
UC San Diego
UC San Diego Previously Published Works

Title
Generation of a Panel of Induced Pluripotent Stem Cells From Chimpanzees: a Resource for 
Comparative Functional Genomics

Permalink
https://escholarship.org/uc/item/3rf076m3

Authors
Romero, Irene Gallego
Pavlovic, Bryan J
Hernando-Herraez, Irene
et al.

Publication Date
2014

DOI
10.1101/008862
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3rf076m3
https://escholarship.org/uc/item/3rf076m3#author
https://escholarship.org
http://www.cdlib.org/


elifesciences.org

TOOLS AND RESOURCES

A panel of induced pluripotent stem cells
from chimpanzees: a resource for
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Xiang Zhou3, Michelle C Ward1, Nicholas E Banovich1, Courtney L Kagan1,
Jonathan E Burnett1, Constance H Huang1, Amy Mitrano1, Claudia I Chavarria1,
Inbar Friedrich Ben-Nun4‡, Yingchun Li5,6, Karen Sabatini4,6,7,
Trevor R Leonardo4,6,7, Mana Parast5,6, Tomas Marques-Bonet2,8,
Louise C Laurent6,7, Jeanne F Loring4, Yoav Gilad1*

1Department of Human Genetics, University of Chicago, Chicago, United States;
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Abstract Comparative genomics studies in primates are restricted due to our limited access to

samples. In order to gain better insight into the genetic processes that underlie variation in complex

phenotypes in primates, we must have access to faithful model systems for a wide range of cell

types. To facilitate this, we generated a panel of 7 fully characterized chimpanzee induced

pluripotent stem cell (iPSC) lines derived from healthy donors. To demonstrate the utility of

comparative iPSC panels, we collected RNA-sequencing and DNA methylation data from the

chimpanzee iPSCs and the corresponding fibroblast lines, as well as from 7 human iPSCs and their

source lines, which encompass multiple populations and cell types. We observe much less within-

species variation in iPSCs than in somatic cells, indicating the reprogramming process erases many

inter-individual differences. The low within-species regulatory variation in iPSCs allowed us to identify

many novel inter-species regulatory differences of small magnitude.

DOI: 10.7554/eLife.07103.001

Introduction
Comparative functional genomic studies of humans and other primates have been consistently

hindered by a lack of samples (Gallego Romero et al., 2012). In spite of their clear potential to inform

our understanding of both human evolution and disease, practical and ethical concerns surrounding

working with non-human primates have constrained the field to using a limited set of cell types

collected in a non-invasive or minimally invasive manner, primarily lymphoblastoid cell lines (LCLs) and

fibroblasts. Comparative studies of any other primate tissue have been limited to using post-mortem

(typically frozen) materials, thereby precluding most experimental manipulation and yielding primarily

observational insights (see, e.g., Blekhman et al., 2008; Blekhman et al. 2010; Brawand et al., 2011).

An alternative has been to use model organisms in an attempt to recapitulate inter-primate

regulatory differences. The typical approach involves the introduction of sequences of evolutionary
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interest into a model system, and then searching for spatial or temporal differences in gene

expression that can be ascribed to the introduced sequence (Enard et al., 2009; Cotney et al., 2013).

This is a difficult and challenging approach and, perhaps as a result, there are still only a handful of

well-described examples of human-specific regulatory adaptations in primates (Prabhakar et al.,

2008; McLean et al., 2011) and even fewer cases where the underlying regulatory mechanisms have

been resolved (Rockman et al., 2005; Pollard et al., 2006). While these studies are useful and often

informative, they also entail assumptions of functional conservation between the model system and

the species of interest that may not necessarily be true (Gallego Romero et al., 2012).

Induced pluripotent stem cells (iPSCs) can provide a viable means of circumventing these concerns

and limitations, at least with respect to the subset of phenotypes that can be studied in in vitro

systems. Reprogramming somatic cell lines to a stable and self-sustaining pluripotent state (Takahashi

and Yamanaka, 2006; Takahashi et al., 2007) has become routine practice for human and murine cell

lines, but extension to other animals, especially non-human primates, is not yet widespread despite

some exceptions (e.g., Ezashi et al., 2009; Ben-Nun et al., 2011; Nagy et al., 2011; Marchetto

et al., 2013b). Instead, the broadest application of iPSCs to date has been the generation of lines

derived from patients suffering from a variety of genetic disorders (Cohen and Melton, 2011; Israel

et al., 2012; Liu et al., 2012; Merkle and Eggan, 2013; Wang et al., 2014), with the dual aims of

providing a deeper understanding of disease phenotypes and developing new therapeutic avenues.

These cell lines have been shown to display in vitro properties corresponding to relevant patient

phenotypes observed in vivo, both as iPSCs and when differentiated into other pertinent cell types,

supporting their utility in clinical applications; more generally, these properties also highlight the tantalizing

flexibility of iPSCs as a means of exploring developmental and cell lineage determination pathways.

Thus, the development of an iPSC-based system for comparative genomic studies in primates

will allow us to compare regulatory pathways and complex phenotypes in humans and our close

evolutionary relatives using appropriate models for different tissues and cell types. This will be

eLife digest Comparing the genomes of different species can reveal how they are related to one

another. Such comparative studies can also reveal how genomes are modified in species-specific

ways to regulate gene activity. The genomes of humans and chimpanzees are very similar in

sequence. It is therefore likely that differing patterns of gene regulation underlie many of the

differences observed between the two species. However, only a few kinds of chimpanzee cell that

can be grown in the laboratory are available for research; this lack of samples has limited the ability

of researchers to perform such comparative studies.

One way around this problem is to use induced pluripotent stem cells (or iPSCs). IPSCs are

created by exposing mature cells—for example, skin cells—to conditions and molecules that convert

them into an embryonic-like state. This state—called ‘induced pluripotency’—allows the cells to be

coaxed into becoming many different cell types that can be grown in the laboratory. But it is more

difficult to establish high quality iPSCs from chimpanzees than it is from humans or mice.

Gallego Romero, Pavlovic et al. have now addressed this problem by creating iPSCs from skin

cells taken from seven healthy chimpanzees. These cell lines were then analysed and compared to

each other and to seven iPSC lines created from human cells. The chimpanzee iPSC lines were found

to be much more similar to each other than the mature cells that were used to make them. Similar

results were also observed for the human iSPCs, which likely reflects the conserved changes that take

place when the genomes of mature cells are reprogrammed to pluripotency.

