√
mbΛ) Λ/mb].

Our analysis demonstrates that while certain annihilation contributions are only sensitive

to the hard short distance scale µ2 ∼ m2
b (local annihilation), there exist other annihilation

contributions that start at the same order in αs and 1/mb and are sensitive to the inter-

mediate scale µ2 ∼ mbΛ (hard-collinear annihilation terms). The leading local annihilation

terms involve fB and a modified type of twist-2 distribution functions, while the leading

hard-collinear terms have twist-3 meson distributions. In this work we perform matching

calculations for the two-body distributions that require rapidity factorization. The calcu-

lation of the leading amplitude involving the three body functions is given in a separate

publication [19], however we review the numerical results here.

An interesting set of power corrections are those proportional to µP where µπ = m2
π/(mu+

md) and µK = m2
K/(mu + ms) [20]. For kaons and pions µP ∼ 2 GeV, so corrections

proportional to µP/mb can be sizable, and were labeled “chirally enhanced” in Ref. [2, 10]. In

the chiral limit µP ∝ Λχ, where Λχ is the chiral symmetry breaking scale, so the enhancement

is not parametric, and comes from the fact that Λχ > ΛQCD. In the BBNS approach these

Λ2/m2
b annihilation power corrections are included along with the leading order terms, and

when they multiply divergent convolutions they are described by complex parameters. Below

we show that, much like the lowest order annihilation contributions, these terms are also

real and factorizable.

In section II we review the leading order factorization theorem, and classify power correc-

tions to B →M1M2, with a focus on annihilation amplitudes. In section III a factorization

theorem is derived for local annihilation amplitudes at order Λ/mb for final states not in-

volving isosinglets (given in Eq. (23)). These amplitudes start at O(αs(mb)) and involve fB

and a modified type of twist-2 meson distributions. The extension to chirally enhanced local

annihilation terms is considered in section IV. In section V we study annihilation ampli-

tudes from time-ordered products, and classify complex contributions generated at the hard

scale mb, the intermediate scale
√
mbΛ, and the nonperturbative scale Λ. Our results give

absolute predictions for the annihilation amplitudes in B → PP, PV, V V channels, given

the meson distribution functions as inputs, which are studied in Section VI. This section

also discusses the implications of our results for models of annihilation used in the litera-

ture, and a numerical analysis of the annihilation amplitudes in B̄ → Kπ and B̄ → KK̄.

Appendix A gives the derivation of a two-dimensional convolution formula with overlapping

1 Over the objection of one of the authors.
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zero-bin subtractions.

II. ANNIHILATION CONTRIBUTIONS IN SCET

We use M to denote a charmless pseudoscalar or vector meson (π, K, ρ, . . .). The

relevant scales in B → M1M2 decays are mW , mb, E ≈ mB/2, mc, the jet scale
√
EΛ,

and the nonperturbative scale Λ. Here E is the energy of the light mesons, which is much

greater than their masses, mM1,2
∼ Λ. To simplify notation, we denote by mb hereafter

the expansion in all hard scales, {mb, E,mc}. The decays B →M1M2 are mediated by the

weak ∆B = 1 effective Hamiltonian, which has ∆S = 0 terms for b̄→ d̄q1q̄2 transitions and

∆S = 1 terms for b̄→ s̄q1q̄2. For ∆S = 0 it reads

HW =
GF√

2

∑

p=u,c

VpbV
∗
pd

(

C1O
p
1 + C2O

p
2 +

10,7γ,8g
∑

i=3

CiOi

)

, (1)

where the operators are

Ou
1 = (ūb)V−A (d̄u)V−A, Ou

2 = (ūβbα)V−A (d̄αuβ)V−A ,

Oc
1 = (c̄b)V−A (d̄c)V−A, Oc

2 = (c̄βbα)V−A (d̄αcβ)V−A ,

O3 =
∑

q′(d̄b)V−A (q̄′q′)V−A , O4 =
∑

q′(d̄βbα)V−A (q̄′αq
′
β)V−A ,

O5 =
∑

q′(d̄b)V−A (q̄′q′)V+A , O6 =
∑

q′(d̄βbα)V−A (q̄′αq
′
β)V+A ,

O7 =
∑

q′
3eq′

2
(d̄b)V−A (q̄′q′)V+A , O8 =

∑

q′
3eq′

2
(d̄βbα)V−A (q̄′αq

′
β)V+A ,

O9 =
∑

q′
3eq′

2
(d̄b)V−A (q̄′q′)V−A , O10 =

∑

q′
3eq′

2
(d̄βbα)V−A (q̄′αq

′
β)V−A ,

O7γ = − e

8π2
mb d̄ σ

µνFµν(1+γ5)b , O8g = − g

8π2
mb d̄ σ

µνGa
µνT

a(1+γ5)b . (2)

Here Ou
1,2 and Oc

1,2 are current-current operators, α and β are color indices, O3−6 are penguin

operators and O7−10 are electroweak penguin operators, with a sum over q ′ = u, d, s, c, b

flavors, and electric charges eq′. Results for ∆S = 1 transitions are obtained by replacing

d → s in Eqs. (1) and (2), and likewise in the equations below. The coefficients in Eq. (1)

are known at NLL order [21] (we have Op
1 ↔ Op

2 relative to [21]). In the NDR scheme, taking

αs(mZ) = 0.118 and mb = 4.8 GeV,

C1−10(mb) =
{

1.080 , −0.177 , 0.011 , −0.033 , 0.010 , −0.040 ,

4.9×10−4 , 4.6×10−4 , −9.8×10−3 , 1.9×10−3
}

. (3)

To define what we mean by annihilation amplitudes we use the contraction amplitudes

A1, A2, P3, P
GIM
3 in the full electroweak theory from Ref. [22] (which thus includes pen-

guin annihilation). These amplitudes are scheme and scale independent and correspond

to Feynman diagrams with a Wick contraction between the spectator flavor in the initial
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state and a quark in the operators Oi. Using SCET these annihilation amplitudes can be

proven to be suppressed by Λ/mb to all orders in αs [5]. These contributions differ from

emission-annihilation amplitudes, EA1 and EA2, which involve at least one isosinglet meson.

As demonstrated in Refs. [11, 23], EA1,2 occur at leading order in the power expansion. We

focus on isodoublet and isotriplet final states, so ignore the EA1,2 amplitudes hereafter.

To separate the mass scales occurring below mb we need to match HW onto operators in

SCET. The nonperturbative degrees of freedom are soft quarks and gluons for the B-meson,

n-collinear quarks and gluons for one light meson, and n̄-collinear fields for the other light

meson, as defined in [24]. Expanding in Λ/mb gives

〈M1M2|HW |B〉 = A(0) + Acc̄ + A(1)
ann + A

(1)
rest + . . .

=
GFmBfM1

fM2
fB√

2 Λ0

[

Â(0) + Âcc̄ + Â(1)
ann + Â

(1)
rest + . . .

]

. (4)

In the second line we switched to dimensionless amplitudes Â by pulling out a prefactor

with the correct Λ5/2m
1/2
b scaling. Here Λ0 = 500 MeV represents a B-meson scale that is

O(ΛQCD). Taking η = Λ/mb we have the leading order amplitude Â(0) = O(η0), and the

subleading amplitude Â(1) = Â
(1)
ann + Â

(1)
rest = O(η1), which we have split into the annihilation

amplitude Â
(1)
ann and the remainder Â

(1)
rest. The amplitude Âcc̄ in Eq. (4), denotes contributions

from long-distance charm effects in all amplitudes, while perturbative charm loops contribute

in the amplitudes A(0) and A(1).2

There are two formally large scales, mb �
√
mbΛ � Λ, which we will refer to as the hard

scale µh ∼ mb, and intermediate or hard-collinear scale µi ∼
√
mbΛ. These scales can be

integrated out one-by-one [27] with effective theories SCETI and SCETII. Integrating out

mb requires matching the Oi onto a series of operators in SCETI, Q
(j) ∼ λj where the SCETI

power counting parameter λ = η1/2 =
√

Λ/mb. To obtain contributions to B →M1M2, we

require an odd number of ultrasoft (usoft) light quarks qus, two or more n-collinear fields,

and two or more n̄-collinear fields, where n2 = n̄2 = 0.

We briefly review results from Refs. [4, 5] for the leading amplitude A(0) for B →M1M2.

Here we have weak operators Q
(0)
1d−6d ∼ λ6, Q

(1)
1d−8d ∼ λ7 with no qus’s, taken in time-ordered

products with an usoft-collinear quark Lagrangian, L(j)
ξq ∼ λj for j = 1, 2, which has one qus.

We denote other subleading Lagrangians by L(j), and list the O(λ7) and O(λ8) time-ordered

products for A(0) in Table I. Matching these time-ordered products onto SCETII gives the

leading O(η6) operators.3 When combined with the η−7/2 from the states this yields a matrix

2 Âcc̄ has the c-fields in Oc
1,2 and O3−10 replaced by nonrelativistic fields [5], and is suppressed by at least

their relative velocity, v ∼ 0.3 − 0.5. The possibility of large nonperturbative charm loop contributions

was first discussed in Refs. [12, 13], and the size of these terms remains controversial [25, 26].
3 Recall that to derive the η6, we note that λ8 = η4, and changing the scaling λ → η for four collinear quark

fields in matching SCETI → SCETII gives the extra η2. The λ7 term gains an extra λ from the change

in scaling to a collinear D⊥.
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element of order η5/2, in agreement with the prefactor in Eq. (4). Examples of the weak

operators in SCETI are

Q
(0)
1d =

[

ūn,ω1
/̄nPLbv

][

d̄n̄,ω2
/nPLun̄,ω3

]

,

Q
(1)
1d =

[

ūn,ω1
ig /B⊥

n,ω4
PLbv

][

d̄n̄,ω2
/nPLun̄,ω3

]

, (5)

where other Q
(0,1)
id have different flavor structures. The “quark” fields with subscripts n and

n̄ contain a collinear quark field and Wilson line with large momenta labels ωi, such as

ūn,ω =
[

ξ̄(u)
n Wn δ(ω−n̄ · P†)

]

. (6)

Here ξ̄n creates a n-collinear quark, or annihilates an antiquark, Wn = W [n̄ · An] is the

standard SCET collinear Wilson line built from the n̄ component of n-collinear gluons,

n̄ · P† is an operator that picks out the large n̄ · p label momentum of the fields it acts

on [16], and ig B⊥µ
n,ω =

[

1/P̄W †
n[in̄ ·Dc,n, iD

µ
n,⊥]Wnδ(ω − P̄†)

]

. The bv is an HQET b-quark

field.

The leading order factorization theorem from SCETI is [5]

A(0) =
GFm

2
BfM1√
2

[
∫ 1

0

du dz T1J(u, z)ζBM2

J (z)φM1(u)+

∫ 1

0

du T1ζ(u)ζ
BM2φM1(u)

]

+
{

M1 ↔M2

}

.

