
UC Irvine
ICS Technical Reports

Title
Comparing software design methodologies through process modeling

Permalink
https://escholarship.org/uc/item/3rd1c0hs

Author
Song, Xiping

Publication Date
1992

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3rd1c0hs
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

Comparing
Software Design Methodologies

Through
Process Modeling

Xiping Song
University of California
Irvine, California 92717

May 1992

Technical Report No. 92-48

1

. ~. '

)

1

j

I
j

J

j

UNIVERSITY OF CALIFORNIA

Irvine

Comparing Software Design Methodologies Through Process

Modeling

A dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

in Information and Computer Science

by

Xiping Song

Committee in charge:

Professor Leon J. Osterweil, Chair

Professor Richard N. Taylor,

Professor Richard W. Selby

1992

@1992

Xiping Song

ALL RIGHTS RESERVED

I

J

1

j

The dissertation of Xiping Song is approved,

and is acceptable in quality and form for

publication on microfilm:

University of California, Irvine

1992

11

Committee Chair

I Dedication

To my family

Juan Yu,

Vivian M. Song

To my parents and brother

Shipu Song

I Donquan Chen

Liping Song

111

i

I
J

J

j

Contents

List of Figures

List of Tables .

Acknowledgements

Curriculum Vitae

Abstract .

Chapter 1 Introduction
1.1 Comparing Software Design Methodologies
1.2 Informal Comparisons
1.3 Quasi-formal Comparison Approaches .
1.4 Motivations for Objective Comparison
1.5 Strategies for Objective Comparison ..

Chapter 2 Problem Definitions and Research Goals
2.1 The Primary Goal of the Research
2.2 Secondary Goals of the Research

Chapter 3 Our Comparison Approach: CDM
3.1 Step 1: Bui[d_process_M odel
3.2 Step 2: Classify_Components
3.3 Comparison of Design Methodologies

Chapter 4 Experiment 1: Comparing JSD With BOOD .
4.1 Introduction to HFSP
4.2 Use of CDM
4.3 Evaluation of CDM . . .
4.4 Suggested Improvements

Chapter 5 Supports Needed For CDM.
5.1 Required Supports
5.2 Why Evolutionary Development
5.3 Evolutionary Development of BF and MF
5.4 The BF and MF

IV

vi

Vlll

ix

XI

xiv

1
1
3
5
9

10

13
13
15

20
21
25
28

32
33
35
57
63

65
65
67
69
73

Chapter 6 Experiment 2: Comparison of SDMs
6.1 Goals and Design of the Experiment
6.2 Step 1: Build Process Models ..
6.3 Step 2: Classify Components . . .
6.4 Comparison of BOOD with RDM
6.5 Comparison of JSD with SD
6.6 Compare DSSD with SD .
6. 7 Compare LCP with DSSD
6.8 Evaluation .
6.9 Status

Chapter 7 Assessment of the CDM-based Comparisons
7 .1 Goals of the Experiment . .
7.2 Design of the Experiment .
7.3 Comparing the Comparisons
7.4 Summary

Chapter 8 An Encoding of the CDM Process
8.1 Program Structure
8.2 Compare SDM Procedure
8.3 Definition of the CDM Package . . .
8.4 Implementation of the CDM Package

Chapter 9 Conclusion and Future Work .

References .

v

89
89
92

110
118
125
132
140
143
153

156
156
158
160
168

173
175
176
182
187

195

199

I
1

l
I

J

List of Figures

3.1 CompareJJesign..M ethodologies(CDM), a data flow diagram modeling
a SDM comparison process . 21

3.2 Part I of the Base_Framework: A Model of the Software Design Life-
cycle (MSDL). (The diagram inside the broken lined box is a data
flow diagram.) . 26

3.3 Part II of the Base_Framework: types at the top-level of Method
Component Type Hierarchy(MCTH) 27

3.4 The artifact structure for summarizing the differences . 31

4.1 A model of JSD specified in HFSP 37
4.2 A model of BOOD specified in HFSP 39
4.3 Decomposition of the MSDL's component Solution Model Domain . 40
4.4 Classifications of the JSD and BOOD components under the Solution

Model Domain . 44
4.5 The code of the action for identifying M odeLProcesses 4 7
4.6 The model of defining M odeLProcesses 48
4. 7 The model of specifying Function_process and System.Ji'unction 50
4.8 The domains manipulated by a JSD /BOOD integrated design process 56

5.1 Evolution process of a Evolution..Target 69
5.2 Definitions of the factors affecting evolution of BF . . . 70
5.3 Definitions of the factors affecting evolution of an MF . 71
5.4 Evolutionary development processes for Base Framework and Modeling

Formalism, represented as a data flow diagram. The numbers la­
beled on edges indicate a scenario of evolving the BF. 73

5.5 Part of BF: Definitions of the top-level types in Method Component
Type Hierarchy (MCTH) . 77

5.6 Part of BF: Definitions of the top-level types in Method Component
Type Hierarchy (MCTH)(cont.) 78

5. 7 MCTRM: Method Component Type Relation Matrix 79
5.8 A Model of the Software Design Life-cycle (MSDL) 80
5.9 Definitions of the Problem Model Domain framework 81
5.10 Definitions of the Solution Model Domain framework 82
5.11 Definitions of the Documentation Domain framework 83
5.12 The current version of MF 86

Vl

5.13 A template for specification of a model of design methodology 87
5.14 Definitions of the template components 88

8.1 Static Structure of the CDM Process Program 175

Vll

List of Tables

2.1 Summary of the research goals and contributions 18

4.1 Summary of the differences between JSD and BOOD 54

j 6.1 Concepts classified within MCTH 112

1
6.2 Artifacts classified under MCTH . 113

6.3 Representations classified within MCTH 114

6.4 The JSD and BOOD Actions classified within MCTH 115

6.5 Classification of artifacts under the Problem Model Domain 116

6.6 Classification of the artifacts under the Solution Model Domain 117

6.7 Classification of the artifacts under the Document Model Domain 118

6.8 Summary of the differences between the RDM and BOOD componentsl24

6.9 Summary of the differences between the JSD and SD components 133

6.10 Summary of the differences between SD and DSSD 139

6.11 Summary of the differences between LCP and DSSD components 143

Vlll

>.-

Acknowledgements

I am, of course, very deeply indebted to my advisor, Prof. Leon J. Osterweil.
He has supported me, inspired me, taught me during my Ph.D study. He also
has greatly encouraged me to pursue this topic. He often carefully reviews my
work, revises my writing, and provides excellent advice on my research. Without
his support and guidance, it would have been impossible for me to finish my
dissertation.

I also wish to thank other ICS software faculty members, particularly, Professors
Richard W. Selby and Richard N. Taylor. Their comments have been very useful
to this research.

I am very grateful to Mr. Grady Booch and Mr. John Cameron for review­
ing my comparisons between Booch's OOD and JSD. Their comments helped in
improving this work and their support encouraged this research.

I am very grateful to Dr. Robert Balzer and Prof. Alain Lewis, who served
on my Ph.D candidacy exam committee. Their comments and questions helped
me in shaping the topics of this research.

I am grateful to the Institute of Electrical and Electronic Engineers, Inc. and
to the IEEE Computer Society for permission to reprint sections from the following
articles:

"Towards Systematic, Objective Design-Method Comparisons". IEEE Software,
May, 1992. pp. 43-53, Xiping Song and Leon J. Osterweil. Portions of this
paper appear in Chapters 1, 2, 5 and 6.

"Comparing Design Methodologies Through Process Modeling," Proceedings
of the First International Conference on the Software Process, IEEE Computer
Society, Redondo Beach, Ca., October 21-22, 1991, pp. 29-44. Xiping Song
and Leon Osterweil. Portions of this paper appear in Chapters 1,2,3 and 4.

Finally, I would like to thank my sponsors. My research was supported by
the Defense Advanced Research Projects Agency, through ARPA Order #6100,

IX

Program Code 7E20, which was funded through grant #CCR-8705162 from the
National Science Foundation. My work is also sponsored by the Defense Advanced
R~search Projects Agency under Grant Number MDA972-91-J-1012. Support
was also provided by the Naval Ocean Systems Center and the Office of Naval
Technology.

x

i

I
J

I

Curriculum Vitae

Xiping Song
Department of Information and Computer Science

University of California
Irvine, California 92717-3425

phone: (714) 856-0902 (Home)
phone: (714) 856-4047 (Office)

email: (Internet) song@ics.uci.edu

Personal Data
Home Address: 4825 Verano Place, Irvine, CA 92715

Education
Ph.D., University of California, Irvine, CA, Computer Science

Advisor: Leon J. Osterweil, (expected May 1992)

April 1992

M.S., University of Colorado, Boulder, Co., Computer Science, May 1988
M.S., Beijing Polytechnic University, Beijing, China,

Computer Science, June 1984
B.S., Beijing Polytechnic University, Beijing, China,

Computer Science, June 1982
Research Interests

Software engineering process
Software analysis and design methodologies
Software environments
Software engineering data base
Software version and configuration management

Academic Experience
9/88-present: Research Assistant, University of California, Irvine, CA.
6/87-9/88: Research Assistant, University of Colorado, Boulder, CO.
9/85-6/87: Teaching Assistant, University of Colorado, Boulder, CO.
9/82-8/85: Lecturer, Beijing Polytechnic University, Beijing, China.

Industrial Experience
6/88-9/88: Research Associate, Software Engineering Program, Sci.& Tech Div.,

US WEST Advanced Technology, Boulder, CO.
6/86-1/88: Software engineer, UniData, Denver, CO.

Memberships in Professional Societies
Association for Computing Machinery,
ACM: SIGSOFT,
Institute of Electrical and Electronics Engineers,
IEEE Computer Society.

Xl

Published Journal and Refereed Conference Papers

• Xi ping Song and Leon J. Osterweil.
"Towards Systematic, Objective Design-Method Comparisons,"
IEEE Software, May, 1992. pp43-53.

• Xiping Song and Leon J. Osterweil.
"A Process-Modeling Based Approach to Comparing and Integrating Software
Design Methodologies,"
To appear in Proceedings of the Fifth International Workshop on CASE.
IEEE Computer Society, July 6, 1992, Montreal, Quebec, Canada

• Xi ping Song and Leon J. Osterweil,
"Comparing Design Methodologies Through Process Modeling,"
Proceedings of the First International Conference on the Software Process,
IEEE Computer Society, Redondo Beach, Ca., October 21-22, 1991, pp. 29-
44.

• Stanley M. Sutton, Jr., Hadar Ziv, Dennis Heimbigner, Harry E. Yessayan,
Mark Maybee, Leon J. Osterweil, and Xiping Song,
"Programming a Software Requirement-Specification Process,"
Proceedings of the First International Conference on the Software Process,
IEEE Computer Society, Redondo Beach, Ca., October 21-22, 1991, pp. 68-
89.

• Xi ping Song and Leon J. Osterweil
"A Framework for Classifying Parts of Software Design Methodologies"
Proceedings of the Second Irvine Software Symposium, Richard W. Selby Eds.
The Irvine Research Unit in Software, Irvine, Ca., March, 1992,

Papers Submitted for Journal and Conference Publications

• Xi ping Song and Leon J. Osterweil.
"CDM: A Process-Modeling Based Approach for Comparing Design
Methodologies".
IEEE Transactions on Software Engineering.

Xll

j

Presentations

• "Comparing Design Methodologies Through Process Modeling"
The First International Conference on the Software Process, IEEE Computer
Society, Redondo Beach, Ca., October 21-22, 1991, pp. 68-89.

• "A Framework for Classifying Parts of Software Design Methodologies"
The Second Irvine Software Symposium, Irvine, Ca., March, 1992,

Selected Technical Reports

• "Version Control and Configuration Management System"
Xiping Song
Technical report, US West Advanced Technologies, 1988.

• "DEBUS: A Software Design Process Program"
Xiping Song and Leon Osterweil.
Arcadia technical report, UCI-89-02, 1989.

• "A Survey of Process Program Design Formalisms"
Xiping Song and Leon Osterweil.
Arcadia technical report, UCI-90-16, 1990.

• "REBUS: A Requirement Specification Process Program".
Xiping Song, Mark Maybee, Leon Osterweil and Dennis Heimbigner
Technical report, ICS, Univ. of California Irvine. UCI-90-17.

• "An Experiment on CDM-A Method for Comparing and Choosing Design
Method"
Xiping Song and Leon Osterweil.
Arcadia technical report, UCI-91-11, 1991.

Xlll

i
I
, I

J

I
j

J

Abstract of the Dissertation

Comparing Software Design Methodologies Through Process
Modeling

by
Xiping Song

Doctor of Philosophy in Information and Computer Science
University of California, Irvine, 1992
Professor Leon J. Osterweil, Chair

Recently, the importance of consolidating existing software engineering ap­
proaches and concepts has been well recognized by the software engineering com­
munity [Boa90]. We believe that study of Software Design Methodologies (SDMs)
is an excellent place to start. To achieve this, we must be able to objectively and
systematically compare SDMs.

Quite a number of SDMs have been developed and compared over the past
two decades. An accurate comparison aids in codifying, enhancing and integrating
SDMs. However, after analyzing the existing comparisons, we found that these
comparisons are often based largely upon the experiences of the practitioners and
the intuitive understandings of the authors. Consequently, these comparisons are
subjective and affected by application domains. We also analyzed a number of com­
parisons which use quasi-formal approaches to comparing SDMs. We found that
these comparisons are often based on hypothesizing features required by the design
process and software design problems. In order to compare SDMs more scientifi­
cally, in this thesis we introduce a systematic approach (called CDM (Comparing
Design Methodologies)) to objectively comparing SDMs. We hope that using CDM
will lead to precise, explicit and complete comparisons.

CDM is based on modeling SDMs and classifying their components (e.g.,
guidelines and notations). Modeling SDMs entails decomposing them into compo­
nents. The classification of the components illustrates which components address
similar design issues and/ or have similar structures. Similar components then may
be further modeled to aid in understanding more precisely their similarities and
differences. The models of the SD Ms are also used as the bases for conjectures and
conclusions about the differences between the SDMs.

XIV

xv

Two key components required by CDM are 1) a fair Base Framework (BF) to
classify parts of SDMs and a comprehensive Modeling Formalism (MF) to model
all these parts. In this thesis we address these two problems by suggesting an
evolutionary strategy for developing such a BF and MF. Then we present the
BF and MF we have developed using this strategy, and demonstrate how they
have been and can be used. Further we evaluate the BF and MF based on their
applications and suggest how they might be enhanced. In doing this, we intend
to illustrate that increasingly fair BFs and MFs can be developed by using this
development strategy.

We believe that this sort of iterative evolutionary development of key frame­
work and modeling formalisms is consistent with the ways in which more mature
scientific disciplines operate. Thus, we hope that this effort indicates a way in
which software engineering can begin to grow into a mature scientific discipline.
Further, we suggest that this evolutionary development of BFs and MFs should be
a community-wide activity.

In this thesis we demonstrate this approach by using it to compare
six SDMs (JSD [Jac83], Booch's Object Oriented Design (BOOD) [Boo86],
RDM [PC86], SD [YC79, SMC74], LCP [War76], and DSSD [Orr77]). We com­
pared our SDM comparisons against other comparisons obtained using other ap­
proaches. The results of this comparison demonstrate that process modeling [Ost87,
KH88] is valuable as a powerful tool in analysis· of software development ap­
proaches. Besides, the SDM comparisons result, we obtained through this effort
are by themselves valuable for understanding software design activities and SD Ms.

I
J

Chapter 1

Introduction

1.1 Comparing Software Design Methodologies

Effectively designing large-scale and complex, yet reliable and high perfor-

mance, software has motivated research into a more systematic approach to design-

ing software systems. Such an approach, usually called a software design methodol­

ogy (SDM), describes and justifies a collection of design methods. A design method

assists designers by providing the rules specifying 1) what design decisions are to

be made, 2) how to make and denote/organize them, and 3) in what order they

should be made. The SDM chooses its methods to complement one another, along

with rules for applying them. Method components are parts of a design method.

Concepts, artifacts, measures, guidelines, rules-of-thumb, notations and procedures

are examples of method components.

Various SDMs (e.g. JSD [Jac83],00D [Boo86],SD [YC79],RDM [PC86]),

describe, at least superficially, different approaches for designing software. For

example, Freeman [Fre83] has identified five kinds of design methods used in

SDMs-top-down design, outside-in design, inside-out design, bottom-up design

1

2

and most-critical-component-first design. Thus, questions such as the following

could be asked:

• What different design issues do they address?

• Which of their components are actually aimed at similar design issues?

• What are the relations among those method components?

• Is there some way to merge them, integrating the best characteristics of each?

Objectively answering those questions should help in

• enhancing our understanding of existing SDMs by discovering their weak­

nesses and false assumptions, (as Cameron notes [CCW91], "the commonly

accepted differences may in fact not be real, and the real differences may be

quite different from the apparent differences.")

• devising a structure for recording SDM knowledge by discovering SDM's

common characteristics, (e.g., a generic structure for representing a variety

of object-oriented design methodologies).

• evaluating the SD Ms by discovering their differences, (e.g., with an under­

standing of the differences, one might be able to identify the application

domains for which an SDM is suitable), and

• integrating the SDMs by discovering compatibility between SDMs, (e.g., be­

ing able to merge design specifications which are are specified in different

SDMs by different organizations and design teams [CCW91]).

In the last two decades, a fair number of attempts have been made to answer

such questions. In the next two sections, we describe those attempts and analyze

their limitations.

j

J

I

3

1.2 Informal Comparisons

Some of those attempts (Ber81, Ber78, Was80, YT86, PT77, Gri78] used an

informal approach to compare SDMs.

The paper (Ber78] summarizes concepts used in structural analysis and design.

Then, it briefly describes a number of SDMs (i.e., functional decomposition, data

flow design (the Yourdon method), and data structure design (JSP)). For. each

SDM, it describes experiences in using the SDM, and lists its advantages and dis­

advantages. Finally, it presents a design example to show the differences between

the Yourdon method and JSP.

The paper (Was80] first describes a software development life cycle and a set

of underlying concepts (e.g., modularization, abstraction) used in SDMs. Then, it

summarizesanumberofSDMs (e.g., SADT, SREM, USE, JSP, DREAM). For each

SDM, it describes some of its advantages, disadvantages and application domains.

The papers [YT86, PT77, Gri78] use a similar strategy to compare SDMs.

The paper [YT86] emphasizes comparing distributed software design methodologies.

The paper [PT77] provides fairly complete summaries of the features provided by

various SDMs (e.g., Yourdon, JSD, LCP) and the supports provided by their ad­

vocates. The paper (Gri78] emphasizes comparing the underlying concepts used

by the SDMs.

By analyzing these comparisons, we found that they are usually aimed at

helping software practitioners 1) to intuitively understand a number of SDMs, 2)

to roughly understand the strengths/weakness of each SDM, and 3) to choose an

SDM for designing a software system. Consequently, these comparisons often rely

4

on 1) the subjective experiences of the practitioners, 2) the intuitions of the authors

who make the comparisons, and 3) informal analysis of the SDMs.

Based on the experiences of practitioners, some of these comparisons [Ber78,

PT77] describe how widely and successfully a methodology has been utilized in

real life software projects. For example, Bergland [Ber78] states: "I have seen

several success stories which praise the ease of doing Data Flow Design but they

also pointed out the high overhead associated with passing all that data from one

'ear' to the other 'ear' of their structure diagram." However, Peters and Tripp

comment: "The process (of Data Flow Design) seems deceptively simple but when

attempts are made to use it, difficulties are encountered. For example, consistently

identifying transformations of data is not easy to do." From this example, we can

see that these assessments on data flow design seem to be contradictory. Why?

The reason, we believe, is that these comparisons are affected largely by

differences in application domains and project personnel. In addition, this kind of

comparison does not show precisely why a part of the methodology is praised or

criticized. As a result, it is difficult to evaluate such comparisons.

The levels of understanding of different authors also vary; different authors

may have a better understanding of those method components that appear to be

more important to them. Consequently, different authors may emphasize different

method components. Thus, many comparisons between the methodologies tend to

be incomplete and biased. An author often, based on his/her understanding, ex­

pects a comparison result and then deliberately selects some way to show it. Thus,

sometimes, one design methodology is shown to be more appropriate for designing

a given software example than another methodology. For example, the McDonald's

5

Frozen Food Warehouse example [Ber78, Jac75] is used to show that JSP is better

than SD (Structured Design). However, Peters [PT77], in giving another exam­

ple, points out that the assumptions of JSP could be invalid at times. Thus,

these efforts fail to systematically and completely compare design methodologies.

Consequently, the comparison results often vary from author to author.

Most unfortunately, in these comparisons a framework for classifying design

issues and a type hierarchy for characterizing method components are lacking.

Therefore, method components are not systematically organized, typed, and clas­

sified by the design issues they address. As a result, these comparisons often fail

to show how and why some components should/could be compared and thus the

completeness of these comparisons often can not be evaluated.

In summary, previous SDM comparison efforts are inadequate because they:

• are affected by project personnel and application domains.

• fail to show an explicit and formal basis for drawing a conclusion.

• are difficult to be evaluated independently by others.

• are often are not precisely and explicitly described.

1.3 Quasi-formal Comparison Approaches

Some other comparisons use quasi-formal approaches to compare SDMs.

These comparisons are aimed at helping software practitioners as well as software

researchers to 1) understand the substance of the general software design activity

and or a particular SDM, 2) to more precisely and comprehensively understand

6

the strengths/weaknesses of each SDM. Quasi-formal comparison approaches (e.g.,

those used by [WFP83a, Kun83, Bra83, Oli83, ABC+91]) can be divided, as

Sol [Sol83] suggests, into five categories. Sol describes these approach categories

as:

1. One may describe an idealized methodology and evaluate other methodologies

against this frame of reference. Then the problem remains how to develop

such an ideal.

2. Another approach is to distill a set of important features in an inductive

way from a number of methodologies. The methodologies can be compared

against this yardstick. Evaluation depends very heavily on the subjectivity in

scoring the various methodologies against the framework and on the relative

weight given to a feature.

3. A third approach is to formulate a-priori hypotheses on a (partial) ordering

of features, and to try to derive a possible framework from the empirical

evidence in a number of methodologies. The difficulty in this approach lies

primarily in the formulation of hypotheses.

4. Quite another approach is to define a meta-language as a vehicle for com­

munication and as a frame of reference in which various methodologies can

be described. The attractiveness of this approach is that implicit, contextual

features as well as the process aspects of a methodology can be made explicit.

However a meta-language may have a limited expressive power. It also may

blind us for specific features of some methodologies.

5. Finally, a contingency approach tries to relate features of methodologies to

contingencies in applying this methodology in specific problem situations.

7

The paper [WFP83a] surveys a large number of SDMs and evaluates these SDMs

against a number of frameworks. This paper defines a model of the software de­

velopment life cycle and uses it to examine the coverage of these SDMs. This

paper also evaluates these SDMs from other aspects, e.g., technical concepts sup­

ported, methodology applicability, etc. However, the evaluation largely depends

on the claims of the authors of the SDMs. This paper primarily takes comparison

approach 1.

The paper [Oli83] describes a framework that consists of five levels of ab­

straction: external, conceptual, logical, architectural and physical. This paper

uses certain templates as a sort of meta-language to describe the SDMs and thus

to aid the analysis of the SDMs. This paper uses, to some extent, comparison

approaches 2 and 4.

The paper [Kun83] derives a set of features from analyzing the objectives

of the SDMs. This paper examines SDMs from the following aspects: 1) un­

derstandability, 2) expressiveness, 3) processing independence 4) checkability and

5) changeability. Then the author analyzes three different modeling approaches

against these five aspects.

The paper [Bra83] analyzes a number of SDM comparisons and, based on its

analysis, suggests a very high level framework for comparing SDMs. The items in

the framework are selected according to the author's understanding of the SDMs

and experiences in comparing SDMs. Those items are 1) origin and experiences,

2) development process, 3) model, 4) iteration and tests, 5) representation means,

6) documentation, 7) user orientation and 8) tools and prospectives. This paper

primarily takes comparison approach 2.

8

The paper [ABC+91] analyzes a variety of object-oriented SDMs from three

points of view-1) concepts, 2) notations, and 3) processes. It summarizes the

object-oriented SDMs from these points of view, listing their key concepts, nota­

tions and processes. Then, based on this summary, it compares the SDMs. This

comparison uses, to some extent, comparison approach 4.

In analyzing these comparisons, we found that they are usually based on 1)

firm and well-known understandings of widely recognized method components (e.g.,

data flow diagrams), 2) what the authors claim for their SDMs (e.g., by using a

questionnaire [WFP83b]), and 3) understandings of the authors of the compar­

isons (e.g., applying an SDM to an example and analyzing the application). Using

method 1 can often lead to a fairly objective comparison because the method com­

ponents are usually well understood. However, using methods 2 and 3 may lead

to some controversial results (e.g., Does JSD [Jac83] provide better guidance for

identifying an entity than BOOD [Boo86] does for identifying objects, as concluded

in [BC91]?). We believe that one reason for this is that comparisons made in these

two methods do not rest upon an explicit and formal basis (as does, for example,

a proof of a theorem in mathematics) that enables independent evaluation of the

comparisons themselves (e.g., evaluation of the completeness of the comparisons).

Besides, Approaches 1, 3 and 5 rely on formulated hypotheses (e.g., Approach

5 (e.g., [Wie91]) relies on hypothesizing a problem situation) rather than an anal­

ysis of existing SDMs. This could hinder one from objectively and systemati­

cally comparing SDMs. Although approaches 2 and 4 do not rely on formulating

hypotheses, they have their own problems which need to be coped with (e.g.,

9

they need to have a comprehensive specification language). Thus, these compar­

isons which use quasi-formal approaches still achieve only limited objectively in

comparing SDMs.

1.4 Motivations for Objective Comparison

We believe that these previous comparisons all have value.-They can help,

at least to some extent, software practitioners to learn, choose and use SDMs, and

software researchers to deepen their understanding of SDMs as well. However, two

growing interests in the software engineering community are motivating work on

more objective and more systematic comparisons.

The first interest is aimed at consolidating software engineering concepts and

approaches. Pointing out that current software engineering approaches are often

"slippery and many-sided", the report of the recent US National Research Council's

Computer Science Technology Board (CSTB) workshop [Boa90] concludes: " ...

progress will be made if the vast array of existing and emerging knowledge can be

codified, unified, distributed, and extended more systematically". To achieve this

in the area of SDM study, we must seek objective and systematic comparisons

of SDMs. Otherwise, the codification and unification of SDMs, which will rely

on the comparisons, would be less likely to be recognized and thus rarely used.

Moreover, such codification and unification will not be effective for making progress

in software engineering.

The second interest is aimed at developing process-centered software design

environments [TBC+ss, S089]. As such environments are often aimed at strongly

10

supporting software designers in using various SD Ms, its development will probably

require developers to have a more precise and objective understanding of similari­

ties and differences between SD Ms. A precise and objective comparison is expected

to help in building a software development environment that is most effective in

supporting software designers who are using those SDMs. Such comparisons will

probably also help the effective integration of SDMs and their support tools.

1.5 Strategies for Objective Comparison

In pursuit of objective and systematic comparison of SD Ms, we first observed

how such comparisons are made in other scientific disciplines. Analysis and com­

parison are activities at the heart of most scientific fields, including biology and

chemistry. In biology, animals are systematically and objectively studied using

comparisons of their organs and their inter-organ relations. Usually, organs (e.g.,

eyes) are classified by their functions (e.g., vision). From such classification, or­

gans (e.g., eyes of various animals) having the same or similar functions can be

identified and then compared. To study the differences in how they achieve these

functions, one compares their structures (e.g., shape) and their relations to other

organs (e.g., the brain). For a detailed comparison of certain organs, one can

expect to need to identify and study the parts of these organs.

We believe that an objective and scientific comparison of SDMs should sim­

ilarly be based on comparisons among method components and inter-component

relations. Components should be classified by their functions (what problems they

j

11

address) and characterized by their structures. However, SDMs and their compo­

nents often are not explicitly and rigorously defined, and are much less precisely

understood than animals and their organs. Thus, it is desirable to model these

SDMs in such a way as to make sure that their components are more explicitly

and rigorously defined. Further, this certainly requires having modeling techniques,

modeling formalisms and a set of strategies about how to apply these techniques

and formalisms.