This high level of similarity between iPSCs from different individuals of the same species allowed

Gallego Romero, Pavlovic et al. to discover many subtle differences in gene regulation between

chimpanzees and humans. For example, over 4500 genes were found to be expressed differently in

human and chimpanzee iPSCs, and over 3500 genomic regions had different patterns of certain DNA

modifications that can help to regulate gene expression.

These newly created chimpanzee iPSC lines represent a valuable resource for comparative studies

of gene regulation. In the future, this resource could help researchers to identify further differences

in gene regulation between closely related primate species.

DOI: 10.7554/eLife.07103.002
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a powerful resource with which to examine the contribution of changes in gene regulation to human

evolution and diversity. To demonstrate the validity of this approach, we have generated a panel of

7 chimpanzee iPSC lines that are fully characterized and comparable to human iPSC lines in their

growth and differentiation capabilities.

Results
We generated a panel of iPSC lines from seven chimpanzees through electroporation of episomal

plasmids expressing OCT3/4 (also known as POU5F1), SOX2, KLF4, L-MYC, LIN28, and an shRNA

targeting TP53 (Okita et al., 2011), as well as an in vitro-transcribed EBNA1 mRNA transcript

(Howden et al., 2006; Chen et al., 2011) that promotes increased exogenous vector retention in the

days following electroporation. Our chimpanzee panel is comprised of seven healthy individuals

(4 female, 3 male, further details on these individuals are given in Supplementary file 1) ranging from

9 to 17 years old. Fibroblasts from 5 of the 7 individuals were purchased from the Coriell Institute for

Medical Research, while the remaining two (C6, C7) were derived from 3 mm skin punch biopsies

directly collected from animals at the Yerkes Primate Research Center of Emory University (see

‘Materials and methods’). All chimpanzee iPSC lines described in this publication are available fully

and without restrictions to other investigators upon request to the corresponding authors.

Characterizing the chimpanzee iPSCs
The chimpanzee iPSC lines closely resemble human iPSC lines in morphology (Figure 1A; all images

shown in main text are from chimpanzee line C4. Similar images of the other lines are available as

Figure 1—figure supplements 1–5). All lines could be maintained in culture for at least 60 passages

without loss of pluripotency or self-renewal capability using standard iPSC culture conditions, both on

mouse embryonic fibroblast (MEF) feeder cells and in feeder-free conditions. The genomes of all our

lines appeared to be cytogenetically stable; all exhibited normal karyotypes after reprogramming and

more than 15 passages in culture, ruling out the presence of gross chromosomal abnormalities

(Figure 1B, Figure 1—figure supplement 1).

We confirmed nuclear expression ofOCT3/4, SOX2 andNANOG in all lines by immunocytochemistry

(Figure 1C; Figure 1—figure supplement 2). The pluripotent cells also express the surface antigens

Tra-1-81 and SSEA4, while cells collected from the center of differentiating colonies expressed SSEA1 at

levels comparable to differentiating colonies of human iPSC lines (Figure 1—figure supplement 3). To

confirm that the observed expression of pluripotency-associated genes is of endogenous origin, we

performed qPCR with primers designed to specifically amplify the endogenous OCT3/4, SOX2,

NANOG and L-MYC transcripts (Figure 1D; all PCR primers used in this work are listed in

Supplementary file 2). Indeed, we found no evidence of exogenous gene expression after 10 passages

(Figure 1—figure supplement 4), and no traces of genomic integration or residual episomal plasmid

retention after 15 passages (Figure 1E). These observations indicate that self-renewal in our chimpanzee

iPSC lines is maintained solely through endogenous gene expression.

To confirm pluripotency and test the differentiation capabilities of our lines, we performed a number

of assays. First, we generated embryoid bodies from all 7 chimpanzee iPSC lines and assayed their

ability to spontaneously differentiate into the three germ layers by immunocytochemistry. All lines

spontaneously gave rise to tissues from the three germ layers (Figure 2A; Figure 2—figure supplement 1).

Second, we carried out directed differentiations to hepatocytes and cardiomyocytes in a subset of the

lines using previously published protocols (see ‘Materials and methods’, Figure 2—figure

supplement 2 and Video 1). Third, we performed teratoma formation assays in four of the lines

using Fox Chase SCID-beige and CB17.Cg-PrkdcscidLystbg-J/Crl immunodeficient male mice. All four

iPSC lines were capable of generating tumours in mice, and all tumours examined contained tissues

of endodermal, ectodermal and mesodermal origins (Figure 2B, Figure 2—figure supplement 3).

To confirm the chimpanzee origin of these tissues, we extracted and performed Sanger sequencing on

mitochondrial DNA from the tumours (Figure 2—figure supplement 4).

Finaly, we characterized pluripotency in our lines through PluriTest, a bioinformatic classifier that

compares the gene expression profiles of new lines to those obtained from a reference set of over 400

well-characterized human pluripotent and terminally differentiated lines (Müller et al., 2011),

modified to accommodate data from both species. All chimpanzee lines have PluriTest pluripotency

scores greater than the pluripotency threshold value of 20 (Figure 3A, Supplementary file 1). We also
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Figure 1. Characterization of chimpanzee induced pluripotent stem cell (iPSC) lines. (A) Phase contrast image of

representative chimpanzee iPSC line. Scale bar: 1000 μm. (B) Representative karyotype from chimpanzee iPSC line

after >15 passages, showing no abnormalities. (C) ICC staining of iPSC lines with antibodies for pluripotency markers

as indicated. Scale bar: 200 μm. (D) Quantitative PCR testing for expression of endogenous pluripotency factors in all

7 chimpanzee iPSC lines. Line H20961 is a male human iPSC line generated in-house used as reference. (E) PCR gel

showing an absence of exogenous episomal reprogramming factors in all 7 chimpanzee iPSC lines. All PCRs were

carried out on templates extracted from passage >15 with the exception of C3651*, which is from passage 2. Fib—is

a negative fibroblast control (from individual C8861) prior to transfection, day 12 + is a positive control 12 days after

transfection, 27,077 + to 27,082 + are the plasmids used for reprogramming.