(7)

Here T1J and T1ζ contain contributions from the hard scales mb, and φM is the nonpertur-

bative twist-2 light-cone distribution function. The terms ζBM and ζBM
J (z) contain contri-

butions from both the intermediate scale µi ∼
√
mbΛ and the scale Λ, and are defined by

SCETI matrix elements between B and M states. In particular their scaling is

ζBM(E), ζBM
J (z, E) ∼

(

Λ

mb

)3/2
[

αs(µi) + . . .
]

, (8)

explaining the αs(µi) entry in the A(0) rows of Table I. The ζBM functions occur in both

semileptonic decays and nonleptonic decays (E ≈ mB/2). Integrating out the scale
√
mbΛ

to all orders in αs by matching onto SCETII gives [5, 18]

ζBM
J (z, E) =

fBfMmB

4E2

∫

dx

∫

dk+ J(z, x, k+, E)φM(x)φB
+(k+) ,

ζBM(E) =
fBfMmB

4E2

∑

a,b

∫

dx1dx2

∫

dk+
1 dk

+
2 Jab(xi, k

+
j , E)φM

a (xi)φ
B
b (k+

j ) , (9)

where the φM
a and φB

b ’s are twist-2 and twist-3, two and three parton distributions and we

pulled out fBfM for convenience. The jet functions J , Jab occur due to the time-ordered

product structure in SCETI and contain contributions from the scale
√
mbΛ. Using the

result for ζBM
J at order αs(µi) this result agrees with Ref. [2] (where expressing ζBM in

terms of the full theory form factor generates an additional ζBM
J term). The result for ζBM

6



Order in Time-ordered products Perturbative order Dependence
Properties

Λ/mb in SCETI Annihilation Other in SCETII

A(0) Q
(0)
i L(1)

ξq , Q
(0)
i L(2)

ξq , Q
(0)
i L(1)

ξq L(1) — αs(µi) φB
i φM

j φM ′
Real

Q
(1)
i L(1)

ξq — αs(µi) φB
+φMφM ′

Real

A(1) Q
(j′=0,1)
i L(j≤4)

ξq Πi L(ki) — αs(µi) Complex

Q
(4)
i αs(µh) — fB φMφM ′

Real

Q
(2)
i L(1)

ξq αs(µh) αs(µi) φBφ3MφM ′
Real

Q
(0)
i

[

L(1)
ξq

]3
, Q

(0)
i

[

L(1)
ξq

]3L(1) α2
s(µi)/π α2

s(µi)/π Sj(k
+
1,2, k

−
3 ) . . . Complex

Q
(0)
i

[

L(1)
ξq

]2L(2)
ξq , Q

(1)
i

[

L(1)
ξq

]3
α2

s(µi)/π α2
s(µi)/π Sj(k

+
1,2, k

−
3 ) . . . Complex

Q
(2)
i

[

L(1)
ξq

]2
— α2

s(µi)/π Complex

Q
(2)
i L(1)

ξq L(1), Q
(2)
i L(2)

ξq , Q
(3)
i L(1)

ξq αs(µh)αs(µi)/π αs(µi) Complex

A(2) Q
(5)
i αs(µh) — fB µMφM

ppφ
M ′

Real

TABLE I: All contributions to B → M1M2 amplitudes at leading order (A(0)) and at order Λ/mb

(A(1)), besides Acc̄. In the first A(1) line j′ + j +
∑

ki ≤ 4. The terms with — are absent or

higher order when matched onto SCETII. The dependence in SCETII column lists the known

dependence on nonperturbative parameters. The properties column shows whether at least one of

the nonperturbative parameters is complex. For A(2), suppressed by Λ2/m2
b , only the local chirally

enhanced annihilation operator is shown.

is from Ref. [18] and required the MS factorization with zero-bin subtractions. The set of

contributing functions (indices a, b) is determined by the complete set of SCETII operators

derived in Ref. [28]. The power counting in αs(µi) for the SCETI functions ζBM and ζBM
J

agree with that derived in pQCD [29].

Next we classify the contributions to the power suppressed B →M1M2 amplitudes A(1).

In SCETI we need to study operators and time-ordered products with scaling up to O(λ10).

These have one or three light usoft quark fields. The relevant terms are listed in Table I,

where Q
(j)
i ∼ λ6+j and our notation for the Lagrangians up to second order is taken from

Ref. [30]. All the listed terms have an odd number of soft light quark fields. A basis for

the Q
(4)
i operators is constructed in section III, for the Q

(2)
i L(1)

ξq terms in Ref. [19], and for

the Q
(5)
i terms in section IV. A basis is not yet known for the remaining Q

(2)
i operators,

for Q
(3)
i , and for the L(3,4)

ξq and L(3) Lagrangians, but they do not contribute at O(αs), and

only general properties of these operators are required for our analysis. Dashes in Table I

indicate terms that are absent to all orders in αs for reasons to be explained below. To

determine the perturbative order listed in the table we count the number of hard αs(µh)

factors from the matching onto SCETI, and the number of intermediate scale αs(µi) factors

from matching onto SCETII. The dependence in SCETII column lists the nonperturbative

quantities that appear in the factorization theorem for the leading order result described
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above, and from the factorization theorems we will derive in sections III and IV below. The

properties column lists whether the nonperturbative distribution functions are complex or

real as described in detail in section V, and has implications for strong phase information

in the power corrections. The results in Table I imply the following power counting (for

amplitudes not involving Acc̄),

Re
[

Â(0)
]

∼ αs(µi) , Im
[

Â(0)
]

∼ αs(µi)αs(µh) ,

Re
[

Â(1)
ann

]

∼
[

αs(µh) + α2
s(µi)

] Λ

mb

, Im
[

Â(1)
ann

]

∼ α2
s(µi)

Λ

mb

,

Re
[

Â
(1)
rest

]

∼ αs(µi)
Λ

mb

, Im
[

Â
(1)
rest

]

∼ αs(µi)
Λ

mb

. (10)

To facilitate the discussion we divide the annihilation amplitudes into local annihilation

contributions, A
(1,2)
Lann from the operators Q

(4,5)
i that are insensitive to the jet scale, and into

the remaining annihilation amplitudes, A
(1)
Tann, which are from time-ordered products in

SCETI. Thus,

A(1)
ann = A

(1)
Lann + A

(1)
Tann . (11)

In the literature [7, 8, 10, 11, 31] only local annihilation amplitudes have been studied,

and their matrix elements were parameterized by complex amplitudes. In SCET, Q
(4)
i is a

six-quark operator with one usoft quark, such as

(

d̄sΓsbv
)(

ūn̄,ω2
Γn̄qn̄,ω3

)(

q̄n,ω1
Γnun,ω4

)

, (12)

where other Q
(4)
i operators have different flavor structures. To derive the power counting

for this operator, start with Q(0) ∼ λ6, then note that switching a collinear quark to an

usoft quark costs λ2, and adding a ξn and ξn̄ from a hard gluon also costs λ2. This yields

Q
(4)
i ∼ O(αs(µh)λ

10). In matching onto SCETII we simply replace Q
(4)
i → O

(1L)
i ∼ η7,

with the operator having an identical form. SCETI operators Q
(4)
i that do not have the

form in Eq. (12) exist, but they must be taken in time-ordered products with a subleading

Lagrangian and so do not contribute to A(1). For this reason all local operator contributions

to A(1) contribute in the annihilation terms and not in A
(1)
rest. Since the matching onto

O
(1L)
i is local, it appears as in Fig. IIa with an αs(µh), but with no jet function. Thus

this contribution to A
(1)
ann is of order αs(µh)/αs(µi) Λ/mb relative to A(0). In section III

we construct a complete basis of Q
(4)
i operators and show that their matrix elements are

factorizable in SCET at any order in perturbation theory, and do not generate strong phases

at O(αs(µh)). We prove a similar theorem for chirally enhanced terms in the set Q
(5)
i in

section IV.

The annihilation amplitudes and other Λ/mb suppressed amplitudes also occur through

time-ordered products. Two examples are shown by Figs. IIb and IIc. A subset of these terms

were considered in Ref. [15], including the diagram in Fig. IIc, and the phenomenological

impact of these power corrections was studied. So far no attempt has been made to work
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x ~ 1
mb

µ M1

M2

B

ζ ~ η0

ζ ~ η−2

ζ ~ η2

a)
x ~ 1

mb

2 M1

M2

B

x ~ 1
mb

2
Λ

∆

∆

2
b)

x ~ 1
mb

µ

M1

M2

B

c) Λ( )1/2

FIG. 1: Three types of factorization contributions to annihilation amplitudes which are the same

order in η = ΛQCD/mb. a) shows Q
(4)
i which has ≥ 1 hard gluon and factorizes at the scale

mb. The rapidity parameter, ζ = p−/p+, controls the MS-factorization between soft momenta

(B), n-collinear momenta (M2), and n̄-collinear momenta (M1). b) shows the time-ordered prod-

uct Q
(2)
i L(1)

ξq , which involves factorization at mb and
√

mbΛ. c) shows the time-ordered product

Q
(1)
i [L(1)

ξq ]3, which factorizes at the scale
√

mbΛ and does not need a hard gluon. Graphs a) and b)

are of order αs(µh), while c) is αs(µi)
2.

out the strong phase properties and perturbative orders in αs of the time-ordered products,

a task we take up here. A complete classification of time-ordered products for the leading

power corrections to B → M1M2 is listed in Table I. A subset of these terms contribute

to the annihilation amplitudes. To see which, we note that terms with a Q
(0,1)
i and only

one L(1)
ξq do not contribute to annihilation at either leading or next-to-leading order; the

weak operator is not high enough order in λ to contain an extra n–n̄ pair, and there are

not enough Lξq’s to produce the pair through a soft quark exchange. To rule out these

terms it was important that we are not considering isosinglet final states, which receive

emission annihilation contributions already at leading order. The term Q
(2)
i [L(1)

ξq ]2 does not

contribute to annihilation because we find that all annihilation type contractions are further

power suppressed when matched onto SCETII.

Time-ordered products with either a Q(j≥2) or with three Lξq’s do contribute to annihi-

lation. Examples of these two types are shown in Figs. IIb and IIc. Compared to the local

annihilation amplitude from Q
(4)
i , only the time-ordered product Q(2)L(1)

ξq contributes at the

same order in αs. To demonstrate this, note that for terms with three Lξq’s all graphs have

at least two contracted hard-collinear gluons and so are O(α2
s(µi)). Graphs with a Q(2,3)

9



start with one αs(µh), and will also have an additional αs(µi) from a hard collinear gluon,

unless it remains uncontracted in matching onto SCETII. The uncontracted gluon costs an

additional λ in the matching onto SCETII, so only the time-ordered product Q(2)L(1)
ξq can

have a leading, O(αs(mb)), contribution. Fig. IIb gives an example of a diagram occurring

from this time-ordered product. The resulting amplitude involves the three-parton distribu-

tion, φ3M2
. As shown in Ref. [19] it also involves the twist-2 distribution φ+

B, and its leading

order convolution integrals converge.

The time-ordered products with three Lξq’s are suppressed by α2
s(µi)/αs(µh) relative to

Q
(4)
i , and can be proven to involve a complex nonperturbative function, as labeled in Table I

(an example is shown in Fig. IIc). Thus, if perturbation theory converges rapidly at the

scale µi, then complex annihilation amplitudes are highly suppressed. If perturbation theory

at µi is poorly convergent then the time-ordered product contribution could be important

numerically; comparable or even larger than the leading local annihilation amplitude from

Q
(4)
i . Local annihilation contributions are discussed in detail in sections III and IV, while

strong phase properties of the amplitudes and the time-ordered product contributions are

taken up in section V.

III. LOCAL SIX-QUARK OPERATORS IN SCETII

In this section we construct a complete basis of O
(1L)
i operators in SCETII (the Q

(4)
i

terms in SCETI) and derive a factorization theorem for their contributions to B → M1M2.

To find a complete basis we consider color, spin, and flavor structures that could appear

when matching at any order in αs. Color is simple, the six-quark operator must have

Γs ⊗ Γn̄ ⊗ Γn = 1 ⊗ 1 ⊗ 1. Although operators with a TA in one or more bilinears are

allowed at this order, with the factorization properties of the leading Lagrangians and

〈MnMn̄|O|Bs〉 = 〈0| . . . |Bs〉〈Mn̄| . . . |0〉〈Mn| . . . |0〉, the terms with TA’s give vanishing ma-

trix element between the color singlet hadronic states [1].