In searching for such techniques and formalisms, we looked into process

modeling [Ost87, KH88, 8091], a research area that studies software process, (i.e.,

those activities, such as SDM-guided design activities, involved in software de­

velopment and maintenance). Its general strategy is to formally specify software

processes with the aid of more classical software specification techniques (e.g.,

data flow diagrams and regular expressions) in the hope of understanding these

processes better. A number of Software Process Modeling Formalisms (SPMFs),

(e.g., HFSP [Kat89] and SDA [Wil88]), a set of conventions for specifying software

processes, have also been developed in this area to more rigorously and explicitly

model software processes. As process modeling supports the rigorous and explicit

descriptions of static software processes and structures of their components, we

think that process modeling should help us cope with this problem.

We also believe that it is well founded to use process modeling techniques to

support modeling of SDMs based on the following observations. A design process

is a type of software development activity that adapts an SDM in response to local

factors, and uses it to devise software artifacts that are to satisfy specific software

requirements. Thus, a design process can perhaps be viewed as an execution of an

instantiation of an SDM. Conversely, an SDM can perhaps be viewed as a generic

12

and static process definition1 . Thus, as an SPMF supports the modeling of software

process definitions, it should be plausible to use process modeling techniques to

model SDMs.

Based on these motivations, observations and foundations, we attempt in

this research to use process modeling techniques to pursue objective and systematic

comparison of SD Ms. In the next chapter, we will more precisely define our research

goals.

1 Moreover, when formalized in a programming language, an SDM would then be a process

program [Ost87, SH090]

J

J

Chapter 2

Problem Definitions and

Research Goals

In this research we will primarily tackle only one problem. This problem, as

discussed in the last chapter, is about how to apply process modeling techniques

to pursue objective and systematic comparisons of SDMs. Thus, the topic of this

thesis is to study how to compare SD Ms more scientifically, rigorously and precisely

by using process modeling techniques. This research also has some subgoals and

is aimed at making a number of different contributions to the software engineering

community. In the following sections, we will define the problem and the research

goals in detail.

2.1 The Primary Goal of the Research

In this research, we pursue objective comparisons among SDMs. Such com­

parisons should have the following characteristics:

13

14

• SDMs should be completely compared at a certain abstract level. No feature

of an SDM being compared is to be hidden in order to favor it over another

SDM against which it is being compared.

• All comparison results should have a formal and explicit basis, which de­

scribes why and how the result is arrived at.

• All comparison results should rely on the analysis of the SD Ms. The analysis

should (if possible) use well-recognized analysis techniques.

In this research, we also pursue systematic comparisons of SDMs. Such

comparisons should have the following characteristics:

• The comparison process should be systematic. The process should system­

atically apply principles, guidelines, notations, etc. By this, we hope that

subjectivity in comparing SDMs can be reduced.

• The comparison results should be organized systematically. They should be

represented in rigorous and well-organized notations.

In this research, we also pursue more precise and explicit comparisons of

SD Ms. Such comparisons may more precisely answer such questions as 1) what

components of various SDMs fall into the same class? 2) what are detailed dif­

ferences among the components in a single class? and 3) what are the relations

among the components?

To tackle these problems, we will define and study an approach to comparing

SDMs. The approach will apply process modeling techniques and can help us to

be able to make comparisons having the characteristics described above. In this

research, we will lay down a solid foundation for this approach. This will allow

i

15

this approach to be further developed into a complete and comprehensive SDM

comparison methodology. We will also describe its major steps, artifacts and the

representation means it will employ.

2.2 Secondary Goals of the Research

In addition to the primary goal, this research also has some secondary goals.

2.2.1 Development of a Framework and Modeling Formalism

In this research, we will develop 1) a framework for classifying parts of SD Ms

a~d 2) a formalism for modeling SDMs. In this thesis, we often refer to the frame­

work as Base_Framework (BF) and the formalism as Modeling_Formalism (MF).

Those two will be used as the key facilities to support our comparison approach.

In recent years, the importance of developing frameworks for classifying

software engineering knowledge and vehicles for specifying this knowledge has

been well recognized by the software engineering community. Pointing out that

current software engineering approaches are often "slippery and many-sided"' the

report of the recent US National Research Council;s Computer Science Technology

Board (CSTB) workshop [Boa90) concludes: " ... progress will be made if the vast

array of existing and emerging knowledge can be codified, unified, distributed, and

extended more systematically". To achieve this goal, the report suggests: " What

is needed is a way to define and discuss the 'parts' of software engineering, the

specification of each, and a conceptual framework within which to place them".

16

We strongly agree with these statements. Further, we believe that study

of Software Design Methodologies (SDMs) is an excellent example of an area in

which the above suggestion should be carried out. Existing SDMs (e.g., [Jac83,

Boo86, Orr77, PC86]) are defined informally in plain English and their components

are often not explicitly and rigorously defined. A framework for classifying these

method components and a vehicle for specifying the components are still lacking.

Thus, achieving those two research goals will probably contribute here.

In addition, we will study how to develop BF and MF, describing strategies

for developing the BF and MF. We believe that it is very important to make the BF

and MF development process explicit because it can be used to guide our research

activities and can probably be adopted to develop frameworks and formalisms

for studying other software engineering approaches (e.g., requirement engineering

methodologies, various evaluation methodologies).

2.2.2 Evaluation of Software Process Modeling Formalisms

In this research, we will also explore the value of process modeling [Ost87,

KH88], a research area that studies software process, (i.e., those activities, such

as methodology guided design activities, involved in software development and

maintenance). Its general strategy is to formally specify software processes with

the aid of more classiCal software specification techniques in the hope of under­

standing these processes better. Researchers in this area have developed a num­

ber of Software Process Modeling Formalisms (SPMFs), (e.g., HFSP [Kat89] and

SDA [Wil88]), sets of conventions for specifying software processes. However, few

17

of them have seen more than limited application, and thus they have not been thor­

oughly evaluated. Besides, most existing experiments in using process modeling

techniques have focused on development of process-centered software development

environments. Thus, the application area of process modeling is still far from being

thoroughly explored.

In this effort, we will adopt SPMFs as modeling formalisms to model SDMs

and use their models for the SDM comparisons. Thus, this provides an excellent

chance to further evaluate these existing SPMFs and widen the application area

of process modeling.

We expect that the evaluation of process modeling will be carried out through

studying the answers to the following questions:

• What SDM aspects can an existing SPMF help to characterize explicitly?

• What SDM aspects can an existing SPMF not help to characterize explicitly?

• What benefits can we gain from these explicit characterizations?

• How can effective process modeling be a help in comparing SDMs?

• What are the limitations of process modeling techniques in comparing SD Ms?

• What aspects of SDMs do we desire to model, that are not supported by

existing SPMFs. How should SPMFs be enhanced to support the modeling

of these aspects?

2.2.3 Comparisons of Software Desgn Methodologies

In this research we will compare a number of SDMs as an experiment in

validating our comparison approach. This experiment will produce comparisons

18

Summary of Goals and Contributions

Goals Contributions

Area Brief description

1. Developing an SPM-based SDM Help to choose, evaluate

comparison approach enhance SDMs, etc.

1.1. Developing a BF SDM Systematically codifying,

distributing SDMs.

1.2. Developing a MF SDM Define and understand SDM.

1.3. How to develop the BF and MF SDM Define an approach for

SE consolidating SDM and SE.

1.4. Evaluating MF SPM Improving SPMF.

1.5. Comparing SDMs SDM Understanding and integrating

certain SDMs.

Table 2.1: Summary of the research goals and contributions

among SDMs. We believe that these comparisons will be more explicit, precise and

objective than previous SDM comparisons, and should help in understanding the

SDMs and the software design activity in general. More specifically, this research

may help in understanding composition of the existing SDMs and strategies they

have used to guide software design activities. This may show what techniques have

been repeatly used in different SDMs, however to tackle different design problems.

Table 2.1 summarizes our research goals and planned contributions.

19

In the next chapters, we will describe our approach for comparing SDMs. We

expect that developing, using and evaluating this approach can help us to tackle

the above-described problems.

Chapter 3

Our Comparison

Approach: CDM

In this chapter, we present a comparison approach we use to compare SDMs.

We expect that the development, use and study of this approach will serve as a

vehicle for us to achieve our research goals. The initial development of the approach

will help us to formulate our research hypotheses. 'rhe use of the approach will help

to evaluate the approach and will possibly produce the desired comparison results.

The study of the approach will help to evaluate process modeling techniques in

aiding comparisons of SDMs.

As process modeling supports the rigorous and explicit descriptions of static

software processes and the structures of their components, this approach starts by

modeling SD Ms. With explicitly defined SDM models, we are then able to identify,

classify, and compare method components. The data flow diagram in Figure 3.1

is a model of CompareJJesign_Methodologies(CDM), the comparison process we

suggest to compare two SDMs. A box in the figure denotes a data object used in

CDM and an ellipse denotes a step of CDM. The label attached to a directed edge

20

Methodology I
(Meth.l)

Proce11..Model

21

Modeling.Formali1m

Proce11..Model

Differences

Summa.rize.Differencea Summary

Figure 3.1: Compare_J)esign..Methodologies(CDM), a data flow diagram
modeling a SDM comparison process

shows the data flow between the steps. In the following sections we will describe

those steps and the data flowing through them.

3.1 Step 1: Build_Process_M odel

3.1.1 Objectives

The first step in CDM (Fig. 3.1) is to develop a model, a more formalized de­

scription, of each of the two SDMs to be compared-MethJ and MethJI. Thus,

this step produces two artifacts-the process models of MethJ and MethJI. We

hope that in doing this we can effectively decompose an SDM into components,

22

which include design artifacts (design objects and inter-object connections), ac­

tivities (the order of execution of design steps and their inputs and outputs). We

also hope that in doing this, we can make the types of these components and

their relations more explicit. Those types and relations will be used to guide the

comparisons and aid the analysis of SDMs.

Because an SDM can be very complex, it is important that its model at

higher abstraction levels be compact and clear, yet complete enough for further

refinement. Since in this step it has not been decided which method components

to compare, it is desirable to avoid specifying details that might be irrelevant to

future comparisons. Thus, this step is analogous to the modeling and design of

a software system, which emphasize the development of the architecture of the

system.

As we indicated earlier that an SDM can be viewed as a process definition,

it is plausible to apply an SPMF as a Modeling_Formalism to model the SDM.

The SPMF chosen must be capable of modeling the characteristics matching those

described in the last two paragraphs.

3.1.2 Issues

We have identified three important issues that are related either to the fea­

sibility or to the applicability of CDM. If CDM is to be used applied successfully,

one must understand and address these issues.

23

Issue 1: One problem that may be encountered in modeling an SDM is that

an SDM probably contains some components (e.g., measures, guidelines and rules­

of-thumb) that lack precise semantics and therefore cannot be modeled precisely.

Some of those components could be defined more precisely and rigorously along

with the improvement of the SDMs. Some of them, however, as Cameron [CCW91]

noted, inherently cannot be defined more precisely. These components often are

what will allow flexibility in using the SDM.

Our strategy in coping with this is to completely model the SDMs at higher

abstraction levels. By doing this, we can at least highlight all the key components

in the model. Then, from such a model, and given informal descriptions, we can

identify those components and aspects that might be more amenable to detailed

and lower-level precise modeling with existing SPMFs. For example, at a higher

abstraction level, we can model that an SDM has certain principles and some

design activity uses some of these design principles. Then, at a lower abstraction

level, we can examine whether the principles can be effectively modeled.

We believe that the comparisons, which are based on partial but rigorous

models and complementary informal descriptions, should still be more precise

and explicit than comparisons based solely on informal descriptions of the SDMs.

Moreover, we anticipate that, with further development of SDMs and SPMFs,

more components will be amenable to increasingly precise modeling. This belief is

the foundation for our strategy.

Issue 2: Another problem is how to ensure that the M odeling_Formalism

is comprehensive enough to capture SDMs adequately. Usually, any given SPMF

will be more capable of precisely and effectively specifying certain aspects of a

24

given software activity than others would. Thus, a comparison based on models

specified in one particular SPMF will be more effective in showing differences in

certain aspects, but may be relatively less effective in other aspects. Thus, any

arbitrarily selected SPMF will help in making certain limited comparisons, but

it should be expected that these comparisons may be incomplete and potentially

misleading.

For example, a model specified by a functional SPMF (e.g., HFSP [Kat89])

may more clearly indicate the input/output domains of a design activity than

would a rule-based SPMF (e.g., Marvel [KF87]), which could be more capable

of modeling the design criteria. (e.g., criteria for selecting an entity in JSD).

Therefore, a comparison based on models in HFSP would show the differences in

tp.e input/output domains of the design activities rather than the differences in

the design criteria. Conversely, in a rule-based paradigm, the differences in the

criteria, rather than in the input/output domains, would be shown clearly. Thus,

overall SDM comparisons, which are made based on models specified in only one

formalism (e.g., HFSP or Marvel), should be expected to be at least somewhat

misleading.

These observations indicate why it is desirable to use a number of SPMFs,

chosen to complement each other. Doing so shoul~ help to more completely model

an SDM and therefore reduce the chance of obtaining a misleading comparison.

Thus, this research will address the issue of finding appropriately complementary

SPMFs, which will be discussed in chapter 5.

Issue 3: Quite another issue is how to validate a model of an SDM (i.e.,

examine whether the model is an accurate characterization of the SDM at least

25

with respect to the aspects being modeled). We suggest that two strategies can

be used: 1) reviewing the model against definitive publications describing the

SDM, and 2) soliciting comments from the authors of the SDM. By doing the

first, we hope to ensure that the model captures the SDM as presented by the

publications. By doing the second, we hope to eliminate the modeler's possible

misunderstandings of the SDM as presented by the publications. Thus, we expect

that a model validated using both these strategies should be sufficiently accurate

and thus can ensure that the comparison is accurate. Note that, since our work

focuses not on evaluating SDMs but rather on differentiating among SDMs, it does

not seem necessary to use an experimental approach to validate SDM models.

3.2 Step 2: Classif y_Components

3.2.1 Objectives

Having identified the method components, one next considers classifying the

components (see Fig. 3.1) within a comparison framework (Base.Ji'ramework of

Fig. 3.1). Such a classification is used to identify the overall differences/similarities

between SDMs, and to guide the selection of comparison topics. Therefore, the

classification under Base.Ji'ramework should show which method components ad­

dress the same or similar issues. Further, it should show how and why certain

components should/could be compared.

26

---, I I

Problem Solulion

I Problem Modeling Problem Modeling
I Domain Model
I ~m•
I

Solution
Model
Domain

I

I '--------------------------------------- -----------------------
&re applied by

Melhodologiea

Figure 3.2: Part I of the Base_Framework: A Model of the Software Design Life­
cycle (MSDL). (The diagram inside the broken lined box is a data flow diagram.)

3.2.2 A Prototype Framework

In our research we have identified and utilized a prototype framework that

consists of two parts: a Model of the Software Design Life-cycle (MSDL) and a

Method Component Type Hierarchy (MCTH). MSDL enables us to functionally

classify components (i.e., classify components by the issues they address) while

MCTH enables us to characterize the structure of the method components.

MSDL, as Fig. 3.2 shows, consists of three sub-processes which, by applying

design methods, transform the elements from one domain to another. These sub­

processes can be further decomposed. Thus, for example, the Solution Model

Domain is decomposed in Fig 4.6. MCTH, whose top-level types are defined

in Fig. 3.3, provides the basic types that can be used to characterize the parts

of these m~thods. The description of the framework presented here is used only

to ease the description of CDM. A more comprehensive version of the framework

will be described in Section 5.4.2.

27

• Concept: includes 1) understanding of the general characteristics of

software problem domains and the problems in designing software; 2) general

principles for coping with these problems; 3) concrete strategies or cdteria

that guide the design of software and that cope with these problems.

• Artifact: a description involved in the design process. The structure and

role of an artifact in a methodology are probably affected by the related

concept. An artifact could be represented in one or a combination of a number

of forms such as computer program, diagram or templated text.

• Representation: a means for representing design artifacts, (e.g., document

templates and design/modeling languages). A representation should pro-

vide expressive notations with rigorous semantics to aid in specifying design

artifacts.

• Action: one or more physical and/or mental behaviors used in design. An

action may create or modify a design artifact.

Figure 3.3: Part II of the Base_Framework: types at the top-level of Method
Component Type Hierarchy(MCTH)

28

3.3 Comparison of Design Methodologies

In the previous sections, we have discussed the first two steps of our ap­

proach (see Fig. 3.1). In this section we discuss the last three steps-Select

Comparison Topics, Develop Process Code and Make Comparison.

3.3.1 Step 3: Select_Comparison..Topics

Objectives

In this step, we will identify the method components to be compared. This

selection of method components will guide succeeding comparisons.

Criteria and Guidelines

Generally, two criteria can be used in selecting components for comparisons:

1) they should be comparable, and 2) a comparison between them should help in

showing key differences between SDMs.

Selecting components to be compared also requires guidelines for determining

which components can be compared. Classifications should indicate which com­

ponents address similar design issues and have comparable structures, (e.g., an

action could be compared with another action but not with a representation), and

should aid in selecting comparison topics. For example, based on the definition

of MCTH (Fig. 3.3), we may use a guideline like the following to select topics for

companson:

The classification may illustrate that two concepts address similar design

issues. If so, one can select these two concepts for comparison, and be­

gin to trace the artifacts supporting the concepts, the representations

representing the artifacts and the actions creating or modifying the ar­

tifacts (which are specified in process models) and eventually, find the

artifacts, representations and actions that can be compared.

29

3.3.2 Step 4: M ake_Comparison and Develop_process_Code

Objectives

After deciding to compare two given components, one compares the models

expressing those two components in order to understand their concrete differences.

Since a process model (which is analogous to an architectural design in our ap­

proach) must capture only an overall view of an SDM, it is not sufficient for

identifying detailed differences between method components. Thus, it might be

necessary at times to develop a model characterizing those details most relevant

to the comparison to be made. These more detailed process models are similar

to detailed designs and we refer to them as process code to distinguish them from

those that capture the higher level view of an SDM.

Aspects to Compare

CDM might be more effective in helping with the comparison of certain as­

pects of SDMs than with the comparison of some other aspects. Based on some

30

criteria (RS78] for classifying SD Ms and our experiences (S089], we anticipated

that comparing process code would aid in identification of differences in:

• Inter-component dependency, what other components a component de­

pends upon, which may illustrate different usages and characteristics of the

components;

• Degree of human involvement, the need for human intelligence in per­

forming design actions, which may indicate how much the action could be

automated or systematically applied in practice;

• Development procedure, the order in which the design actions are to be

performed; and

• Scope of issues, the scope of the design issues the SDM addresses.

In the next chapter, we will present an experir~ent that uses CDM to compare

SD Ms.

3.3.3 Step 5: Summarize...Dif f erences

Summarizing differences identified is aimed at providing readers with an

overview of the differences between the SD Ms compared. This summary should be

organized around the BaseJi'ramework and the comparison topics selected. For

example, it should show what differences have been identified under the Problem

Model Domain, etc. By doing this, the differences can be appropriately empha­

sized and therefore better understood. This summary should help in indicating

the differences between the components with respect to the aspects (e.g., those

described in the last section) with which the comparisons are concerned. This

31

The MSDL component

Component Aspect 1 Aspect 2 ...
A Comments Comments ...

B Comments Comments ...

Figure 3.4: The artifact structure for summarizing the differences

summary should help directly in analyzing the functions of the method compo­

nents, providing an aid in alternating the components in an SDM and integrating

SD Ms.

Fig. 3.4 defines an artifact structure we suggest for use in CDM to summarize

the differences between SDMs. In the table of Fig. 3.4, A and Bare two method

components that have been compared, which have the same method component

type, and address the same issues about The MSDL component. The Aspects

are the aspects from which the comparison is being made (e.g., Inter-component

dependency). The Comments then indicate the differences between A and B

with respect to these aspects.

Chapter 4

Experiment 1: Comparing JSD

With BOOD

In this chapter we describe an experiment that demonstrates how CDM was

used to compare JSD [Jac83] and BOOD [Boo86].

The primary reasons for choosing JSD and BOOD are: 1) as we believe that

they are neither dramatically different nor very similar, thus, their comparison

should not be an extreme case, 2) it seems to us that they share many character­

istics with many other SD Ms (e.g., a variety of Object-Oriented SD Ms [RBP+91,

Jac87]).

First, we introduce the SPMF used to model JSD and BOOD, and discuss

the reasons for using it. Second, we present a brief overview of JSD and BOOD

with descriptions of their models. Third, we illustrate how their components can

be classified under the Base_F'ramework, and how similar components can be

compared based on these models. Last, we evaluate the application of process

modeling for comparing SDMs.

32

33

4.1 Introduction to HFSP

We specified models of JSD and BOOD in an SPMF called the Hierarchical

and Functional Software Process (HFSP) formalism [Kat89]. In HFSP, a software

process is modeled as an activity defined in the form:

Execution of A is performed functionally, and does not refer to or change any

global object. xi, x2, , Xn, Yi, ... , Ym are called attributes of A, defining the input

and output domains. The activity A might be decomposed into some subactivities

in the form:

The set E of attribute definitions specifies how to prepare inputs to the subactivities

and how to get the result of the main activity A when the subactivities Ai come

up with their execution results. E contains the attribute definitions for:

1. input attributes of subactivities Ai, ... , Ak and

2. output attributes of the main activity A.

Every attribute definition is of the form

where a is the attribute to be defined, ai, a2 , ... are other attributes in the decom­

position, and f is an auxiliary pre-defined function. These dependencies among

the attributes determine the order in which the subactivities might be performed.

34

HFSP supports the modeling of a software process as a mathematical func­

tion. However, HFSP is less satisfactory in that it does not directly provide mech­

anisms for modeling the structures of artifacts and the conditions· for activat­

ing/terminating a software development/maintenance activity or orchestrating its

subactivities.

HFSP seems to be a plausible formalism to use to elucidate the characteristics

of these SDMs (see the first two paragraphs of Section 3.1.1) because:

1. HFSP allows description of an SDM through a hierarchy of functional ab­

stractions.

2. In HFSP, a design action can be rigorously defined as a function map­

ping some artifacts (i.e., input attributes) to other artifacts (i.e., output

attributes). The dependency relations among the attributes of an activity

and those of its subactivities can also be rigorously defined by defining the

mappings between them. In HFSP, the input/output domains of the activity

can be explicitly indicated at the time of both its definition and use.

3. The declarative property of HFSP should help us concentrate our attention

on modeling the static properties (i.e., functions) of a design action. HFSP

does not support description of the conditions under which the action will

be activated or terminated. This should be a weakness in modeling dynamic

characteristics of software processes. However, we believe that, in our ap­

plication, this should be advantageous since this can help us in focusing on

modeling SDMs rather than their instantiations/enactions.

Since HFSP is a powerful aid to modeling the functions of design action and design

action is a basic type of method component, we focus on modeling the functions of

35

JSD and BOOD design actions. The weaknesses (e.g., weak support for modeling

artifacts) of HFSP could affect our models and comparisons. We will discuss this

issue after showing the comparison.

4.2 Use of CDM

4.2.1 Step 1: Build Process Models of JSD and BOOD

JSD and its Process Model

JSD consists of two major steps-Develop_Spec and Develop_Jmpl. In this

overview we introduce only the former and correspondingly describe its model (Fig. 4.1).

As Jackson believes that the model of the real-world outside the system is

more fundamental to the structure of the system than the required functions of the

system, the first step of JSD, ModeLReality (Fig. 4.l(e)), is to model the real-world

in terms of entities and actions. An entity must exist outside the system, must

perform or undergo actions in a significant time-ordering, and must be uniquely

named. An action is regarded as taking place at a point of time, must take place in

the world outside the system, and cannot be decomposed further into subactions.

Identify_Entity_Action, (Fig. 4.l(e)(l)), provides a list of the entities and actions.

Then, taking this list as input, Draw_Entity_Structure, (Fig. 4.l(e)(2)), specifies

the life-cycle of each entity, called Entity-3tructure or Real_W orldYrocess, as

a regular expression [WG84] of action occurrences.

36

At the end of ModeLReality, attention is shifted toward modeling the sys­

tem. Model.System (Fig. 4.l(f)) has three sub-steps: 1) identify ModeLProcesses

that comprise the real-world/system interface and simulate ReaLWorldYrocess;

2) describe how to connect (i.e., to communicate) a ReaLWorldYrocess to a

ModeLProcess; and 3) derive the algorithmic structure of a ModelYrocess from

the action occurrences specified in the corresponding Real_ W orldYrocess. The con­

nection through which a Real_ WorldYrocess communicates with a ModelYrocess

can be built by either of two mechanisms: a receiving Data.Stream or an inspecting

State_ Vector. At the end, ModeLSystem produces a document, Init.Sys.Spec.JJiagram,

describing the model of a system interface.

BOOD and Its Process Model

BOOD is based on information-hiding and abstract data types. It emphasizes

identifying and specifying the system component objects that may correspond to

real-world components. An object must have state, operations it performs and

undergoes, and restricted scopes for viewing other objects and for being viewed.

The state of an object is defined by the value of the object plus its sub-objects.

Therefore, an object is something that exists in time and space, and may be affected

by the executions of the operations of other objects.

BOOD, as Figure 4.2 shows, consists of two types of actions: identifying

the system components (i.e. Identify_Object and Identify_Operations) and speci­

fying these components (i.e. Establish_ Visibility, Establish_Jnterface and Establish

Implementation).

(a) JSD(ReaLWorldlDeaign..Spec) *
(1) Develop..Spec(Rea/_W or/d.J)eaclSyatem_Spec.JJiagram)

(2) DevelopJmpl(Syatem..Spec.JJiagramlSyatemJmp/.J)iagram)

(3) Where ReaLWorld.JJeac = lnterview(U sers, Developers, ReaLWorld),

(4) Design_Spec = union(System_Spec.JJiagram, System_Jmpl.Diagram);

Second.level:

(b) Develop_Spec(ReaLWorld.JJesclSystem..Spec.JJiagram) *
(1) Develop..System_M odel(Rea/ _W orld.JJeaclinit..System..Spec.JJiagram)

(2) Devel op..System_Func(I nit..System_Spec..Diagram ISystem..Spec.JJiagram);

Third.level:

(c) Develop..System..Model(ReaLWorld.JJesclinit..System_Spec.JJiagram) *
(1) M odel..Reality(ReaLW orld.JJesclReaLW orld..M ode/)

(2) Model..System(Rea/_World..Modellinit..Syatem_Spec.JJiagram);

(d) Develop_System..Func(I nit..System_Spec..DiagramlSystem..Spec.JJiagram) *
(1) Def ine..Func(I nit_Syatem_Spec.JJiagram IS.yatem..Function, Function_proceaa)

(2) Def ine..Timing(I nit..System..Spec.JJiagram, Syatem..FunctionlTiming)

f3) Where System_Spec.JJiagram =
is..composed_o f (I nit..System..Spec.JJiagram, System.Function, Function_proceaa, Timing);

Fourth.level:

(e) ModeLReality(Rea/_W orld.JJesclReaLW orld..M ode/) *
(1) I dentif y..Entity..Action(ReaLW orld.DesclEntity..Action..List)

(2) Draw..Entity..Structure(Entity..Action..ListlEntity..Structure..Liat)

(3) Where ReaLW orld..M ode/ = is(Entity..Structure..List),

(4) ReaLWorld-Proceas = ia(Entity..Structure);

(f) ModeLSystem(ReaLW orld..M odellinit..System_Spec.JJiagram) *
(1) I dentify..M odel-Proceas(ReaLW orld..M odellM -Proc..N a me.List);

(2) Connect(ReaLW orld..M ode/, M -Proc..N ame..List, Data..Stream, State_VectorlConnection..List)

(3) Specify_M odel..Proceas(Connection_Liat, ReaLW orld..M ode/, M -Proc..N ame..ListlM odel-ProcesaJist)

(4) Where Init..Syatem..Spec.JJiagram = is(M odel-Proceas..List);

Figure 4.1: A model of JSD specified in HFSP

37

j

38

We validated these two models by using both strategies we described ear­

lier (Sec. 3.1.2). We extensively reviewed them against the definitive publica­

tions [Boo86] and [Jac83]. We also solicited comments from their authors (i.e., G.

Booch and J. Cameron). J. Cameron thinks that our models are basically accurate

while G. Booch indicates that our BOOD model was essentially accurate, except

for its omission of two components: the timing diagram and the state transition

diagram. Using their comments, we reviewed again the models against the pub­

lications on the SDMs. We found that Booch's comments are based on a more

recent publication ([Boo91]). As our comparison is intended to be an experiment

in using CDM rather than a definitive model of either SDM, we did not extend the

model to cover these two components because we think that the current BOOD

model is an accurate representation based on the original publication [Boo86].