DOI: 10.7554/eLife.07103.003

The following figure supplements are available for figure 1:

Figure supplement 1. Karyotypes for the 6 chimpanzee iPSC lines not shown in main text figures, generated

after >15 passages in culture.

DOI: 10.7554/eLife.07103.004

Figure supplement 2. ICC staining of the 6 chimpanzee iPSC lines not shown in main text figures with antibodies for

pluripotency markers as indicated.

DOI: 10.7554/eLife.07103.005

Figure supplement 3. ICC staining showing SSEA1 expression in chimpanzee iPSC culture plates, clearly distinct

from NANOG expression.

DOI: 10.7554/eLife.07103.006

Figure supplement 4. Melt curves showing a lack of exogenous reprogramming gene expression in episomally

reprogrammed chimpanzee iPSCs after >10 passages.

DOI: 10.7554/eLife.07103.007

Figure supplement 5. Exogenous gene expression in retrovirally reprogrammed chimpanzee iPSCs after various

passages.

DOI: 10.7554/eLife.07103.008
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calculated PluriTest novelty scores for all samples. In human PSCs, novelty values above 1.67 are

suggestive of chromosomal duplications or expression of differentiation-associated genes. Human

PSCs with high novelty scores are typically either difficult to maintain and expand in culture (because

they differentiate spontaneously at a high rate), or cannot be consistently differentiated to all three

germ layers. All of our chimpanzee lines had novelty scores above the 1.67 threshold (Figure 3B).

However, in contrast to human PSCs with high novelty scores, our chimpanzee lines can be both easily

maintained in culture and differentiated into all three germ layer lineages, as demonstrated by the

embryoid body and teratoma assays detailed above. We thus hypothesize that the observed high

novelty scores are likely driven by inter-species gene regulatory differences that the PluriTest assay,

which was trained exclusively on human samples, interpreted as abnormal gene expression.

Interspecies analysis of gene expression and methylation data from
iPSCs
To better examine gene expression and regulatory differences between human and chimpanzee

iPSCs, we generated genome-wide RNA-sequencing and DNA methylation data (see ‘Materials and

methods’) from all chimpanzee iPSC lines, as well as from 7 human iPSC lines also generated and

validated in our laboratory. While all of the chimpanzee iPSCs were derived from fibroblast cell lines

(Supplementary file 1), the human iPSCs were derived from both fibroblasts and immortalised LCLs

from Caucasian and Yoruba individuals (see Supplementary file 1 for additional details). We designed

Figure 2. (A) ICC staining of differentiated embryoid bodies with antibodies for the three germ layers as indicated.

Scale bar: 200 μm. (B) Histological staining of teratomas derived from iPSC line C4955, showing generation of tissues

from all three germ layers. Scale bar: 100 μm.

DOI: 10.7554/eLife.07103.009

The following figure supplements are available for figure 2:

Figure supplement 1. ICC staining of differentiated embryoid bodies derived from the 6 chimpanzee iPSC lines not

shown in main text figures, with antibodies for the three germ layers as indicated.

DOI: 10.7554/eLife.07103.010

Figure supplement 2. ICC staining of directly differentiated hepatocytes from line C2, with antibodies as indicated.

DOI: 10.7554/eLife.07103.011

Figure supplement 3. Histological staining of teratomas derived from three additional chimpanzee iPSC lines,

showing generation of tissues from all three germ layers.

DOI: 10.7554/eLife.07103.012

Figure supplement 4. Sequencing traces from teratomas generated from chimpanzee iPSC lines for the

mitochondrial genes 12S (C3649, C4955) and cytb (C8861, C40210).

DOI: 10.7554/eLife.07103.013
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the comparative study this way in order to

demonstrate that regulatory differences between

human and chimpanzee iPSCs cannot be

explained by technical differences due to cultur-

ing conditions or the cell type of the somatic

precursor cells used for reprograming.

To prevent biases due to genetic divergence

between the two species, we chose to restrict our

gene expression analyses to a curated set of

genes with one-to-one orthology between

humans and chimpanzees (Blekhman et al.,

2010; Blekhman, 2012). Following assessment

of quality control metrics (see ‘Materials and

methods’), we obtained normalised RPKM esti-

mates for 12,171 genes that were expressed in at

least 4 iPSC lines from either one of the species

(see ‘Materials and methods’). We similarly restricted our DNA methylation analyses to a set of

335,307 high quality probes with a high degree of sequence conservation between humans and

chimpanzees (as in Hernando-Herraez et al., 2013; see ‘Materials and methods’).

To examine broad patterns in the data, we used principal component analysis (PCA). We observed

clear and robust separation of human and chimpanzee iPSC lines along the first principal component

(PC) in both the gene expression and DNA methylation data (Figure 4A,B; regression of PC1 by

species; p < 10−13 for the expression data; p < 10−12 for the DNA methylation data). Within the human

samples, PC2 appears to be driven by ethnicity, as we observe all Caucasian samples consistently

clustering together despite their different cell types of origin (p = 0.005 for the association between

PC2 and human ethnicity in the expression data, p = 0.044 in the DNA methylation data).

We then analysed regulatory differences between the species by first focusing on the gene

expression data. At an FDR of 1%, we identified 4609 genes (37.9%) as differentially expressed (DE)

between the iPSCs of the two species (Supplementary file 3; see ‘Materials and methods’ for details).

The majority of DE genes do not exhibit large inter-species fold-change differences in expression

levels (Figure 4—figure supplements 1, 2). An analysis of functional annotation of the DE genes

reveals that no Gene Ontology Biological Process terms (GO BP; Ashburner et al., 2000) are

significantly overrepresented among these genes at an FDR of 5% (Supplementary file 4), although

we identified 123 overrepresented terms if we limit our analysis to the 546 genes with absolute log2

fold-change difference >2 (Supplementary file 4). Additionally, we tested for concordance between

our list of DE genes and a list of 2730 genes that were previously classified as DE between human and

non-human primate iPSC lines (Marchetto et al., 2013b). Given our stringent approach to consider

orthologous genes, only 2081 (76%) genes could be analysed across the two studies. Of these, 1495

genes are detectably expressed in our lines, and 1079 (72.2%) are classified as DE between the

species in both data sets (a highly significant enrichment; χ2 p < 10−16). Expression trends within these

DE genes are in the same direction in both data sets in 1060 of cases (98.24%).