For spin we start by looking at chirality which is preserved by the matching at mb. Since

there is no jet function, the soft spectator quark that interpolates for the B-meson must come

from the original operator in HW , and we Fierz this ψ̄ field next to the b-quark field. To be

definite, we take the other ψ̄ field fromHW to go in the n̄ direction (in the SCET Hamiltonian

we sum over n ↔ n̄). This implies that the pair-produced quark is in the n direction. For

O1−4,9,10 the allowed chiral structures induced in SCET by matching are (LH)(LL)(LL) and

(LH)(LR)(RL) where L and R correspond to the handedness for the light quarks in the

bilinears in the order shown in Eq. (12). We cannot assign a handedness to the heavy quark

denoted here byH. ForO5−8 we can have (LH)(RL)(LR), (LH)(RR)(RR), (RH)(LL)(LR),

and (RH)(LR)(RR). A complete basis of Dirac structures for the individual bilinears is:

Γs = γα , Γn̄ = {/n, /nγν
⊥} , Γn = {/̄n, /̄nγµ

⊥} . (13)
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Structures with γ5 are not needed because we have specified the handedness. Here /̄nγµ
⊥

and /nγν
⊥ connect left and right-handed quarks, while /̄n and /n connect quarks of the same

handedness. From the basis in Eq. (13) we must construct an overall scalar using the

tensors vµ, nµ, n̄µ, gµν
⊥ , and εµν

⊥ ≡ εµναβn̄αnβ/2. We take ε0123 = 1, and work in a frame

where vµ
⊥ = 0 and n · v = n̄ · v = 1, which makes the set {n, n̄, v} redundant. For reasons

that will become apparent we pick vµ and (nµ− n̄µ) as our basis in this section. The definite

handedness allows us to turn any contraction involving iεµν
⊥ into a contraction with gµν

⊥ , for

example iεµν
⊥ ξ̄

L
n /̄nγ

⊥
ν ξ

R
n = ξ̄L

n /̄nγ
µ
⊥γ5ξ

R
n = ξ̄L

n /̄nγ
µ
⊥ξ

R
n . The (LH)(LR)(RL) and (LH)(RL)(LR)

structures can be ruled out since

/nγ
µ
⊥PR ⊗ /̄nγ⊥µ PL = /nγ

µ
⊥PL ⊗ /̄nγ⊥µ PR = 0 . (14)

Noting that v/hv = hv this leaves four allowed spin structures

Γs ⊗ Γn̄ ⊗ Γn =
{

1 ⊗ /n⊗ /̄n, (/̄n−/n) ⊗ /n⊗ /̄n, γα
⊥ ⊗ /n⊗ /̄nγ⊥α , γ

α
⊥ ⊗ /nγ⊥α ⊗ /̄n

}

. (15)

The last two structures have q̄sγ
α
⊥bv and vanish identically for B-meson decays (they would

contribute for B∗’s). Furthermore, the local annihilation operators are not sensitive to the

k+ momentum of the soft spectator quark. Thus in taking the matrix element we can use

〈0|q̄sγ5hv|B〉 = −imBfB , 〈0|q̄sγ5(/̄n−/n)hv|B〉 = 0 . (16)

Here fB is the decay constant in the heavy quark limit. The fact that we can match onto

a basis of local SCET operators of the form in Eq. (12) demonstrates to all orders in αs

that the local annihilation contributions are proportional to fB. Using Eq. (16) the second

Dirac structure in Eq. (15) is eliminated, so we do not list operators with ( /̄n−/n) in the soft

bilinears below.

Next we consider the allowed flavor structures. From the operators O1,2 we have

(ūb)(d̄q)(q̄u), (d̄b)(ūq)(q̄u), from O1−6,7γ,8g we have (d̄b)(q̄′q)(q̄q′), (q̄′b)(d̄q)(q̄q′), and O7−10

give a combination of these. Here the qq̄ are the pair produced n and n̄ pair, while the q ′q̄′

appeared in the weak operators. Thus a basis for B-decay operators is

O
(1L)
1d =

2

m3
b

∑

q

[

d̄sPRbv
][

ūn̄,ω2
/nPL qn̄,ω3

][

q̄n,ω1
/̄nPLun,ω4

]

,

O
(1L)
2d =

2

m3
b

∑

q

[

ūsPRbv
][

d̄n̄,ω2
/nPL qn̄,ω3

][

q̄n,ω1
/̄nPLun,ω4

]

,

O
(1L)
3d =

2

m3
b

∑

q,q′

[

d̄sPRbv
][

q̄′n̄,ω2
/nPL qn̄,ω3

][

q̄n,ω1
/̄nPLq

′
n,ω4

]

,

O
(1L)
4d =

2

m3
b

∑

q,q′

[

q̄′sPRbv
][

d̄n̄,ω2
/nPL qn̄,ω3

][

q̄n,ω1
/̄nPLq

′
n,ω4

]

,

O
(1L)
5d =

2

m3
b

∑

q

[

d̄sPRbv
][

ūn̄,ω2
/nPR qn̄,ω3

][

q̄n,ω1
/̄nPR un,ω4

]

,

O
(1L)
6d =

2

m3
b

∑

q

[

ūsPRbv
][

d̄n̄,ω2
/nPR qn̄,ω3

][

q̄n,ω1
/̄nPR un,ω4

]

,
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O
(1L)
7d =

2

m3
b

∑

q,q′

[

d̄sPRbv
][

q̄′n̄,ω2
/nPR qn̄,ω3

][

q̄n,ω1
/̄nPR q

′
n,ω4

]

,

O
(1L)
8d =

2

m3
b

∑

q,q′

[

q̄′sPRbv
][

d̄n̄,ω2
/nPR qn̄,ω3

][

q̄n,ω1
/̄nPR q

′
n,ω4

]

. (17)

Here we integrated out c and b quarks in the sum over flavors, so the remaining sums are over

q = u, d, s and q′ = u, d, s. For the ∆S = 0 effective Hamiltonian with Wilson coefficients

a
(d)
i (ωj) we use the notation

HW =
4GF√

2

∑

n,n̄

∫

[dω1dω2dω3dω4]
∑

i=1−8

ad
i (ωj)O

(1L)
id (ωj) . (18)

To pull the CKM structures out of the SCET Wilson coefficients we write

ad
i (ωj) =

{

λ
(d)
u aiu(ωj) + λ

(d)
c aic(ωj) [i = 1, 2, 3, 4] ,

(λ
(d)
u + λ

(d)
c ) ai(ωj) [i = 5, 6, 7, 8] ,

(19)

where λ
(d)
p = VpbV

∗
pd. Identical definitions for as

i are made by replacing λ
(d)
u → λ

(s)
u and

λ
(d)
c → λ

(s)
c . For i = 5, 6, 7, 8 only penguin operators contribute.

Next we take the B → M1M2 matrix element of HW . The factorization properties of

SCET yield

〈M1M2|O(1L)
1d |B〉 =

2

m3
b

∑

q 〈M1|ūn̄,ω2
/nPL qn̄,ω3

|0〉〈M2|q̄n,ω1
/̄nPLun,ω4

|0〉〈0|d̄sPRbv|B〉

+
{

M1 ↔M2

}

, (20)

with similar results for the other O
(1L)
id terms. Here the {M1 ↔ M2} indicates terms where

the flavor quantum numbers of the M2 state match those of the n̄-collinear operator. The

matrix elements in Eq. (20) are zero for transversely polarized vector mesons in agreement

with the helicity counting in Ref. [31]. Equation (20) can be evaluated using Eq. (16) and

〈Pn1
(p)|q̄(f)

n,ω /̄nPL,R q
(f ′)
n,ω′ |0〉 =

±i fP

2
cPff ′ δnn1

δ(n̄·p−ω+ω′)φP (y) ,

〈Vn1
(p, ε)|q̄(f)

n,ω /̄nPL,R q
(f ′)
n,ω′ |0〉 =

ifVmV n̄·ε
2 n̄·p cV ff ′ δnn1

δ(n̄·p−ω+ω′)φV‖
(y) . (21)

Here f, f ′ are flavor indices, φP (y) and φV‖
(y) are the twist-2 light-cone distribution functions

for pseudoscalars and vectors, y = ω/n̄ · p = ω/mb, and cPff ′ , cV ff ′ are Clebsch-Gordan

coefficients. For the M2 mesons, Pn2
and Vn2

, we have the same equation with n ↔ n̄,

and y → x. Since the PL,R only induce ± signs in the pseudoscalar matrix element, it is

convenient to define

ãd
1 = ad

1 + κad
5 , ãd

2 = ad
2 + κad

6 , ãd
3 = ad

3 + κad
7 , ãd

4 = ad
4 + κad

8 , (22)
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M1M2 H(x, y)

π−π+, π−ρ+, ρ−π+, ρ−ρ+ −ãd
1(x, y) − ãd

4(y, x) − ãd
3(x, y) − ãd

3(y, x)

π−π0, ρ−π0 π−ρ0, ρ−‖ ρ0
‖

1√
2

[

ãd
2(x, y) + ãd

4(x, y) − ãd
2(y, x) − ãd

4(y, x)
]

π0π0, π0ρ0, ρ0ρ0
[

1
2 ãd

1(x, y) + ãd
3(x, y) + 1

2 ãd
4(x, y)

]

+
[

x ↔ y
]

K(∗)−K(∗)+ −ãd
1(x, y) − ãd

3(x, y) − ãd
3(y, x)

K̄(∗)0K(∗)0 ãd
3(x, y) + ãd

3(y, x) + ãd
4(x, y)

K(∗)−K(∗)0 ãd
2(x, y) + ãd

4(x, y)

π−K̄(∗)0, ρ−K̄(∗)0 ãs
2(x, y) + ãs

4(x, y)

π0K̄(∗)−, ρ0K(∗)− − 1√
2

[

ãs
2(x, y) + ãs

4(x, y)
]

π0K̄(∗)0, ρ0K̄(∗)0 1√
2
ãs

4(x, y)

π+K(∗)−, ρ+K(∗)− −ãs
4(x, y)

TABLE II: Hard functions for B̄0 and B− decays for the annihilation amplitude A
(1)
Lann in Eq. (23).

For each pair of mesons in the table, the first is M1 and the second M2.

M1M2 H(x, y)

π−K(∗)+, ρ−K(∗)+ −ãd
4(y, x)

π0K(∗)0, ρ0K(∗)0 1√
2

ãd
4(y, x)

π−π+, π−ρ+, ρ−π+, ρ−ρ+ −ãs
1(x, y) − ãs

3(x, y) − ãs
3(y, x)

π0π0, π0ρ0, ρ0ρ0
[

1
2 ãs

1(x, y) + ãs
3(x, y)

]

+
[

x ↔ y
]

K(∗)−K(∗)+ −ãs
1(x, y) − ãs

4(y, x) − ãs
3(x, y) − ãs

3(y, x)

K̄(∗)0K(∗)0 ãs
3(x, y) + ãs

3(y, x) + ãs
4(y, x)

TABLE III: Hard functions for B̄s decays for the annihilation amplitude A
(1)
Lann in Eq. (23).

with similar definitions for ãs
i . Here κ = +1 for PP , V V , and κ = −1 for PV channels.

Using these results, the O(Λ/mb) local annihilation amplitudes are

A
(1)
Lann(B̄ →M1M2) = −GFfBfM1

fM2√
2

∫ 1

0

dx dyH(x, y)φM1(y)φM2(x) . (23)

Here H(x, y) are perturbatively calculable hard coefficients determined by the SCET Wilson

coefficients ãi(ωj). Results for different final states are listed in Table II for B̄0 and B−

decays, and in Table III for B̄s decays. Our derivation of the local annihilation amplitude

in Eq. (23) is valid to all orders in αs, and provides a proof of factorization for this term.

Matching at tree level, involves computing the O(αs(mb)) graphs in Fig. 2 and comparing

them with matrix elements of the SCET operators Q
(4)
i . Doing so we find that the Wilson
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n

na) b) c) d)

soft

x
x

y
y

FIG. 2: Tree level annihilation graphs for B → M1M2 decays. Here soft, n, n̄ denote quarks that

are soft, n-collinear, and n̄-collinear respectively.

coefficients ai(x, y) are

a1u =
CFπαs(µh)

N2
c

F (x, y)
(

C1 +
3

2
C10

)

, a1c =
CFπαs(µh)

N2
c

F (x, y)
(3

2
C10

)

,

a2u =
CFπαs(µh)

N2
c

F (x, y)
(

C2 +
3

2
C9

)

, a2c =
CFπαs(µh)

N2
c

F (x, y)
(3

2
C9

)

,

a3u =
CFπαs(µh)

N2
c

F (x, y)
(

C4 −
1

2
C10

)

, a3c =
CFπαs(µh)

N2
c

F (x, y)
(

C4 −
1

2
C10

)

,

a4u =
CFπαs(µh)

N2
c

F (x, y)
(

C3 −
1

2
C9

)

, a4c =
CFπαs(µh)

N2
c

F (x, y)
(

C3 −
1

2
C9

)

,

a5 =
CFπαs(µh)

N2
c

F (ȳ, x̄)
(3

2
C8

)

, a6 = 0 ,

a7 =
CFπαs(µh)

N2
c

F (ȳ, x̄)
(

C6 −
1

2
C8

)

, a8 = 0 , (24)

where µh ∼ mb, x̄ = 1 − x, ȳ = 1 − y, with quark momentum fractions x and y as defined

in Eq. (21) and shown in Fig. 2. The function F is

F (x, y) =

[

1

x̄2y
− 1

y(xȳ − 1)

]

ø
+
d(µ−) δ′(x̄)

y
, (25)

where the ø-notation and term involving the Wilson coefficient d(µ−) are discussed below.