As required by CDM (see Section 3.1.1), these two models highlight the

artifacts (HFSP attributes) and describe the order for executing the design ac­

tions (HFSP activities). These models also completely and rigorously define the

functions of the design actions. Although these models are still incomplete since

they fail to model other types, (e.g., representation and artifact) of the method

components and other aspects of the components, (e.g., what criteria a design ac­

tion should apply), we think that they already convey enough information for us

to make some comparisons and thereby to demonstrate/evaluate CDM.

4.2.2 Step 2: Classify .the Components of JSD and BOOD

In this step, we first classify the components of each SDM and then merge

these two classifications together. In doing this, we hope to show more clearly the

(a) ,BOOD(Req..SpeclDesign..Spec) =>

(1) Identify_Object(Req..SpeclObjects, States)

(2) Identify_Operations(Req..Spec, Objects, StateslOperation)

(3) Establish_Visibility(Req..Spec, Objects, States, OperationlVisibility)

(4) EstablishJnter f ace(Visibility, Objecta, States, Operationlinter face)

(5) EstablishJmplementation(Inter facelimplementation)

(6) Where Design..Spec = is_composed...of(Inter face, Implementation);

Second Level:

(b) ldentify_Object(Req..SpeclObjects, States) =>

(1) Identify..Nouns(Req..SpeclNouns)

(2) I dentify_Concrete_Object(Req..Spec, N ounslConcrete_Object)

(3) I dentify_A.bstract_Object(Req..Spec, N ounslAbstract_Object)

(4} I dentify..Server(Req..Spec, N ounslServer)

(5) I dentify_A.gent(Req..Spec, N ounslAgent)

(6) I dentify_A.ctor(Req..Spec, N ounslActor)

(7) I dentify_Class(Req..Spec, Agent, Server, Actor, Concrete_Object, Abstract_ObjectlClass)

(8) Identif y_A.ttributes(ObjectslStates)

(~) Where Objects = union(Concrete_Object, Abstract_Object, Class, Agent, Actor, Server)

(c) ldentify_Operation(Req..Spec, Object, StateslOperation) =>

(1) Identify..Suf fered(Req..Spec, Object, StateslOperation..Suf fered)

(2) I dentify..Required(Req..Spec, Object, StateslOperation..Required)

(3) Defining..Time_Order(Req..Spec, OperationlTime..Order)

(4) Defining..Space(Req..Spec, OperationlSpace)

(5) Where Operation= union(Operation..Suf fered, Operation.Required)

(d) Establish_Visibility(Req..Spec, Objects, States, OperationlVisibility) =>

(1) Specify_Object..See(ObjectslObjects_See)

(2) Specify_Object..Seen(ObjectslObject_Seen)

(3) Where Visibility= union(Objects_See, ObjecLSeen)

(e) Establish_lnterface(Visibility, Object, States, OperationslSubsystem, Interface) =>

(1) Derive_Module(ObjectlModule)

(2) Specify_A.ttr(States, M odulelAttributes)

(3) Specify_proc(Operations, M odulelProcedures)

(4) Specify_Visibility(Visibility, M odulelV isibility..Spec)

(5) Where Subsystem= is_in_term...of(Module),

(6) Interface= is...composed...of(Attributes, Procedure, Visibility_Spec);

Figure 4.2: A model of BOOD specified in HFSP

39

40

• Interface Model: Describes the way in which real-world events interact

with system components.

• Communication Model: Describes the mechanism through which system

components can communicate with each other.

• Data Model: Describes the data structure used to realize the system.

• Entity Model: Describes the system in terms of the system components

and the operations they may perform and/ or undergo. A system component

must 1) exist in time and space, and 2) perform and/or undergo operations.

• Transform Model: Describes how a desired system output can be com­

puted. This may entail identification and elaboration of system programs.

Figure 4.3: Decomposition of the MSDL's component Solution Model Domain

41

potential of the classification, which indicates the intersected and complementary

parts of the two SDMs.

Fig. 4.4(a) and (b) show the classifications under the Solution Model Domain

described in Fig. 4.3. In these figures, an ellipse denotes a framework component

while a box denotes a method component. The line connecting two components of

the same kind denotes the has-subclass [KM85] relation, (e.g., in Fig. 4.4(b), the

method component Server is connected with another method component Object.

Thus, Object has has-subclass relation with Server, which means that Server

defines a subset of the set defined by Object and therefore Server inherits the

properties of Object). The line between two different kinds denotes an is-addressed­

by relation which means that the method component addresses some issues raised

by the framework component.

Through these figures, one can identify key method components, (they are

usually at high levels of the has-subclass hierarchy), and thereby identify which

components address which issues. For example. one can understand that Server as

a subclass of Object should address some issues Object addresses-about modeling

the Solution Model, more specifically, about modeling the Entity Model.

Fig. 4.4 (c) shows that M odeLProcess addresses the issues concerned with

modeling the Entity Model. In the following, we justify this to demonstrate how

the rest of .this functional classification can be similarly justified.

Fig. 4.l(f)(4) shows that

Init..System..SpecJJiagram = is_in_terms...iJf(ModeLProcess).

42

This illustrates that model processes comprise the system interface and hence

they are the components of the system. Since a model process simulates a JSD

entity which must exist in the real-world and perform and/or undergo JSD ac­

tions, a model process should not be a mere input/output mapping and should

perform and/or undergo operations. Therefore, it should be appropriate to view

M odeLProcess as addressing issues about modeling the Entity Model.

We also validated these classifications by using strategies similar to _those

used for validating the SDM models. Because the models and classifications have

been carefully validated using CDM, we believe that they should not be viewed

simply as our personal vision of the SDMs and their functions.

Having separately classified BOOD and JSD components, we merge these

two classifications to identify which method components address similar issues. In

doing so we provide guidelines for selecting components to be compared. Since the

frameworks utilized are the same, we can do this by moving the method compo­

nents of one classification into another, while keeping the is_addressed_by relations

unchanged. By doing this, we get Fig. 4.4(c), which indicates that:

• BOOD does not explicitly address the issues of modeling the communica­

tion between system components (i.e., Objects). In contrast, JSD provides

Data-8tream and State_V ector as two ways to model communication among

system components (i.e., M odeLProcesses).

• BOOD does not explicitly address the issues of modeling the interactions be­

tween system components and related events outside the system. In contrast,

the JSD notions of Connection, State_Vector and Data-8tream address this

issue.

43

• M odeLProcess, FunctionYrocess and State_ Vector or Data..Stream in

JSD should respectively address issues similar to those addressed by Object,

Operation and State in BOOD.

We can now see that this classification can be used to identify components that

address similar issues. However, we also can see that this classification does not

illustrate how these components are similar or different. This is exactly the rea­

son why we continue the comparison, taking this classification as a road map for

identifying the components that should be compared further.

4.2.3 Step 3: Select Comparison Topics

Fig. 4.4(c) indicates that JSD's ModelYrocess and BOOD's Object address

similar issues. Thus, we consider them comparable. In addition, since they de­

scribe the fundamental structures (e.g., sequential process structure) of the design

artifacts, we believe that it should be important to compare them. Using a simi­

lar rationale, we should also compare JSD's Action with BOOD's Operation, and

JSD's State_V ector with BOO D's State.

Applying the guideline suggested in section 2.4.1, we compare the corre­

spondingly related components of same type. As our JSD and BOOD models

focus only on defining the functions of the design actions, we focus on comparing

these actions.

Dal& Sl&le
Stream Vector

Model
Proce11

(a) Clauifie&lion of lhe JSD eomponenh

(e) Merged elassifiealion

Fune.
Proceas

Solution
Model

44

Tranaforma.do

Mo"' ~

Sl&le Oper&lion

Server Agenl Aelor

(b) Clauifie&lion of lhe BOOD compon~nl•

Tra.naforma.tio

Mo Oh
Fune.
Procesa

Server Agenl Aelor

Opera.don

Figure 4.4: Classifications of the JSD and BOOD components under the Solution
Model Domain

45

4.2.4 Step 4: Make Comparisons and Develop Process

Code

In this section we compare the design actions identifying and specifying the

components chosen to be compared. By doing this, we hope to demonstrate how

one can, based on the models of the SDMs, find the differences/similarities in the

aspects described in section 2.4.2.

Comparing Object with ModeLProcess

Comparing Identification Actions

The process models (Fig. 4.l(f)(l) and Fig. 4.2(b)) help us in understanding

the following:

• Differences in inter-artifact dependency: By comparing the inputs of

Identify_ModeLProcess in JSD with Identify_Object in BOOD we see

that developing a M odeLProcess depends on ReaLW orldYrocess and de­

veloping an Object depends on Req..Spec. To understand if they are actu­

ally different or not, we analyzed the activities (Fig. 4.l(e)(1)(2)) producing

ReaLW orldYrocess and tried to identify the activity producing Req..Spec.

As a result, we found that no activity defined in BOOD is used to define

Req..Spec. By doing so and by checking the informal description of BOOD,

we understand that ReaLWorld_Process (i.e., Entity..Structure) is a well­

defined JSD artifact as opposed to Req..Spec which is not well-defined in

BOOD. (Note that the models of the artifacts (e.g., Req..Spec) should help

46

us in deciding this. But since HFSP does not support modeling artifacts, we

have to check the informal description of Req..Spec in BOOD)

• Different need for human involvement: Fig. 4.2(b) indicates that

Identify_Object consists of a number of subactivities. Fig. 4.2(b)(9) in­

dicates that each of those activities identifies a particular kind of object.

Thus, BOOD provides guidelines for identifying Object. In addition, based

on common knowledge, we understand that deciding if a noun represents an

object is a human process. In contrast, Fig. 4.l(f)(l) does not show how

to identify a M odeLProcess. This motivates us to specify the details of

I dentify_M odeLProcess.

HFSP provides strong help for describing what artifacts are produced rather

than how they are to be produced by a design action. Thus, it seems that a formal­

ism that can complement this should be used to specify Identify_ModeLProcess.

As Ada [Uni83] can be used to procedurally describe processes in detail, we choose

to use Ada-like notations to code this action (Fig. 4.5). Fig. 4.5 illustrates that

each JSD entity should correspond to a model process that supports the whole

life-cycle of the entity (note that the procedure parameters are consistent with

their uses in Fig. 4.l(f)(l)). Therefore, in contrast to I dentify_Object, a human

guided process, the model processes could be mechanically identified based on the

given entities.

Coding I dentify_M odeLProcess seems also to support arguments we made

in section 3.1.2 and 3.3.2. In those sections we suggested that any single existing

SPMF is probably not sufficient for precisely and effectively modeling every aspect

of an SDM. However, using a number of complementary selected SPMFs should

reduce this problem. We also noted that an SPMF capable of modeling details

Procedure Identify_Model_Process(

Begin

r_processes: II entity_structure_list;

names OUT m_process_name_list) Is

entity_structure_list and m_process_name_list

are defined in the JSD data type definitions.

For i II r_processes Loop

names[i] := i.entity_name;

-- we assume that an entity_structure

-- has a field called entity_name.

End Loop;

End Identify_Model_Process.

Figure 4.5: The code of the action for identifying M odeLProcesses

47

of the process is sometimes necessary for understanding the differences between

method components. Recognizing this, our research approach is to start by taking

one plausible SPMF (HFSP) as a start, to then iteratively identify what method

components and what aspects of those components need to be modeled, and to

then correspondingly identify what additional SPMFs should be used. In the next

chapter we will discuss the development of such a modeling formalism.

Comparing Specification Actions

Fig. 4.6 and 4.2(b) and (c) illustrate:

48

Specify -Model-Process(Connection-List, ReaLW orld_M odel, M ..Proc..N ame..ListjM odel..Procesa_List) *

Translate..Structure(ReaLW orld_M odel, M ..Proc..N ame..Listjlnit_M odel..Process..List)

Add_C onnection(Connection_Liat, I nit_M odel..Proceaa_ListjM odel..Proceaa..List)

Figure 4.6: The model of defining M odeLProcesses

• Different need for human involvement: specifying a M odeLProcess

from Entity -8tructure and Connection is a fairly mechanical process (proce­

dural descriptions of Translate-8tructure and Add_Connection should show

this clearly). In contrast, since I dentify_Operation contains subactivities

each of which identifies one kind of Operation, we can view I dentify_Operation

as a guided human process. Since Operation is a part of Object, the process

of specifying object must also be a human process.

• Differences in scope: Fig. 4.6 shows that Connection is an input to

Specify_M odeLProcess and Add_Connection is a subactivity of the same

action. Since Connection addresses the issues of communication between

the system and the real-world (note that this entails our understanding of

the informal description of the meaning of Connection), we can see that a

M odeLProcess must be specified to describe how it communicates with a

ReaLW orldYrocess.

• Different development procedure: Fig. 4.2 illustrates that in BOOD,

the order (i.e., Time_Order) in which the Operations are executed is spec­

ified as part of the specification of Operations and therefore as a part of

Object. In contrast, Fig. 4.1 does not illustrate that Specify_M odelYrocess

49

requires one to specify the order in which the Function_Frocesses can be

performed. However, after reviewing a larger part of the model, we found that

Entity..Structure defines the order in which the JSD actions are performed.

Since this order constrains the order in which the Function_Frocesses might

be performed, we see that the two SDMs both address this issue but use dif­

ferent procedures. Note that HFSP makes it harder to determine this as it

is a functional, not procedural, modeling formalism.

This example shows how one could identify differences in scope and develop­

ment procedures. The strategy used here is to compare the control flows and the

subactivities. If finding that a subactivity of activity A addresses an issue activ­

ity B does not address, one may conclude that there are differences irt the issues

t~at activities A and B address. However, one should not immediately conclude

that the two corresponding SDMs have such a difference since the SDM contain­

ing activity B may address this issue through other activities. Thus, more of the

model of this SDM might have to be checked. If one finds that the issue is indeed

addressed through other activities, one may conclude that the two SDMs differ

in development procedures. This suggests a needed refinement to the comparison

process CDM.

Comparing Operation with Function_Frocess

In JSD, a Function_Frocess is defined to achieve the outputs the customers

desire. The model (Fig. 4. 7) shows the procedure for adding the Function_Frocesses

to the M odel_Frocesses. This procedure shows that System..Functions and

Function_Frocess are defined in M odel_Frocesses. For each M odel_Frocess,

50

Procedure Define_Func(Spec II Init_System_Spec_Diagram,

Output: OUT System_Function,

Fune OUT Function_Process) Is

Begin

For Model_Process in Spec Loop

For Action in Model_Process Loop

1) Define_Its_Func(Action, Fune, Output);

-- function processes that support actions directly.

End Loop;

2) Add_Other_Func(Model_Process, Fune, Output);

-- function processes that support a model process.

End Loop;

3) Add_Other_Func(Spec, Fune, Output);

-- function processes that support a function

-- to be achieved by mutilple model processes.

End;

Figure 4. 7: The model of specifying FunctionYrocess and System_Function

and then each of its actions, certain System_Function and FunctionYrocess

will be defined. After that, some additional FunctionYrocess might be defined

to achieve some additional System_Functions which depend on a number of ac­

tions which may be embedded in different M odelYrocesses. JSD suggests that

FunctionYrocess should be chosen based on the outputs the customers desire.

Based on description given in [Jac83], we modeled a procedure (Fig. 4.7) for adding

the FunctionYrocesses to the M odelYrocesses.

51

Comparing Identification Actions

• Different need for human involvement: The identification of a Function

Process depends on the customer desired outputs and the actions simulated

by the ModeLProcess. Therefore, some of them (Fig. 4.7(1)) could be iden­

tified by these actions. However, others (Fig. 4.7(2)(3)), which could be

about how to produce the outputs, may require human experience and in­

telligence. In contrast, the Operations of BOOD are totally identified by

applying guidelines.

Comparing Specification Actions

• Differences in inter-artifact dependency: Operation is an action an

object requires or undergoes, and thus is encapsulated inside the object def­

inition. Similarly, a Function_process could respond to an Action required

or suffered by an Entity (specified in 1) of Fig. 4.7). However, in con­

trast, a Function_process could also be directly activated by the Actions

in a number of the model processes (specified in 2) and 3)). Thus, a

Function_process may not depend on any particular model process.

• Differences in scope:

- A Function_process must have outputs (Fig. 4.7(1)). In contrast, an

operation may or may not have an output, which is not explicitly defined

in BOOD.

- JSD requires specification of the time duration for performing a Function

Process (see JSD model(d)(2)). BOOD does not explicitly address this

issue.

52

Comparing State with State Vector

JSD and BOOD both fail to define the actions that are used to specify

State_Vector and State. However, JSD model(f)(2) and BOOD model(b)(8) help

us to understand:

• Differences in scope: State_V ector is an alternative notion mainly for

building the Connection between the M odeLProcess and ReaLW orldYrocess.

In contrast, State of Object is introduced only from the aspect of recording

the internal state of the object, which is a distinct characteristic of Object.

Since internal state can be used for communication, we think that State is a

more general notion.

• Differences in procedures: JSD specifies in more detail when to specify

State_Vector. However, since State and State_Vector should be specified

respectively when Object and M odelYrocess are specified, the difference is

relatively small.

• Differences in inter-artifact dependency: design of a State_V ector de­

pends on the ReaLW orldYrocess with which the M odelYrocess commu­

nicates. In contrast, State of an Object is a more general notion that is

defined in BOOD as not depending on any concrete artifacts other than the

Object.

4.2.5 Step 5: SummarizeJJif f erence

Table 4.1 summarizes the differences between the similar components of JSD

and BOOD. This summary is a complete description of the differences that are

53

identified by comparing the design actions of JSD and BOOD. Comparisons which

might be made from other aspects, like criteria or artifact composition, may provide

additional evidence that supports the differences we have identified here, and/ or

help to reveal other differences.

This table summarizes that JSD provides strategies for devising the system

interface and system components; it addresses issues of communications between

real-world activities and system components; and it suggests a way to define system

functional requirements in terms of system components.

In contrast, BOOD does not provide a detailed strategy (e.g. when) for

how to model the system interface and the communications between real-world

activities and system components. BOOD assumes that system functions already

are or will be defined by some other activities, and thus provides no strategy for

describing those functions. However, unlike the JSD entity, which in most cases

represents a thing that exists in the environment using the system, the BOOD

object, depending on an unrestricted Req_Spec, could correspond to a component

in the environment using the system as well as one in the support environment.

Thus, BOOD should help in identifying and designing the interactions of the system

interface with the support environment.

4.2.6 Integration of JSD and BOOD

Here we discuss briefly how one might integrate these two SDMs. By doing

this, we hope to demonstrate that comparisons resulting from using CDM are

directly effective in aiding the integration of SDMs.

54

Comparisons with Respect to the Solution Model Domain

The Entity Model

Component Dependency Scope Need for human Proc.

M odell_proceaa Entity..Structure communication mechanical time order

well defined between the real-world not defined

activities and system here

components

Object Req..Spec system components, which guided specify

not defined may not communicate time

to real world activities. order

The Transformation Model

Component Dependency Scope Need for human Proc.

Function_Froc. customer and outputs and mechanical/ N/A

Model.Process time delay guided

Operation Object time delay and outputs guided N/A

may not be specified

The Data Model

Component Dependency Scope Need for human Proc.

State_ Vector ReaLW or/d_proc. communication no guideline N/A

Mode/ .Process is provided

State Object recording internal state no guideline N/A

of object is provided

Table 4.1: Summary of the differences between JSD and BOOD

55

Based on the summary and analyses above, we directly get the following hints

for integrating JSD and BOOD:

• One may derive a BOOD object from a JSD model process (but this does not

mean that every object must be derived from a JSD model process). This

object provides the text to be executed by the model process. An operation

on the object provides the text to be executed by a JSD function process

embedded in the model process. The state definition of the objeGt can define

the data structure of the state vector of the model process.

• The order of executing the embedded JSD function processes, which is con­

strained in the definition of the corresponding Entity..Structure, guides the

specification of the time order of the operations of the object.

• Timing constraints on the JSD function processes will affect the implemen­

tation of the supporting operations in the object.

• BOOD can be used to identify and design the system components that pro­

vide the services to the JSD function processes.

• All the objects can still be documented in the format as BOOD suggested

originally.

In a combined JSD/BOOD process (Fig. 4.8), one can use JSD strategies

1) to model the problem (by modeling the entity structure), 2) to define the sys­

tem interface (by developing model processes), 3) to elaborate the system func­

tions (by adding JSD function processes and specifying their functions), and then

using these as guidelines to define the BOOD objects and to document these ob­

jects in the BOOD format. In this way, JSD and BOOD can complement each

other. The issues which BOOD fails to address, can be coped with by applying

56

Problem Model Solution Model Documen,a.tion Model

Real world proceaa Model proceu

Action

Obj eel
Inlerfa.ce

D Opera.lior j j : Viaibilily

Sia.le
0 :

c:; Implmenla.lion

____ ,.... !>-
MeHa.ge Supporl Conlrol flow

Figure 4.8: The domains manipulated by a JSD /BOOD integrated design process

57

JSD strategies. On the other hand, the issues which JSD fails to address (e.g.

designing/documenting static programs and identifying the system interface with

the supporting environment), can be addressed by the BOOD strategies.

Although strategies for integration of JSD and BOOD have been suggested

before [EHZAG89, BC91], we believe that our suggestions based on the systematic

comparisons using CDM, are more complete and explicit.

4.3 Evaluation of CDM

To evaluate CDM and therefore to achieve our research goals, we must discuss

the following two issues in the next two sections: 1) How effectively does process

modeling help in comparing SDMs? 2) How effectively can CDM overcome the

problems of previous comparison efforts (as described in Section 1.2 and 1.3)?

4.3.1 Evaluating the Application of Process Modeling

What has process modeling provided to aid in comparing SDMs? Based on

the lessons learned during this experiment, we will address this question by answer­

ing three questions: 1) What aspects of a process does HFSP help to characterize

explicitly? 2) What benefit do we gain from the characterizations? and 3) What

do we desire to model, that is not supported by HFSP? Answering the first two

questions would help us in understanding what modeling formalisms should be

used to analyze what aspects of SDMs. Answering the last question would help us

58

in understanding what other modeling paradigms might need to be incorporated

in an SPMF.

To answer the first question, we observe that the process models (Fig. 4.1

and 4.2):

• Characterize software activity in a more rigorous and explicit way:

The meaning of a software activity is explicitly described by 1) its name, 2)

the meaning of its inputs and outputs, 3) the meaning of its subactivities,

and 4) the control flow of its subactivities (for example, see Fig. 4.l(f), where

M odeLSystem is rigorously defined as a function that maps Real_W orld_M odel

to IniLSystem-5pecJJiagram. The descriptions of the subactivities (see

Fig 4.1(1)(2)(3)) which explicitly indicate their inputs and outputs, help us

to understand the meaning of M odel_System.)

• Characterize the relations between the inputs/ outputs of the activ­

ity and those of its subactivities: For example, Fig. 4.1(a)(4) explicitly

indicates that the output of JSD is an aggregation of the outputs of JSD's

subactivities Develop_Bpec and DevelopJmpl.

To address the second question, we found that these characterizations aid us

. .
m comparmg:

• Development procedures or scopes of design activities: The explicit

models of control flow and subactivities can help to identify potential differ-

ences in SDM aspects (e.g., see section 3.5.1. for a comparison between the

actions used in specifying M odeLProcess and Object). However, we found

that models are not by themselves sufficient to demonstrate these differences.

59

One illustrative example is that the JSD model does not express the mean­

ing of Connection. Therefore, in our comparisons, we have to analyze the

informal description of Connection.

• Dependencies among artifacts: Explicit definitions of input/output do­

mains of design activities can help to show dependencies between design

artifacts (as inputs and outputs of the activities), and thereby may help

to show that two artifacts depend on different artifacts. Since no global

variables exist in an HFSP model, the model should explicitly show all the

potential dependencies. However, knowing whether two artifacts truly de­

pend on different artifacts still requires us to understand more precisely all

these artifacts. This may require that we model the design actions producing

these artifacts, model these artifacts themselves, (so, HFSP may need to be

extended to support modeling artifacts), or analyze the informal descriptions

of these artifacts and the design actions. The way in which we checked to

see if Entity.Structure differs from Req.Spec is an example of this.

• Need for human involvement: in our comparison, we .found that the

SDMs use three mechanisms to guide identifications of design artifacts: 1) the

rules for deriving one kind of artifact from another kind of previously defined

artifact, (e.g., derive M odeLProcess from ReaLW orldYrocess), which usu­

ally require no human involvement, 2) criteria for deciding what an artifact

is, (e.g., the criteria for deciding an Entity.Structure), whose application

often requires human involvement, and 3) the classification (or other kinds

of decompositions) of a kind of artifact, (e.g., in BOOD, Object as a kind

of artifact can contain other kinds of objects like Server and Agent). Our

models in HFSP seem particularly helpful in expressing the third mechanism.

60

The attribute definition shows that an output of the activity is a union of the

inputs of its subactivities and thus, the descriptions of these subactivities de­

scribe how to get the output of the activity. Since our models in HFSP do not

model the procedural aspect of a design activity and the criteria for deciding

an artifact, they do not help much in identifying the first two mechanisms.

To address the last question, we found that HFSP has some limits (described

below) which are common to other formalisms, (e.g., SDA [Wil88]). These hinder

us from effectively comparing other aspects of design actions.

• HFSP is incapable of expressing which design representation (rendering), as

designated by an SDM, should be used by a design action to specify the design

artifacts. For example, JSD recommends that Draw_Entity..Structure should

use a representation StructureJJiagram to specify Entity.Structure. Although

one may express the designated representation as an input to the action,

HFSP does not directly support an explicit distinction between this input as

a representation and other kinds of inputs, (e.g., artifact).

• HFSP is incapable of indicating and characterizing the design criteria as a

design action that should apply. For example, we would like to 1) more

rigorously express the criteria for determining an entity, (e.g., Entity =
{xlPerformAction(x) V ... }), 2) indicate that Identify.Entity.Action ap­

plies these criteria. Due to these limits, our JSD and BOOD models in HFSP

would not help much in comparing this aspect of design criteria and design

actions.

61

4.3.2 Advantages and Limitations of CDM

Can CDM effectively overcome the problems of previous comparison efforts?

What are the limitations of CDM? Following, we discuss some advantages of CDM

. . over previous compansons:

• The models of SDMs show the bases for conclusions: In contrast

to previous comparisons, which usually describe an author's understanding

rather than his/her reasoning, CDM explicitly shows at least a large part

of the comparison process and a rationale for drawing conclusions. (For

example, identification of a union relation is used as a basis for concluding

that an activity is a guided human process.)

• The comparison result can be evaluated: Since the comparison process

and rationales are explicitly shown, a comparison result can be evaluated by

evaluating the comparison process and rationales.

• CDM can be more systematically applied: In contrast to previous com-

parisons which are often carried out in an ad hoc way, CDM suggests a way to

more systematically compare SDMs. Consequently, the comparison results

should be less dependent on their authors. For example, 1) the classifications

guide the selection of comparison topics; 2) CDM suggests some systematic

ways for identifying certain kinds of differences. This characteristic is very

important for objectively comparing/evaluating software processes.

• The comparison results should be more objective: CDM prevents

possibly misleading comparison results caused by comparing design exam-

pies/projects, since design examples are not involved in these comparisons.

62

• The comparison results should be more explicit and precise: 1)

With the support of a framework that precisely defines the issues involved

in software design, the results should more explicitly and precisely indicate

which issues an SDM addresses. For example, the comparison explicitly

shows that BOOD does not address issues of specifying the Interface Model.

2) The result explicitly shows the differences in development procedures;

it shows precisely where in the development procedures the same issue is

addressed by the SDMs. For example, our comparison indicates that in JSD

the order constraint is defined in Draw_Entity..Strudure while in BOOD a

similar issue is addressed in I dentify_Operation.

Following, we discuss some limitations or difficulties in using CDM:

• A model of an SDM still cannot completely describe the SDM. Thus,

comparisons based solely on the models may lead to some biased results.

Therefore, in CDM, one must carefully analyze both the models and the

informal descriptions of the SDMs to minimize these biases.

• The fundamental ideas behind an SDM are hard to specify rigor­

ously. For example, one idea behind JSD is that a model of the system

can set a context for defining system functions. This idea is very difficult

to specify rigorously in any existing SPMF. Thus, CDM with current SPMF

support seems to be powerless to expose the differences between these ideas.

It should be noted that our work is aimed at identifying the differences be­

tween the SDMs rather than evaluating SDMs. Thus, it does not address what

application domains an SDM might be good or bad for. It does not address how

easily and effectively the SDMs can be applied in practice. However, we believe

that a complete and explicit comparison should significantly help to do these.