Next, we used a similar approach to identify differentially methylated (DM) probes and regions

between the iPSCs of both species (see ‘Materials and methods’). We identified 63,791 probes that

are DM between the two species at an FDR of 1%, 26,554 of which have a mean intergroup β
difference ≥0.1, our arbitrary effect size threshold for retaining probes for DM region (DMR)

identification and downstream analyses. Of these, 10,460 probes could be further grouped into 3529

regions of 2 or more DM probes within 1 kb, which we designated DMRs; (Supplementary file 5); the

numbers of probes and regions identified as DM at a range of mean interspecies β thresholds are

given in Supplementary file 6.

In order to consider the DNA methylation and gene expression data jointly, we focused on a subset

of 2348 DMRs that could be associated with a single Ensembl gene. Overall, these DMRs were

associated with 2141 genes, of which 1350 were also detectably expressed in the iPSCs, and 558

(41.3%) were classified as DE between the species, a slightly higher proportion than expected by

chance alone (p = 0.1). We further classified the DMRs as either ‘promoter’, ‘genic’ or ‘mixed’

depending on their position relative to annotated gene transcripts (see ‘Materials and methods’).

The overall set of DMRs, as well as genic DMRs, are significantly associated with 4 and 79 GO BP

Video 1. Calcium transient flux in and out (GFP

labelled) and contractility of directly differentiated

cardiomyocytes from chimpanzee iPSC line C7.

DOI: 10.7554/eLife.07103.014
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terms respectively (FDR < 5%), including terms related to neurogenesis and skeletal system

development. Enrichment of several terms related to neurogenesis and skeletal system development

is likewise marginally significant amongst promoter and mixed DMRs (Supplementary file 7).

However, the subset of inter-species DE genes that are also associated with DMRs are not significantly

enriched with annotation for any GO BP or MF terms.

Comparative histone modification data
We used ChIP-seq to characterize the genome-wide distribution of two types of histone modifications

(H3K27me3 and H3K27ac) in three of our chimpanzee iPSCs (see ‘Materials and methods’). We

compared the chimpanzee data to histone modification data from three human iPSC lines from the

Roadmap Epigenomics project (Figure 5). To do so, we downloaded raw sequence files from GEO

and processed data from both species using the same pipeline (see ‘Materials and methods’). We

identified ChIP-seq peaks using MACS or RSEG, as appropriate, and accounted for differences in

genome sequence between the species as well as for incomplete power to identify peaks across

species (see ‘Materials and methods’). To relate the ChIP-seq data to genes (and integrate over data

from all peaks that are in proximity to a given gene), we then generated enrichment ChIP scores for

a set of previously defined 26,115 orthologous transcription start sites (TSSs, from Zhou et al., 2014).

The enrichment score (see ‘Materials and methods’ for details, also Supplementary file 8), reflects the

ratio of mapped ChIP-seq read counts across all peaks within a 4 kb window centred on an

orthologous TSS, relative to the genome-wide read count average after adjusting expectations based

on the input control sample. We chose to classify as ‘enriched’ any region where the mean enrichment

score across all three individuals in the species was larger than 1. This cut-off is arbitrary, but we

confirmed that our qualitative results are robust by additionally testing enrichment cut-offs of 2, 5, and 10.

Using this approach, we first examined genome-wide patterns of H3K27me3 enrichment in

chimpanzee and human iPSCs. Overlap across the two species is considerably higher than expected

by chance (Figure 5A, χ2 p < 10−16), but it is somewhat unclear how to interpret this observation with

respect to the expectation that human and chimpanzee iPSCs would have similar pluripotency

potential. We thus focused on a set of 3913 genes (Li et al., 2013) previously annotated as bivalently

modified in human PSCs—that is, genes known to be associated with both high H3K4me3 and

H3K27me3, indicative of a ‘poised’ or ‘primed’ state (Bernstein et al., 2006). We expect the vast

Figure 3. (A) PluriTest pluripotency scores in the 7 chimpanzee lines and 4 human reference iPSC lines. Purple circles

denote chimpanzees; yellow squares, humans. (B) PluriTest results after removal of probes not mapping to the

chimpanzee genome. All samples in the top left quadrant are human and have satisfactory pluripotency and novelty

scores. Samples in the top right quadrant correspond to our chimpanzee iPSC panel, and have consistently high

pluripotency yet high novelty scores.

DOI: 10.7554/eLife.07103.015

The following figure supplement is available for figure 3:

Figure supplement 1. The effects of probe sub-setting in PluriTest pluripotency score calculations.

DOI: 10.7554/eLife.07103.016
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majority of these genes to also be associated with similar modifications in chimpanzee iPSCs. Only

2910 of the known bivalent genes were associated with clear orthologous TSSs and could be tested

using our comparative H3K27me3 ChIP-seq data. Of these, 306 were not associated with the

modification in either species, whereas of the 2604 genes that were associated with H3K27me3 in at

least one species, 2368 (90.1%) were enriched for H3K27me3 in both species (Figure 5B, χ2 p < 10−16).

We then examined H3K27ac enrichment patterns in both species. This mark is indicative of active

promoters and gene transcription. Overall, we find good agreement between human and chimpanzee

genes enriched for H3K27ac, with 95.8% human genes associated with the mark also enriched in

chimpanzees (Figure 5C). However, there is a clear excess of genome-wide H3K27ac signal in

chimpanzee iPSCs relative to humans, possibly due to an overall more sensitive ChIP enrichment in the

chimpanzee samples (Figure 5—figure supplements 1, 2).

We proceeded by focusing on a list of 22 core pluripotency transcription factors (taken from

Ng and Surani, 2011; Orkin and Hochedlinger, 2011), where we expect to find H3K27ac signal

shared across the two species at a higher rate than in the genome-wide data, given the role of these

factors in maintaining pluripotency. Due to our stringent requirements for establishing orthology, we

were initially able to examine data from 14 of those genes; 11 of which were associated with H3K27ac

in both species (Figure 5D)—one of the discrepancies is REX1 (also known as ZFP42), which we

discuss further below. We extended our analysis to include the full set of 22 pluripotency transcription

factors regardless of orthology, by testing solely for absence or presence of signal peaks identified by

MACS (i.e., without considering enrichment scores; see ‘Materials and methods’). We again found

a high overlap in H3K27ac enrichment across species, with 15 of the 22 genes associated with

H3K27ac enrichment in both species (including the three master regulators of pluripotency, OCT4,

SOX2, and NANOG; Figure 5—figure supplement 3). Of the remaining 7 genes, one (DAX1) was not

found to be associated with H3K27ac in either species, four genes (ESSRB, KLF2, KLF4, and KLF5)

were associated with H3K27ac only in chimpanzee (although this observation may reflect incomplete

power to detect peaks in the human data), and only two genes (ZFX and REX1) were associated with

H3K27ac in human but not in chimpanzee iPSCs.