The function F (ȳ, x̄) will involve d(µ+). Note that the coefficients a3u,3c,4u,4c,7,8 are polluted

in the sense of Ref. [5], meaning that O(α2
s) matching results proportional to the large

coefficients C1,2 could compete numerically. The others are not polluted: a1u,2u involve C1,2

at O(αs), while a1c,2c,5,6 only get contributions from electroweak penguins. Our results for the

diagrams in Fig. 2 agree with Refs. [7, 10]. This includes the appearance of the combinations

of momentum fractions in the functions F (x, y) and F (ȳ, x̄), up to ø-distribution and d-term.

For later convenience we define moment parameters which convolute the hard coefficients

with the meson distributions

βM1M2

iu =

∫ 1

0

dx dy [aiu(x, y)+κai+4(x, y)]φ
M1(y)φM2(x) ,

βM1M2

ic =

∫ 1

0

dx dy [aic(x, y)+κai+4(x, y)]φ
M1(y)φM2(x) . (26)
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In Eq. (25) the subscript ø denotes the fact that singular terms in convolution integrals

are finite in SCET due to the MS-factorization which involves convolution integrals such as

∑

x, x′ 6=0

∫

dxr dx
′
r δ(1−x−x′)

φM(x, x′, µ)

x̄2
, (27)

where x(′) and x
(′)
r correspond to label and residual momenta [18]. Implementing x 6= 0 and

x′ 6= 0 in the MS-factorization scheme requires zero-bin subtractions and divergences in the

rapidity must also be regulated. The δ-function sets x′ = 1 − x, so x′ 6= 0 enforces x 6= 1.

With the usual assumption that φM(x) vanishes at its endpoints with a power-like fall-off

slower than quadratic, only integrals over 1/x̄2 in F (x, y) and 1/y2 in F (ȳ, x̄) require special

care,

〈

x̄−2
〉M

=

∫ 1

0

dx
φM(x, µ)

(x̄2)ø
,

〈

y−2
〉M

=

∫ 1

0

dy
φM(x, µ)

(y2)ø
. (28)

The resulting moments 〈x̄−2〉M and 〈y−2〉M should be considered hadronic parameters, for

which we use the minimal subtraction scheme. Their value depends on µ and µ± and are

scheme dependent beyond the usual MS scheme for φM . This can be viewed as a modification

of the distribution function, φM(x, µ) → φM(x, µ, µ−), where the x−2 moment of φM(x, µ, µ−)

converges. In order to derive a result that makes it easy to find a model for these moments

we follow Ref. [18] and assume there is no interference between the rapidity renormalization

and invariant mass renormalization, which gives

〈

x̄−2
〉M

=

∫ 1

0

dx
φM(x, µ) + x̄φ′

M(1, µ)

x̄2
− φ′

M(1, µ) ln
( n̄·pM

µ−

)

,

〈

y−2
〉M

=

∫ 1

0

dy
φM(y, µ)− yφ′

M(0, µ)

y2
+ φ′

M(0, µ) ln
(n·pM

µ+

)

. (29)

Here φ′
M(1) is generated by a zero-bin subtraction which avoids double counting the region

where x̄ → 0. When x̄ → 0 the corresponding outgoing quark becomes soft, and this

contribution is taken into account by a time-ordered product term in Table I. To obtain

the renormalized 〈x̄−2〉M result in Eq. (29) requires 1/εUV counterterms which correspond to

operators with the n̄-collinear bilinears in Eq. (17), [ūn̄,ω2
/nγ5qn̄,ω3

] etc., which can be written

as [18]

Oct =
∂

∂ω3

(ξ̄n̄W )ω2
/nγ5(W

†ξn̄)ω3

∣

∣

∣

∣

ω3→0

. (30)

The matrix element of these terms is taken prior to performing the partial derivative and

the limit ω3 → 0, and gives φ′
M(1, µ). These terms do not have a ω3 6= 0 restriction, and

consistency of the renormalization procedure used to obtain Eq. (29) demands that the

fields here are n̄-collinear. An analogous set of terms are required for φ′
M(0, µ). These terms

are real at any scale, which follows from the requirements discussed in section V for an
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SCETII operator to be able to generate a physical strong phase. The dependences on µ± in

Eq. (29) are canceled by the leading dependences on these scales, d(µ−) = ln(p−M/µ−) + κ

and d(µ+) = ln(p+
M/µ+)+κ, which appeared in Eq. (25). Here κ can be fixed by a matching

computation. The d(µ±) correspond to the renormalized coefficients of the Oct, and must

be included for consistency at this order [32]. In the rough numerical analysis we do later

on, we will treat the contributions from these coefficients as part of the uncertainty.

Note that in deriving the result in Eq. (25) we have dropped iε factors from the propa-

gators. If these terms were kept, the second term in F (x, y) would be

1

(y + iε) (xȳ − 1 + iε)
. (31)

The iε’s yield imaginary contributions with δ(y) and δ(xȳ − 1). They contribute for y = 0

or for x = ȳ = 1, so these contributions occur in zero-bins, which are excluded from the

convolution integrals in the factorization theorem we have derived with SCET. The zero-bins

correspond to degrees of freedom that are soft, and including these regions would induce

a double counting, so the correct factorization theorem in QCD does not include them.

Factors analogous to x 6= 0 and x′ 6= 0 in Eq. (27) ensure that there is no contribution

to the integral from any zero-bin momentum, and we find that the δ-function terms give

zero. This remains true for more singular distributions yielding δ(n)(x), and so also applies

to the first term in F (x, y). Thus it is correct to drop the iε factors from the start. This

should be compared with the approach in KLS where the iε factors generate a strong phase

from the tree level diagrams from a k2
⊥ dependent δ-function. In our derivation any such k2

⊥
imaginary terms could only occur at higher orders in Λ/mb.

Thus at order αs(µh) the lowest order annihilation factorization theorem is determined

by the convolutions

∫ 1

0

dx dy F (x, y)φM1(y)φM2(x) (32)

=
〈

x̄−2
〉M2

〈

y−1
〉M1 −

〈

[y(xȳ − 1)]−1
〉M1M2 + d(µ−)φ′

M2
(1)

〈

y−1
〉M1 ,

∫ 1

0

dx dy F (ȳ, x̄)φM1(y)φM2(x)

=
〈

y−2
〉M1

〈

x̄−1
〉M2 −

〈

[x̄(xȳ − 1)]−1
〉M1M2 − d(µ+)φ′

M1
(0)

〈

x̄−1
〉M2

.

Here we use Eq. (29), and

〈y−1〉M =

∫ 1

0

dy
φM(y, µ)

y
, 〈f(x, y)〉M1M2 =

∫ 1

0

dx

∫ 1

0

dy f(x, y)φM1(y, µ)φM2(x, µ). (33)

These results do not have a complex phase because the right-hand side of Eq. (32) is real.

We have shown that the convolution formula in Eq. (23) for the local contributions O
(1L)
i

yields a well-defined annihilation amplitude. At order αs(mb) the result is real, so A
(1)
Lann is
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real up to perturbative corrections. Order α2
s(mb) corrections to the ai will produce pertur-

bative strong phases in A
(1)
Lann. Further discussion on strong phases is given in section V,

while phenomenological implications are taken up in section VI.

IV. CHIRALLY ENHANCED LOCAL ANNIHILATION CONTRIBUTIONS

At order αs(µh)µMΛ/m2
b there are contributions from chirally enhanced operators that

could compete with the αs(µh)Λ/mb terms [10]. In SCET we define these contributions

as the set of SCETII operators analogous to O
(1L)
i but with an extra /P⊥ between collinear

quarks fields. We start by constructing a complete basis for local operators at this order

with a Pβ
⊥, calling them O

(2L)
i . These operators have the same color and flavor structures

as Eq. (17). The chiral structures induced from the operators O1−10 and the initial basis

of Dirac structures shown in Eq. (13) are also the same, and allow us to eliminate many

possibilities.

The complete set of Dirac structures from matching the operators O1−4,9,10 include

Γs ⊗ Γn̄ ⊗ ΓnPβ
⊥ =

{

γ⊥β ⊗ /n⊗ /̄nPβ
⊥, γ

α
⊥ ⊗ /nγ⊥α ⊗ /̄nγ⊥β Pβ

⊥,

γ⊥β ⊗ /nγα
⊥ ⊗ /̄nγ⊥α Pβ

⊥, γ
α
⊥ ⊗ /nγ⊥β ⊗ /̄nγ⊥α Pβ

⊥
}

, (34)

plus the analogous set Γs⊗Γn̄Pβ
⊥⊗Γn. Our basis does not include operators with P †

⊥, because

the mesons Mi have zero ⊥-momenta, so we can integrate these terms by parts to put them

in the form in Eq. (34). The third term in Eq. (34) has chiral structure (LH)(LR)(RL) and

vanishes by Eq. (14). The terms in Eq. (34) all have q̄sγ
µ
⊥bv, and so do not contribute for

B-decays. The same holds if we replace Pβ
⊥ by igBβ

⊥. Thus, at any order in perturbation

theory the only O(η8) local operator contributions from O1−4,9,10 are those with a Dµ
s in the

soft bilinear.

For O5−8 we have the structures in Eq. (34), and when the q′ flavor is a soft quark with

PL ⊗ PR Dirac structure from Oi we also have

Γs ⊗ Γn̄ ⊗ ΓnPβ
⊥ =

{

1 ⊗ /n⊗ /̄n /P⊥, 1 ⊗ /nγ⊥β ⊗ /̄nPβ
⊥
}

,

Γs ⊗ Γn̄Pβ
⊥ ⊗ Γn =

{

1 ⊗ /nPβ
⊥ ⊗ /̄nγ⊥β , 1 ⊗ /n /P⊥ ⊗ /̄n

}

, (35)

plus operators with 1 replaced by /̄n − /n, which vanish due to Eq. (16). The operators in

Eq. (35) contribute to B-decays. In particular, they yield both transverse and longitudinal
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polarization in B → V V . A complete basis for the local O(η8) operators with one Pβ
⊥ is

O
(2L)
1d =

1

m4
b

∑

q,q′

[

q̄′sPLbv
][

d̄n̄,ω2
/nPL qn̄,ω3

][

q̄n,ω1
/̄n /P⊥PR q

′
n,ω4

]

,

O
(2L)
2d =

1

m4
b

∑

q,q′

[

q̄′sPLbv
][

d̄n̄,ω2
/n /P⊥PR qn̄,ω3

][

q̄n,ω1
/̄nPR q

′
n,ω4

]

,

O
(2L)
3d =

1

m4
b

∑

q,q′

[

q̄′sPLbv
][

d̄n̄,ω2
/nγ⊥β PR qn̄,ω3

][

q̄n,ω1
/̄nPR Pβ

⊥q
′
n,ω4

]

,

O
(2L)
4d =

1

m4
b

∑

q,q′

[

q̄′sPLbv
][

d̄n̄,ω2
/nPL Pβ

⊥qn̄,ω3

][

q̄n,ω1
/̄nγ⊥β PR q

′
n,ω4

]

,

O
(2L)
5d−8d = O

(2L)
1d−4d

3eq′

2
, (36)

with sums over q, q′ = u, d, s. Note that the flavor structure of these operators is identical to

O
(1L)
4d . For the the electroweak penguin operators O7,8 an additional four operators O

(2L)
5d−8d

are needed, which have the same spin-flavor structures as O
(2L)
1d−4d, but with an eq′ charge

factor,
∑

q,q′ 3eq′/2. Again we caution that we have not considered the complete set of local

Λ2/m2
b operators, since our basis does not include three-body terms with an igBµ

⊥, nor terms

with an extra Ds soft covariant derivative. We have also not considered O(µM1
µM2

Λ/m3
b)

terms. All these terms are real, and it would be interesting to calculate them in the future.