63

4.4 Suggested Improvements

In this experiment we have applied CDM to comparing JSD and BOOD.

We have classified their components under all domains, made a number of inter­

esting comparisons. However, we understand that using CDM to compare other

SDMs (e.g., RDM [PC86]) should suggest the need for adjustment of our framework

and CDM, and indicate needed improvements to the SPMFs. With an improved

framework and SPMFs, CDM should be more effective.

To improve SPMFs and the models of SDMs, we expect to

• Identify the routines, primitives, and notations that are effective for describ­

ing design processes. By using those with semantics that are more precisely

defined, a model of an SDM should convey information more precisely and

explicitly. Thus, the comparisons will rely more on the models of SDMs. For

example, Identify.Noun, which is used in both JSD and BOOD, could be

a routine. Identify and Define could be two primitives to be instantiated

to describe some specific design actions, (e.g., Identify.Entity.Action and

Define_Func). A notation (e.g., @) may help to distinguish criteria from

other inputs (Select.Entity(... , Noun, @CriterialEntity..List));

• Identify which language paradigms are effective for modeling which kinds

of method components and which aspects of method components. Up to

now, our research has indicated that functional, procedural and object­

oriented (has-subclass) paradigms are effective for modeling design actions

and understanding the organization of method components. We speculate

that a rule-based paradigm should be effective for modeling design criteria

64

and guidelines. Modeling design concepts is very important in order to enable

CDM to be used to compare the substance of SDMs.

In the following chapters, we will describe our efforts in developing Modeling

Formalism and BaseJi'ramework. The M odelingJi'ormalism to be developed

will be more comprehensive than HFSP and thus can model more aspects of an

SDM. The BaseJi'rameowork will be more carefully reviewed and defined. Then,

using the M odelingJi'ormalism and BaseJi'ramework, we compare four more

SDMs to further evaluate CDM, process modeling technologies, and the classifica­

tion framework for comparison of SDMs.

Chapter 5

Supports Needed For CDM

5.1 Required Supports

Note that CDM, which adopts strategies similar to comparison Approaches

2 and 4 of Section 1.3, requires two important supports. The first one is a

Base.Ji'ramework (BF) that is fair enough to enable a more complete and ob­

jective classification of method components. A BF that hides some method com­

ponents of SDMs and their features could hinder one from objectively assessing

the SD Ms. A BF should also allow method components to be classified objectively.

Note that CDM does not itself provide a strategy for providing and evaluating a

BF.

The second is a M odeling.Ji'ormalism (MF) that is comprehensive enough to

capture all major aspects and components of SDMs. The BF will help to classify

method components objectively, thereby enabling more objective assessment of

SDMs. The MF will help in specifying valid models of SDMs, thereby preventing

us from being unfairly blind to specific features of SDMs. Again, CDM does not

provide any comprehensive strategy for choosing these MFs. CDM only suggests

using the SDM models specified in an MF to arrive at a more objective classification

65

66

of method components. Thus, we must develop this support to facilitate the use

of CDM.

In Chapter 3, we have briefly described a prototype BF. We used this BF to

explain the ideas of CDM and to help in carrying out the first experiment described

in Chapter 4. In Chapter 4, we also used a SPMF, HFSP, as a prototype MF to help

in carrying out the first experiment. We believe that those two supports should

be sufficient for demonstrating the basic ideas of CDM. However, as we explained

earlier (e.g., HFSP supports only function modeling), we also believe that they are

insufficient in support of CDM for more objectively comparing SDMs.

In this chapter we describe an evolutionary development strategy to be used

to develop BF and MF. In using this strategy, we develop a BF based on our

analysis of a set of selected SDMs and we develop an MF under guidance of the

BF. Conversely, we use the SDM models specified in the MF to evaluate the com­

pleteness of the classifications of BF in order to aid the evaluation of BF. In this

chapter we describe a BF and MF we have been developing using this strategy,

(the MF is also enhanced based on our evaluations of HFSP). We also demonstrate

how the MF is used to model SDMs and how the BF is used to classify method

components. Then, we evaluate the completeness, objectivity, and effectiveness of

the BF.

It is very important to note that successfully developing such a BF and MF

would contribute not only to the comparative study of SDMs, but also perhaps

to the study of various other software development processes (e.g., the require­

ments specification process, or the configuration management process). Moreover,

as [Boa90] indicates, "A unifying model [e.g., a fair BF] would not necessarily be

67

of immediate use to a system builder. But it would be a tool for academic analysis

that could, in turn, yield structures and tools to a practitioner.".

5.2 Why Evolutionary Development

Developing a BF that is sufficiently large and detailed to classify method

components of a large variety of SDMs is a very difficult task, because software

design activities cover an extremely wide range of issues and can be viewed from

various perspectives.

Analyzing frameworks which have been proposed previously to help quick

summarization of features of SDMs, Brandt's framework [Bra83) includes 1) origin

and experience, 2) development process, 3) model, 4) iteration and tests, 5) rep­

resentation means, 6) documentation, and 7) user orientation. The framework de­

fined by Wasserman and Freeman [WFP83a) includes 1) methodology applicability,

2) technical concepts supported, 3) work-products and representation schemas, 4)

quality assurance methods and 5) usage aspects by methodologies. Olive's frame­

work [Oli83) includes 1) external, 2) conceptual, 3) logical, 4) architectural and

5) physical modeling. More frameworks can be found in [Kun83, BFL +s3, Fre83,

Gri78, PT77, BRS83) to help in understanding the difficulties for developing a BF.

Identifying an MF that is capable of modeling all major aspects of an SDM

is also a very difficult task. The broad and complex nature of design activities

as indicated above causes an SDM be a complex product. An SDM must incor­

porate various types of components to deal with a broad range of design issues.

For example, Brandt's framework implies that an SDM must contain definitions of

68

modeling techniques, development procedures, documentation standards, pictorial

notations, measurement techniques, and evaluation criteria. Further, these defi­

nitions are often not isolated but rather typically closely related in various ways.

This diversity requires various modeling paradigms and notations to ensure the

validity, precision and understandability of models of these definitions.

Considering these difficulties, we think that evolutionary development is per­

haps the only way for us to arrive at a suitable BF and MF. In using this approach,

we construct an initial MF or BF based on the features and characteristics of some

major method components of a few selected SDMs, and then extend the BF and

MF, depending upon the demands of modeling or classifying more method compo­

nents. This seems to ensure that the BF will be sufficiently fair to classify method

components and to ensure that the MF will be comprehensive enough to model

SDMs. This allows more realistic evaluation of the BF than extensively reviewing

it against a large number of method components. This also minimizes the problems

of accommodating new aspects of SDMs that need to be modeled.

We expect that BF will not evolve to a mature stage in a short time (e.g.,

three years) but rather over a long term (e.g., eight years). We expect a similar

situation for MF. However, we believe that a more systematic evolution of BF

and MF should greatly shorten the time the evolution would take and save many

potentially duplicated efforts.

I
i

69

Criteria.

Analyaia

Guideline•

Uoe

Evolulion_Targel

pplicalion_Tar I

Figure 5.1: Evolution process of a Evolution.:I'arget

5.3 Evolutionary Development of BF and MF

To evolve BF and MF more systematically, we must precisely and concretely

define the factors that affect the evolution processes. Fig. 5.1 describes a model of

these processes and indicates these factors. As the figure shows, Evolution.:I'arget

is to be used on Application.:I'arget, and is then to be evaluated in following

Guidelines. Then Analysis will decide, depending on Evaluation.Results and ap­

plying Criteria, if Evolution.:I'arget needs to be adjusted. The more Application

Targets that Evolution.:I'arget is applied to, the more mature will an Evolution.:I'arget

be.

Based on this evolution model, we defined the factors for developing BF and

MF, respectively in Fig. 5.2 and 5.3. Those factors emphasize only improvement

upon the completeness of the BF and MF.

In order to more easily evaluate the Evolution.:I'argets, we must find a

strategy to evolve them. The discussions in the second and third paragraphs of

the last section imply that there is a strong connection between the BF (i.e., various

70

• Evolution...Target: Base_F'ramework (BF).

• Application...Target: Method components (explicitly modeled and/or high­

lighted in Process_M odel).

• U se_Results: Classification as the output of Classify_Components of

CDM.

• Guidelines: For components for which there is no place in BF examine where

they can be appropriately placed. More specifically, identify what issue an

existing method component addresses but which has not been incorporated

into the BF. Identify what structure an existing method component has,

which has not been incorporated into the BF.

• Evaluation_Results: The descriptions of those issues which have been ad­

dressed but which are not in the BF and the structures which have been used

which are but not in the BF.

• Criteria: The necessary conditions leading to augmenting or refining the

BF are 1) existence of a method component which cannot be appropriately

classified and 2) identification of a portion of BF which cannot effectively

distinguish the key differences of the method components which are classified

within this portion.

• Decison: A specification of what adjustments need to be made.

Figure 5.2: Definitions of the factors affecting evolution of BF

71

• EvolutionYarget: Modeling_Formalism (MF).

• ApplicationYarget: SDMs to be compared.

• U se_Results: Process_M odels of the SD Ms, as the output of

Bui/d_process_M odel of CDM.

• Guidelines: 1) Examine what aspects and components of the SDMs the MF

is incapable of modeling. 2) Evaluate how effectively the models specified in

the MF support classifications of method components.

• Evaluation-Results: Descriptions of those aspects and method components

that the MF is incapable of modeling or whose models are not rigorous and

explicit enough to support their classifications.

• Criteria: The necessary conditions leading to adjusting the MF are: 1) new

aspects or components; 2) the models specified in the MF, which are not

sufficiently precise and explicit. Determination of whether or not sufficient

is primarily based on the tradeoff between using existing formalisms that

can be readily adapted to the MF to effectively overcome the ~eaknesses or

creating new one.

• Decison: A specification of what adjustments need to be made.

Figure 5.3: Definitions of the factors affecting evolution of an MF

72

types of components) and MF (i.e., various modeling paradigms). We think that

our development strategy should make use of this connection. We exploit this

connection to define an evolutionary development strategy(shown in Fig. 5.4).

Here, we focus on describing only how we will develop the BF using this strat-

egy. First, based on analysis of SDMs, we select a set of SDMs (Selected..SDMs)

and then construct an initial version of a BF. Second, based on the BF, we de-

fine an initial version of an MF. Third, we do Build_process_M odel and Cfossify

Components (they are explained in Sec. 3.1and3.2). Fourth, we evaluate Classification

using Process_Models, examining which method components cannot be classified

within the BF. Fifth, we analyze reasons for this (Analysis). Sixth, we adjust the

BF (Adjust) to improve the BF (we expect the improvement to be effected, in

most cases, through extending the BF.). Repeating these steps (3,4,5,and 6) until

the BF becomes stable, we may then add (step 7) more SDMs to Selected..SDMs,

which may restart this evolution process over.

In the next section we present the MF and BF we have developed so far. We

intend to indicate that continually evolving them using this strategy should lead to

a fair BF and a sufficiently comprehensive MF. Further, we believe that this sort

of iterative evolutionary development of key frameworks and modeling formalisms

is consistent with the ways in which more mature scientific disciplines operate.

Thus, we hope that this effort indicates a way in which software engineering can

begin to grow into a more mature scientific discipline. While we consider the pro­

posed CDM, BF and MF to be very important, we view our proposed evolutionary

strategy for developing them to be even more significant.

Resulh

Analysis
(5)

Ini&:ialization

(1)

73

Figure 5.4: Evolutionary development processes for Base Framework and Modeling
Formalism, represented as a data flow diagram. The numbers labeled on edges
indicate a scenario of evolving the BF.

5.4 The BF and MF

5.4.1 The Selected SDMs

As Fig. 5.4 shows, in order to begin the evolutionary development process,

we must select an initial set of SDMs for which the MF and BF can be ini-

tialized, used, and evaluated. We believe that at the initial stage of evolution,

all the SDMs selected should be general purpose and yet based on diverse ap-

proaches. We think that issues and structures deduced from such SDMs are more

likely to be shared with other SDMs, and this is likely to expedite the identi-

fication of a comprehensive set of fundamental issues that method components

must address and basic structures they often take. Based on this rationale, we

74

selected JSD [Jac83), BOOD [Boo86), RDM [PC86), DSSD [Orr77], LCP [War76]

and SD [YC79, SMC74].

5.4.2 Base_Framework (BF)

There are a number of ways of developing a framework for classifying method

components-1) based on a software development life-cycle (e.g., [Was80]); 2)

based on the concepts used in software design (e.g., [Gri78]); 3) based on prop­

erties of method components (e.g., [Fre83]); and 4) based on support facilities

provided (e.g., [PT77]). However, in our effort, we developed the BF guided by

its roles in CDM.

In CDM a BF plays two roles. The primary role is to guide identification

of existing method components which are comparable. The secondary role is to

be used at times as a basis for assessing SDMs (i.e., checking features of SDMs

against a feature framework). To achieve these, we believe that a BF should con­

sist of two parts: 1) a Function Framework, which aggregates design issues that

existing method components have addressed (external properties) and 2) a Type

Framework, which aggregates internal characteristics (e.g., structures) that exist­

ing method components have had. Thus, in order to satisfy its primary role, such

a Function Framework should help in identifying which method components ad­

dress similar issues while such a Type Framework should help in identifying which

method components have similar natures. Thus, this should ensure meaningful

comparisons (i.e., apples vs. apples) and guide identification of which method

components could be compared further (as we have shown in Chapter 3 and 4).

In order to satisfy its secondary role, such a Function Framework should be useful

75

in revealing what different issues method components address while such a Type

Framework should be useful in revealing different natures of method components.

To facilitate incremental development of a BF, the BF must have an exten­

sible structure. As a hierarchical structure can be easily extended or adjusted,

we chose hierarchy to serve as the structure of the BF. An edge of the hierarchy

denotes an is-a [KM85] relation. Note that the BF described briefly in Sec. 3.2 is

a very early version of the BF that has been enhanced as will be described in this

section.

Type Framework: MOTH

In analyzing our selected SDMs (including the work described in Sec.4.2.2.),

we identified a number of types that are useful in characterizing the structure of

SDMs and their method components. We call this Type Framework the Method

Component Type Hierarchy (MCTH). Figures 5.5 and 5.6 defines its top-level

types, gives examples of their subtypes, and indicates from which components

these types are deduced.

Thus, for example, note that Concept is further decomposed based on the

nature of a concept. We expect that such decom.position should effectively guide

comparisons. Using this decomposition, one may first compare problems SDMs ad­

dress, and begin to identify the principles to be used to deal with the problems, and

the guidelines for developing the artifacts that support the principles. Eventually,

the analyst should be able to find the problems, principles, and guidelines that

could be compared.

76

Artifact is decomposed based on the formality with which an artifact is de­

fined because we think that MSDL, defined later, can ensure effective comparison

only of those artifacts with similar roles. Decomposition can help to reveal the

differences between the structures of artifacts. Based on a rationale similar to

that used for decomposing artifact, we decompose representation and action based

on the level of formality with which a representation is defined and the technical

nature an action has.

The Method Component Type Relation Matrix (MCTRM)(Fig. 5.7) de­

scribes some of the most common relations among instances of those types. For

example, MCTRM[Action1 Concept] describes that an action should apply some

concept. In Sec. 5.5.2, a more complete version of MCTH is presented with the

classifications of the method components.

Function Framework: MSDL

The Function Framework is a set intended to contain all the design issues

that have been addressed by existing method components. Each issue defines a

category used to organize the method components that address this issue. This set

can be divided in a number of ways (e.g., from the perspectives listed by Freeman

in [Fre83]) to organize classifications of the method components.

After identifying and analyzing the method components of the selected SD Ms (in­

cluding the work described in Sec. 4.2.2.), we decided to divide this issue set ac­

cording to the modeling and documentation characteristics an issue is about. By

analyzing the selected SDMs, we found that relations between the method com­

ponents and these issues are often rather well understood and rather explicitly

77

Concept:

• Definition: an idea that influences the design of an SDM.

• Subtypes: decomposition criterion: conceptual role a concept plays in an

SDM.

1. Problem of software design and software application. (e.g., reduce

software complexity (SD))

2, Principle for coping with these problems. (e.g., design software with

high degree of cohesiveness (SD))

3. Criteria for deciding what constitutes an artifact. (e.g., decide a JSD

entity)

4. Guideline for designing software and coping with these problems. (e.g.,

find a point of "highest abstraction" in the data flow (SD))

5. Measures for quantitative comparison or evaluation of the quality of

artifacts.

Artifact:

• Definition: a description of some sort of entity involved in a design process.

• Subtypes: decomposition criterion: formality with which an artifact is de-

fined.

1. Programs: (e.g., a model process (JSD)).

2. Diagram: (e.g., a data flow diagram (SD)).

3. Relation: (e.g., use-hierarchy (RDM)).

Figure 5.5: Part of BF: Definitions of the top-level types in Method Component
Type Hierarchy (MCTH)

78

Representation:

• Definition: a means for describing or specifying design artifacts.

• Subtypes: decomposition criterion: degree of formality of a representation.

1. Language: (e.g., the structure language (JSD)).

2. Diagrammatic notation: (e.g., Structure..Diagram..N otation (JSD)).

3. Mathematical representation: (e.g., RDM uses relations to specify sys­

tem functions)

Action:

• Definition: one or more physical and/or mental processing steps used m

design. An action may create or modify a design artifact.

• Subtypes: decomposition criterion: the technical nature of an action.

1. Develop: (e.g., develop system specification of JSD);

2. Model: (e.g., model the environment outside the system in JSD)

3. Decompose: (e.g., decompose a function in Structured Design)

4. Specify: (e.g., specify implementation of a module in BOOD)

5. Define: (e.g., define interface of a module in BOOD)

6. Derive: (e.g., derive a program from the data structure of its output

in DSSD)

7. Identify: (e.g. identify objects in BOOD)

8. Select: (e.g., select entities in JSD)

Figure 5.6: Part of BF: Definitions of the top-level types in Method Component
Type Hierarchy (MCTH)(cont.)

79

Concept Artifact Representation Action

Concept is-a affect affect affect

is-part-of decide*

Artifact support is-a determine affect

is-part-of *

Representation support support * is-a influence

is-part-of

Action apply* input* apply IS-a

output * is-part-of *

Figure 5. 7: MCTRM: Method Component Type Relation Matrix

described in SD Ms (e.g., JSD clearly describes what issues the entity structure

addresses), and therefore should be more objectively decidable. More importantly,

we found that components addressing these issues occupy a large and central part

of the selected SDMs. Because of this, we defined a Model of the Software Design

Life-cycle(MSDL) (Fig. 5.8) that emphasizes modeling and design documentation.

MSDL is defined as a transformation from a software application problem to

the software design. The Problem Domain is decomposed based on the application

domains and characteristics of software systems. The Problem Model Domain and

Solution Model Domain are decomposed, respectively based on aspects according

to which a problem or a software system needs to be modeled. Design Document

Domain is decomposed based on aspects according to which a software design needs

to be documented. With these decompositions, issues can be organized according

to the life-cycle phases in which they need to be addressed. Further, method

components can be classified under those organizational issues. In Sec. 4.2 and the

80

Problem modeling

I 'II

Problem domain Problem model doma.in Solution model doma.in

Rea.l .. time problem Data. model Da.ta model

Da.ta.--intenaive problem Function model
Tra.nsforma.tion model

- Communication model

Embedded system Entity model
Interface model

Diatributed ayatem
Tra.naforma.tion model

Entity model

Numerical problem
Behavior model Behavior model

Req documentation + Solution modeling i Deaign documen ta.Hon

Req document doma.in Design document domain

Computer document Structure document

Function document
- Module document

Timing document

Accuracy document
Relation document

Likely change document

Exception handling docu.

Figure 5.8: A Model of the Software Design Life-cycle (MSDL)

Appendix we show a more complete version of MSDL with the method component

classifications under this framework. Again, our actual decompositions (Fig 5.8)

are based on analyses of the selected SDMs (e.g., the decomposition of Problem

Model Domain is deduced from analyzing JSD and SD).

5.4.3 M odeling_Formalisms (MF)

In CDM, an MF is used to aid explicit characterization of method compo­

nents and inter-component relations to support analysis and classification of these

components. As we discussed earlier, an MF should be capable of modeling all

major components of an SDM to avoid incomplete and misleading comparisons.

Using our evolutionary development strategy, we adopted a number of modeling

81

Data Model: Descriptions of data structures from the customers' point of view.

These data structures are usually logical in the sense that they could be imple­

mented in a number of ways.

Transformation Model: Descriptions of data flows that are visible to customers

and/or helpful for designers in understanding the problem. These kinds of data

flows usually start as inputs to the system and end up to the outputs from the

system. (e.g., data fl.ow diagram of SD)

Entity Model: Descriptions of the environment outside the system. This envi­

ronment is the one under which the system will be used and/or operated. These

descriptions should be in terms of the environment components and their behav­

iors. (e.g., entity structure of JSD)

Function Model: Descriptions of the desired system outputs, usually expressed

as functions of system inputs. (e.g., system function of JSD)

Figure 5.9: Definitions of the Problem Model Domain framework

82

Data Model: Descriptions of data structures used to realize the system.

Transformation Model: Descriptions of how desired outputs are to be com­

puted by the system. This may entail identifications and elaborations of system

programs involved in the computations. (e.g., data flow diagram of SD)

Entity Model: Descriptions of the system in terms of the system components

and the operations they may perform and/ or undergo. A system component must

1) exist in time and space, and 2) perform and/or undergo actions. (e.g., object

of BOOD)

Interface Model: Descriptions of how real-world events communicate with sys­

tem components. This may require identifications and elaborations of the system

components responsible for such communications. (e.g., connection of JSD)

Communication Model: Descriptions of how system components communicate

with each other. (e.g., data stream of JSD)

Figure 5.10: Definitions of the Solution Model Domain framework

83

Structure Document: Documents that decompose the design into modules and

briefly describe every module. (e.g., module guide of RDM)

Module Document: Documents that describe the details of every module. The

description should be about how a module can be used and how it is implemented.

(e.g., module specification of RDM)

Relation Document: Documents that describe the relations between the mod­

ules and/or between parts of the modules. (e.g., use-hierarchy of RDM)

Figure 5.11: Definitions of the Documentation Domain framework

formalisms into the MF (see Fig 5.12) in order to model method components of

those types and relations defined in MCTH.

Using the evolutionary development strategy, we believe it is important to

try to avoid adopting formalisms that might be too complex and too powerful.

Also, as humans will use the MF, the formalisms adopted should have good un­

derstandability and expressiveness, while supporting a high level of formality.

A version of HFSP, that has been enhanced based on our earlier experi­

ment (see Chapter 4) in this evolutionary development process, has been adopted

into the MF primarily because it can model 1) a design action rigorously as a

function that maps some artifacts to other artifacts, thereby capturing the re­

lations included in MCTRM[Action, Artifact], 2) a design action through the

hierarchy of functional abstractions, thereby capturing one relation included in

84

MCTRM[Action, Action], and 3) the concepts a design action should apply, thereby

capturing the MCTRM[Action, Concept] relation.

To complement the weakness of HFSP in modeling artifacts 1 , the Warnier

Diagram is adopted into the MF. The Warnier Diagram is capable of clearly

modeling is-part-of relations among artifacts, which characterizes a part of the

MCTRM[Artifact, Artifact] relation.

Set definition notation is adopted into the MF because it is capable of defining

criteria for deciding an artifact set membership, characterizing the MCTRM[Concept,

Artifact] relation. The predicates that define the properties of an artifact could be

specified either formally (e.g., in logical notations) or informally (e.g., in English).

An Artifact/Representation table is incorporated into the MF to characterize the

MCTRM[Rep., Artifact] relation.

We have marked the MCTRM entries with star in Fig 5. 7 to indicate the

relations which can be at least partially characterized by the MF. Based on the

evaluation (Sec. 4.3.1) and our knowledge about modeling formalisms, we view

those relations as being either essential for comparing SDMs or more easily mod­

eled with the existing modeling techniques. For example, an MCTRM[Concept,

Representation] relation that describes how a concept affects a representation, is

not easy to model formally and, moreover, does not seem to be very useful for

comparing two related SDMs.

To utilize this MF which consists of a number of modeling paradigms, an

architecture of the SDM model can be a template consisting of a number of fields.

1This conclusion is based on the version of HFSP described in [Kat89]

85

Each field defines the method components of certain type, or defines certain as­

pects (relations) of these components. All the definitions in these fields should be

consistent, (e.g., names of components should be consistently defined and used).

We define such a template by Fig. 5.13 and 5.14. These two figures present and

define the structure and fields of the template.

Note that every field in the template is optional. Analysts are responsible for

deciding whether a field should be specified or not. The decision could be made

based on 1) in what aspects SDMs will be analyzed and/or compared and 2) how

effectively specification of the field can characterize the SDM (e.g., our experience

has indicated that ACH can characterize RDM effectively, but may not for other

SDMs). It is expected that some fields (e.g., ACH and AFH) should be specified

~ore often than others (e.g., ATH and CDA).

It should also be noted that a given field of the template may not necessarily

be specified for all components of an SDM. (For example, a ATH may not contain

all the artifacts of an SDM, but perhaps only those artifacts related through the

is-a relation). Only when we can specify the aspects of components effectively

should those components be specified.

To evaluate the BF and MF, we must use them to classify method components

and model SDMs. In the next chapter, we will describe this effort.

86

1. HFSP [Kat89]: a software process modeling formalism. Based on our previ­

ous evaluations of HFSP (Sec. 4.3), we enhanced HFSP by using the notation

'@'before a criterion to help to indicate the criterion to which a design action

should apply.

2. Warnier Diagram [War76], a diagrammatic representation typically used in

hierarchical depictions of the is-part-of relation. (In our applications, they

are linearized and shown as text. We also use boldface to indicate those that

require further definition).

3. Mathematical set notation. This format is defined as (word in bold font is

considered as reserved):

Criterion A (for X)

X set = { x if P(x) = True }

This states: 1) the name of the criterion is A; 2) it will be used to determine

the artifacts that are members of the set X; 3) an artifact x is an X artifact

if it t satisfies P, which is a predicate defining the properties of X.

4. Artifact/Representation table. This table is used to indicate what represen­

tation an SDM recommends for use in representing an artifact.

Figure 5.12: The current version of MF

A Model of a Design Methodology (MDM)

1. Artifact Type Definition (ATD)

1.1. Artifact Type Hierarchy (ATH)

1.2. Artifact Composition Hierarchy (ACH)

1.3. Criteria for Designing Artifacts (CDA)

1.4. Representations for Expressing Artifacts (REA)

2. Action Functional Hierarchy (AFH)

2.1. First Level

2.2. Second Level

2.3

Figure 5.13: A template for specification of a model of design methodology

87

88

Template Element Definition

MDM A more formalized description of a design methodology.

ATD Description of the structure of design artifacts and

inter-artifact relations.

ATH Description of is-a relations among design

artifacts.

ACH Description of is-component-of relations among

design artifacts.

CDA Indication of what criteria should be applied for

identifying, establishing and refining design

artifacts and descriptions of those criteria.

REA Indication of what representation (or rendering/medium)

should be used to express a design artifact.

AFH Hierarchical and functional descriptions of activities

that are carried out to design software.

Figure 5.14: Definitions of the template components

Chapter 6

Experiment 2: Comparison of

SD Ms

6.1 Goals and Design of the Experiment

6.1.1 Goals of the Experiment

In this chapter we describe another experiment we have carried out on CDM.

This experiment was aimed at achieving the following goals:

1. Further evaluation and enhancement of CDM. We used CDM to compare

more SDMs and compare them in some additional aspects. We expected

that in doing this we would be able to identify weaknesses in CDM and

to modify CDM accordingly to enhance it. By doing this, we also hoped

to further validate CDM-demonstrate that CDM could be used to aid the

comparisons of a large variety of SDMs.

2. Evaluation of the BF. We used the BF described in the last chapter to classify

the components of SD Ms. We checked whether the BF was complete enough

to classify a large number of method components and whether the BF allowed

89

90

objective classification of the method components. By using CDM that is

based on these classifications, we examine how effectively a version of these

classifications work. This will be examined from two aspects. The first is

how effectively the classifications guide the comparisons. The second is how

effectively the classifications are in directly aiding the comparison of SDMs.

3. Evaluation of the MF. We used the MF described in the last chapter to model

SDMs, thereby examining the completeness and appropriateness of the MF.

As we have evaluated a version of the MF in the first experiment (Chapter 4), here

in this experiment, we emphasize the first two goals.