Figure 4. Principal component (PC) analysis plots of data from the iPSCs. (A) Principal component analysis (PCA)

generated from expression data of 12,171 orthologous genes. (B) PCA generated from DNA methylation data

measured by 335,307 filtered probes.

DOI: 10.7554/eLife.07103.017

The following figure supplements are available for figure 4:

Figure supplement 1. Volcano plot showing the distribution of DE genes between iPSCs of chimpanzee and

human origin.

DOI: 10.7554/eLife.07103.018

Figure supplement 2. Density plots of log2 FC change values amongst DE genes for the main comparisons

presented in the text.

DOI: 10.7554/eLife.07103.019
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REX1 may be dispensable for chimpanzee pluripotency
In order to further consider inter-species differences in the core pluripotency regulatory network, we

examined expression levels in our chimpanzee and human iPSCs in the same list of 22 core

pluripotency TFs described above. Expression values in all iPSC lines are shown in Figure 6A (see also

Figure 6—figure supplement 1). Given the stringency of our interspecies analysis approach with

respect to unique read mapping, we are unable to calculate RNA-seq-based expression estimates for

six of these TFs, including OCT4 or NANOG, both of which have multiple pseudogenes that can

confound mapping algorithms (however, as shown in Figure 1D, our qPCR results demonstrate that

Figure 5. Overlap of H3K27me3 and H3K27ac signal between chimpanzee and human iPSCs at orthologous

transcription start sites (TSSs). (A) H3K27me3 enrichment near all genes with an orthologous TSS. (B) H3K27me3

enrichment near 2910 genes previously identified as bivalent in human PSCs. (C) H3K27ac enrichment near all genes

with an orthologous TSS. (D) H3K27ac peaks near 14 known pluripotency master regulators with orthologous TSSs.

DOI: 10.7554/eLife.07103.020

The following figure supplements are available for figure 5:

Figure supplement 1. Density plots of H3K27ac enrichment scores at orthologous TSSs in the entire data set and at

3572 genes enriched only in chimpanzee iPSCs.

DOI: 10.7554/eLife.07103.021

Figure supplement 2. Density plots of mean RPKM in chimpanzee iPSCs in all 12,171 genes with expression data

and in the subset of 1737 genes with expression data and H3K27ac signal enrichment solely in chimpanzee iPSCs.

DOI: 10.7554/eLife.07103.022

Figure supplement 3. H3K27ac peaks observed in at least 1 chimpanzee or human iPSC, as identified by MACS at

22 known pluripotency master regulators.

DOI: 10.7554/eLife.07103.023
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Figure 6. REX1 may be dispensable for pluripotency in chimpanzee iPSCs. In both panels REX1-expressing chimpanzee iPSC line is coloured red,

significant interspecies differences are indicated along the left-hand side, and purple boxes indicate chimpanzee lines, yellow boxes indicate human lines.

(A) Expression values of 16 core pluripotency transcription factors in all human and chimpanzee iPSC lines. (B) Methylation status of 13 CpG sites

associated with REX1 in all human and chimpanzee iPSCs. Location of the probe relative to the gene sequence is indicated along the right hand side.

(C) Fraction of differentially expressed (DE) genes in multiple categories downstream of REX1 in human and mouse ESCs. 1: Genes associated with any

Gene Ontology term that contains the words ‘ectoderm’, ‘mesoderm’ or ‘endoderm’. 2: CNS development genes are associated with GO:0007417 or any

of its offspring. 3: cardiovascular system development genes are associated with GO:0072358 or any of its offspring. 4: hepatobiliary system development

genes are associated with GO:0055123 or any of its offspring. (D) Expression levels of 34 genes associated with GO:0006096, glycolysis, in all human and

chimpanzee iPSC lines. All reported p-values were calculated after excluding C6.

DOI: 10.7554/eLife.07103.024

Figure 6. continued on next page
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expression of those 2 genes is similar amongst all chimpanzee iPSC lines, and marginally higher than in

our human iPSC control line). Of the 16 TFs with expression data for iPSCs from both species, 4 (E2F1,

ESRRB, SALL4 and REX1) are DE between human and chimpanzee iPSCs at an FDR of 1%. Of these,

ESRRB and REX1 are associated with absolute inter-species expression log2 fold-changes >1.
However, because ESRRB is expressed at very low levels across all samples (mean RPKM across all 14

samples = 0.47), we focused our subsequent analyses on REX1, which is expressed at low or

undetectable levels in 6 of our 7 chimpanzee iPSCs (mean RPKM = 0.667), but at high levels in all

human iPSC lines (mean RPKM = 180.58) and a single chimpanzee iPSC, C6 (Figure 6A). Our DNA

methylation data is consistent with this gene expression pattern: all 10 probes located in the 5′ UTR or

up to 1500 bp upstream from the REX1 TSS are highly methylated in the six chimpanzee lines (mean β
across all promoter probes = 0.87), but exhibit intermediate or low levels of DNA methylation in all of

the human iPSC lines and the REX1-expressing C6 line (Figure 6B); the entire region is a DMR

(Supplementary file 5). Consistent with these findings, REX1 is also differentially enriched for

H3K27ac signal in the two species—we identified no H3K27ac peaks at the REX1 TSS in the three

chimpanzee lines, which did not include C6 (Figure 5D, Figure 5—figure supplement 3).

The REX1 genes codes for a transcription factor present in all placental mammal species, which has

long been established as a marker of pluripotency in human and mouse PSCs (Brivanlou et al., 2003).