The weak Hamiltonian with Wilson coefficients for the operators O
(2L)
id is

HW =
4GF√

2
(λ(d)

u + λ(d)
c )

∑

n,n̄

∫

[dω1dω2dω3dω4]
∑

i=1−8

aχ
i (ωj)O

(2L)
id (ωj) . (37)

Since only the penguin operators O5−8 contribute, we pulled out the common CKM factor.

Matching at tree level onto the operators O
(2L)
id by keeping terms linear in the ⊥-momenta

in Fig. 2, we find

aχ
1 (x, y) =

4CFπαs(µh)

Nc

[

(

C6 +
C5

Nc

)

F1(x, y) +
C5

Nc
F2(x, y)

]

ø
,

aχ
2 (x, y) =

4CFπαs(µh)

Nc

[

−
(

C6 +
C5

Nc

)

F1(ȳ, x̄) +
C5

Nc
F2(ȳ, x̄)

]

ø
,

aχ
3 (x, y) =

4CFπαs(µh)

Nc

[

−
(

C6 +
C5

Nc

)

F3(x, y) −
C5

Nc

F2(x, y)

]

ø
,

aχ
4 (x, y) =

4CFπαs(µh)

Nc

[

(

C6 +
C5

Nc

)

F3(x, y) −
C5

Nc

F2(ȳ, x̄)

]

ø
,

aχ
5−8(x, y) = aχ

1−4(x, y) with C5 → C7, C6 → C8 , (38)
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where x and y are defined in Fig. 2 and

F1(x, y) =

[

1 + x̄

y2 ȳ x̄2

]

ø
+ d1(µ−)δ′(x̄)

[

1

y2ȳ

]

ø
+ d2(µ+)δ′(y)

[

1 + x̄

x̄2

]

ø
+ d3(µ±)δ′(x̄)δ′(y) ,

F2(x, y) =

[

1

(1 − xȳ)x̄y2

]

ø
,

F3(x, y) =

[

1

y2 x̄2

]

ø
+ d4(µ−)δ′(x̄)

[

1

y2

]

ø
+ d5(µ+)δ′(y)

[

1

x̄2

]

ø
+ d6(µ±)δ′(x̄)δ′(y) . (39)

Here d1−6 play the same role as d in Eq. (25). The coefficients aχ
1−8 are polluted in the

sense of Ref. [5], meaning that O(α2
s) matching results proportional to the large coefficients

C1,2 could compete numerically. This makes the computation of these O(α2
s) corrections

important.

For decays involving a pseudoscalar in the final state, the operators O
(2L)
1d and O

(2L)
2d

generate so-called “chirally enhanced” terms, proportional to µM . Time-ordered products

of SCETI operators also generate µM terms, but only at O(α2
s). It is not clear that the

chirally enhanced terms are larger numerically than other power corrections. In particular

three-body distributions from operators with ξ̄n(igBµ
⊥)Γξn are parametrically (and some-

times numerically as well) of similar importance [34]. The distributions are related by [33]

fPµP

[

φP ′
σ (x) +

(2x− 1)

x(1 − x)
φP

σ (x)

]

= −6f3P

[

G
(t)
Pz

(x)

x
+
G

(t)
Py

(x)

1 − x

]

,

fPµP

[

φP
p (x) − 1

6x(1 − x)
φP

σ (x)

]

= −f3P

[

G
(t)
Pz

(x)

x
−
G

(t)
Py

(x)

1 − x

]

, (40)

where G
(t)
Pz

(x) and G
(t)
Py

(x) are integrals over the three-parton distribution, φ3P . These re-

lations allow certain chirally enhanced terms with µPfP to be traded for non-chirally en-

hanced terms with f3P . Thus it is clear that the chirally enhanced terms dominate over the

three-body operators only in the special case when the linear combinations in the square

brackets on the left-hand side of Eq. (40) are numerically suppressed. Solving with these

linear combinations set to zero determines the two-body distributions φP
σ and φP

p in the

Wandzura-Wilczek (WW) approximation [35]. Thus in order to uniquely specify the µP

dependent terms, the WW approximation was needed in Ref. [10].

In contrast, in SCET we are not forced to assume a numerical dominance of the µP

terms to uniquely identify them. We can instead define local chirally enhanced annihilation

terms to be the matrix elements of the operators O
(2L)
1d and O

(2L)
2d for final states with a

pseudoscalar. With a minimal basis of operators, the matrix elements of these terms are

unique. The remaining terms involve other operators, and we postpone discussing them to

future work. We proceed to work out the factorization formula for O
(2L)
1d and O

(2L)
2d with

steps analogous to Eqs. (20) through (23). To take the matrix element we need Eq. (21)

and the result

〈Pn1
(p)| q̄(f)

n,ω /̄n /P⊥PR q
(f ′)
n,ω′ |0〉 = − i

6
cPff ′ δnn1

δ(n̄·p− ω + ω′) fPµP φ
P
pp(y) . (41)
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Here cPff ′ are Clebsch-Gordan factors, y = ω/n̄ · p, and we have not written the ω ′ depen-

dence in the distribution due to the δ-function. The distribution φP
pp(y) is related to more

standard twist-3 two-parton and three-parton distributions by [18, 33]

φP
pp(y) = 3y

[

φP
p (y) +

1

6
φP ′

σ (y) +
2 f3P

fPµP

∫

dy′

y′
φ3P (y − y′, y)

]

. (42)

Note that in µPφ
P
pp, the φ3P term does not have the chiral enhancement factor µP . There will

be additional terms proportional to φ3P generated by three-body operators. We choose the

φP
pp and φ3P basis of twist-three distributions, keeping in mind the relations in Eq. (40). For

decays involving one or more pseudoscalars in the final state we find the chirally enhanced

local annihilation amplitudes

A
(2)
Lann = −GFfBfM1

fM2

6
√

2mb

(λ(d)
u + λ(d)

c )

∫ 1

0

dx dy
[

µM1
Hχ1(x, y)φ

M1

pp (y)φM2(x)

+ µM2
Hχ2(x, y)φ

M1(y)φM2

pp (x)
]

, (43)

where µρ = µK∗ = 0 and using isospin µπ = m2
π/(mu + md), µK = m2

K/(ms + mu) =

m2
K/(ms +md). Terms with φ3P or terms of the same order with a Dµ

s in their soft matrix

elements have not been included in our A
(2)
Lann, though they also give local annihilation con-

tributions to A(2). Furthermore, we focused on the pseudoscalar matrix element in Eq. (41)

to derive the contribution in Eq. (43). The O
(2L)
1d,2d operators in Eq. (36) will contribute ad-

ditional terms for decays to longitudinal vector mesons involving distributions h
(s)′

‖ and h
(t)
‖

(our notation for these distributions follows Ref. [33]). The operators O
(2L)
3d,4d will produce

decays to two transverse vectors with distributions from among φ⊥, F , V, A. It would be

straightforward to work out a factorization theorem from the operators O
(2L)
id in terms of

these distributions, though we will not do so here.

Results for the hard coefficients Hχ1 and Hχ2 in terms of the Wilson coefficients aχ
i are

given in Table IV for B̄0 and B− decays and in Table V for B̄s decays. Note that there are

no chirally enhanced annihilation contributions for the B̄s → ππ or B̄s → ρπ channels, so

Bs decays could potentially be used to separate annihilation contributions from A
(1)
Lann and

A
(2)
Lann. For later convenience we define moment parameters

βM1M2

χ1,χ5 =
1

6

∫ 1

0

dx dy aχ
1,5(x, y)φ

M1

pp (y)φM2(x) ,

βM1M2

χ2,χ6 =
1

6

∫ 1

0

dx dy aχ
2,6(x, y)φ

M1(y)φM2

pp (x) . (44)

Neglecting φ3P in the WW approximation yields φP
pp(y) = 6y(1 − y). At order αs(µh) our

results for βχ1 and βχ2, taken with the WW approximation, agree with the convolutions

derived in this limit in Refs. [10, 11]. Ignoring the ø-distributions we would find that these

convolution integrals diverge. The zero-bin avoided double counting in our convolutions,

and yields a finite and real result for the chirally enhanced annihilation amplitude.
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M1M2 Hχ1(x, y) Hχ2(x, y)

π0π−, ρ0π− π0ρ− − 1√
2
aχ

1 (x, y) − 1√
2

aχ
5 (x, y) 1√

2
aχ

2 (x, y) + 1√
2
aχ

6 (x, y)

π−π0, ρ−π0 π−ρ0 1√
2
aχ

1 (x, y) + 1√
2
aχ

5 (x, y) − 1√
2
aχ

2 (x, y) − 1√
2
aχ

6 (x, y)

π+π−, π+ρ−, ρ+π− −aχ
1 (x, y) + 1

2aχ
5 (x, y) aχ

2 (x, y) − 1
2aχ

6 (x, y)

π0π0, ρ0π0 aχ
1 (x, y) − 1

2 aχ
5 (x, y) −aχ

2 (x, y) + 1
2 aχ

6 (x, y)

K−K(∗)+, K(∗)−K+ — —

K̄0K(∗)0, K̄(∗)0K0 aχ
1 (x, y) − 1

2aχ
5 (x, y) −aχ

2 (x, y) + 1
2aχ

6 (x, y)

K−K(∗)0, K(∗)−K0 aχ
1 (x, y) + aχ

5 (x, y) −aχ
2 (x, y) − aχ

6 (x, y)

π−K̄(∗)0, ρ−K̄0 aχ
1 (x, y) + aχ

5 (x, y) −aχ
2 (x, y) − aχ

6 (x, y)

π0K(∗)−, ρ0K− − 1√
2
aχ

1 (x, y) − 1√
2

aχ
5 (x, y) 1√

2
aχ

2 (x, y) + 1√
2
aχ

6 (x, y)

π0K̄(∗)0, ρ0K̄0 1√
2
aχ

1 (x, y) − 1
2
√

2
aχ

5 (x, y) − 1√
2

aχ
2 (x, y) + 1

2
√

2
aχ

6 (x, y)

π+K(∗)−, ρ+K− −aχ
1 (x, y) + 1

2aχ
5 (x, y) aχ

2 (x, y) − 1
2aχ

6 (x, y)

TABLE IV: Hard functions for the annihilation amplitude A
(2)
Lann in Eq. (43) for B̄0 and B− decays.

The result for B− → π0π− is obtained by adding the results using the entries from the first two

rows, and so vanishes in the isospin limit.

M1M2 Hχ1(x, y) Hχ2(x, y)

K+π−, K∗+π−, K+ρ− −aχ
1 (x, y) + 1

2aχ
5 (x, y) aχ

2 (x, y) − 1
2aχ

6 (x, y)

K0π0, K∗0π0, K0ρ0 1√
2
aχ

1 (x, y) − 1
2
√

2
aχ

5 (x, y) − 1√
2

aχ
2 (x, y) + 1

2
√

2
aχ

6 (x, y)

K+K−, K∗+K−, K+K∗− −aχ
1 (x, y) + 1

2aχ
5 (x, y) aχ

2 (x, y) − 1
2aχ

6 (x, y)

K0K̄0, K∗0K̄0 , K0K̄∗0 aχ
1 (x, y) − 1

2aχ
5 (x, y) −aχ

2 (x, y) + 1
2aχ

6 (x, y)

TABLE V: Hard functions for the annihilation amplitude A
(2)
Lann in Eq. (43) for B̄s decays.