6.1.2 Design of the Experiment

Before starting this experiment, we had to decide which SDMs to compare.

We used three criteria to choose SDMs for comparison in this experiment:

1. Some of the SDMs to be compared should be disparate. By doing so, we

hope to evaluate CDM in supporting comparison of diverse SDMs.

2. Some of the SDMs to be compared should be similar. By doing so, we hope

to evaluate CDM in supporting identification of detailed differences.

3. The SDMs to be compared should be relatively familiar to us. This allows

us to finish this experiment in a limited time frame.

Based on these criteria, we chose the following SDM pairs for comparisons.

1) RDM vs. BOOD, 2) JSD vs. SD, 3) DSSD vs. SD (they are disparate-DSSD

is data oriented, and SD is function oriented), and 4) LCP vs. DSSD (they are

similar-they are both data oriented). In developing the BF and MF, we have

91

studied all of these SDMs. Thus, it was relatively easy for us to develop their

models and compare them.

In this experiment we compared SDMs in some additional aspects to further

evaluate CDM. We anticipated that modeling SDMs using the MF would help us

to compare SDMs in these additional aspects:

• Criteria for determining artifact: the criteria to be applied by a design

action to design and determine a certain artifact.

• Artifact composition: the structure and recommended contents of a

design artifact.

• Representation applied: the representation means used to display a par­

ticular artifact.

Note that this experiment is aimed at examining CDM in a broader context,

thus, the comparisons which use the CDM strategies that have been validated in

the first experiment are presented relatively briefly.

The presentation of this experiment consists of three parts. The first part

describes the models of the SD Ms and the classifications of the method components

of these SDMs, showing how the BF and MF have been used. The second part

describes the comparisons, including the selection of comparison topics and the

comparisons between method components. The third part, based on the first two

parts, evaluates the CDM, BF and MF, examining how effectively they aided the

comparisons of SDMs.

92

6.2 Step 1: Build Process Models

6.2.1 Rational Design Method (RDM)

Overview

The Rational Design Methodology (RDM) [PC86, PCW84] describes an ap­

proach for documenting and organizing software requirements and design specifi­

cations. It elaborates what a requirement or a design should specify and into what

structure it should be organized. RDM suggests applying information hiding to

help in structuring a design document in order to achieve separation of concerns

and to ease making changes in documents.

The first step in using RDM to document a design is to develop the module

guide, which specifies the structure of the design document. The module guide

should be tree-structured where each node represents a design module and de­

scribes its responsibility. Children of a node are the components of this node.

The second step in RDM is to develop the interfaces to the design modules.

An interface should provide sufficient information for designing the corresponding

module implementation and for enabling designers of other modules to use this

module. Each module may contain a number of access programs that are invokable

by the programs of other modules.

The third step in RDM is to develop the use-hierarchy. A use-hierarchy could

be a matrix where the entry in position(A, B) is true if and only if the correctness

93

of program A depends on the presence in the system of a correct implementation

of program B.

The fourth step in RDM is to implement the design modules. However, before

coding a major design, the design decisions should be documented in a document

called the module design document. This document is designed to allow an efficient

review of the design before the coding begins and to be used for maintenance of

the implementation.

Model of RDM

Artifact Composition Hierarchy

Module_Guide

Module...Spec

Design...Docu Module...Design...Docu

U seJiierarchy

ProcessJiierarchy

Module_Guide{ Module (1,k)

name

desc

children

(1',l)

(1,1)

(O,j)

(1, 1)1

(1, 1)

(1, 1)

(1,1)

(0, 1)

Module...Spec { Interface...Spec (1, k)

1(1, k) indicates the lower and upper bounds on the number of occurrences of the part (i.e.,

Design_Docu should have one and only one Modu/e_Guide).

Interface-5pec {
name

Spec

(1, 1)

(1,k)

dataTypes

Programs

ezceptions

(0, i)

(O,n)

(O,m)

name (1,1)

desc (1, 1)

inParameters (O,n)
Programs

outParameters (1,m)

timing (0, 1)

accuracy (0, 1)

Use..Hierarchy { Entry (1, n)

Action Functional Hierarchy

First Level:

(a) RDM(Req, DesignjReq..Docu, Design_Docu) =>

(1) Develop_ReqJJocument(ReqjReqJJocu)

(2) Develop_M odule..Structure(DesignjM odule_Guide)

(3) Specify_M oduleJnter face(Req_Docu, Design, M odule_GuidejM odule..Spec)

(4) Derive_U seJI ierarchy(Design, M odule_Guide, M odule..SpecjU se_H ierarchy)

(5) Specify_M oduleJnternal..Structure(M odule..SpeclM oduleJJesignJJocu)

(6) Where Design_Docu = Js_Composed_O f(M odule_Guide, M odule..Spec,

U seJI ierarchy, M odule..Design_Docu)

94

I

]

Second Level:

(b) Develop_Module_Structure(Design,@DMIM odule_Guide) ~

(1) Identify_Design_Secret(Design!Secret)

(2) Devel op_Guide(Secret IM odu/e_Guide);

(c) Develop_ModuleJnterface(Req..Docu, Design, M odu/e_GuidelM odule..Spec) ~

(1) Specify_Data:I'ype(Req..Docu, Design, M odule_GuideldataTypes)

(2) Specify_Program(Req..Docu, Design, M odule_Guide!Programs)

(3) Specif y_U ndesiredJEvent(Req..Docu !exceptions)

(4) Where M odule..Spec = I s_Composed_O f(dataTypes, Programs, exceptions)

6.2.2 Booch's Object Oriented Design {BOOD)

Overview

See section 4.2.1.

Model of BOOD

Artifact Composition Hierarchy

Name (1, 1)

State (1, i)

Object Class (0, 1)

Operation (1, k)

Visibility (1, 1)

95

Operation!

Operation_def (0,j)

Timing (0,1)

Space (0, 1)

Visibility {
Object..See (1, n)

Object..Seen (1,m)

Design...Spec { Subsystem (1, n)

Subsystem { Module (1, m)

Module!

Name

Interface

Implementation

Interface!

Attributes

Procedure

Visibility ...Spec

Procedure!

ProcedureJJef

Time_Constraint

Space_Constraint

Visibility .Spec {
Module..See

M odule..Seen

(1, 1)

(1, 1)

(1, k)

(l,k)

(1,j)

(0, 1)

(1, 1)

(0, 1)

(0, 1)

(0, i)

(O,j)

96

97

Criteria for Designing Artifacts

Criterion IO (for Object):

Object Set= { x If P1(:c)t\ P2(:c)t\ Pa(:c) t\ P4(:c)}

where:

P1(:c): x must have state;

P2(:c): x must be characterized by actions that it suffers and that it requires of other objects;

Pa(:c): xis denoted by a name;

P4 (:c): x has visibilities that are restricted for other objects.

Representation for Design Artifacts

An object should be represented usmg the notations defined m the pa­

per [Boo86].

Artifact Name Representation

Object Booch's Notation for representing object

Action Functional Hierarchy

(a) BOOD(Req..SpeclDesign_Spec) ::}

(1) Identify_Object(Req..Spec,@IOIObjects, States)

(2) Identify_Operations(Req..Spec, Objects, StateslOperation)

(3) Establish_ Visibility(Req _Spec, Objects, States, Operation IV isibility)

(4) Establish_Inter face(Visibility, Objects, States, OperationlSubsystem, Interface)

(5) Establish_Jmplementation(Interfacellmplementation)

(6) Where Design_Spec = is_composed_of(Inter face, Implementation);

Second Level:

(b) ldentify_Object(Req..Spec, @IOIObjects, States) ::}

(1) Identify_N ouns(Req....SpecjN ouns)

(2) Identify_Concrete_Object(Req....Spec, Nouns, @IOIConcrete_Object)

(3) Identify..AbstracLObject(Req....Spec, Nouns, @IOjAbstracLObject)

(4) I dentify_Server(Req....Spec, Nouns, @IOjServer)

(5) I dentify..Agent(Req....Spec, Nouns, @IOjAgent)

(6) Identify..Actor(Req...Spec, Nouns, @IOjActor)

98

(7) I dentify_C/ass(Req....Spec, Agent, Server, Actor, Concrete_Object, AbstracLObjectjClass)

(8) I dentif y..Attributes(ObjectsjStates)

(9) Where Objects= union(Concrete_Object, AbstracLObject, Class, Agent, Actor, Server)

(c) ldentify_Operation(Req....Spec, Object, StatesjOperation):::}

(1) Identify_Suf fered(Req_Spec, Object, StatesjOperation....Suf fered)

(2) I dentif y_Required(Req...Spec, Object, StatesjOperation_Required)

(3) Def ine_Time_Order(Req ...Spec, Operation ITime_Order)

(4) Define_Space(Req....Spec, OperationjSpace)

(5) Where Operation = union(Operation....Suf f ered, Operation_Required)

(d) Establish_Visibility(Req...Spec, Objects, States, Operation JV isibility) :::}

(1) Specify_Object....See(ObjectslObjects_See)

(2) Specify_Qbject....Seen(ObjectsjObject_Seen)

(3) Where Visibility= union(Objects_See, ObjecLSeen)

(e) Establish_lnterface(Visibi/ity, Object, States, OperationsjSubsystem, Interface) :::}

(1) Derive_M odule(ObjectlM odule)

(2) Specify_Attr(States, M odulelAttributes)

(3) Specify_Proc(Operations, M odulelProcedures)

(4) Specify_ Visibility(Visibility, M odulejV isibi/ity_Spec)

(5) Where Subsystem= is_in..term_of(Module),

(6) Interface= is...composed_of(Attributes, Procedure, Visibility..Spec);

6.2.3 Jackson Systems Development (JSD)

Overview

See section 4.2.1.

Model of JSD

Artifact Composition Hierarchy

EnUty _Action.List {
Entity_N ame

Action_N ame

(1, k)

(1,j)

Action...Desc { Action...Desc..Entry (1, j)

Action...Desc..Entry

Action_Name (1, 1)

Desc_Text (1, 1)

Entity..Related (1, i)

Attributes (1, /)

99

100

Criteria for Designing Artifact

Here, we give two examples of criteria definition: 1) for identifying an Entity

and 2) for identifying an Action.

Criterion IE (for Entity):

Entity Set= { x If P1(x)A P2(x) A Pa(x) }

where:

P1(x): x must exist in the real world outside the system;

P2(x): x must perform and suffer actions in a significant time ordering;

P3 (x): x must be capable of being regarded as an individual.

Criterion IA (for Action):

Action Set= { x If P1(x) AP2(x) A.Pa(x) }

where:

P1(x): x must take place at a point in time;

P 2(x): x must take place outside of the system;

P3 (x): x must be atomic.

Representations for Expressing Artifact

Artifact Name Representation

ReaLW orldYrocess StructureJJiagram_N otation

Entity.Structure

ReaLW orld..M ode/

I niLSystem_SpecJJiagram System_Spec_Diagram_N otation

System_Spec_Diagram

Connection

M odelYrocess Structure..Text

FunctionYrocess Not specified

System_Function Text

Timing

Action Function Hierarchy

First.level:

(a) JSD(ReaLWorldlDesign.Spec)::}

(1) Develop_Spec(ReaLW orldJJesclSystem_SpecJJiagram)

(2) Develop_! mpl(System_Spec_Diagraml System_[mpLDiagram)

(3) Where ReaLWorldJJesc = Interview(U sers, Developers, R~aLWorld),

(4) Design_Spec = union(System_Spec_Diagram, System_JmpLDiagram);

Second.level:

(b) Develop_Spec(ReaLW orldJJesclSystem_Spec_Diagram) ::}

(1) Develop_System_M ode/(ReaLW orldJJescll niLSystem_Spec_Diagram)

(2) Develop_System_Func(I nit.System_Spec_Diagram

ISystem_Spec_Diagram);

Third.level:

(c) Develop_System_Model(ReaLW orldJJescll nit.System_Spec_Diagram) ::}

101

(1) M odeL.Rea/ity(.ReaLWor/dJ)escl.ReaLWor/d..M ode/)

(2) M odeLSystem(.Rea/_W or/d_M odellinit...System_Spec_Diagram);

(d) Develop_System_Func(J nit...System_Spec_DiagramlSystem_Spec_Diagram) =>

(1) Define_Func(Init...System_Spec_DiagramlSystem_Function)

(2) Specif y_Process(I nit...System_Spec, System_Function IFunction_Frocess)

(3) Def ine_Timing(I niLSystem_Spec_Diagram, System_Function !Timing)

(4) Where System_Spec_Diagram =

102

is_composed_of (I niLSystem_Spec_Diagram, System_Function, Function_Frocess, Timing);

Fourth.level:

(e) ModeLReality(.ReaLW or/dJ)esci.ReaLW or/d_M ode/) =>

(1) I dentif y_Entity..Action(.Rea/_W or/dJ)esclEntity..Action_List)

(2) Specify_Action(Entity..Action_ListiAction_Desc)

(3) M odeLEntity...Structure(Entity..Action_List IEntity...Structure)

(4) Where .ReaLWor/d..Mode/ = is_in...terms_of(.ReaLWor/d_Froc),

(5) .Rea/_Wor/d_Proc = is(Entity...Structure);

(f) ModeLSystem(.ReaLW orld..M ode/II niLSystem_Spec_Diagram) =>

(1) I dentify_M ode/_Process(.Rea/_W or/d_ProclM _Proc..N ame)

(2) Connect(.ReaLW or/d_Froc, M _Froc_N ame,

Data.Stream, State_ VectorlConnection)

(3) Specify_M odeLProcess(Connection, ReaLWor/d_Proc,

M Yroc_N amelM ode/_Frocess)

(4) Where I niLSystem...Spec_Diagram =
is_in...term_of(M odeLProcess),

(5) ReaLWor/d_M ode/= is_in...term_of(.Rea1-Wor/d_Froc);

Fifth.level Decomposition:

(g) ldentify_Entity...Action(.ReaLW orld_Desc!Entity..Action_List) =>

(1) I dentify..Action(Real_W or/d_Desc!Action_List)

(2) I dent if y_Entity(ReaLW orldJJesc, Action_ListlEntity_List)

(3) Where Entity..Action_List = tmion(Action_List, Entity_List);

Sixth.level Decomposition:

(i) ldentify_Action(ReaLWorldJJesclAction_List) =>

(1) Identify_Verb(ReaLWorldJJescjVerbs)

(2) Select..Action(ReaLWorldJJesc, Verbs, Entity_List, @IAIAction_List)

(3) Specify_Attributes(Rea1-WorldJJesc, Action_ListiAction_List);

(h) ldentify_Entity(ReaLWor/dJJesc, Action_ListlEntity_List) =>

(1) Identify_Noun(Rea1-WorldJJesclN ouns)

(2) SelecLEntity(Rea1-WorldJJesc, Nouns, @IEIEntity_List);

6.2.4 Structured Design (SD)

Overview

103

Structured Design (SD) [SMC74, PJ80] describes methods to be used to

model problems and to design the structures of the programs that solve the prob­

lems. It is similar to RDM in that both are aimed at producing maintainable

programs that are easy to change and understand. However, SD attempts to

achieve this by taking a different approach-namely pursuing design of programs

that have high-degrees of binding and low-degrees of coupling.

The first step of SD is to model the problem by specifying its data transfor­

mation aspect. The model is specified by the Data Flow Diagrams (DFD). A data

flow diagram describes how input data are transformed into desired outputs.

104

The second step of SD is to find the major data stream of the data fl.ow.

In this step, one identifies the central processing part of the data fl.ow, namely

the part where the data items are most processed as abstractions, rather than as

concrete entities directly resulting from input/outputs.

The third step of SD is to derive a first-cut of the program structure based

upon the major data fl.ow stream that has previously been identified. The program

structure consists of a main module and a number of sub-modules, that are to be

called by the main module. These modules are functionally bound together.

The fourth step of SD is to finalize the program by adding the sub-modules

that should be non-functionally bound to the program. For example, these are the

modules that perform initialization/termination or input/output.

Model of SD

Artifact Composition Hierarchy

Program-5tructure {

Criteria for Designing Artifact

Name

Sub..Module

Criterion IHA (for Identifying H ighestAbstraction):

(0, i)

HighestAbstraction Set= { x Ifx E E of DFD /\ MostLogical(Data(x))}

where:

105

1. DF D(Data Flow Diagram): <G,Data>,

1) where G: a directed graph < E, V >;

2) Data(e): a function such that given a edge e E E, returns the data item attached to

the edge e;

2. M ostLogical(d): a function that returns true when the data item d is most logical (it is

furthest from the input and output of program.)

Representations for Expressing Artifact

Artifact Name Representation

Problem Natural langauge

Problem..Structure Data Flow Diagram notation

DataJ'low
"'

Major_[}ata..Stream

I niLProgram..Structure Structure Chart notation

Program..Structure

Action Functional Hierarchy

(a) SD(ProblemlDesign_Spec) =>

(1) M odeLProblem(ProblemlProblem..Structure)

(2) M ode/_[)ataJ'low(Problem..StructurelData..Flow)

(3) I dentify_M ajor ..Stream(Data_Flow, @I H AIM ajor _[)ata..Stream)

(4) Derive_Program..Structure(Maj or JJata_Stream, DataJ' low II niLProgram..Structure)

(5) Add..M odules(IniLProgram..Structure, ProblemlProgram..Structure)

(6) Where Design..Spec = is_in..:terms_of(Program_Structure)

106

6.2.5 Data Structured Systems Development (DSSD)

Overview

Data Structured System Development (DSSD) [Orr77, Han86] provides meth­

ods for modeling problems, (especially the structure of the desired outputs from

the program) and for designing program hierarchy. It also emphasizes the devel­

opment of the right software to satisfy the requirements of customers by correctly

solving the targeted problem.

The first step of DSSD is to model the structure of the desired outputs as a

hierarchy (tree). In this hierarchy, a node is a part of the data structure defined

by its parent node. This hierarchy shows what the outputs will look like to an end­

user (customer), to ensure getting the right outputs. Thus, this hierarchy should

be represented in a notation that is most familar to an end-user. For example, in

designing report generation software, the output hierarchy could be modeled as a

template of the report.

The second step of DSSD is, based on the structure of the desired outputs,

to model the logical structure of the outputs, the designer's view of the data

structure. For example, in designing report generation software, the structure

could be a conceptual hierarchical structure of tlie report.

The third step is to derive the program structure from the desired output

structure and logical output structure. The program structure is a hierarchy of

procedures, each of which is often directly responsible for generating a certain

output in the logical output structure. An execution of an implementation of the

program should generate the desired output.

Model of DSSD

Artifact Composition Hierarchy

Data.'ltructure {
Name

Data_Jtems

Data.Item• {

Criteria for Designing Artifacts

Criterion IA (for identifying Atom):

Name

Data_Jtems

(0, i)

(0, i)

Atom Set = { x If in a Warnier Diagram, x has no bracket on its right}

Criterion JU (for identifying Universal):

Universal Set = { x If in a Warnier Diagram, x has a bracket on its right}

Representations for Expressing Artifact (REA)

Artifact Name Representation

Output...Structure Any notations appropriate for customers

Logical_Output...Structure Warnier-Orr Diagram notation

Process_Structure

Action Functional Hierarchy

First Level:

(a) DSSD(ProblemlDesign...Spec) =>

107

(1) Sketch_Problem(ProblemlOutput..Structure)

(2) I dentif y_LogicaLOutput(Output..Structure I LogicaLOutput..Structure)

(3) Derive_Process..Structure(Output.Structure, LogicaLOutput..Structure, @DPS

I Process.Structure)

(4) Where Design_Spec = is_in.lerm_o f (Process.Structure)

Second Level:

(b) Identify _LogicaLOutput(Output.Structure ILogicaLOutput..Structure) ~

(1) I dentif y_A.toms(Output.Structure, @IAIAtom..List)

(2) Specify_Frequency(Atom_ListlFrequency)

(3) U niversal_A.nalysis(FrequencylOccurances)

(4) DrawJJiagram(Occurence, FrequencelLogicaLOutput..Structure)

6.2.6 Logical Construction of Programs (LCP)

Overview

108

LCP (Logical Construction of Program) [War76] describes the methods to

be used in developing a program based on the structure of the input data.

The first step of LCP is to model the inputs of the program as a hierarchy,

in which one must define and note the number of times each element appears in

the input hierarchy. This hierarchy should be represented by a Warnier Diagram.

The second step is do the same for the outputs of the program.

The third step is to derive the structure of the program based on the structure

of the inputs. To do this one must first identify the types of instructions to be

used, and then put them in a specific order: read instructions, preparation and

109

execution of branches, calculation and output instructions, and finally draw the

result of this as a flowchart.

The fourth step is, based on the structure of the outputs, to validate the

program structure, ensuring that the program will produce the desired outputs.

Model of LCP

Artifact Composition Hierarchy

Data_.<;tructure {
Name

Data_Jtems

Name

(0, i)

DataJtems {
Data_Jtems · (0, i)

Representations for Expressing Artifacts

Artifact Name Representation

LogicaLinpuLFile Warnier Diagram notation

LogicaLOutpuLFile

Process_Structure

Process_Structure Flowchart notation

Action Functional Hierarchy

First Level:

(a) LCP(ProblemlDesign_Spec) =>

(1) M odelJ nput..Structure(ProblemlLogicaLI nput..Structure)

(2) M odeLOutput..Structure(ProblemlLogicaLOutput..File)

110

(3) Derive_Process..Structure(Logical_[npuLFile, LogicaLOutput..File IProcess..Structure)

(4) Where Design_Spec = is_in..term_o f (Process.Structure)

Second Level:

(b) Derive_Process..Structure (LogicaLI nput..File, LogicaLOutput..File IProcess..Structure) =>

(1) Derive_Process(Logical_! nput..File IProcess_C omposition)

(2) Trans f orm_to..F lowchart(Process_Composition, Logical_! nput..File IOrderedYrocess)

(3) V alidate_Process(LogicaLOutput..File, OrderedYrocesslProcess..Structure)

6.3 Step 2: Classify Components

Having completed the above models, we then used the previously defined BF

to classify the method components of the selected SDMs. Fig. 6.1, 6.2, 6.3 and 6.4

show the classifications of the method components under MCTH.

Fig. 6.5, 6.6 and 6. 7 show the classifications of the artifacts under MSDL.

These artifacts are the inputs and outputs of the actions (e.g., the SDM models

specified in the last section) We believe that, based on the relations between arti-

fact and other method component types (e.g., MCTRM[Concept, Artifact]), it is

straightforward for us to classify the concepts, representations and actions within

MSDL.

111

Concept Hierarchy Method Component
Level-1 Level-2
Problem Produce changable program (SD, BOOD, RDM)

Manage software project (RDM)
Design correct software (JSD, BOOD, LCP, DSSD)
Reduce software complexity (SD)

Principle Information-hiding (BOOD,RDM)
Abstract data type (BOOD)
Separation of concerns (RDM)
Use data/process connection (DSSD,LCP)
Model reality (JSD, BOOD)
Specify model first (JSD)
Achieve high cohesiveness (SD)

Criterion Deciding Decide an object (IO) (BOOD)
artifact Decide an operation (BOOD)

IE (Deciding an entity (JSD))
I A (Deciding an action (JSD))
Decide "highest abstraction" (IHA) (SD)
Identify atom (DSSD)
Identify universal (DSSD)

Deciding Deciding a decomposition (RDM)
structure - simple enough to understand

- independent implementation
- interface is not likely to change
- changes are localized

Guideline Identify Find a verb to identify an action (JSD)
artifact Find a noun to identify an entity (JSD)

Find a noun to identify an object
Find a verb to identify an operation (BOOD)
Find "highest abstraction" in a DFD (SD)

Deriving Derive process structures from output
artifact Derive logical structures from output (DSSD)

Derive process structures from input
Derive logical structures from input (LCP)

112

Concept Hierarchy (Cont.) Method Component
Level-1 Level-2
Guidline Choosing Describe Module Structure (RDM)
(Cont.) structure - By roles

- By secret
- By facilities provided
Define Program Rules (SD)
- Match program to problem (SD)
- Effect scope is in control scope (SD)
- Upper limit of module size (SD)
- Write initialization modules (SD)
- Minimize duplicated codes (SD)
- Isolate dependencies (SD)
- Reduce parameters (SD)

Measure Range Coupling(SD)
Cohesiveness (SD)

Scale Coincidental binding (SD)
Logical binding (SD)
Temporal binding (SD)
Communication binding (SD)
Sequential binding (SD)
Functional binding (SD)
Interface complexity (SD)
Type of connection (SD)
Type of communication (SD)

Table 6.1: Concepts classified within MCTH

113

Artifacts Hierarchy Method Components
Level-1 Level-2
Program ModeLProcess (JSD)

Function_process (JSD)
Module (SD)

Diagram Object (BOOD)
Output..Structure (DSSD)
LogicaLOutput..Structure (DSSD)
LogicaLOutput..File (LCP)
LogicalJ nput..File (LCP)
Process..Structure (DSSD,LCP)
I nitial..System..SpecJJiagram (JSD)
System..SpecJJiagram (JSD)
Function_process (JSD)
Connection (JSD)
Entity..Structure (JSD)
ReaLW orld_M odel (JSD)
Data..FlowJJiagram (SD)
Program-8tructure (SD)

Text Plain System_Function (JSD)
Text ReaLWorld.JJesc (JSD)

Timing (JSD)
M _Proc_N ame (JSD)

Temp lated Visibility (BOOD)
Text Module (BOOD)

Entity ..Action-List (JSD)
ActionJJesc..Entry (JSD)
Module (RDM)
AbstractJnter face (RDM)

Relation Js_Composed_Qf (RDM)
U se_structure (RDM)
Connection (SD)

List Entity _List (JSD)
Action-List (JSD)
ActionJJesc (JSD)

Table 6.2: Artifacts classified under MCTH

114

Rep. Hierarchy Method Component

Level-I Level-2

Language Computer Structure..I' ext (JSD)

language

Diagrammatic OOD_Notation (BOOD)

Notation Structure_Diagram_N otation (JSD)

Sys..Spec_Diagram_N otation (JSD)

W arnier _Diagram (LCP, DSSD)

Flow_Chart (LCP)

Structure_Chart (SD)

DF D_N otation (SD)

Table 6.3: Representations classified within MCTH

115

Action Hierarchy Method Component
Level-1 Level-2
Construction Develop Develop..Spec (JSD)

DevelopJmpl (JSD)
Develop..System..Model (JSD)
Develop..SystemJi'unc (JSD)

Model ModeLReality (JSD)
Model..System (JSD)
Model ..Entity ..Structure (JSD)

Specify EstablishJnter face (BOOD)
EstablishJmplementation (BOOD)
Specify_Object..See (BOOD)
Specify_Qbject..Seen (BOOD)
SpecifyYrocess (JSD)
Connect (JSD)
Specify.Attributes (JSD)

Define Define..Time_Order (BOOD)
Define..Space (BOOD)
DefineJi'unc (JSD)
Define..Timing (JSD)

Identify Identify_Qbject (BOOD)
I dentify_Operation (BOOD)
I dentify_Concrete_Object (BOOD)
I dentify_Abstract..Dbject (BOOD)
I dentify..Server (BOOD)
I dentify_Agent (BOOD)
I dentify_Actor (BOOD)
Identify_Class (BOOD)
I dentify_Attributes (BOOD)
I dentify..Entity_Action (JSD)
I dentify_M odeLProcess (JSD)
I dentify..Entity (JSD)
I dentify_Action (JSD)
Identify.Noun (JSD, BOOD)
I dentify_Verb (JSD, BOOD)

Select S el ect..Entity (JSD)
Select.Action (JSD)

Table 6.4: The JSD and BOOD Actions classified within MCTH

116

MSDL Method Components

Level-1 Level-2

Problem Data OutputStructure (DSSD)

Model Model LogicaLOutput..File (LCP)

Domain LogicalJnpuLFile (LCP)

Trans. SystemSpecJJiagram (JSD)

Model DataJi'low (SD)

Entity EntityStructure (JSD)

Model Entity_List (JSD)

Action_List (JSD)

Entity .Action_List (JSD)

ActionJJesc (JSD)

Fune. SystemJi'unction (JSD)

Model Timing (JSD)

DataJi'low (SD)

OutputStructure (DSSD)

LogicaLOutpuLFile (LCP)

Table 6.5: Classification of artifacts under the Problem Model Domain

117

MSDL Method Components

Level-1 Level-2

Solution Data Model State (BOOD)

Model LogicaLOutput..Structure (DSSD)

Domain LogicaLOutput..File (LCP)

~

LogicalJnput_File (LCP)

State_Vector (JSD)

Maj or _Data..Stream (SD)

Transformation Operation (BOOD)

Model Process_Structure (DSSD,LCP)

I I Function_process (JSD)

Program_Structure (SD)

Data_Flow (SD)

Communication State_Vector (JSD)

Model Data..Stream (JSD)

Interface Model Connection (JSD)

Entity Model Object (BOOD)

Operation (BOOD)

State (BOOD)

Model _process (JSD)

Table 6.6: Classification of the artifacts under the Solution Model Domain

118

Design Life-Cycle Method Component

Level-1 Level-2 Level-3

Documentation Structure Module_Guide (RDM)

Domain Document

Module M odule_Bpec (RDM)

Document Interface (BOOD)

Relation Use-relation UseJ!ierarchy (RDM)

Document

Visibility Visibility..Spec (BOOD)

Table 6.7: Classification of the artifacts under the Document Model Domain

6.4 Comparison of BOOD with RDM

6.4.1 Step 3: Select Comparison Topics

From Figure 6.1 (i.e., the parts of Problem and Principle), we can see that

• Both BOOD and RDM are aimed at designing easily changed program by

applying the principle of information-hiding.