Multiple publications have suggested that this gene plays an important role in maintaining

pluripotency and inhibiting differentiation into the three primary tissue germ layers (Masui et al.,

2008; Scotland et al., 2009; Son et al., 2013), with multiple mechanisms of action having been

proposed. However, REX1-knockout mouse ESC lines can give rise to chimeric animals, and

homozygous F2 REX1 null mice are viable (Masui et al., 2008), suggesting that REX1 may not be

indispensable for murine pluripotency. In humans, loss of REX1 expression in ESCs following shRNA

knockdown has been associated with a rapid loss of pluripotency, as well as a decrease in glycolytic

activity and a lack of observable mature mesodermal structures in teratoma formation assays (Son

et al., 2013).

To determine the consequences of a lack of REX1 expression in chimpanzee iPSCs, we considered

gene expression data from all human iPSC lines and the 6 chimpanzee iPSC lines that do not express

REX1. We asked whether there is an excess of DE genes among those thought to be directly

regulated by, or downstream of, REX1 (Figure 6C,D; see ‘Materials and methods’), but failed to find

enrichment in all categories except for genes associated with GO term BP:0006096, glycolysis, where

19 of 34 testable genes were DE at an FDR of 1% between the two species (p < 0.01 from 100,000

permutations). The direction of this effect ran contrary to previous reports, however, with genes

highlighted by Son et al. (2013) as downregulated following REX1 knockdown, such as PGAM1 or

LDHA, having significantly higher expression in chimpanzee iPSCs than in human iPSCS (Figure 6D).

Furthermore, the REX1-expressing line C6 is not an outlier amongst the other chimpanzee iPSC lines

(Figure 6D), suggesting that the observed inter-species regulatory differences cannot be attributed to

differences in REX1 expression between the species.

We note that both the teratomas and EBs generated from chimpanzee iPSC lines that do not

express REX1 gave rise to mature structures from all three germ layers similar to those observed in

REX1-expressing line C6 (Figure 2—figure supplements 1, 3). Furthermore, and consistent with our

observations, REX1 is either absent or expressed at low levels in one replicate of either of the two

Figure 6. Continued

The following figure supplements are available for figure 6:

Figure supplement 1. Expression values of 15 core pluripotency transcription factors in all human and chimpanzee iPSC lines.

DOI: 10.7554/eLife.07103.025

Figure supplement 2. Expression levels of REX1 in human, chimpanzee and bonobo iPSC lines generated in this study and in Marchetto et al. (2013b).

DOI: 10.7554/eLife.07103.026

Figure supplement 3. Plot of PluriTest pluripotency scores vs normalised REX1 intensity in 73 human iPSC lines derived in-house.

DOI: 10.7554/eLife.07103.027

Figure supplement 4. Methylation status of 13 CpG sites associated with REX1 in chimpanzee and human iPSCs from this study and human PSCs from

Ziller et al. (2011).

DOI: 10.7554/eLife.07103.028
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retrovirally reprogrammed bonobo (Pan paniscus, sister species to chimpanzees) iPSC lines generated

byMarchetto et al. (2013b), although it is expressed in both replicates of both chimpanzee iPCS lines

from the same group (Figure 6—figure supplement 2). Together, these findings suggest that that

the variable loss of REX1 expression in chimpanzee and bonobo iPSCs does not impair pluripotency,

and that its regulatory functions of in humans may be being fulfilled in chimpanzee iPSCs by other

regulatory mechanisms.

Comparison of iPSCs and other tissues
We collected RNA-sequencing data from all cell lines used to generate both the chimpanzee and

human iPSCs (Supplementary file 6). Following quality control and normalisation steps, we obtained

RPKM values for 13,147 genes across all 28 iPSC and precursor samples (see ‘Materials and methods’).

We also obtained DNA methylation profiles from all samples at the same 335,307 probes described

above. PCA of both data sets show that the first PC was significantly associated with tissue type in

both data sets (p < 10−27 for the expression data; p < 10−17 for the DNA methylation data; see

Figure 7 and Supplementary file 9), while human and chimpanzee samples are separated by species

along PC2 (p = 0.001 for the expression data; p < 10−4 for the methylation data). However, given the

absence of chimpanzee LCLs in our dataset, it is not possible to determine whether the separation is

driven by tissue type, species, or both.

Overall, chimpanzee iPSCs have significantly higher levels of DNA methylation compared to the

somatic lines they were generated from (p < 10−15; Figure 7—figure supplement 1), an observation

that extends to all genomic features we tested (Figure 7—figure supplement 2); similar observations

have been previously made in human PSCs (Bock et al., 2011; Nazor et al., 2012). Remarkably, both

DNA methylation and gene expression levels in iPSCs are relatively homogeneous within species,

far more so than in their corresponding precursor cells (Figure 6B,D; p < 10−14 when comparing

overall pairwise distances within all chimpanzee iPSCs and within all chimpanzee fibroblasts in the

methylation data; p < 10−9 for the same comparison in the gene expression data). DNA methylation

levels in iPSCs also have significantly reduced coefficients of variation relative to their precursor lines

(range of CVs for chimpanzee iPSCs = 0.78–0.80, for chimpanzee fibroblasts = 0.87–0.90; p < 10−06).

We observed the same pattern in the human data, although in this case the multiple somatic origins of

the cell lines of origin contribute to the higher level of variation.

We then performed analyses of gene expression and DNA methylation differences in the combined

iPSC and somatic precursor dataset. First, we carried out a comparison of the iPSCs and the precursor

cells within each species (see ‘Materials and methods’) and classified 9235 genes as DE between

chimpanzee fibroblasts and the corresponding iPSCs. In humans the number of DE genes is 7765 if we

consider all iPSC lines and their somatic precursors, 8087 if we only consider those derived from LCLs

(n = 5), and 5489 if we only consider those derived from fibroblasts (n = 2; Supplementary file 10).

Similarly, we identified 18,029 DMRs between chimpanzee fibroblasts and iPSCs, and 12,078 DMRs

between all human somatic precursors and all human iPSCs (Supplementary files 11, 12). No GO

categories are significantly overrepresented in any of these data sets.