Let’s see how the convolutions work out at order αs(µh) following Ref. [18]. We need two

standard convolutions involving zero-bin subtractions,

∫ 1

0

dx dy

[

1 + x̄

y2 ȳ x̄2

]

ø
φM1

pp (y)φM2(x) =
〈

y−2 ȳ−1
〉M1

pp

(

〈

x̄−2
〉M2 +

〈

x̄−1
〉M2

)

,

∫ 1

0

dx dy

[

1 + y

y2 x x̄2

]

ø
φM1(y)φM2

pp (x) =
〈

x̄−2 x−1
〉M2

pp

(

〈

y−2
〉M1 +

〈

y−1
〉M1

)

. (45)

Here we model the y−2, y−1 moments as in Eq. (29) and Eq. (33), and for the remaining

convolution we again assume there is no interference between the rapidity renormalization

and invariant mass renormalization to find

〈

y−2 ȳ−1
〉M1

pp
=

∫ 1

0

dy

[

φM1

pp (y, µ)

y2(1−y) −
yφM1 ′

pp (0, µ)

y2

]

+ φM1′
pp (0, µ) ln

(n·pM1

µ+

)

. (46)
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The µ± dependence is canceled by tree level logarithmic dependence in the coefficients,

d1,4(µ−) = ln(p−M/µ−), d2,5(µ+) = ln(p+
M/µ+), d3,6(µ±) = ln(p−M/µ−) ln(p+

M/µ+). The kernels

in Eq. (38) also involve two more complicated convolutions that are derived in Appendix A,

〈

[(1 − xȳ)x̄y2]−1
〉M1M2

pp
=

∫ 1

0

dx dy

[

1

(1 − xȳ)x̄y2

]

ø
φM1

pp (y)φM2(x)

=

∫ 1

0

dx

∫ 1

0

dy

[

φM1

pp (y)φM2(x)

(x̄ + y − x̄y)x̄y2
−
φM1 ′

pp (0)φM2(x)

(x̄ + y)x̄y

]

− φM1 ′
pp (0)

∫ 1

0

dx
φM2(x) ln(2 − x)

(1 − x)2
,

〈

[(1 − xȳ)x̄2y]−1
〉M2M1

pp
=

∫ 1

0

dx dy

[

1

(1 − xȳ)x̄2y

]

ø
φM1(y)φM2

pp (x) (47)

=

∫ 1

0

dy

∫ 1

0

dx

[

φM1(y)φM2

pp (x)

(x̄ + y − x̄y)x̄2y
+
φM1(y)φM2 ′

pp (1)

(x̄ + y)x̄y

]

+ φM2 ′
pp (1)

∫ 1

0

dy
φM1(y) ln(1 + y)

y2
.

As promised, the minimal subtraction scheme yields a well defined result for A
(2)
Lann. The

scheme dependence cancels order by order in αs between the matrix element and perturbative

corrections to the kernels obtained by matching. In any scheme the result at order αs(µh)

is real.

V. GENERATING STRONG PHASES

In this section we derive results for the order at which strong phases occur in the power

suppressed amplitudes A(1). It is convenient to classify complex contributions to the B →
M1M2 amplitudes according to the distance scale at which they are generated. We use

the terminology hard, jet, and nonperturbative to refer to imaginary contributions from

the scales mb,
√
mbΛ, and Λ2 respectively. We will not attempt to classify strong phases

generated by charm loops, since a complete understanding of factorization for these terms

order by order in a power counting expansion is not yet available.

For a matrix element to have a physical complex phase it must contain information about

both final state mesons. Generically, terms in the factorized power expansion of B →M1M2

amplitudes involve only vacuum to meson matrix elements, so strong phase information can

be contained in the Wilson coefficients or the factorized operators, but not in the states. This

provides tight constraints on the source of strong phases. Nonperturbative strong phases will

occur if matrix elements of these factorized operators give complex distribution functions.

A sufficient condition to generate a nonperturbative phase, is to have a factorized operator

that is sensitive to the directions of two or more final state mesons [3], information that can

be carried by Wilson lines. Physically, this is a manifestation of soft rescattering of final

states. In processes like ours where soft-collinear and collinear(n)-collinear(n̄) factorization

are relevant, and there is only one hadron in any given light cone direction, this criterion

implies that all strong phases reside in the soft matrix elements, where the directional

information from collinear hadrons is retained in soft Wilson lines, Sr, with direction rµ.
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Since S†
rSr = 1 these Wilson lines often cancel, but for many of the power suppressed terms

listed in Table I the cancellation is not complete. This mechanism for generating a strong

phase was first observed for B̄0 → D0π0 [3], where a nonperturbative soft matrix element

occurs through four-quark operators depending on n and v ′ (which are null and time-like

vectors for the final state light and charmed mesons, respectively).

For the B → M1M2 decays with two energetic light mesons, a nonperturbative strong

phase requires a soft matrix element depending on the Sn and Sn̄ Wilson lines in SCETII.

The simplest way to obtain the Wilson lines for the soft operators is to match SCETI onto

SCETII [27]. In SCETI one first uses the decoupling field redefinition on collinear fields [16],

ξn → Ynξn, ξn̄ → Yn̄ξn̄, An → YnAnY
†
n and An̄ → Yn̄An̄Y

†
n̄ , which generates the Wilson lines

and factorizes usoft and collinear fields. The fields of a given type are then grouped together

by Fierz rearrangements. Matching the resulting operators or time-ordered products onto

SCETII gives Yr → Sr, and we can read off which soft Wilson lines are present. Because

of the properties of the subleading SCETI operators, we will not have an Sn and Sn̄ in the

final SCETII operator unless we have a subleading SCETI Lagrangian with an n-collinear

field and usoft fields, and one with n̄-collinear fields and usoft fields. We used this property

to determine which entries are real or complex, and listed the results in the last column of

Table I. The complex entries with multiple L(j)
ξq ’s [36] also have at least two hard-collinear

gluons, and so generate contributions that start at αs(µi)
2 when matched onto SCETII.

To determine the perturbative order of the complex contributions, we must also classify

which hard and jet coefficients give complex phases. In general any hard coefficient generated

by matching at ≥ 1 loop will give imaginary contributions, since these loops involve fields for

both final state mesons, as pointed out for the general case in Ref. [2] and for charm loops in

Ref. [37]. Since all leading order contributions in Table I have at least one αs(µi), the hard

imaginary contributions for A(0) are O[αs(µi)αs(µh)/π]. At order Λ/mb all annihilation

contributions but Q
(4)
i have at least one αs(µi), and for these terms the hard complex

contributions involve αs(µi)αs(µh) and thus are smaller than the nonperturbative terms

proportional to αs(µi)
2. For Q

(4)
i the amplitude is real at the leading perturbative order,

αs(µh), as demonstrated in section III, and so hard complex contributions start at α2
s(µh).

In contrast for the amplitude A
(1)
rest a complex amplitude is generated at order αs(µi) Λ/mb,

which is only suppressed by Λ/mb compared to A(0).

Finally, we should examine complex contributions from the jet scale. At leading order

there is a unique jet function J [5]. J also contributes to the heavy-to-light form factors and

only knows about the n-collinear direction. Thus A(0) does not get imaginary contributions

at any order in the αs(µi) expansion (which has been demonstrated explicitly to α2
s(µi) [38]).

At next-to-leading order in the power expansion, there is no known relation of the power

suppressed jet functions with analogous jet functions in the form factors. However, the

subleading jet functions also depend only on one collinear direction, and do not carry in-

formation about both final state mesons that could generate a physical strong phase. We
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FIG. 3: Graphs which generate a strong phase in lowest order matching of SCETI operators onto

SCETII: a) has a Q(1), two L(1)
ξn1

q, and one L(1)
ξn2

q and contributes to the annihilation amplitude

at O(α2
s(µi)); and b) has a Q(1), one L(1)

ξn1
q, and one L(2)

ξn2
ξn2

and contributes to non-annihilation

amplitudes at O(αs(µi)). Dashed quark lines are n1 or n2 collinear, and solid quark lines are soft.

demonstrate this fact more explicitly by examining the calculation at O(αs(µi)), which is

sufficient to see that the amplitudes are real up to the order where a nonperturbative phase

first occurs. At this order the jet functions are generated by matching tree level SCETI

diagrams onto SCETII. A typical example is

1

(x+ iε) (k+ + iε)
, (48)

where x is a momentum fraction that will be convolved with a collinear distribution function,

and the k+ will be convolved with a soft distribution function. These jet functions are real

if and only if we can drop the iε factors. However, just as in section III, the iε terms

can be dropped because the zero-bin subtractions [18] ensure that this does not change the

convolution.4 Thus factorization gives real O(αs(µi)) jet functions.

This demonstrates that complex contributions in the power suppressed annihilation am-

plitudes are suppressed,

Im

[

A
(1)
ann

A(0)

]

= O
(

αs(µi)

π

Λ

mb

)

+ O
(

Λ2

m2
b

)

. (49)

On general grounds one might have expected O(Λ/mb) suppressed strong phases, which we

have demonstrated are absent in A
(1)
ann, though they do occur in A

(1)
rest.

We close this section by giving two examples of time-ordered products generating the

nonperturbative strong phases discussed above. We consider a time-ordered product with

three L(1)
ξq insertions contributing to annihilation. When matching onto SCETII we integrate

out the hard-collinear modes, leading to an eight-quark operator. Figure 3a shows the order

α2
s(µi) contribution to this matching. The soft quark lines remain open as their contraction

4 A equivalent physical argument for dropping the iε factors was given in Ref. [3], where it was needed to

prove that certain long-distance contributions are absent in color suppressed decays.
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leads to an on-shell line which must be treated nonpertrubatively. The resulting SCETII

operator has the generic form

OII = J(n2 · p, n1 · l, n1 · r, n2 · q, n1 · k) (50)

× (q̄sSn1
)n1·r Γ(1)(S†

n2
qs)n2·q (q̄sSn2

)n1·k Γ(2)(S†
n1
hv) (q̄n1,lΓ

(3)qn1,l′) (q̄n2,p′Γ
(4)qn2,p)

where we use the shorthand subscript notation, (S†
ni
qs)ni·q ≡ [δ(ni·q− ni·P)S†

ni
qs]. We took

the jet directions to be n1 and n2, rather than n and n̄, to emphasize that the soft operator is

sensitive to the relative directions of the jets. The functions Si shown in Table I are defined

by the matrix element of this type of operator

Si(n1 ·k, n1 ·r, n2 ·q, ) ≡ 〈0|(q̄sSn1
)n1·r Γ

(1)
i (S†

n2
qs)n2·q (q̄sSn2

)n1·k Γ
(2)
i (S†

n1
hv)|B(v)〉 , (51)

where i runs over color, Dirac, and flavor structures. To count the factors of π in these

amplitudes, note that the hard-collinear contractions give g4, and that the matrix element

of the resulting four-quark operator, 〈0|(q̄ . . . q)(q̄ . . . bv)|B〉, is suppressed by 1/(4π)2 rel-

ative to 〈0|(q̄ . . . bv)|B〉. (The four-quark operator has an extra loop with no extra cou-

plings.) This demonstrates that nonperturbative complex contributions first occur at order

[αs(µi)
2/π](Λ/mb), i.e., suppressed by [αs(µi)/π](Λ/mb) compared to the leading amplitudes.

The phases arising from the type of matrix element shown in Eq. (51) play a crucial role

in explaining the observed strong phases which arise in color suppressed decays [3]. Their

resulting operators predict the equality of amplitudes and strong phases between decays

involving D and D∗ mesons and have been confirmed in the data [39]. This type of dia-

grams also have long-distance contributions of the same order, which arise from time-ordered

products in SCETII and can also be complex. To see this note that the hard-collinear quark

propagator in Fig. 3a could also be on-shell (i.e., have O(Λ2) virtuality), in which case it

would remain open until the matrix element is taken at the low scale. By opening that line

we see that this contribution corresponds to the time-ordered product of a four-quark op-

erator and a six-quark operator, both of which are generated when matching onto SCETII.