• RDM is also aimed at helping the management of a software project. It

suggests the importance of separating the concerns of different designers.

119

• BOOD is aimed at designing a right software system by emphasizing the

modeling of the environment under which the system will be operated. RDM

does not explicitly emphasize this.

From the functional classifications (Fig. 6.5, 6.6 and 6.7), we can see that

RDM primarily supports the process of documenting a design. It does not pro­

vide methods for modeling either the problems or the system (i.e., solution). To

summarize their differences in documenting a design, we can see from Fig 6. 7 that:

• BOOD does not address issues related to developing the Structure Documents.

In contrast, M odule_Guide of RDM addresses these issues.

• BOOD and RDM both address the issues related to developing the Module

Documents. BOOD does this by using the notion of Inter face while RDM

does it by using Module_Spec. Thus, we will compare Interface with

M odul e_S pee.

• BOOD and RDM both provide notions for documenting certain relations

among modules.

120

6.4.2 Step 4: Compare Method Components

Comparisons in the Documentation Domain

(i) Compare Interface with M odule_Spec

As our strategy is to focus on comparing the functions of design actions, we com­

pare the actions EstablishJnter face of BOOD with Develop_M oduleJnter face

of RDM.

• Differences in inter-artifact dependency: EstablishJ nter face has four

inputs:

Object;

States;

Operations;

- Visibility;

Develop_M oduleJ nter face has three inputs:

- Req_Docu;

- Design;

- M odule_Guide.

By analyzing those inputs and their compositions, we can see that Inter face

of BOOD is established based on well-defined artifacts. Visibility should

121

help in deciding which Operations or States should be selected and spec­

ified into the Interface. In contrast, Module..Spec of RDM depends on

M odule_Guide which provides overall descriptions of the modules. However

the contents of such descriptions are not well defined in RDM. Therefore, gen­

erally, it is not clear how precisely and rigorously M odule_Guide can guide

defining M odule..Spec. In addition, unlike BOOD, visibility information will

not be available for specifying M odule..Spec in RDM.

• Differences in human involvement: Since Object of BOOD specifies

State and Operations, establishing Inter face of Object should require only

deciding which of those should be in the interface and which formalism should

be used to specify them. Thus, EstablishingJnter face of BOOD is a guided

human process. Based on the analyses of the artifacts that a Module depends

upon, we think that Develop_ModuleJnterface of RDM is also a guided

human process (i.e., guided by the corresponding descriptions given in the

Module_Guide.). However, since the contents of Module_Guide is not well

defined, it is not clear how well M odule_Guide can guide Develop Module

Interface.

• Differences in scope: Interface of an Object defines the interface of the

abstract data type. Similarly, M odule..Spec of RDM is also used to achieve

information hiding. However, M odule_Spec is defined as a template that

contains many optional fields to accommodate various needs in documenting

122

a design. Some of them are beyond the basic concepts of abstract data

type, (e.g., one field may contain the specification of undesired events (i.e.,

exceptions)). Thus, RDM allows to address a broader scope of issues in

specifying the interface.

(ii) Compare Object with Module_Guide

Though BOOD does not explicitly provide a strategy for structuring a design,

it suggests that an object oriented design should be organized according to ab­

straction levels which are expressed through objects. In this sense, we make some

comparisons between BOO D's Object and RD M's M odule_Guide. To further eval­

uate CDM, we compare the criteria for deciding an object and a module, and the

representation that they use.

• Difference in criteria for determining artifact: By comparing the mod­

els of BOOD and RDM, we found that BOOD provides very concrete criteria

for determining what an object is (e.g., must have a name, state, ...). In con­

trast, RDM suggests a set of criteria and guidelines which are more general

and intuitive (See Fig. 6.1, where they are described). As our modeling

formalism is still limited, we cannot formally model them yet.

• Differences in representation applied: By checking Fig. 6.3, we find that

BOOD suggests using a diagrammatic notation to describe the document

structure while RDM does not suggest any notation.

123

6.4.3 Step 5: Summarize Differences

Table 6.8 summarizes the differences between the RDM and BOOD compo­

nents. Based on this summary, we have the following further observations:

• RDM is more a collection of software design principles than a well-defined

SDM. The reasons are 1) many of its artifacts and actions are not explicit

and well-defined, and 2) the guidelines or criteria in RDM are defined rather

intuitively, (e.g., RDM suggests that a module interface should enable a

software person to understand the module without reading its internal im­

plementation details). This is easy to understand but it is not a very useful

prescription for aiding a designer in achieving this.

• RDM supports documentation of design. It describes a number of criteria

for deciding what constitutes an acceptably sound and complete design doc­

ument. However, it fails to clearly describe the needed inputs to RDM. This

argument is based upon the observation that RDM starts with document­

ing requirement/design. Thus, different inputs (e.g., different solution model

artifacts), may cause many detailed portions of RDM to vary significantly.

124

Comparisons in the Documentation Domain

Comparisons of the Structure Document

Component Dependency Scope Need for human Proc.

M odu/e_Guide Design Characterize is- Unspecified N/A

vs. component-of structure.

? N/A

Comparisons in the Module Document

M odule-8pec M odu/e_Guide Loosely defined: Guided human process, N/A

{RDM) Req..Docu, Design It could contain only the degree of need

which are not a set of data types or for human activity may

vs. well-defined a set of functions; It vary greatly

may specify undesired

events;

M oduleJnter face Object, Operation, etc. Must be for an ADT Guided human process N/A

{BOOD) which are well defined

Comparisons in the Relation Document

U seJf ierarchy Design, M odule-8pec use relation Mechanical N/A

vs.

V isibility_Spec Visibility Potential use-relation Guided human process N/A

Table 6.8: Summary of the differences between the RDM and BOOD components

125

6.5 Comparison of JSD with SD

6.5.1 Step 3: Select Comparison Topics

From Fig. 6.1 (i.e., Problem, Principle), we can see that:

• SD focuses on reducing program complexity and producing changeable pro­

grams. Accordingly, it suggests how to develop a program that has a high

degree of cohensivness and a low degree of coupling.

• JSD focuses on the development of a correct and stable software system

that satisfies its specified requirements. Thus, it suggests first modeling the

environment that uses the system before designing the system.

From the functional classifications (Fig. 6.5, 6.6 and 6.7), we see that JSD

and SD both address issues involved in modeling the problem and its solution.

In modeling the problem (see Fig. 6.5), we found:

• Both JSD and SD by themselves do not address issues involved in modeling

data structures2 •

• SD does not address issues involved in developing the Entity Model of the

problem.

2JSD suggests using relational, network and other data models to model data structures.

126

• Both JSD and SD address issues involved in developing the Function Model

and the Transformation Model. SD addresses those issues through speci­

fying data flow while JSD does this through specifying System.Function

and System..SpecJJiagram. Thus, we should compare Data.Flow with

System.Function and System..SpecJJiagram.

In modeling the solution (Fig. 6.6), we found:

• Both JSD and SD require identification of some important data in a design.

SD requires identification of Major _Data_Stream and JSD requires identi­

fication of State_Vector.

• SD does not explicitly address issues involved in modeling the Interface and

Communication Model. In contrast, JSD explicitly addresses those issues.

• SD provides no method for helping to develop an Entity Model. In contrast,

M odeLProcess of JSD is aimed at addressing this issue.

• Both JSD and SD address issues related to specifying the Transformation

Model. SD addresses these issues through developing the Program_Structure

while JSD does this through specification ~f Function_Frocess. This indi­

cates that we should compare Program_Structure with Function_Frocess.

127

6.5.2 Step 4: Compare Method Components

Comparisons in the Problem Model Domain

(i) Compare DataJi'low with System.Spec-Diagram

Our strategy is still to compare the corresponding design actions to under­

stand the differences between the artifacts they produce. The design actions to be

compared are ModeLDataJi'low and Develop.Spec (defined in Sec. 5.5.1).

• Differences m inter-artifact dependency: these two artifacts depend

on some similar artifacts: the informal descriptions of the problems (Real

World Desc and Problem.Structure).

• Differences in scope: the issues they address, from the viewpoint of

modeling data transformation, are also very similar-both are capable of

modeling data flow. However, System.Spec_Diagram is also able to specify

the mechanism (State_V ector or Data.Stream) via which data are trans­

ferred (see Model.System). In addition, System.Spec_Diagram can explic­

itly indicate the boundaries of the real-world (i.e., Entity.Structure), the

system interface (i.e., M odeLProcesses) and internal implementations (i.e.,

FunctionYrocesses). Thus, a System.Spec_Diagram can explicitly indi­

cate interactions between the events in the real-world, the system interface

and system internal implementation.

128

• Differences in development procedure: the procedures that JSD and

SD suggest for modeling data flows are quite different. Generally speak­

ing, JSD takes a breadth-first approach while SD takes a depth-first ap­

proach. The breadth-first nature of the process that JSD suggests is ex­

hibited in M odel_System. M odel_System suggest modeling all data flows

between the Real_W orldYrocesses and M odelYrocesses first. It is only

after Mode/System is complete that one then uses System_Function, to

specify a complete data flow from M odeLProcess to the process produc­

ing the System_Function. In contrast, SD does not provide any explicit

guidance for how to do the data flow modeling. However, SDM seems to

suggest that data flow be modeled by first considering a desired output, then

identifying all its required inputs and then going further to model the data

flow until reaching the process that produces the desired output. This is

inherently a depth-first process.

• Differences in human involvement: SD provides no guideline for modeling

data flow. In contrast, JSD provides guidelines for the process of defining

InitSystemSpecJJiagram which is a part of the data flow model (System

SpecJJiagram). However, similarly to SD, JSD provides no method to

model the data flows that start from the M odelYrocesses and proceed to

the System_F'unctions. Based on these observations, we conclude that they

are both essentially human processes.

129

• Differences in the representations applied: In SD, a Data.Ji'low should

be specified in Data Flow Diagram notation. In JSD, a System..SpecJJiagram

should be specified in the System Spec Diagram Notation.

(ii) Compare DataJ'low with System.Ji'unction

We compare ModelJJata.Ji'low with Define.Ji'unc to see the differences be­

tween the artifacts Data.Ji'low and System.Ji'unction in the context of developing

the Functional Model.

• Differences in inter-artifact dependence:: They depend on similar arti­

facts, namely the customer's requirements (Problem..Structure). However,

System.Ji'unctions additionally depends on Init..System_Diagrams, a sys­

tem interface description. This provides more assistance for both customers

and designers in deciding and understanding the requirements.

• Differences in development procedures: The JSD model (Sec. 5.5.1)

illustrates very clearly that a System.Ji'unction is not to be defined until

ReaLW orldYrocess and M odel_Process are defined. Thus, the events upon

which a SystemJi'unction is to be performed can be specified in terms of

the ReaLW orldYrocess. SD does not explicitly specify the order in which

a data flow diagram is to be drawn.

• Differences in scope: No significant difference.

130

• Differences in human involvement: JSD and SD both give no guide­

lines for specifying the system outputs. However, since a SystemJi'unction

is to be specified after Real_W orld_Frocess and M odel_Frocess are mod­

eled, both designers and customers should have a better sense about what

functions they can expect.

• Differences in the representation applied: They both do not suggest

any notations for specifying system functions.

Comparisons in the Solution Model Domain

(iii) Compare Program_Structure with Function_Frocess

Both Program_Structure and FunctionYrocess describe the data flows

through the system. However, Program_Structure is a hierarchy of the func­

tions processing the DataJi'low. FunctionYrocess is still a direct description of

the data flow. We compare the actions (i.e., the SD model(l)-(5) with the JSD

model(d)(2)) producing those two artifacts to understand their differences.

• Differences in inter-artifact dependency: A Program_Structure is de­

rived from a DataJi'low. Defining a FunctionYrocess depends on the

Init...System...SpecJJiagram (which describes system interface and its con­

nections with the real-world) and SystemJi'unction. From analyzing the

way in which it is suggested that Program_Structure be derived, we see that

131

Program_Structure is a functional structure that processes the DataJi'low.

In contrast, FunctionYrocess is still a direct description of the data flow.

• Differences in the representation applied: Based on the models of JSD

and SD, we can see that Program_Structure uses Structure Chart notations

while JSD does not suggest any notation for specifying a FunctionYrocess.

Since there are such major differences in the way in which they support modeling

data flow, we do not think that comparing other aspects is very worthwhile.

However, we would like to comment on Program_Structure (Comments on Function

Process can be found in the comparison between FunctionYrocess and Operation

of BOOD).

• Human involvement: deriving Program_Structure is done by applying

the guideline for identifying highest points of abstraction. Thus, this is a

guided human process.

• Scope: addresses the issue on how to develop a function structure (i.e.,

functional-call hierarchy) to process the data flow.

6.5.3 Step 5: Surnrnarize Differences

Table 6.9 summarizes the differences between JSD and SD. Based on these

differences, we make the following observations:

132

• SD supports modeling a data flow that is to achieve one, or perhaps a few

functions. It appears likely that it would not be very easy to use for modeling

a data flow that has many outputs.

• SD's support for deriving a functional hierarchy that processes the data flow

is quite unique, and it should be useful for designing a program. For com­

pletely modeling a large scale and complex system, SD seems to be weak

compared with JSD.

• This comparison illustrates that JSD can be viewed as providing a method for

developing data flow. JSD has been characterized as a data-oriented design

methodology and as being similar to object-oriented design methodologies.

However, its similarities with SD have never been identified and addressed

clearly. Our findings seem to be very valuable in aiding the integration of

the two SDMs.

6.6 Compare DSSD with SD

6.6.1 Step 3: Select Comparison Topics

From Fig. 6.1, we can see that:

• DSSD focuses on designing a concrete software system that satisfies the spec­

ified requirements.

133

Comparisons in the Problem Model Domain

Component Dependency Scope Need for human Proc.

Overall difl"erences

DataJi'low Problem Define data Unspecified N/A

vs. transformation human process

Entity..Structure ReaLW orld..Desc Define components Guided human N/A

outside the system process

and their behaviors

Comparisons in the Transformation Model

DataJi'low Problem Describe data flow Unspecified To be done

for producing human process in depth-first

vs. a few functions manner

System.Spec..D. Real.World..Desc Describe data flows of Guided Part of it to

whole system human process be done in

breadth-first

manner

Comparisons in the Functional Model

DataJi'low Problem Describe the outputs Unspecified During defining

produced from input human process problem

vs.

SystemJi'unction Real.World..Desc Describe the outputs Unspecified After specifying

I nit..System.Spec..D ,, to be produced upon human process, the real-world

executing actions model and

interface

Comparisons in the Solution Model Domain

Comparisons in the Transformation Model

Program..Structure Data.Flow Describe function Guided human N/A

hierarchy processing process

vs. a data flow

Function.Process Init..Sys.Spec..D. Describe data flows Not well guided N/A

Table 6.9: Summary of the differences between the JSD and SD components

134

• SD focuses on reducing program complexity and producing easily changeable

programs. Thus, it suggests how to develop programs that have a high degree

of cohesiveness and a low degree of coupling.

From the functional classification for specifying the Problem Model (Fig. 6.5),

we can observe the following:

• DSSD addresses issues related to modeling the data structures of the outputs

of the system. In contrast, SD does not address these issues.

• SD addresses issues concerned with specifying the Transformation Model. In

contrast, DSSD does not.

• Both DSSD and SD address issues concerned with developing Function Models.

DSSD does this through specifying the data structures of the outputs (i.e.,

through specifying OutpuLStructure). SD does this through specifying the

data fl.ow reaching that output (i.e., through specifying Data..Flow). Thus,

we should compare OutpuLStructure with Data..Flow.

From the functional classification for specifying the Solution Model 6.6, we

observe the following:

• DSSD addresses issues concerned with modeling the data structures for re­

alizing the system outputs. In contrast, SD does not. However, SD requires

the identification of the internal data needed to realize the system, (i.e.,

identification of Major _Data...Stream).

135

• Both DSSD and SD address issues concerned with specifying the Transformation

Model. DSSD does this through specifying Process..Structure while SD does

this through modeling Data_F low and Program_Structure.

6.6.2 Step 4: Comparing Method Components

Comparisons of the Problem Model Domain

(i) Comparing Data_Flow with OutpuLStructure

From the view of addressing issues concerned with specification of the Function

Model, we can see that there are:

• Differences in scope: Output..Structure describes the structures of out­

puts. Data_Flow describes what outputs will be expected, given specified

inputs. Data_Flow will not describe the structures of these outputs.

• Differences in inter-artifact dependency: There are not many differ­

ences. The specifications of Data_Flow and Output..Structure both depend

on the requirements or on the customer's needs.

• Differences in human involvement: There are not many differences here

either. Both require significant human involvement.

136

Comparisons in the Solution Model Domain

(i) Compare Major J)ata-5tream with LogicaLOutput

We note the following differences in developing the Data Model:

• Differences in inter-artifact dependency: Major J)ata-3tream depends

on Data..Flow. Logical_Output depends on Output_Structure. The differ­

ence is that LogicaLOutput depends solely on the output structure while

Major J)ata-3tream depends on the outputs as well as the inputs to the

system.

• Differences in scope: The issues they address are similar in that both

aim at identifying the structures of internal data (both inputs and outputs)

which are needed to realize the system (or to perform the desired functions).

Logical_Output is an internal output. Analyzing this output in DSSD helps

to identify the needed inputs. They both help in achieving functional and

communicational binding. (Note that the data flow for processing the in­

ternal data is functionally bound while the processes responsible for reading

and writing those internal data are communicationally bound)

• Differences in human involvement: They both are human processes.

SD provides criteria that help in distinguishing Major _Data-3tream from

Data..Flow. DSSD describes, in reasonable detail, how to derive and distin­

guish LogicaLOutput from Output-3trucuture.

137

(ii) Compare Data_Flow vs Process_Structure

In analyzing processes for creating the Transformation Model, we observed

the following differences:

• Differences in inter-artifact dependency: Data.Ji' low depends on Problem.

Process_Structure depends on LogicaLOutput..Structure and Output..Strucuture.

Thus, Process..Structure depends on better defined artifacts.

• Differences in scope: There were few differences.

• Differences in human involvement: They are both human processes.

However, Process..Strucuture can be derived from LogicaLOutput..Structure.

(iii) Compare Program_Structure vs Process..Structure

• Differences in inter-artifact dependency: Program..Structure depends

on Data.Ji' low and Major _Data..Stream. Process..Structure depends on

LogicaLOutput..Strucuture and Output..Structure.

• Difference in scope: Developing Program_Structure entails deriving a

functional decomposition from a Data.Ji' low. Developing Process..Structure

is aimed at producing a hierarchical procedural program.

• Differences in human involvement: They both are guided human pro­

cesses. However, in both cases the guidelines are very clear and concrete.

Thus these development processes are close to mechanical processes.

138

6.6.3 Step 5: Summarize Differences

Table 6.10 summarizes the differences between SD and DSSD. Based on this

summary, we can make the following observations:

• DSSD makes a clear distinction between modeling what the system is to

produce and how the system produces it. In contrast, SD does not make this

clear distinction. DataJi'low describes both a process and its product (see

our classification (Fig. 6.5) and summary (Table 6.10), where DataJi'low

is considered as supporting both the Function Model and Transformation

Model).

• In DSSD, a design starts with application of the structure of the output.

With this output structure, the required inputs are then identified. The

process of modeling Data_Flow is more arbitrary; it could start either from

identifying inputs or from identifying outputs.

• It is interesting to note that both SD and DSSD incorporate mechanisms for

determining program components that are really responsible for achieving

various functions of the program. The approaches used by SD and DSSD are

similar; they suggest that the designer distinguish logical data (SD looks for

highest points of abstraction, DSSD looks for the Logical_Output..Strudure)

from physical data.

139

Comparisons under the Problem Model Domain

Comparisons under the Function Model

Component Dependency Scope Need for Procedure

human

Data.Flow Problem Describe inputs to system Unspecified N/A

vs. and outputs from system

Output..Structure Problem Describe data structure Unspecified N/A

of the system output

Comparisons under the Solution Model Domain

Comparisons under the Data Model

Component Dependency Scope Need for Procedure

human

M ajar ..Data..Stream Data.Flow To find the central Partially N/A

vs. processing part of Data.Flow guided

LogicaUJutput..Str. Output..Structure To find the functions Guided N/A

that read the needed inputs

Comparisons under the Transformation Model

Data.Flow Problem How the output is Unspecified During

produced from input modeling

vs. problem

Process_Structure Output..Structure How the output is Guided After output

Logical.JJutput..Str. procedurally produced or mechanical structure

is specified

Program..Structure Data.Flow Functional decomposition Guided N/A

vs.

Procesa_Structure see above hierarchical procedural Guided N/A

program or mechanical

Table 6.10: Summary of the differences between SD and DSSD

140

6. 7 Compare LCP with DSSD

By analyzing Fig. 6.1 (i.e., Problems and Principles), we see that:

• Both DSSD and LCP aim to develop a correct software system that satisfies

its given requirements.

• Both DSSD and LCP recognize the close relation between data structure and

program structure, and use this relation as the basis for their other strategies.

From the classification under the Problem Model Domain (Fig. 6.5), we find

the following:

• LCP and DSSD both address issues in modeling the structure of the output

data. LCP uses LogicaLOutpuLF'ile whereas DSSD uses Output_Structure.

• Neither LCP nor DSSD addresses either the Transformation Model or the

Entity Model.

From the classification under the Solution Model Domain (Fig. 6.6), we can

infer:

• Both LCP and DSSD address issues in modeling the data structures needed

for realizing the system. LCP uses LogicalJnpuLF'ile and LogicaLOutpuLF'ile.

DSSD uses LogicaLOutpuLStructure.

• Both LCP and DSSD address issues in creating the Transformation Model.

141

6. 7.1 Step 4: Comparing Design Methodologies

Comparisons under the Problem Model Domain

We compared LogicaLOutpuLFile of LCP with Output..Structure of DSSD,

and found that they are same. They are both specified as a hierarchal data struc­

ture. They both are used to model the outputs of the system as the needs of

customers. Neither LCP nor DSSD provides detailed guidelines for how to develop

those two artifacts.

Comparisons under the Solutfon Model Domain

Compare Process-8tructure(LCP) with Process-8tructure(DSSD)

• Differences in inter-artifact dependency: From the DSSD and LCP

models, we can see that deriving a Process_Structure in DSSD requires

only the modeling of the output data structure-LogicaLOutput. However,

deriving Process.Strucuture in LCP requires the modeling of both input

and output-LogicalJnput_File and LogicaLOutput_File.

• Differences in human involvement: they both provide rules for deriving

a Process_Structure.

142

• Differences in scope: Not much. Process..Structure (for both LCP and

DSSD) is the architecture for a procedural program that produces the desired

outputs.

• Differences in representations applied: LCP suggests that Process

Structure be specified in Flow_Chart notation. DSSD suggests the use

of the Warnier-Orr Diagram notation, an extended version of the Warnier

Diagram notation.

6. 7.2 Step 5: Summarize Differences

Table 6.11 summarizes the differences between LCP and DSSD. Based on the

summary, and the models of LCP and DSSD, we have the following observations:

• LCP assumes that designers know the inputs and outputs of the program

to be designed. Thus, it suggests using the modeling of those two artifacts

to help the development of the program. In contrast, DSSD assumes that

designers know only the outputs of the program to be designed. Thus, it

suggests using the modeling of the output to identify the inputs and to con­

struct the program. This understanding should be helpful in deciding which

of these two SDMs to use.

/

143

Comparisons under the Solution Model Domain

Comparisons under the Transformation Model

Component Dependency Scope Need for Rep.

human

Proceaa_Structure LogicalJnput..File How the output is Guided Flowchart

(LCP) Logical..Output..File produced from input human process

vs.

Proceaa_Structure Output..Structure How the output is Guided

(DSSD) Logical .Output..Structure produced human process W arnier - Orr

Table 6.11: Summary of the differences between LCP and DSSD components

6.8 Evaluation

To demonstrate our BF and MF evolutionary development strategy (Fig. 5.4)

and to examine the validity of our current BF and MF, we should evaluate both

the BF and MF by using that strategy. In Sec. 4.3.1 we have already evaluated an

earlier version of the MF by using the BF (i.e., we indicated which of the types and

relations defined in MCTH could and could not be supported by that version of the

MF (i.e., HFSP)). Thus, here we focus only on the evaluation of the BF. In pursuit

of our first goal (Sec. 2.1), we evaluate the BF from the following perspectives: 1)

Sufficiency/effectiveness: does the BF sufficiently and effectively support assess­

ments of the SDMs? 2) Objectivity: how objective are the classifications within

the BF? 3) Completeness: can all the major method components of the SDMs be

classified within the BF?

144

6.8.1 How to Evaluate

As the method components of an SDM are often not explicitly indicated, it

is difficult to decide if the BF is complete enough to classify all the components.

To deal with this we use a model of the SDM to aid in making such decision. In

this way we hope to determine whether any component in the model has not been

classified within the BF (although the model cannot be used to verify whether or

not all components have been classified). By developing more mature SDM models

and classifying more method components, we expect to gain more confidence in

the completeness of the BF.

Note that the evaluation of sufficiency/effectiveness derives from the analysis

of the comparisons while the evalution of the objectivity and completeness derives

from the BF and SDMs themselves.

6.8.2 Evaluation of the Type Framework (MCTH)

Evaluation of Sufficiency /Effectiveness

The sufficiency /effectiveness of MCTH should be evaluated against its goals:

1) guiding comparisons and 2) aiding assessments of SD Ms.

Our earlier experiment (Chapter 4) seems to have indicated that the top-level

types of MCTH are quite effective in guiding comparisons. In the experiment, we

145

have used Fig. 6.1 to directly aid in making comparisons. For example, we analyzed

the Problems at which BOOD and RDM are aimed, and Principles they used, to

understand the differences between BOOD and RDM. In the other comparisons

carried out as part of this experiment, we have done similar analyses (e.g., see

Sec. 6.3.l and 6.4.1). These all show that the classification within concept is useful

in aiding comparisons.

As we expected, this experiment shows that some of the other decompo­

sitions, particularly of artifact and action, do not seem to help nearly as much

in guiding the comparisons. They do, however, help in aiding assessment of

SDMs. For example, in most cases, it is reasonable to compare two artifacts (e.g.,

Model_Process and Object) even two that have different subtypes (e.g., Program

and Diagram). This can help to show explicit differences arising from differences

in formality used in defining these two artifacts.

The classifications under MCTH (e.g., Fig. 6.1) also directly aid assess­

ment of the SDMs. For example, the classifications under problem and princi­

ple help to assess their user-orientation [Bra83]; JSD's and BOOD's emphases on

Modeling reality might be used as the basis for the conclusion that they are better

oriented to users.

146

Evaluation of Objectivity

In classifying components, we had no difficulty in deciding the degree of for­

mality with which an artifact is defined and the level of formality a representation

supports. Thus, we believe that we can classify artifacts and representations within

MCTH in a highly objective manner.

One difficulty we encountered in classifying concepts was deciding if a concept

should be a principle or a guideline. We decided that a guideline usually covers a

narrow range of issues and is often more concrete than a principle. However, this

is sometimes hard to decide objectively. For example, we decided fairly easily that

Separation of concern is a principle but Find a verb to identify an action is a

guideline. However, it took us more thought to decide that Describe module structure

(e.g., By facilities provided) is a guideline rather than a principle.