Next, we focused on a comparison of inter-species differences in gene expression and DNA

methylation levels across cell types. Following joint normalisation and modelling of data from all

samples (see ‘Materials and methods’), we classified 5663 genes as DE between the chimpanzee

precursor fibroblasts and the collection of human precursor LCLs and fibroblasts, as well as 84,747 DM

probes and 9107 DMRs (always at an FDR of 1%). Most of these regulatory differences, however,

reflect variation across cell types rather than across species (6324 genes and 70,312 probes are DE or

DM between the human fibroblasts and LCLs, respectively). We thus considered only data from the

fibroblast precursors in the two species. Only 2 of the human iPSCs were reprogrammed from

fibroblasts, leading to a loss in power; we were nonetheless able to identify 1236 DE genes and

25,456 DM probes between human and chimpanzee fibroblasts, and 1118 DE genes and 16,392 DM

probes between the corresponding iPSCs of the two species. None of these gene sets were

significantly enriched for functional annotations using GO BP terms. Although the overlap of inter-

species DE genes and DM probes between the iPSCs and the precursors is considerable (13.6% of DE

genes and 11.8% of DM probes), a large number of regulatory differences are only observed between

the iPSC lines of the two species (Figure 7—figure supplement 3). This observation is robust with

respect to different approaches to normalising and modelling the data (Figure 7—figure supplement 4),
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Figure 7. Relationships of iPSCs to their precursors. (A) PCA of gene expression data from all iPSCs and their precursor cell lines. (B) Neighbour-joining

tree of Euclidean distances between all samples generated based on the gene expression data. (C) PCA of DNA methylation data from all iPSCs and their

precursor cell lines. (D) Neighbour-joining tree of Euclidean distances between all samples generated based on the DNA methylation data.

DOI: 10.7554/eLife.07103.029

The following figure supplements are available for figure 7:

Figure supplement 1. Boxplots of methylation beta values at 335,307 probes across all samples.

DOI: 10.7554/eLife.07103.030

Figure supplement 2. Boxplots of methylation beta values across all samples, grouped by potency and genomic features.

DOI: 10.7554/eLife.07103.031

Figure supplement 3. Venn diagrams showing overlap in interspecies differences before and after reprogramming.

DOI: 10.7554/eLife.07103.032

Figure 7. continued on next page
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strongly suggesting that many of the differences we observe between our chimpanzee and human

iPSC lines may be intrinsic features of the pluripotent state in these two species.

Discussion
iPSCs have the potential to transform our understanding of the biology of non-model organisms and

facilitate functional comparative studies. To this end, we have generated a panel of 7 fully

characterized chimpanzee iPSCs. All lines are capable of spontaneously giving rise to the three tissue

germ layers in vitro and in vivo and meet all currently established criteria for pluripotency. The

chimpanzee iPSC lines provide a tantalising avenue for investigating how changes in gene expression

and regulation underlie the architecture of complex phenotypic traits in humans and our closest living

relatives (Gallego Romero et al., 2012; Marchetto et al., 2013a). In particular, we believe that

through the use of directed differentiation protocols, functional studies could be performed in cell

types where strong a priori hypotheses support a role for selective pressure underlying inter-species

divergence (e.g., liver, heart, kidney [Blekhman et al., 2008, 2010]). In that sense, we hope that this

panel of cell lines will be a useful tool to researchers interested in overcoming current limitations of

comparative studies in primates. To that purpose, all chimpanzee iPSC described in this publication

the panel are available fully and without restrictions to other investigators upon request to the

corresponding authors.

Other groups have previously generated pluripotent stem cells from primates (Liu et al., 2008;

Chan et al., 2010; Tomioka et al., 2010; Wu et al., 2010; Ben-Nun et al., 2011; Deleidi et al., 2011;

Okamoto and Takahashi, 2011; Wu et al., 2012; Hong et al., 2014; Wunderlich et al., 2014).

Indeed, a recent publication (Marchetto et al., 2013b) reported the generation of two chimpanzee

and two bonobo (P. paniscus) iPSC lines through the use of retroviral vectors. However, in the course

of our work we have found that retroviral vector silencing in chimpanzee iPSCs was not as stable as in

human iPSC lines generated at the same time using the same method (see ‘Materials and methods’

and Figure 1—figure supplement 5). Our use of episomal vectors circumvents this problem, and

more broadly the problems of both random exogenous gene reactivation and disruption of the host

genome through retroviral integration (Sommer et al., 2012).

More generally, while the sum total of primate PSC generation efforts so far has resulted in

a sizable number of lines being established from various donors and species, these have been

generated through various reprogramming protocols and source cell types. We have generated iPSCs

from a panel of seven individuals using a consistent protocol and cell type of origin. Given the panel

size, it is powerful enough to robustly detect inter-species differences in gene expression, splicing and

regulation. The fact that our panel contains both female and male lines also allows for future studies of

sex-specific differences in gene expression in various cell types. Indeed, we have previously shown that

this can be accomplished using as few as six individuals from each species (Blekhman et al., 2010).

Beyond its future applications, however, our panel has already yielded insights into the pluripotent

state in chimpanzees and humans. On the one hand, both at the transcriptional and epigenetic level,

our iPSCs are remarkably homogeneous both within and between species, significantly more so than

their precursors cells. This finding aligns with our current understanding of the reprogrammed

Figure 7. Continued

Figure supplement 4. Venn diagram showing overlap of genes identified as DE between iPSCs of the two species when we normalize the iPSC data

independently and alongside data from the precursors.

DOI: 10.7554/eLife.07103.033

Figure supplement 5. Venn diagram showing overlap of probes identified as DM between iPSCs of the two species under the full and reduced limma

models.

DOI: 10.7554/eLife.07103.034

Figure supplement 6. Normalized XIST expression values in 7 chimpanzee and human iPSCs.

DOI: 10.7554/eLife.07103.035

Figure supplement 7. Quantile-normalized methylation beta values at 8210 X-chromosome probes in 7 chimpanzee iPSCs and 7 human iPSCs.

DOI: 10.7554/eLife.07103.036

Figure supplement 8. Normalized methylation beta values at 168 assayable probes known to be subject to parental imprinting effects, fromMa et al. (2014).

DOI: 10.7554/eLife.07103.037
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pluripotent state as a complex, highly regulated state (Jaenisch and Young, 2008), deviations from

which are likely to result in loss of pluripotency and lineage commitment. Additional support for this

notion was provided by the strong overlap in H3K27me3 signal between the two species, especially in

known bivalent genes. It is remarkable that we have been able to observe this considerable conserved

chromatin signature despite the obvious confounding technical batch effect in these comparative data.