A long-distance part is the same order in αs(µi) and does not change our conclusions about

these terms. In Fig. 3b we show a non-annihilation contribution to Â
(1)
rest which is of order

αs(µi)Λ/mb. This term is generated by the time-ordered product of Q(1), an insertion of the

n1-collinear L(1)
ξq , and an operator with n2-collinear quarks and usoft gluons,

L(2)
ξξ = (ξ̄nW )Y †

n2
iD/⊥us iD/

⊥
usYn2

/̄n

2P̄ (W †ξn) . (52)

VI. APPLICATIONS AND CONCLUSION

A. Phenomenological Implications

To understand the implications of the experimental data, it is crucial to know which

contributions to the B → M1M2 amplitudes can be complex. The best sensitivity to non-
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SM physics is via interference phenomena, where new interactions enter linearly (instead of

quadratically), such as CP -violating observables. The sensitivity to such effects depends

on how well we understand the dominant and subdominant SM amplitudes, including their

strong phases. The existence of strong phases in B decays is experimentally well established

(e.g., the B → Dπ and B → ππ rates, the CP asymmetry AK+π−, the transversity analysis

in B → J/ψK∗, etc.).

One example of how strong phase information can be useful is the method for determining

γ from B → ππ proposed in Ref. [40]. The method uses isospin, the factorization prediction

that Im(C/T ) ∼ O
(

αs(mb),Λ/mb

)

, and does not require data on the poorly measured direct

CP asymmetry Cπ0π0.5 The phases in A(0) at αs(mb)αs(µi) are calculable and partially

known [2, 41]. The current B → ππ data is in mild conflict (at the ∼ 2σ level) with the SM

CKM fit [42]. More precise measurements are needed to understand how well the theoretical

expectations are satisfied, and to decipher whether there might be a hint for new physics.

Obviously further information about power corrections in Im(C/T ) could help to clarify the

situation.

In all factorization-based approaches to charmless B decays, several parameters are fit

from the data or are allowed to vary in certain ranges. The choice and ranges of these

parameters should be determined by the power counting. This motivated keeping the charm

penguin amplitudes, Acc̄ as free parameters in SCET [5], as was done earlier in Ref. [12].

In the BBNS approach these are argued to be factorizable [2]. A fit to the data using this

parameterization found large power suppressed effects [43] including annihilation amplitudes,

which might be interpreted as a breakdown of the Λ/mb expansion. In QCD sum rules, the

annihilation amplitude was found to be of the expected magnitude and to have a sizable

strong phase [44], but a distinction between the terms we identify as real local annihilation

and complex time-ordered product annihilation was not made.

Channels like B → Kπ and B → KK̄ are sensitive to new physics, but by the same to-

ken are dominated by penguin amplitudes, which can have charm penguin, annihilation, and

other standard model contributions. Since there are possible large nonperturbative c-loop

contributions in Acc̄ that have the same SU(3) flavor transformation properties as annihi-

lation terms, they cannot be easily distinguished by simple fits to the data. However, in a

systematic analysis based on SCET these correspond to different operators’ matrix elements,

so it is possible to disentangle the various contributions and determine their expected size.

The factorization theorems for annihilation amplitudes derived here only involve distribu-

tions that already occurred at leading order. This means that we can compare the size of

annihilation amplitudes to experimental data without further ambiguities from additional

hadronic parameters. We take up this comparison in section VIB below.

5 Here C and T are isospin amplitudes defined in the t-convention, where λt is eliminated from the ampli-

tudes in favor of λc and λu.
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As an explicit example of how to assemble our results in sections III and IV, we derive

the local annihilation amplitude for B̄0 → K−π+. From Table II we can read off the result

for this channel, H(x, y) = −as
4(x, y) − as

8(x, y), and from Table IV, Hχ1 = −aχ
1 (x, y) +

1/2 aχ
5 (x, y) and Hχ2 = aχ

2 (x, y) − 1/2 aχ
6 (x, y). With the lowest order matching results in

Eqs. (24) and (38) we can set a8 = 0 and a4u = a4c, which inserted into Eqs. (23) and (43)

gives

A
(1)
Lann(K−π+) =

GFfBfπfK√
2

(λ(s)
c +λ(s)

u )

∫

dx dy a4u(x, y)φ
π(y)φK(x) (53)

=
GFfBfπfK√

2
(λ(s)

c +λ(s)
u ) βπK

4u ,

A
(2)
Lann(K−π+) =

GFfBfπfK

6
√

2
(λ(s)

c +λ(s)
u )

∫

dx dy
[µπ

mb

{

aχ
1 (x, y) − 1

2
aχ

5 (x, y)
}

φπ
pp(y)φ

K(x)

− µK

mb

{

aχ
2 (x, y) − 1

2
aχ

6 (x, y)
}

φπ(y)φK
pp(x)

]

=
GFfBfπfK√

2
(λ(s)

c +λ(s)
u )

[µπ

mb

{

βπK
χ1 − 1

2
βπK

χ5

}

− µK

mb

{

βπK
χ2 − 1

2
βπK

χ6

}]

.

Thus, both the leading order annihilation amplitude A
(1)
Lann, and the chirally enhanced anni-

hilation amplitude A
(2)
Lann are determined by the β’s defined in Eqs. (26) and (44). Other Kπ

channels have similar expressions with different Clebsch-Gordan coefficients. To the local

annihilation contributions we must add the hard-collinear annihilation terms computed in

Ref. [19], A
(1ann)
hard−collin, since they are the same order in αs and 1/mb as the A

(1)
Lann terms.

To see explicitly what the β’s involve we insert the O(αs) values of a3u(x, y), a
χ
1 (x, y), and

aχ
2 (x, y) to give

ALann(K−π+) = −GFfBfM1
fM2√

2
(λ(s)

c + λ(s)
u )

4παs(µh)

9

×
{

(C9

6
− C3

3

)[

〈

x̄−2
〉K〈

y−1
〉π −

〈

[y(xȳ − 1)]−1
〉πK

+ d(µ−)φ′
K(1)〈y−1

〉π
]

− 2µπ

3mb

(

C6−
C8

2
+
C5

3
−C7

6

)[

〈

y−2ȳ−1
〉π

pp

(〈

x̄−2
〉K

+
〈

x̄−1
〉K)

+ d1(µ−)φ′
K(1)

〈

y−2ȳ−1
〉π

pp

− d2(µ+)φ′
π(0)

(〈

x̄−2
〉K

+
〈

x̄−1
〉K)

− d3(µ±)φ′
K(1)φ′

π(0)
]

− 2µπ

3mb

(C5

3
−C7

6

)

〈

[(1 − xȳ)x̄y2]−1
〉πK

pp
+

2µK

3mb

(C5

3
−C7

6

)

〈

[(1 − xȳ)x̄2y]−1
〉Kπ

pp

− 2µK

3mb

(

C6−
C8

2
+
C5

3
−C7

6

)[

(〈

y−2
〉π

+
〈

y−1
〉π)〈

x−1x̄−2
〉K

pp
− d1(µ+)φ′

π(0)
〈

x̄−2x−1
〉K

pp

+ d2(µ−)φ′
K(1)

(〈

y−2
〉π

+
〈

y−1
〉π)

− d3(µ±)φ′
π(0)φ′

K(1)
]

}

. (54)

Here results for the convolutions denoted by brackets 〈· · · 〉 can be found in Eqs. (29),

(33), (46), and (47) in the minimal subtraction scheme. Results for other channels can

be assembled in a similar fashion. Corrections to ALann + A
(1ann)
hard−collin are suppressed by
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O[α2
s(µi)/(παs(mb))], while we caution that additional αs(µh)Λ/mb terms without a µπ or

µK will be present in the last two lines of Eq. (54). In the next subsection we derive results

for all of these channels using a simple model for the distribution functions, and study

numerically the size of the annihilation amplitudes.

Annihilation contributions have been claimed to play important roles in several observ-

ables [7, 8, 10, 11, 31], in particular in generating large strong phases in B → Kπ de-

cays [7, 8]. The B → ππ and Kπ data indicate that the latter decays are dominated by

penguin amplitudes, and the pattern of rates and CP asymmetries is not in good agreement

with some predictions. In particular, it is not easy in the BBNS analysis to accommo-

date the measured CP asymmetry, AK+π− = −0.108 ± 0.017 [45], except in the S3 and

S4 models of Ref. [11]. In these models the annihilation contributions are included by us-

ing asymptotic distributions, and divergent integrals are parameterized as
∫ 1

0
dx/x → XA

and
∫ 1

0
dx ln x/x → −X2

A/2, with XA = (1 + %Ae
iϕA) ln(mB/500 MeV). Model S3 pos-

tulates %A = 1, ϕA = −45◦ for all final states, while in the S4 scenario %A = 1 and

ϕA = −55◦, −20◦, −70◦ for the PP, PV, V P channels, respectively. Thus

S3 : XA = 4.0 − 1.7 i , S4 : XA = {3.7 − 1.9 i , 4.6 − 0.8 i , 3.2 − 2.2 i} . (55)

In addition, αs(µ) and the Wilson coefficients are evaluated at the µi intermediate scale [11].

Our result for the factorization of annihilation contributions derived in Sec. III constrains

models of annihilation. Equation (23) gives a well defined and real amplitude at leading

order, which depends on twist-2 distributions, φM . It does not involve model parameters %A

and ϕA. For A
(1)
Lann using Eq. (29) and the asymptotic form of the meson distributions, we

find a correspondence

“XA” = 1 +

∫ 1

0

dx
φπ(x)

6 (x2)ø
= ln

(mb

µ+

)

. (56)

Clearly, XA is real. The asymptotic distributions ∼ 6x(1 − x) are more accurate for large

scales, and at the matching scale where µ+ ∼ mb, XA is not enhanced by a large logarithm.

This matching scale µ+ should not be decreased below mb since µ+ ∼ mb is already the

correct scale for collinear modes with p+ ∼ mb. We estimate |XA| <∼ 1. Thus, the modeling

of annihilation contributions with complex XA in the BBNS approach (including the phe-

nomenologically favored S3 and S4 scenarios) are in conflict with the heavy quark limit, and

should be constrained to give smaller real XA’s.

In the KLS [7] treatment of annihilation, complex amplitudes are generated from dy-

namics at the intermediate scale from the iε in propagators. The MS-factorization used in

the derivation of our annihilation amplitudes demonstrates that including the iε term in

collinear factorization would induce a double counting. Thus we expect such contributions

to physical strong phases to be realized by operators with soft exchange that occur at higher

order in Λ/mb and therefore to be small.
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Annihilation contributions were also argued to play an important role in explaining

the large transverse polarization fraction in B → φK∗ [31]. It was shown that fac-

torization implies RT = O(1/m2
b), where RT denotes the transverse polarization frac-

tion [31]. Subsequently, it was shown using SCET that RT is power suppressed unless a

long-distance charm penguin amplitude Acc̄ spoils this result [5, 23]. Experimentally, one

finds RT (B → φK∗) ≈ 0.5 [45], while RT (B → ρρ) is at the few percent level. It has been

argued that the large RT (B → φK∗) may provide a hint of new physics in the b → ss̄s

channel. In Ref. [31] it was suggested that standard model annihilation contributions may

account for the observed large value of RT (B → φK∗). Our analysis in Sec. IV agrees

with [31] in that annihilation contributions to the transverse polarization amplitude at first

order in αs are suppressed by not one, but two powers of Λ/mb. However, we do not find

a numerical enhancement of these terms (which in [31] is partly due to the large sensitivity

of the (2XA − 3)(1 −XA) function to %A in the BBNS parameterization). The operators in

Eq. (36) give rise to transverse polarization, but since MS-factorization renders the naively

divergent convolutions finite, these power suppressed amplitudes do not receive sizable en-

hancements. Although we have not derived explicit results for the B → φK∗ annihilation

amplitudes (since φ is an isosinglet), our results make it unlikely that local annihilation can

explain the RT (B → φK∗) data. We have not explored whether the time-ordered products

at O(α2
s(µi)Λ/mb) could give rise to transverse polarization, and it would be interesting to

do so.