We found that a criterion often can be relatively easily distinguished from a

guideline because a guideline describes how to reach a goal whereas a criterion is

used to determine if the goal has been reached. For example, we decided fairly eas­

ily that the RDM module decomposition rules (e.g., simple enough to understand)

should be criteria rather than guidelines.

It is easy to distinguish an identify action from a select action since a select

action requires that candidates be available. However, it is fairly difficult to decide

whether an action is a specify action or a define action. We decided that they

147

differ mainly in that the latter more completely describes the property of a thing

in a declarative manner. Again, it is hard to decide objectively whether an action

should be a model action or a specify action because their semantics are very close.

We believe that these difficulties result from the complex nature of the design

activity and the current state of the art of SDM development as well. To cope with

them, we could define these BF items more precisely. However, we believe that

cooperation from SDM advocates would be even more effective. We believe it is

important for SDM advocates to define SD Ms more precisely and to indicate more

explicitly the nature of a method component and the roles it plays. We believe

that our work makes an important contribution, not simply in pointing out the

need for more precision in SDM description, but rather in pointing out specifically

where greater precision is most needed.

Evaluation of Completeness

The SDM models we have built (e.g., the JSD model defined in Sec. 5.5.1)

indicate that MCTH is a suitable vehicle for classifying all the method compo­

nents we have made explicit (the italic identifiers) in these models. For example,

criteria IE and IA modeled in Sec. 5.5.1 are classified within Fig. 6.1; all repre­

sentations, StructureJJiagramJV otation, System~pecJ)iagramJV otation, and

Structure..J'ext in the JSD model are classified within Fig. 6.3.

148

Similarly, we evaluated the completeness of classifications of the artifacts

and actions (Fig. 6.2 and 6.4) using our models (e.g., the JSD model specified in

HFSP (Sec. 5.5.1)). We checked to see if all the inputs and outputs of the design

actions and those actions themselves were classified or not, and found that all the

components explicitly indicated in the models were successfully classified.

6.8.3 Evaluation of the Function Framework (MSDL)

Evaluation of Sufficiency /Effectiveness

Our earlier experiment (see Chapter 4) seems to have indicated that a por­

tion of MSDL (i.e., Solution ModeQ is quite useful in guiding comparisons. Our

subsequent experiment indicates that, in fact the whole MSDL is useful for guiding

comparisons.

For example, the comparison of RDM and BOOD indicates that classification

under the Documentation Domain can be used to guide the comparison of the

method components that address design documentation issues. The comparison

of JSD and SD indicates that classification under the Problem Model Domain can

be used to guide comparisons of the method components that address issues about

modeling application problems.

149

In this experiment, we also found another advantage of using the MSDL­

namely that it can help a analyst to focus the comparisons. For example, in the

comparison between JSD and SD, we compared DataJi'low of SD with SystemJi'unction

of JSD under the Function Model of the Problem Model. This model helped us to

focus on comparing the most critical and telling aspect defined within the Function

Model-namely input/output.

We now indicate how the MSDL classifications (e.g., Fig. 6.5) might also help

in making assessments of SDMs.

Taking Kung's feature framework (Kun83] (which includes understandabil­

ity, expressiveness, processing independence, checkability concerns, and change­

ability) as a testbed, we conclude that our classifications can be used to aid as­

sessments of at least the understandability and expressiveness aspects of SDMs.

For understandability, the classifications help by identifying what artifacts (e.g.,

Entity ...Structure) and representations (e.g., Structure_DiagramJV otation) an

SDM (e.g., JSD) suggests for use in describing a problem. Based on previous as­

sessment of the understandability of these artifacts and representations, one can

then assess how effectively the SDM supports understandability. For expressive­

ness, the classification helps by facilitating the identification of the aspects (e.g.,

transformation and data) of a problem or system that an SDM can model, and

what modeling methods (e.g., data flow, or relational) it provides. This can then

directly aid the assessment of the expressiveness of the overall SDM itself.

150

The current MSDL may need to be augmented to indicate how method com­

ponents address other aspects, such as changeability, (e.g., how DataJ'low sup­

ports modeling data transformation).

Evaluation of Objectivity

Based on our experience in using MSDL, we find that MSDL is quite capable

of supporting objectivity in classifying method components.

At the top level of MSDL, we find that it is easy to decide objectively

whether a component addresses an issue about a targeted problem or the sys­

tem model. This can be decided, for example, by using explicit descriptions given

by SDMs (e.g., Entity...Structure in JSD) and by identifying the inputs and out­

puts of the system model (LogicaLOutputJ'ile in LCP). It is also fairly easy to

decide, in a similar way, if a component addresses an issue about a system model

or a design document. For example, BOOD fairly clearly indicates the difference;

it uses "identify object" to indicate the modeling activity and "produce a module

specification" to indicate the documentation activity.

At the second level, we find that it is also fairly easy to decide what models

or documents a method component supports because those are either described

in SDMs or are well understood already. For example, in Fig. 6.6, JSD describes

clearly that State_V ector and Data...Stream address the issue of communication

151

between two processes. Moreover, it is well understood that ProcessStructure in

DSSD models the procedural structure of a program.

Evaluation of Completeness

Based on the models (e.g., the JSD model) of the selected SDMs, we con­

clude that MSDL is quite complete since it is capable of classifying most method

components which are explicitly defined in the models. For example, those arti­

facts indicated in Sec. 5.5.1, like Entity.Action_List, ActionJJesc, Action_List,

Entity-1ist, Entity Structure, M odeLProcess, etc., are classified either in Fig 6.5

or 6.6.

We note that other function frameworks (e.g., page 41 and 51 [WFP83a])

cover issues concerned with managing the design process and validating designs

better than MSDL does. We think that this is because the SDMs we selected

place much less emphasis on these issues. Thus, our models and frameworks need

to be improved in order to address these issues. MSDL seems to lack sufficient

details to express more precisely what issues a component addresses. For example,

in Fig. 6.6, Operation and State are directly classified under Entity Model. The

detailed issues they address inside an Entity Model are not explicitly shown by

this classification. Timing is directly classified under Function Model. Thus,

improvement is indicated here as well.

152

Some important models (e.g., a behavior model [HLN+9o]) of a system are

still missing in the framework. This suggests that more SDMs need to be added

into SeleetedSDM s to enhance the BF.

6.8.4 Evaluation of M odeling_Formalism

In this experiment, we have identified some weaknesses of the MF. Here, we

list those weaknesses:

• Modeling guidelines: the MF does not support modeling of guidelines.

For example, DSSD has the guideline: "When the data is a sequence, use

simple sequence of instructions". Failing to model this hindered us from

more explicitly showing the differences/similarities between LCP and DSSD.

• Modeling criteria for decomposition: the MF does not support modeling

of the criteria for decomposing a system. For example, In RDM, a set of

criteria is given to aid making the decision for how to decompose a sysem.

Failing to model this characteristic would hinder us from comparing the

structure of M odeLGuide with the structures suggested by other SD Ms.

• Modeling the other relations between design artifacts: the MF does

not support modeling some other relations between design artifacts. Design

artifacts can be related in certain ways. For example, SD suggests that a

model be related with its sub-models by function-call relations. Failing to

153

explicitly indicate the semantics of the relations greatly hinders comparing

the underlying structures that organize systems.

6.8.5 Evaluation of CDM

In this experiment, we found that CDM is generally effective for comparisons

of the SDMs. However, we do find that CDM can probably be improved in the

following aspects:

• It is necessary to compare the major concepts earlier in the comparison

process. By doing this, one can better understand the other differences be­

tween the SDMs. We suggest doing this in step Select_ComparisonJ'opics.

We believe that understanding the differences in major concepts between

SDMs should be very important for selecting the method components to

compare. For example, in comparing JSD with SD, we at first compare the

Problems they are aimed and the Principles they use. By doing this, we have

straightforwardly gained a better understanding of their other differences.

6.9 Status

At present we have finished the first cycle of evaluation and adjustment of

the BF (see Fig. 5.4, However, including the experiment described in Chapter 4,

154

development has gone through two iterations (Sec. 3.2.2, and 5.4.2)). The BF is

close to a stable stage. Most of the method components specified in the mod­

els (e.g., Sec. 5.5.1) of the selected SDMs have been successfully classified within

the BF. However, because our evaluation of the BF relies to some extent on SDM

models that are still under development, we think that further modeling of SD Ms

may help to show where the BF needs to be enhanced. The effectiveness of the

BF also needs more evaluation, which should be based on experiments in using it

to aid comparisons and assessments of SDMs (this work will be presented in the

next chapters).

Based on our evaluation, we think that one possible enhancement to the BF

would be to further decompose MSDL. For example, the Entity Model could be

decomposed to consist of EntityJdentifier, Data, and Function. Doing this would

enable us to classify the functions of the components (e.g., Operation, State) more

precisely, which could then guide comparisons more effectively.

In this effort, we use the MF to model selected SDMs, We are now fin­

ishing the development of these models (i.e., the BuildYrocess_M odel step in

the second iteration of our evolution cycle). Although these models will need to

be more thoroughly evaluated based on their applications, we can already be­

gin to make some observations about MF improvement. One possible enhance­

ment to the MF is to adopt more powerful formalisms to capture other kinds of

155

relations among artifacts (e.g., inheritance relations among the Objects, call re­

lations between M odel_Process and Function_process, which cannot be clearly

indicated by the Warnier Diagrams). A formalism that we think is promising is

OPRR (Object-Property-Role-Relation [Wel89, Smo91]). OPRR has been shown

to be capable of clearly modeling BOOD artifacts. However, we need to determine

whether OPRR is capable of modeling other artifacts as well.

We will continue the evolutionary development of BF and MF. However, as

shown earlier (Sec. 5.2 and 5.6), this work is very difficult. The BF and MF must

satisfy the diverse demands of the community (e.g., academic researchers, SDM

advocates, tool builders, project managers and practitioners). Thus, it should be

developed based on community consensus rather than only on our view of SDMs.

Although we have been evolving BF and MF as objectively as we can, we expect

that community collaboration on this work should be much more effective (e.g.,

SDM advocates should contribute by validating the classifications and SDM mod­

els). Such community involvement would lead to a BF and MF that would be

more credible and thus more widely used. Further, as [Boa90] suggests, this would

help in more systematically codifying, unifying, distributing and extending SDM

knowledge, thereby effecting progress in both software engineering practice and

research.

In the next chapter, we present an experiment that analyzes the CDM-based

comparison.

Chapter 7

Assessment of the CDM-based

Comparisons

7.1 Goals of the Experiment

CDM relies on the following ideas:

1. SDM models should help in identifying method components to be classified.

2. The classifications should help in identifying the method components that

should/ could be compared.

3. The classifications of the method components should help in revealing overall

differences between SDMs.

4. The models of these components should help in making conjectures and draw­

ing conclusions about the similarities and differences between them.

156

157

Our previous experiments (Chapters 4 and 6) have shown that these ideas

are basically valid and CDM seems to be useful in comparing certain aspects of

SDMs. These experiments have shown that CDM has the following advantages:

1. CDM can help in more explicitly and rigorously showing the basis for draw­

ing conclusions about SDM's. Further, this helps others to independently

evaluate the resultant comparison.

2. Comparisons resulting from using CDM are more explicit, precise and objec­

tive.

3. CDM can be more systematically applied.

In earlier chapters we explored and validated these conjectures, rather than thor­

oughly assessing the effectiveness of CDM. Thus, in these earlier chapters, we did

not attempt to compare our comparison results against any other similar compar­

isons. As a result, we were not able to conclude specifically how well CDM helps in

comparing SDMs, and where CDM would more or less work effectively than some

other comparison approaches.

To tackle these problems, it is necessary to carry out an experiment to sys­

tematically assess CDM, exploring its advantages and limitations. It is the purpose

of this chapter to describe one such experiment. While we have not carried out an

extensive set of similar experiments, we believe that the results of this experiment

are typical of what should be expected. In Section 7.2, we describe the design

158

of this experiment-its methods, data and tools. Section 7.3 then presents the

analyses of our comparisons.

7.2 Design of the Experiment

7.2.1 Basic Method

In a scientific discipline (e.g., numerical analysis), if one claims that one

approach can produce better results under certain conditions, one must carry out

experiments to demonstrate_ this. One commonly used method for doing this is

to analyze and compare the results produced by using the new approach with

those obtained by using an older approach under the same given conditions. This

enables one to assess the improvement that the new approach achieves (if any). In

addition, one can explore the limitations of the new approach by comparing results

produced under some broader conditions.

Accordingly we experimented by comparing comparison results obtained us­

ing CDM with those obtained using other approaches. First we compare the SDM

comparison results obtained under CDM preferred conditions (where CDM is as­

sumed to work effectively). In doing this we hope to evaluate the maximal effective­

ness of CDM. Second, we compare the results produced under CDM non-preferred

conditions. In doing this we hope to explore CDM's limitations.

159

In Chapter 3.3.2, based on our experience in modeling SD Ms, we hypothe­

sized that CDM should be effective in comparing the following aspects of SDMs:

1) inter-component dependency, 2) need for human involvement, 3) development

procedure, and 4) scope of issues. Thus, we select those to be the CDM preferred

conditions.

7.2.2 Experiment Data

In order to carry out the experiment, we fixed: 1) a set of SDMs to be

compared, and 2) a set of SDM comparison results previously obtained by using a

previous approach.

For this experiment, we chose Jackson Systems Development (JSD) [Jac83]

and Booch's Object Oriented Design (BOOD) [Boo86] as the SDMs to be com­

pared. Our comparisons will be solely based on the two publications, [Jac83) and

(Boo86). We did not attempt to use any extended formulation of JSD and BOOD.

In this experiment we compared our comparison results with those obtained

by Alan Birchenough and John Cameron [BC91], because that earlier work com­

pares JSD with BOOD under both CDM preferred conditions and non-preferred

conditions. This should allow us to explore both advantages and limitations of

CDM. In addition, this comparison seems to us to be well organized and credible.

160

Thus, it seems fair to use this comparison as a representative of comparisons using

informal approaches.

Note that in pursuit of our experimental goals, we need to compare and

assess not only final comparison results, but also the processes and bases lead­

ing to these results. In Chapter 4, we have already presented the processes and

bases for comparing BOOD with JSD, thus in this Chapter we compare only these

comparison results with Birchenough and Cameron's results.

7.3 Comparing the Comparisons

In this section, we compare our comparison results with the comparison re­

sults shown in [BC91]. First, the comparisons are made under the CDM preferred

conditions. We analyze why the paper [BC91] did not reveal the differences we have

found by using CDM (if any). By this we hope to show the advantages of CDM.

Second, we describe the comparison results of [BC91] under the non-preferred con­

ditions. By this we hope to identify limitations of CDM.

161

7.3.1 Comparing the Comparisons Under Preferred Conditions

Differences in Inter-artifact Dependency

[BC91] does not devote much effort to analyzing the dependencies among

design artifacts. Based on the explanation given by Booch, [BC91] notes that

JSD covers a broader range of issues than BOOD does by providing a strategy for

system analysis.

In using CDM, we arrived at the same result (Sec. 3.4.1). However, our

result is obtained by doing data flow analysis on the JSD process model. We

ehecked to see whether any artifact depends on artifacts that are not well-defined.

By doing this we examined the SDM coverage of the development life-cycle. As

our comparison of this aspect is based on explicit process models and systematic

analysis of those models, our comparison seems to us to be more objective and

therefore more convincing.

Differences in Need for Human Involvement

In Section 4.2.4, we have shown how we, in using CDM, analyze different

needs for human involvement. Here we analyze how [BC91) makes similar compar­

isons. On Page 294 of [BC91), the comparison of action of JSD with operation of

BOOD, states:

JSD provides firm guidance on how to find candidate actions, and how

to review and, if necessary, reject them. The analyst is told to exclude

from the list any events which are system output events {e.g). As

a check on completeness, the analyst is also directed to consider the

inputs available at the system boundary, inasmuch as these are known

at that stage; known data storage requirements if any; and, as in OOD,

to perform a rough grammatical analysis in order to find the nouns and

verbs that should be recognized as entities (objects} and actions {oper­

ations).

162

From this, we can see that this conclusion rests upon the analysis and com­

parison of the guidelines and procedures provided in BOOD and JSD. This is

certainly a plausible way of making comparisons of this aspect. However, in using

CDM, we specified these guidelines and actions (procedures) more rigorously and

explicitly. Thus, CDM seems to us to provide a more convincing basis for drawing

the same conclusion.

It seems to us, moreover, that process modeling allows us to analyze and

compare SDMs more thoroughly. For example, BOOD provides additional guid­

ance; it illustrates the subtypes of an artifact to be identified. Thus, a designer

can identify the artifact through identifying its subtypes, which are often more

concrete and thus more easily identified. I dentify_Qbject specified in the BOOD

model (b) (see Sec. 6.1. l) shows this kind of guidance. Such guidance is more

163

\

implicit than the guidance towards providing guideline and action descriptions.

Thus, our analysis technique seems to be effective in identifying guidance that is

more or less implicit.

Using the BF and MF, we can explicitly indicate that both JSD and BOOD

use the guideline "finding noun" to identify the program components (i.e., entity

and object respectively).

Differences in Development Procedures

In comparing development procedure, [BC91] identified the following differ-

ences:

Difference 1: Page 295 of [BC91] states that:

JSD encourages the analysis of actions before entities, whereas the OOD

steps are to identify objects first and operation second.

Difference 2: Page 295 of [BC91] states that, when comparing action of

JSD with operation of BOOD:

... , during modeling, only operations [actions of JSD] that change the

state of an object [entity] ("constructor" in OOD) are included. Selector 1

are ignored until the network stage, and then they are not documented

1 An operation of BOOD that evaluates the current object state.

explicitly as operations on an object, but as inspections of the objects

state vector(private data frame).

164

In using CDM, we are able to show the first difference more explicitly. We can

indicate precisely, by referring to the relevant models (the BOOD model (a)(1)(2)

and the JSD model (g)(1)(2) in Chapter 4), the difference in the order of performing

the design actions that produce those artifacts.

We expect that CDM will not help much in revealing the second difference.

The reason is that JSD does not describe this explicitly in the criteria defini­

tion (e.g., IA for identifying a JSD action). Thus, the model of JSD is likely to fail

to capture this information. Consequently, our comparison of JSD with BOOD

probably will not reveal this difference because it requires analysis of the informal

descriptions of the artifacts. If JSD were to specify this characteristic clearly by

defining it into the criteria (i.e., IA), then in comparing these criteria and design

actions, CDM would be much more effective in exploring this difference.

Differences in scope issues

Page 296 of [BC91] states:

JSD is explicitly object-oriented only during the modeling stage, whereas

OOD [BOOD} attempts to identify objects that can both describe the

real-world and satisfy the system functional requirements.

165

Using a suitable framework (e.g., the BF we have developed) in CDM helps

show this difference clearly. In using CDM, we first model BOOD and JSD, where

the criteria for determining object of BOOD and entity of JSD are specified. These

criteria show that those two artifacts are identified using object-oriented concepts.

Then, the classification shows that object addresses issues for modeling a system

whereas entity addresses issues for modeling the targeted problem. From this we

can conclude that JSD is explicitly object-oriented only during modeling the tar­

geted problem whereas BOOD is object-oriented in modeling the system. Further

analysis shows that Booch implicitly suggests that object should also be used to

model the targeted problem. Thus, we reach the same conclusion by using CDM.

Again we believe our CDM-based approach rests on a more solid and convincing

basis for this conclusion.

7.3.2 Comparing the Comparisons under Non-preferred

Conditions

Difference 1: Page 293 of [BC91) states:

Jackson System Development and Object-Oriented Design have one

major-arguably central-principle in common; namely that the key to

software quality lies in the structuring of the solution to a problem in .

such a way as to reflect the structure of the problem itself.

166

Using CDM and our BF, we should be able to draw a similar conclusion. In

Chapter 6, we classified the method components of JSD and BOOD. The classi­

fication of concepts (see Fig. 6.1) presented in Chapter 6 helps us to understand

that both JSD and BOOD use "Model Reality" as a principle to "Design right

software". Based on the BF, we also classified other major concepts of JSD and

BOOD in a systematic manner. Thus, it seems that CDM, at least to some extent,

supports the conclusion that JSD and BOOD both rest upon the same fundamental

ideas.

Difference 2: Page 295 of [BC91], when comparing object of BOOD with

entity of JSD, states:

Only objects that suffer time-ordered actions, or about which it is nec­

essary to maintain data, qualify as JSD entities.

This difference seems to reveal some limitations of CDM. In using CDM, we

specify the criteria for determining an artifact. Then by comparing the criteria for

determining different artifacts to be compared, we can identify differences between

the semantics of these artifacts. However, it seems to us that criteria that are

explicitly described in SDMs are often incomplete. Thus, those criteria often can

only be used to eliminate candidate artifacts, but cannot be used to decide an

artifact. The above difference shows this clearly. JSD does explicitly explain that

maintaining data is a sufficient condition for determining an entity, but implicitly

167

suggests this 2 • Thus, the effectiveness of the CDM strategy that suggests modeling

and comparing criteria is seriously hampered by this lack of explicitness in the

SDM. Without checking wider context and subtle implications of an SDM in the

course of using CDM, one might well overlook some important differences between

SD Ms.

7.3.3 Comparing Integration Strategies

Based on the JSD/BOOD comparisons obtained in using CDM, we identified

a way to integrate JSD with BOOD. We now show how our integration strategy

compares with that suggested in [BC91). First, we list the integration strategies

suggested by [BC91):

Page 298 of [BC91) states that:

time-ordered analysis can be applied to document object class.

Page 298 of [BC91) states that:

It follows that every operation must be either predefined in the language

or defined in a package specification. OOD is a highly suitable technique

for designing and implementing such package.

2as noted earlier, it is not included in the criteria for determining entities (see page 40 of

[Jac83]).

Page 298 of [BC91] states that:

OOD is better used to support bottom-up component design, while JSD

is stronger when dealing with the user-oriented specification issue.

168

Comparing our integration strategy (Sec. 4.2.6) with these, we find that

our integration is far more complete, and includes all the strategies suggested

by [BC91]. Furthermore, Our strategies are argued based on solid understand­

ing of the weaknesses and strengths of JSD and BOOD, presented systematically

within a development life cycle framework. It is also worth noting that we derived

our integration strategy naturally from our comparison; the function classification

suggests the ways in which the SDMs might be integrated; further comparisons

help us to select from those ways. This seems to suggest that CDM (including a

suitable BF) is a superior tool for studying the integration of SDMs.

7.4 Summary

In this section, we summarize our assessments of CDM as an SDM com­

parison approach, comparing it to the advantages we expected as summarized in

Section 7.1. Our experiment indicated that CDM has the following advantages:

1. CDM enables to use the following strategies or techniques as the basis for

drawing conclusions about differences between SDMs.

169

• Data flow analysis: This technique can be used to analyze data flow

through design actions, and can help in indicating the dependence

among design artifacts. This can pinpoint the scope of issues that an

SDM addresses and thus help in analyzing the software development

life-cycle coverage of the SDM.

• Functional analysis: This technique can be used to analyze the inputs

and outputs of a design action, and can help in gaining an understanding

of the issues that are addressed by this design action.

• Sub-action analysis: This technique can be used to analyze the lower­

level actions to be performed in a design action, and can help in indi­

cating the difference in scope of issues.

• Procedural analysis: This technique can be used to analyze how detailed

guidance (e.g., for how to identify an artifact) is described in an SDM.

This can help in indicating how much a human must be involved in a

suggested design action.

• Artifact elaboration analysis: This technique can be used to analyze

how well an SDM elaborates its artifacts by indicating their subtypes.

This can help in indicating how well the SDM provides guidance for

designers.

170

• Criteria analysis: This technique can be used to analyze the criteria

described for determining an artifact. This can help in indicating dif­

ferences between two artifacts.

• Control flow analysis: This technique can be used to analyze the order

of performance of design actions. This can help in identifying differences

in the procedures used in making artifacts.

2. In using CDM, we expect to obtain more precise, explicit and objective

comparison results. In this experiment, we found that those are achieved in

CDM to some extent, in the following ways:

• Explicit comparisons are achieved in CDM by indicating explicitly which

portion of a model is different from which portion of another model, and

by describing explicitly how they are different. For example, control

flows in the models can be used to explicitly indicate differences in the

order of performing design actions. Criteria definitions can be used to

explicitly indicate which criterion differs from which other criterion, and

in what ways.

• Precise comparisons are achieved by developing and comparing SDM

models that capture the details of the SDMs. Process modeling as

a technique allows us to more systematically model SDMs and thus

helps in modeling the details of SDMs precisely. For example, modeling

171

the subtype hierarchy of design artifacts shows precisely how an SDM

provides guidelines for determining artifacts.

• Objectivity is achieved by using well-recognized analysis techniques.

These analyses lay down foundations for drawing conclusions and thus

enable independent evaluations of the conclusions, which improve the

objectivity of the comparisons. In addition, CDM does not rely upon

experiences and examples of use as the primary basis for making com­

parisons. They are, instead, used as secondary aids in obtaining more

objective comparisons.

3. In using CDM we expect that comparisons can be more systematically made.

In this experiment, we found that [BC91] seems to share the basic ideas with

CDM to some extent. The paper [BC91] proceeds in this way: 1) compare the

SDM's major concepts (Sec.6.2.1.1 of [BC91]), 2) describe the SDM's major

steps (Sec. 6.2.1.2 of [BC91]), 3) describe what is to be compared (Sec. 6.2.1.3

of [BC91]), and 4) make comparisons (after Sec. 6.2.2.1). Thus, it seems to us

that CDM is a more rigorous, explicit and precise version of the way people

have previously gone about comparing SDMs. Moreover, CDM suggests

formally modeling SDMs and classifying their parts, which can ensure that

successive comparisons are done more systematically.

This experiment also indicated some limitations of CDM.

172

1. With the current state of the art of SDM development, it is almost impossible

to capture all the information provided by an SDM in a formal, rigorous

model. Many method components are not well and completely defined. (As

Cameron [CCW91] suggests, it is unrealistic to suppose that the rules of a

method can all be perfectly well defined). Those components that are not

well-defined are difficult to model formally. Thus, some comparisons made

during use of CDM must still rest upon some informal analysis or judgement

of the informal descriptions of SDMs. Falling back upon such informality

helps to prevent misleading results or overlooked differences/similarities.

2. CDM and the modeling approach sometimes fail to explore the implicit simi­

larities between the semantics of artifacts. For example, it fails to show that

the Model Processes of JSD are usually constructor operations of BOOD.

Understanding this kind of similarities requires additional knowledge about

the software design.

3. At the current stage, CDM is a systematic approach only at a certain high

level. For analyzing detailed differences, it rests upon the judgement of those

using CDM, obliging them to decide what analysis techniques to use in order

to explore differences between SDMs.

To overcome the second limitation, in the next chapter, we define a process

program for CDM to improve the repeatability of CDM.

Chapter 8

An Encoding of the CDM

Process

Our research is aimed at providing a systematic approach to comparing

SDMs. To improve the repeatability of the approach, we need to define CDM

precisely and rigorously. This will entail other analysts to follow this process

closely, and to obtain the same comparison results in comparing the same SDMs.

In this research we view an SDM as a piece of software. We also view CDM

as software process used to compare and analyze SDMs. Process programming has

been demonstrated to be capable of precisely and rigorously defining a software

process. Therefore, we can use the process programming technique to define CDM

precisely. Specifically, the development of detailed code to express a software

process has been shown to be very effective in leading to very sharp understanding

of processes. Thus, we believe that specifying CDM in a suitable coding language

173

174

can improve its understandability and hence its repeatability. We select the Ada­

like notations to specify CDM, because Ada supports good readability and has

precise syntax and semantics.

Although Ada supports expressing concurrent processes by using task and

entry calls, we believe that the notation of CoBegin and CoEnd1 of Concurrent

Pascal [Han75] is more understandable. It expresses that the statements inside

a CoBegin and CoEnd are to be concurrently executable. Thus, we used this

notation in our encoding.

Because our encoding of the CDM process is not aimed at automating CDM,

but rather presenting CDM precisely, we did not attempt to compile and execute

our CDM code.

In this chapter we present process code for CDM. The reader can also use

this process code as a detailed and precise summary of CDM. First, we describe

the static structure of the CDM process code. Second, we define the program

components and explain their functions.

1 It has the semantics same with Par begin and Parend that were proposed by Dijkstra (Dij65]

8.1

SDM Typea/Operationa

Methodology

SDM model

Modeling formalism

Ba.•e framework

Cla.saifica.tion type

Uae

COM Procedure

CDM Types/Operations

Aspects

Difference type

Summa.ry type

Comment type

Pairs

Code pain

Figure 8.1: Static Structure of the CDM Process Program

Program Structure

175

Our CDM process code consists of two Ada packages (CDM and SDM_Fkg) and

one Ada procedure (Compare...SDM). As Fig. 8.1 illustrates, CDM and SDM_Fkg provide

the data types and operations that are used in the SDM comparison procedure

Compare...SDM.