B. Annihilation amplitudes with simple models for φM(x) and φM
pp(x)

In this section we derive numerical results for the local annihilation amplitudes in various

channels using a simple model for the distributions. It is convenient to write the ∆S = 0

local annihilation amplitude as

ALann(B̄ →M1M2) = −GFfBfM1
fM2√

2

{

λ(d)
u hu(B̄ →M1M2) + λ(d)

c hc(B̄ →M1M2)

+ (λ(d)
u + λ(d)

c )
[µM1

mb

hχ1(B̄ →M1M2) +
µM2

mb

hχ2(B̄ →M1M2)
]

}

. (57)

For ∆S = 1 decays we replace λ
(d)
u,c → λ

(s)
u,c. The coefficients hu, hc, hχ1, and hχ2 are equal

to linear combinations of βiu, βic, βχ1, βχ2, βχ5, and βχ6 with Clebsch-Gordan coefficients

determined from Tables II, III, IV, V. The combinations are simply determined by the

replacements

hu =
(

H(x, y) with ãd,s
i (x, y) → βM1M2

iu , ãd,s
i (y, x) → βM2M1

iu

)

,

hc =
(

H(x, y) with ãd,s
i (x, y) → βM1M2

ic , ãd,s
i (y, x) → βM2M1

ic

)

,

hχ1 =
(

Hχ1(x, y) with aχ
1,5(x, y) → βχ1,χ5

)

,

hχ2 =
(

Hχ2(x, y) with aχ
2,6(x, y) → βχ2,χ6

)

. (58)
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For the coefficients a3u,3c,4u,4c,7,8 and the aχ
i ’s, the O(α2

sC1,2) matching corrections could be

comparable numerically with the O(αsC3−10) corrections considered here. This should be

kept in mind when examining numbers quoted below for the corresponding β’s.

Results for the coefficients βiu, βic, and βχi, can be found in Eqs. (26) and (44). To derive

numerical results we need to model the meson distribution functions. We take the Ci from

Eq. (3), use

αs(µh) = 0.22 , µπ(µh) = 2.3 GeV , µK(µh) = 2.7 GeV ,

fK = 0.16 GeV, fπ = 0.13 GeV, fB = 0.22 GeV, (59)

where µh = mb = 4.7 GeV, fB comes from a recent lattice determination [46]. For the φ’s

we take simple models with parameters aM
i and aM

ipp which we consider specified at the high

scale µh,

φM(x) = 6x(1 − x)
[

1 + aM
1 (6x− 3) + 6aM

2 (1 − 5x+ 5x2)
]

,

φP
pp(x) = 6x(1 − x)

[

1 + aP
1pp(6x− 3) + 6aP

2pp(1 − 5x+ 5x2)
]

. (60)

Based on recent lattice data for moments of the π and K distributions [47] we take aπ,K
2 =

0.2 ± 0.2, where the lattice error was doubled to give some estimate for higher moments.

For the π we set aπ
1 = aπ

1pp = 0, while for the K we use [47] aK
1 = 0.05 ± 0.02. We also take

w3π,K = −3± 1, aπ,K
2pp = 0± 0.4 and aK

1pp = 0.0± 0.2. Note that the range for our parameters

is similar to those used in the BBNS models [10, 11] and light-cone sum rules [48]. Since the

uncertainties in the model parameters are large and not significantly affected by variation of

the µ± scales we keep these fixed at mb, where the logs in the di(µ±) terms drop out and the

constant under the logs are neglected. A scan over models with parameters in these limits

gives predictions for the annihilation coefficients. For the B̄ → Kπ channels we find

βπK
2u = 1.8 ± 1.2, βπK

4u = βπK
4c = −0.15 ± 0.10, βπK

2c = 0.14 ± 0.09 ,

βπK
hc1 = 0.09 ± 0.33, βπK

hc2 = −0.29 ± 0.09, βπK
hc3 = −0.012 ± 0.002, βπK

hc4 = 0.002 ± 0.01 ,

βπK
χ1 = 0.0 ± 6.5, βπK

χ2 = 0.0 ± 5.8, βπK
χ5 = 0.0 ± 0.094, βπK

χ6 = 0.0 ± 0.11 .

(61)

Using these numbers we can compare the size of the local annihilation amplitudes to the

B̄ → K−π+ data,

RA(K−π+) =
|A(1)

Lann(K−π+) + A
(2)
Lann(K−π+)|

|AExpt.Penguin(Kπ)| = 0.11 ± 0.09 ,

RA(K̄0π−) =
|A(1)

Lann(K̄0π−) + A
(2)
Lann(K̄0π−)|

|AExpt.Penguin(Kπ)| = 0.12 ± 0.09 . (62)

For the numerator we did a Gaussian scan using the values from Eq. (61), and determined

the error by the standard deviation. For the denominator we used the experimental penguin

30



amplitude determined by a fit to the B → Kπ data in Ref. [6]. Numerical results for

annihilation amplitudes with three-body distribution functions were considered in Ref. [19].

Although they are similar in size to A
(1)
Lann they cause only a ∼ 10% change in the value of

RA(K−π+) in Eq. (62). The values of RA indicate that a fairly small portion of the measured

penguin amplitude is from annihilation. We do not quote values for the ratio A
(2)
Lann/A

(1)
Lann,

since each of the numerator and denominator can vanish and the parametric uncertainties

are very large. For typical values of the parameters in the Kπ channels we find that the

A
(2)
Lann is comparable or even larger than A

(1)
Lann in agreement with Ref. [10]. The size of

the annihilation amplitudes in Eq. (62) are consistent with our expectation for these power

corrections. For B → K̄K we find

βK̄K
1u = −9.6 ± 6.2, βK̄K

2u = 1.7 ± 1.1, βK̄K
3u = βK̄K

3c = 0.63 ± 0.37,

βK̄K
4u = βK̄K

4c = −0.14 ± 0.09, βK̄K
1c = −0.03 ± 0.02, βK̄K

2c = 0.13 ± 0.08,

βKK̄
3u = βKK̄

3c = 0.63 ± 0.37, βK̄K
χ1 = 0.0 ± 6.5, βK̄K

χ2 = 0.0 ± 5.5

βK̄K
χ5 = 0.0 ± 0.095, βK̄K

χ6 = 0.0 ± 0.11 . (63)

Using these results to determine the λ
(d)
c annihilation contributions to B → K̄K and com-

paring this to the experimental penguin amplitude from Ref. [6] gives

RA(K−K0) =
|A(1)

Lann(K−K0) + A
(2)
Lann(K−K0)|

|AExpt.Penguin(K̄K)| = 0.15 ± 0.11 . (64)

This is similar in size to the ratios RA(K−π+), RA(K̄0π−) and so also consistent with a

power correction.

C. Conclusions

In summary, we exhibited how a new factorization in SCET renders the annihilation and

“chirally enhanced” annihilation contributions finite in charmless nonleptonic B → M1M2

decays to non-isosinglet mesons. We constructed a complete basis of SCETII operators for

local annihilation contributions as well as factorization theorems valid to all orders in αs.

By matching the full QCD diagrams onto SCETII operators we showed that their matrix

elements are real at leading order in Λ/mb and αs(mb). The lowest order annihilation contri-

butions depend on fB and a modified type of twist-2 distributions φM1,2 with dependence on

rapidity cutoffs. Chirally enhanced local annihilation contributions depend in addition on

modified distributions φ
M1,2
pp . The annihilation contributions can only have an unsuppressed

complex part at O(Λ/mb) if perturbation theory at the intermediate scale,
√

Λmb, breaks

down.

In the previous literature models for the power suppressed annihilation corrections were

often found to give enhanced contributions with large strong phases, and such assumptions

have been important in some fits to the data. Considering all power suppressed amplitudes
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not involving charm loops, we proved that complex annihilation contributions only occur

suppressed by αs(
√

Λmb) ΛQCD/mb compared to the leading amplitudes. From our factor-

ization theorem we found that annihilation contributes (11± 9)% of the penguin amplitude

in B̄0 → K−π+, (12± 9)% in B− → K̄0π−, and (15± 11)% in B− → K−K0. We anticipate

that our results will guide future fits to the vast amount of data on charmless B decays, and

yield a better understanding of what this data means.
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APPENDIX A: ZERO-BIN SUBTRACTIONS FOR A TWO-DIMENSIONAL

DISTRIBUTION

In this appendix we derive a result for the action of the zero-bin subtractions on the

integrand obtained from the chirally enhanced annihilation computation, shown in Eq. (47).

Since the result involves a correlation in the x and y integrals it cannot be read off from the

results in Ref. [18]. It is convenient to write the momentum fraction factor coming from the

offshell b-quark propagator as (1 − xȳ) = (x̄ + y − x̄y). Including the rapidity convergence

factors [18], the integral we need is

I =
∑

x6=1, y 6=0

∫

dxrdyr

φM1

pp (y)φM2(x)

(x̄+ y − x̄y)x̄y2
ΘxΘy |x(1 − x)|ε |y(1− y)|ε

( µ+µ−
n̄·p1 n·p2

)2ε

, (A1)

where Θx = θ(x)θ(1− x). To determine the subtraction terms we must look at the singular

behavior as we scale towards the x = 1 and y = 0 bins, which we do by taking x̄ ∼ η and

y ∼ η. In this limit the gluon and b-quark in Fig. 2 become soft, and this region would be

double counted without the zero-bin conditions. First consider the denominator,

1

x̄+ y − x̄y
=

1

(x̄+ y)
+

x̄y

(x̄+ y)2
+ . . . . (A2)

In the first term the x and y dependence does not decouple, so we must consider them

simultaneously. All terms beyond the first one produce finite integrals and are dropped in

the minimal subtraction scheme. For the numerator in Eq. (A1) we use φM1

pp (0) = φM2(1) = 0
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and expand

φpp(y)φ(x) = −yφ′
pp(0) x̄φ′(1) − y2

2
φ′′

pp(0) x̄φ′(1) + yφ′
pp(0)

x̄2

2
φ′′(1) + . . .

= yφ′
pp(0)

∞
∑

n=1

(−x̄)n

n!
φ(n)(1) − y2

2
φ′′

pp(0) x̄φ′(1) + . . . . (A3)

In the first term on the last line we have identified all terms which remain singular when

multiplied by 1/[x̄y2(x̄+y)]. This term is equal to yφ′
pp(0)φ(x). Taken together with the

expansion of ΘxΘy we therefore find that the required minimal subtraction is

yφM1′
pp (0)φM2(x)

(x̄ + y)x̄y2
Θx θ(y) . (A4)

Following Ref. [18] we use this to convert Eq. (A1) into an integral that includes the x = 1

and y = 0 regions,

I =

∫ 1

0

dx

∫ 1

0

dy

[

φM1

pp (y)φM2(x)

(x̄ + y − x̄y)x̄y2
−
yφM1′

pp (0)φM2(x)

(x̄+ y)x̄y2

]

−
∫ 1

0

dx

∫ ∞

1

dy
yφM1′

pp (0)φM2(x)

(x̄ + y)x̄y2
xε(1 − x)ε yε(y − 1)ε

( µ+µ−
n̄·p1 n·p2

)2ε

(A5)

=

∫ 1

0

dx
φM2(x)

x̄

∫ 1

0

dy

[

φM1

pp (y)

(x̄ + y − x̄y)y2
−

φM1′
pp (0)

(x̄ + y)y

]

−
∫ 1

0

dx

∫ ∞

1

dy
φM1′

pp (0)φM2(x)

(x̄+ y)x̄y
yε(y − 1)ε

=

∫ 1

0

dx
φM2(x)

x̄

∫ 1

0

dy

[

φM1

pp (y)

(x̄ + y − x̄y)y2
−

φM1′
pp (0)

(x̄ + y)y

]

− φM1′
pp (0)

∫ 1

0

dx
φM2(x) ln(2 − x)

(1 − x)2
.

Here in simplifying the term carrying the y → ∞ limit, we noted that the integral is finite,

and so it does not induce µ± dependence in our subtraction scheme. This result for I

was used in Eq. (47). For the asymptotic pion wave functions, φπ(x) = 6x(1 − x) and

φπ
pp(y) = 6y(1 − y), we obtain I = 36 + 6π2 − 144 ln 2 = −4.60. Note that the steps used

here to derive the subtraction also give the correct result for cases where the x and y integrals

factorize, such as an integrand φ(x)φ(y)/(x2y2).
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