176

8.2 Compare SDM Procedure

In this section, we define the CDM process code.

This procedure consists of eight major steps which are labeled in the code.

We now describe them briefly. A later section will explain the rationales behind

these steps, guidelines applied by these steps, and criteria used by these steps.

1. Decide the aspects with respect to which the SDMs will be compared. These

aspects guide subsequent CDM activities.

2. Select the formalisms used for modeling SDMs. The SDM models speci­

fied using the formalisms should help analyze the SDMs with respect to the

aspects defined.

3. Develop and validate the SDM models.

4. Classify SDM components and validate the classifications.

5. Identify the overview differences between the SDMs based upon the classifi-

cations.

6. Identify the comparable SDM components. Decide the order in which they

will be compared.

7. Compare comparable SDM components with resp~ct to the aspects defined.

If necessary, the components might be coded to aid the further analysis of

these components.

8. Summarize the comparison results.

9. Make comments on the comparison results.

--1 this package provides data types for

--1 Methodology, Modeling_Formalism,

--1 Base_Framework, SDM_Model, Classification_Type;

WITH SDM_Pkg; USE SDM_Pkg;

WITH CDM; USE CDM;

Procedure Compare_SDM(SDM_1

SDM_2

MF

BF

II Methodology;

II Methodology;

IN Modeling_Formalism

:= Song_MF;

IN Base_Framework

:= Song_BF;

Summary OUT Summary_Type;

Comments OUT Comment_Type) IS

Variables used:

Aspects : Aspect_List;

SDM_1_Model,

177

SDM_2_Model SDM_Model;

Classification,

Classification_1,

Classification_2 : Classification_Type;

Overview_Differences : Difference_List;

Comparable_Pairs,

Ordered_Pairs : ARRAY (integer <>) of Pairs;

SDM_i_Model,

SDM_2_Model : SDM_Model;

Begin

--1 decide what aspects to compare SDMs against.

1. Aspects:= Define_Aspect_To_Compare;

--1 select modeling formalisms

2. MF := Select_Modeling_Formalism(MF, Aspects);

--1 model SDMs;

3. LOOP

CoBegin

IF Valid_Result_1 \= OK THEN

SDM_i_Model := Model_SDM(SDM_1, MF);

END IF;

IF Valid_Result_2 \= OK THEN

178

SDH_2_Hodel := Hodel_SDH(SDH_2, MF);

EID IF;

CoEnd;

CoBegin

Valid_Result_1 := Validate(SDM_1, SDM_1_Model);

Valid_Result_2 .- Validate(SDH_2, SDM_2_Model);

CoEnd;

IF Valid_Result_1 = Valid_Result_2 = OK THEI

Exit;

EID IF;

EID LOOP;

--1 classify the SDM models by using the BF;

4. Valid_Result_1 .- IOT_OK;

Valid_Result_2 .- IOT_OK;

LOOP

IF Valid_Result_1 \= OK THEN

Classification_1 :=

Classify(SDM_1_Model, SDM_1, BF);

EID IF;

IF Valid_Result_2 \= OK THEN

Classification_2 := Classify

EID IF;

CoBegin

(SDM_2_Model, SDM_2, BF);

179

Valid_Result_l :=

Validate(SDM_l, SDM_l_Model, Classification_l);

Valid_Result_2 :=

Validate(SDM_2, SDM_2_Model, Classification_2);

CoEnd;

IF Valid_Result_l = Valid_Result_2 = OK THEI

Exit;

EID IF;

EID LOOP;

Classification := Merge_Classification

(Classification_l, Classification_2);

6. Overview_Differences :=

Analyze_Class(Classification);

--1 identify the comparable components;

6. Comparable_Pairs :=

Identify_Comparables(Classification);

--1 order the comparable components;

Ordered_Pairs := Order_Pairs

(Comparable_Pairs, SDM_l, SDM_2);

--1 compare these comparable component pairs;

7. Detailed_Differences :=NULL;

180

FOR I II Ordered_Pairs'FIRST .. Ordered_Pairs'Last LOOP

Temp_Detailed_Differences :=

Compare_Pairs (Ordered_Pairs[I], Aspects, Result);

·--1 using coding to analyze the differences;

IF Result = IEED_AIALYSIS THEI

Codes:= Coding_SDM(Ordered_Pairs[I], SDM_1_Model,

SDM_2_Model, SDM_1, SDM_2, Aspects);

Temp_Detailed_Differences :=

Analyze_Codes(Codes, Aspects);

END IF;

Detailed_Differences .- Append{Temp_Detailed_Differences,

Detailed_Differences);

END LOOP;

--1 making summary based on the comparisons;

8. Summary := Make_Summary(Detailed_Differences);

--1 make comments based on the summary.

9. Comments := Make_Comments(Sununary, SDM_1, SDM_2);

End Compare_SDM;

181

182

8.3 Definition of the CDM Package

In this section, we define the interfaces of the major procedures and data

types used in the procedure Compare..SDM.

PACKAGE CDM IS

TYPE Summary_Type

TYPE Difference_Type

TYPE Comment_Type

--1

ARRAY(integer <>)(integer <>) of String;

ARRAY(integer <>) of String;

ARRAY(integer <>) of String;

--1 Aspects with respect to which SDMs will be compared;

--1

TYPE Aspect IS

RECORD

?lame: String;

Desc: String;

EllD;

TYPE Aspect_List is ARRAY of Aspect;

--1 Pairs of method components;

TYPE Pairs IS

RECORD

Component_1: String;

Component_2: String;

END;

--1 Codes of a pair of method components;

TYPE Code_Type IS

RECORD

Code_1: String;

Code_2: String;

END;

TYPE Result_Type IS (NEED_ANALYSIS, OK);

BEGII

--1 decide what aspects to compare SDMs against.

FUNCTIOI Define_Aspect_To_Compare RETURN Aspect_List;

--1 select modeling formalisms from existing formalisms.

FUNCTION Select_Modeling_Formalism

--1 modeling an SDM

(MF : IN Modeling_Formalism;

Aspects : IN Aspect_List)

RETURN Modeling_Formalism;

FUNCTION Model_SDM(SDM_1 : IN Methodology;

MF : IN Modeling_Formalism)

RETURN SDM_Model;

--1 code a pair of method components;

183

FUICTIOI Coding_SDM(Coded_Pairs II Pairs;

SDM_Model_1 II SDM_Model;

SDM_Model_2 II SDM_Model;

SDM_1 II Methodology;

SDM_2 II Methodology;

Aspects II Aspect_List)

RETURI Code_Type;

--1 classify the SDM models by using the BF;

FUICTIOI Classify(SDM_1_Model II SDM_Model;

SDM_1 II Methodology;

BF II Base_Framework)

RETURI Classification_Type;

--1 merge classfiications;

FUNCTIOI Merge_Classification

(Class_1 II Classification_Type;

Class_2 IN Classification_Type)

RETURN Classification_Type;

--1 analyze the classification to get some observation.

FUNCTIOI Analyze_Class(Class : IN Classification_Type)

RETURN Differences_Type;

--1 identify the comparable components;

184

FUICTIOI Identify_Comparables(Class: II Classification_Type)

RETURI Pairs;

--1 order the comparable components according the dependency

--1 relations among them.

FUICTIOI Order_Pairs(Comparable_Pairs II Pairs;

SDM_1 II Methodology;

SDM_2 II Methodology)

RETURI Pairs;

--1 compare these comparable components;

FUNCTIOI Compare_Pairs(Compared_Pairs II Pairs;

Aspects II Aspect_List;

Result OUT Result_Type)

RETURN Difference_Type;

--1 analyze the codes of method components to understand

--1 the differences;

FUNCTION Analyze_Codes(Codes

Aspects

II Code_Type;

IN Aspect_List)

RETURN Difference_Type;

--1 make summary of the differences among the SDM components;

FUNCTION Make_Summary(Diff : IN Difference_Type)

RETURN Summary_Type;

185

--1 make comments based on the summary.

FUICTIOI Make_Comments(Summary II Summary_Type;

SDM_1 II Methodology;

SDM_2 II Methodology);

RETURN Comment_Type;

End CDM;

186

187

8.4 Implementation of the CDM Package

8.4.1 Define Aspects to Compare

Principles: Before comparing the SD Ms, it is necessary to decide the aspects

with respect to which comparisons will be made. These aspects then will

guide the comparisons, helping selection of the modeling formalism, the clas-

sification framework, and other artifacts involved in the comparison. These

aspects may also guide analysts in evaluating, selecting and integrating the

SD Ms.

Criteria for deciding aspects: The aspects should be decided according to

the needs of the analysts. However, we suggest that the aspects should be at

least partially described in terms of the method component types and inter-

component relations. Analysts must name each aspect to facilitate being able

to refer it. The name should clearly express the semantics of the aspect.

Guidelines for looking for aspects: An analyst is free to choose the

~

aspects to compare. Examples of the aspects include human involvement

in the development process, inter-artifact dependency, procedure differences,

methodology applicability, expressiveness of the representation, etc.

Action:

FUNCTION Define_Aspect_To_Compare RETURN Aspect_List IS

Aspects : Aspect_List;

BEGII

Elaborate_Aspects;

LOOP

Aspects[I].lame := laming_Aspect;

Aspects[I].Desc := Define_Aspect;

IF IO_ASPECT THEI Exit;

EID LOOP;

EID Define_Aspect_To_Compare;

8.4.2 Select Modeling Formalism

188

Principles: Using a formalism to model SDMs can help in highlighting

the method components and inter-components relations in an SDM. The

formalism helps in precisely expressing the SDM and thus understanding the

SDM. However, a modeling formalism must be carefully chosen to prevent it

from concealing important features of the SDM modeled.

Criteria for choosing the formalism: The modeling formalism selected

should help in comparing SDMs with respect to the aspects to be studied.

Generally, a modeling formalism selected must support abstraction of SDM

features. In addition, its notations must be precisely and rigorously defined.

As a human will analyze the SDM model specified in the formalism, it is

desirable that the formalism provides high degree of understandability.

189

Guidelines for choosing the formalism: For analyzing the functions (e.g.,

what modeling capabilities it supports) of an SDM, a functional modeling

formalism might be selected. For analyzing the differences in the procedures

used to carry out design steps, a functional and/or procedural modeling for­

malism might be selected. For analyzing the human involvement required

in using an SDM, a procedural modeling formalism might be selected. For

analyzing the semantics of the artifacts suggested by an SDM, the rule-based

modeling formalism might be selected.

Action:

FUNCTION Select_Modeling_Formalism

(MF: II Modeling_Formalism;

Aspects: IN Aspect_list) RE'IURI

Modeling_Formalism IS

Final_Formalism, Formalism Modeling_Formalism;

Results : String;

BEGIN

FOR I IN Aspect_List'range LOOP

Results := Analyze_Aspects(Aspects[I]);

Formalism := Decide_Formalism(Results, MF);

Final~Formalism :=

Incorporate(Formalism, Final_Formalism);

END LOOP;

RETURN Final_Formalism;

END Select_Modeling_Formalism;

190

8.4.3 Model Design Methodologies

Principles: The SDM model at higher abstraction levels should be compact

and clear, yet complete enough for further refinement. Since in this step it

has not been decided which method components to compare, it is desirable

to avoid specifying details that might be irrelevant to future comparisons.

Criteria for deciding what method component to model: The model

of an SDM should be developed according to the aspects with respect to which

the comparisons will be made. The model must aid directly the comparisons

with respect to these aspects. For example, if the structures of artifacts will

not be compared, these structures may not need to be modeled.

Guidelines for identifying and modeling method components: The

framework (i.e., MCTH) we suggested to classify method components can

be used to guide the identification and modeling of the method components.

The principles behind an SDM are often described in an early part of the

SDM. These principles are normally described as design theories, fundamen­

tal design principles, concepts, etc. The artifacts are often described as design

models, components of the models, documents and specifications. The crite­

ria are often described as the definitions of design artifacts. The guidelines

are often described in an SDM as the techniques, heuristics, and strategies

for choosing and specifying artifacts. The actions are often described in an

SDM as design steps, procedures, or processes to be followed for producing

191

or evaluating artifacts. The representations are often described in an SDM

as the modeling formalisms, notations, templates, or design languages.

Actions for developing SDM models: Analysts can choose their own way

to model SDMs as long as the models satisfy the requirements we described.

CDM itself does not suggest the process used in developing SDM models.

8.4.4 Classify Method Components

Principle: The classification of method components can help in identifying

comparable method components and reveal differences between the method

components.

Criteria for placing two components in a same class: For a functional

classification, the two components should have the same external functions.

For a type classification, the two components should have same structures or

internal characteristics.

Action for developing the classifications: With a given classification

framework, the analysts can use various processes to classify method compo­

nents. We suggest using the following process:

FUNCTION Classify(SDM_i_Model IN SDM_Model;

SDM_1 IN Methodology;

BF Base_Framework)

RETURN Classification_Type IS

Classification : Classification_Type;

BEGII

Classification := Classify_Structures

(SDM_1_Model, SDM_1,

BF.type_framevork);

Classification := Classify_Functions

(SDM_1_Model, SDM_1,

BF.function_framevork);

RETURI Classification;

END Classify;

8.4.5 Analyze Classifications

192

Principle: Analyzing the classifications of method components helps deter­

mine the overall differences between SD Ms. It also helps reveal the differences

in the functions provided by SDMs.

Criteria for identifying differences: Differences are found when finding

that a method component of one SDM exists in a class where no method

component from another SDM exists. This reveals that one SDM addresses

an issue while another does not.

Actions for identifying differences: The analyst can use the above cri­

teria to identify differences. We advocate no explicit process.

193

8.4.6 Identify Comparable Method Components

Principle: It may not be meaningful to compare two arbitrary method

components. Only comparison of the method components that address the

same or similar issues, and that have similar roles in SDMs, are meaningful.

For example, an artifact structure can be compared with another artifact

structure, but not with a representation. Thus, before comparing SDMs, the

analyst must decide which components can be compared.

Criteria for deciding a pair of comparable components: The method

components which are categorized in the same class could be comparable

because they address similar issues and have similar roles in an SDM.

8.4. 7 Order Comparable Method Components

Principles: Method components have dependencies. Comparisons of some

method components may help the understanding of differences between other

method components. Therefore, comparable method components need to be

ordered according to their dependencies. Then analysts can compare method

components in this order.

Guidelines for ordering method components: The most common de­

pendency among method components is the composition relation. A method

component might be a part of another method component. For example,

194

when comparing artifact "object" of object oriented designs, an analyst would

like to first compare the definitions of "object" before comparing the defini­

tions of "operations", which are contained in objects.

8.4.8 Compare Method Components

Principles: The comparison of method components may require examina­

tion of the code for the components in order to analyze their detailed differ­

ences. The decision about whether the method components need to be coded

cannot be made until the analyst starts to compare the components.

8.4.9 Make Summary

Principle: A summary should provide a complete view of the differences

between the SDMs compared. The summary should be organized according

to the aspects with respect to which the SDMs are compared.

8.4.10 Make Comments

Principles: Comments provide further observations on the differences be­

tween the SDMs compared. The observations may evaluate the SDMs based

on their differences.

Chapter 9

Conclusion and Future Work

In the past two decades, quite a large number of SDMs have been developed

to improve software productivity and software quality. These SDMs have been

compared and evaluated in efforts to understand them, integrate them, and im­

prove them. However, we have found that most of the previous comparisons were

not scientific. We suggested the use of the classical scientific method to compare

SDMs. Accordingly, we described a software-process-modeling based comparison

approach, CDM, to improve the comparisons among SDMs.

In this thesis, we have done the following:

1. Described motivations for comparing SDMs,

2. Surveyed the previous comparisons among SDMs and analyzed their limita-

tions,

3. Described the motivations for systematic and objective comparison among

SD Ms,

195

196

4. Laid down a foundation for using process modeling techniques to aid SDM

comparisons,

5. Described CDM, a process-modeling based SDM comparison approach, in­

cluding its two essential components-a classification framework and an SDM

modeling formalism.

6. Carried out three experiments to validate CDM, the classification framework,

and the modeling formalism.

We found that comparing SDMs through process modeling has a number of

benefits:

• The comparisons are more objective, explicit and precise.

• The comparisons can be independently evaluated and can thus be made more

convmcmg.

• The comparisons are directly helpful to the study of the integration of SD Ms.

Strategies for integrating SDMs might be directly derived from the compar-

lSOnS.

• Software modeling/analysis techniques can be adapted to analyze SDMs.

Moreover, software modeling/ analysis tools might be used.

We found that comparing SDMs through process modeling has a number of

limitations:

197

• The comparisons sometimes need to rely on the informal analysis on the

informal descriptions of SDMs.

• The comparisons may fail to reveal the differences or the similarities in the

implicit semantics of design artifacts.

• The CDM process is systematic only at a certain high level.

• The design problems and principles are hard to be formalized.

This research is still at an early stage. The following work is indicated as a

continuation of this research:

• CD M needs to be used to compare more SD Ms (e.g., real-time design methodologies)

to further evaluate and enhance CDM.

• We plan to more thoroughly explore the aspects with respect to which CDM

could be ineffective in comparing SDMs. For example, we may start by

analyzing how CDM can help determine whether an SDM can support the

design of a large scale software system.

• A database might be developed to store SD Ms. a powerful database can facil­

itate SDM retrieval, and thus aid the comparison, selection, and integration

of SDMs.

• The BF and MF described in Chapter 5 are still not very complete. More

SDMs need be examined against the BF to improve the completeness of the

198

. BF. Other useful modeling formalisms need be identified and incorporated

into the MF to improve its completeness.

• Design/modeling tools might be used to aid the CDM-based comparisons.

• The software design problem space needs to be clearly defined. Thus, CDM

can be used as the frontend of a technique for evaluating SDMs and identi­

fying the application domains of the SDMs.

• The design issues addressed by a software design process might be weighted,

enabling the quantitative evaluation of various SDMs. The function frame­

work can be used to identify those issues and their relations. The type

framework of the BF might be used to measure the comprehensiveness of an

SDM.

• The objective and detailed comparison of SDMs might help in developing

generic SDM models (e.g., one model for all object-oriented SDMs), which

can facilitate and accelerate the study of SDMs, the integration of SDMs,

and the customization of SDMs.

Bibliography

[ABC+91] P. Arnold, S. Bodoff, D. Coleman, H. Gilchrist, and F. Hayes. An

evaluation of five object-oriented development methods. Technical

report, HP Laboratories Technical Report. HPL-91-52, June 1991.

[BC91]

[Ber78]

[Ber81]

A. Birchenough and J. Cameron. JSD and object-oriented design. In

J. Cameron, editor, JSP and JSD: The Jackson Approach to Software

Development, pages 293-303. IEEE Computer Society, 1991.

G.D. Bergland. Structured design methodologies. In 15th Annual

Design Automation Conference Proceedings, June 1978.

G.D. Bergland. A guided tour of program design methodologies.

Computer, 14(10):13-37, Oct. 1981.

[BFL +83] F. Bodart, A Flory, M. Leonard, A. Rochefeld, C. Rolland, and

H. Tardieu. Evaluation of CRIS 1 LS. development methods using

three cycles framework. In T. W. Olle, H. G. Sol, and C. J. Tully, edi­

tors, Information Systems Design Methodologies: A Feature Analysis,

pages 191-206. Elsevier Science Publishers, B. V. (North-Holland).

IFIP., 1983.

199

[Boa90)

[Boo86)

[Boo91)

[Bra83)

[BRS83)

200

National Research Council's Computer Science/Technology Board.

Scaling up: A research agenda for software engineering. Comm. of

ACM, 33(3):281-293, March 1990.

G. Booch. Object-oriented development. IEEE Transactions On

Software Engineering, 12(2):211-221, February 1986.

G. Booch. Object-Oriented Design with Applications. The

Benjamin/Commings Publishing Company. Inc., 1991.

I. Brandt. A comparative study of information systems design

methodologies. In T. W. Olle, H. G. Sol, and C. J. Tully, edi­

tors, Information Systems Design Methodologies: A Feature Analysis,

pages 9-36. Elsevier Science Publishers, B. V. (North-Holland). IFIP.,

1983.

M. L. Brodie, D. Ridjanovic, and E.O. Silva. On a framework for

information systems design methodologies. In T. W. Olle, H. G. Sol,

and C. J. Tully, editors, Information Systems Design Methodologies:

A Feature Analysis, pages 231-242. Elsevier Science Publishers, B. V.

(North-Holland). IFIP., 1983.

[CCW91) J. R. Cameron, A. Campbell, and P. T. Ward. Comparing software

development methods: An example. draft paper, 1991.

[Dij65)

201

E. W. Dijkstra. Cooperating sequential processes. Technical Report

EWD-123, Technological University, Eindhoven, The Netherlands,

1965. [reprinted in 1968).

[EHZAG89) M. Elizabeth, C. Hull, Adib Zarea-Aliabadi, and D. A. Guthrie.

[Fre83)

[Gri78]

[Han75)

[Han86)

Object-oriented design, Jackson system development (JSD) specifi­

cation and concurrency. Software Engineering Journal, March 1989.

P. Freeman. Fundamentals of design. In Tutoral: Software Design

Techniques. IEEE Computer Society Press, Washington, DC, 1983.

S. N. Griffiths. Design Methodologies-A Comparison, volume II.

Infotech International; Maidenhead, England, 1978.

B. Hansen. The programming language concurrent pascal. IEEE

Transactions on Software Engineering, pages 199-207, June 1975.

K. Hansen. Data Structured Program Design. Prentics-Hall Cliffs, NJ,

1986.

[HLN+90) D. Harel, H. Lachover, A. Naamad, A. Pnuell, M. Politi, R. Sherman,

A. Shtull-Trauring, and M. Trakhtenbrot. Statemate: a working en­

vironment for the development of complex reactive systems. IEEE

Transaction on SE, 16(4):403-414, April 1990.

[Jac75]

[Jac83]

M. Jackson. Principles of Program Design. Academic Press, 1975.

M. Jackson. Jackson System ·Development. Prentice-Hall

International, 1983.

[Jac87]

[Kat89]

[KF87]

[KH88]

[KM85]

[Kun83]

[Oli83]

202

Ivar Jacobson. Object oriented development in an industrial environ­

ment. In OOPSLA 87, pages 181-191, Oct. 1987.

T. Katayama. A hierarchical and functional software process descrip­

tion and its enaction. In Proc. of 11th International Conference on

Software Engineering, May 1989.

G.E. Kaiser and P. H. Feiler. An architecture for intelligent assis­

tance in software development. In Proceedings of the 9th International

Conference on SE, pages 180-188, 1987.

M. I. Kellner and G. A. Hansen. Software process modeling. Technical

report, Technical Report CMU/SEl-88-TR-9, May 1988.

Roger King and Dennis McLeod. Semantic data models. In Principles

of Database Design! Vol.1 J Logical Organization, pages 115-151.

Prentice-Hall, Inc. Englewood Cliff. NJ., 1985.

C. H. Kung. An analysis of three conceptual models with time

perspective. In T. W. Olle, H. G. Sol, and C. J. Tully, edi­

tors, Information Systems Design Methodologies: A Feature Analysis,

pages 141-168. Elsevier Science Publishers, B. V. (North-Holland).

IFIP., 1983.

A. Olive. Analysis of conceptual and logical models in information

systems design methodologies. In T. W. Olle, H. G. Sol, and C. J.

Tully, editors, Information Systems Design Methodologies: A Feature

(Orr77]

[Ost87]

(PC86]

203

Analysis, pages 63-86. Elsevier Science Publishers, B. V. (North­

Holland). IFIP., 1983.

K. T. Orr. Using Structured System Design. Yourdon Press, NY,

1977.

Leon J. Osterweil. Software processes are software too. In Proceedings

of the 9th International Conference on Software Engineering, pages

2-13, March 1987.

D.L. Parnas and P.C. Clements. A rational design process: How

and why to fake it. IEEE Transactions on Software Engineering,

12(2):251-257, February 1986.

[PCW84] D.L. Parnas, P.C. Clements, and D. M. Weiss. The modular struc­

ture of complex systems. In Proceedings of the 7th International

Conference on Software Engineering, pages 408-417, March 1984.

[PJ80]

[PT77]

M. Page-Jones. Transform analysis. In The practical guide structured

system design, pages 181-203. Yourdon Press, 1980.

L. J. Peters and L. L. Tripp. . Comparing software design

methodologies. Datamation, 23(11):89-94, Nov. 1977.

[RBP+91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen.

Object Oriented Modeling and Design. Prentice Hall, Englewood

Cliffs, NJ, 1991.

[RS78]

[SH090]

[SMC74]

[Smo91]

[S089]

[S091]

[Sol83]

204

C. V. Ramamoorthy and H. H. So. Software requirements and

specifications: Status and persepective. In Tutorial: Software

Methodologies, pages 43-164. IEEE Computer Society, 1978.

S. M. Sutton, D. Heimbigner, and L. J. Osterweil. Language con­

structs for managing change in process-centered environments. In

Proceedings of the Fourth ACM SIGSOFT Symposium on Software

Development Environments, pages 206-216, Irvine, Dec. 1990.

W. P. Stevens, G. J. Myers, and L. L. Constantine. Structured design.

IBM System Journels, 13(2):115-139, 1974.

K. Smolander. Oprr-a model for modeling systems development

methods. In The Proceedings of 2nd Workshop on the Next Generation

of CASE. Trondheim, Norway. 1991.

X. Song and L. J. Osterweil. Debus: a software design process pro­

gram. Technical report, Arcadia-document, UCI-89-02, April 1989.

X. Song and L. J. Osterweil. A survey of process programming design

formalisms. available from the authors upon request, June 1991.

H. G. Sol. A feature analysis of information systems design

methodologies: Methodological considerations. In T. W. Olle,

H. G. Sol, and C. J. Tully, editors, Information Systems Design

Methodologies: A Feature Analysis, pages 1-8. Elsevier Science

Publishers, B. V. (North-Holland). IFIP., 1983.

205

(TBC+88] R. N. Taylor, F. C. Belz, L.A. Clarke, L. J. Osterweil, R. Selby, J. C.

(Uni83]

(War76]

(Was80]

(Wel89]

Wilden, A. Wolf, and M. Young. Foundations for the Arcadia envi­

ronment architecture. In Proc. ACM SIGSOFT/SIGPLAN Software

Engineering Symposium on Practical Software Development environ­

ments, pages 1-13, Nov. 1988.

United States Department of Defense. Reference Manual for Ada

Programming Language, 1983.

J.D. Warnier. Logical Construction of Programs. Van Nostrand

Reinhold, New York, 1976.

A. Wasserman. Information system design methodology. J. Amer.

Soc. Inform. Sci., Jan. 1980.

R.J. Welke. Meta systems on meta models. Technical report, CASE

Outlook, Dec. 1989.

(WFP83a] A. Wasserman, P. Freeman, and M. Procella. Characteristics of

software development methodologies. In T. W. Olle, H. G. Sol, and

C. J. Tully, editors, Information Systems Design Methodologies: A

Feature Analysis, pages 37-58. Elsevier Science Publishers, B. V.

(North-Holland). IFIP., 1983.

(WFP83b] A. Wasserman, P. Freeman, and M. Procella. Characteristics of

software development methodologies. appendix: Software develop­

ment methodology-qustionnaire. In T. W. Olle, H. G. Sol, and

(WG84]

(Wie91]

(Wil88]

(YC79]

(YT86]

206

C. J. Tully, editors, Information Systems Design Methodologies: A

Feature Analysis, pages 59-62. Elsevier Science Publishers, B. V.

(North-Holland). IFIP., 1983.

W. M. Waite and G. Goos. Compiler Construction. Springer-Verlag,

1984.

R. J. Wieringa. Object-oriented analysis, Structured analysis, and

Jackson system development. In Proc. of IFIP working conj. on the

object oriented approach in information systems, Quebec City, Oct.

1991.

L. Williams. Software process modeling: A behavior approach. In

Proceedings of the 10th International. Conference on SE, pages 17 4-

186, 1988.

E. Yourdon and L. L. Constantine. Structured Design. Prentice-Hall,

Englewood Cliffs, NJ, 1979.

S.S. Yau and J. J. Tsai. A survey of software design technique. IEEE

Transaction on Software Engineering, 12(6):713-721, June 1986.