On the other hand, we were also able to identify over 4500 genes that are DE between human and

chimpanzee iPSCs, as well as over 3500 DMRs between the two species. These numbers are greater

than what has been previously observed in comparisons of other tissues across humans and

chimpanzees with similar sample sizes (Blekhman et al., 2008, 2010). We believe that the reasons for

this difference are likely to primarily stem from increased power to detect DE genes and DMRs in our

sample relative to previous work. Given the small amount of intra-species variability we observed in

RNA-seq and methylation relative to other tissues, we expect to have greater power to detect small,

statistically significantly inter-species differences that would have been missed by studies that

consider more variable tissue samples. This notion is supported by the fact that the fraction of genes

with log FC < 2 we detect as DE between human and chimpanzee iPSCs is greater than in other

comparison we have performed with any other tissue (Figure 4—figure supplement 2). Though small

in magnitude, we expect that a subset of these regulatory differences may be biologically relevant

(e.g., we find that inter-species regulatory differences in methylation levels are enriched in regions

associated with developmental processes; Supplementary files 4, 5).

We specifically highlighted an inter-species difference in REX1 expression levels. This gene is

considered an indispensible pluripotency marker in human and mouse PSCs, but our observations

suggest that it may not be the case in chimpanzees. Although only one chimpanzee iPSC line

expresses REX1, we were unable to identify any systematic differences between our human and

chimpanzee iPSCs that would indicate a reduction in pluripotency. We also examined REX1

expression levels in 73 human iPSC lines generated in-house from Caucasian individuals using the

Illumina HT12v4 array (Figure 6—figure supplement 3). All lines had PluriTest pluripotency scores

>20, yet 3 of 73 lines (4.1%) showed levels of REX1 expression that were indistinguishable from

background signal, suggesting that REX1 may not be expressed in these individuals despite their high

pluripotency scores. We also examined methylation status at the REX1 locus in previously published

human ESCs and iPSCs from Ziller et al. (2011), and found that although all ESC lines examined

exhibited consistent levels of low methylation at the REX1 promoter, human iPSC lines analysed in

exhibited either hemi- or hyper-methylated REX1 promoter regions (Figure 6—figure supplement 4).

In the absence of publicly available REX1 expression data from either of the hiPSC lines with

hypermethylated promoters we cannot be certain that the gene is not expressed in these lines, but the

combination of these findings with our observations above and previous literature suggest that REX1

may be important in regulation and maintenance of pluripotency in ESCs, but not necessarily so in iPSCS.

Additionally, in chimpanzees, the REX1 gene has undergone multiple deletions and insertions

relative to the human sequence, most significantly a 647 bp insertion in its first intron, and two

insertions in the 3′ UTR region of approximately 300 bp each that may disrupt the local regulatory

landscape; the gene has also been duplicated, with a second copy retrotransposed into chromosome

14; none of these changes are shared with gorillas or orang-utans. Although it is currently unclear

whether some or all of these changes are also present in the bonobo, these findings might explain why

we observed low or no REX1 expression more frequently in chimpanzees than in humans, and

suggests that the gene may not be necessary for maintaining pluripotency in the Pan lineage.

PSCs have been used to study developmental pathways in vitro (e.g., Paige et al., 2012; Rada-Iglesias

et al., 2012; Wamstad et al., 2012; Xie et al., 2013). Although optimization of existing differentiation

protocols will likely be necessary for application in the chimpanzee system, our panel of iPSCs makes it

possible to carry out comparative developmental studies between humans and chimpanzees, and

firmly test the hypothesis that changes in gene regulation and expression, especially during

development, underlie phenotypic differences between closely related species, especially primates

(Britten and Davidson, 1971; King and Wilson, 1975; Jacob, 1977; Carroll, 2005, 2008). In

addition, we should be able to recreate and test the effect of inter-species regulatory changes in the

correct cell type and species environment, enabling studies that cannot otherwise be performed in

humans and non-human primates. The use of panels of iPSCs including lines from both humans and

non-human primates will thus allow us to gain unique insights into the genetic and regulatory basis for

human-specific adaptations.
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Materials and methods

Isolation and culture of fibroblasts
All biopsies and animal care were conducted by the Yerkes Primate Research Center of Emory

University under protocol 006–12, in full accordance with IACUC protocols. Skin punch biopsies

(3 mm) were rinsed in DPBS containing Primocin (InvivoGen, San Diego, California) and penicillin/

streptomycin (Pen/Strep, Corning, Corning, New York) and manually dissected into 10–15 smaller

pieces. The tissue was digested in 0.5% collagenase B (Roche, Indianapolis, Indiana) for 1–2 hr until

cells were released from the extracellular matrix. Dissociated cells were pelleted by centrifugation at

250×g, and the supernatant was spun a second time at 700×g to pellet any cells that had not been

completely released from the extracellular matrix. Cell pellets were resuspended in a 1:1 mixture of

α-MEM and F12 (both from Life Technologies, Carlsbad, California) supplemented with 10% FBS (JR

Scientific, Woodlawn, California), NEAA, GlutaMAX (both from Life Technologies), 1% Pen/Strep, 64

mg/l L-ascorbic acid 2-phosphate sesquimagnesium salt hydrate (Santa Cruz Biotech, Dallas, Texas)

and Primocin. Cells were plated in a single well of a 6-well plate coated with 4 μg/cm2 human

fibronectin (BD Sciences, Franklin Lakes, New Jersey) and 2 μg/cm2 mouse laminin (Stemgent, San

Diego, California). Cultures were grown at 5% CO2/5% O2 until confluent and then split using 0.05%

trypsin. For routine passaging cells were cultured at 5% CO2 and atmospheric oxygen in primate

fibroblast media, which is the same as plating media but does not contain F12 base media.

Generation of retrovirally-reprogrammed iPSC lines (a failed attempt)
We initially attempted to generate lines by retroviral transduction through transfection with pMXs-

vectors encoding the human OCT3/4, SOX2, KLF4, L-MYC and NANOG sequences (Addgene

plasmids 17,217, 17,218, 17,219, 26,022 and 18,115) as well as vectors encoding the MSCV-VSV.G

envelope protein (Addgene plasmid 14,888) and MSCV gag-pol (Addgene plasmid 14,887). 15 μg of

each vector was transfected into 293FT cells (Life Technologies) using Lipofectamine 2000 (Life

Technologies) as directed by the manufacturer. We collected virus-containing supernatant from the

293FT cells 48 and 72 hr after transfection and immediately used this viral media to transduce

chimpanzee fibroblasts, alongside 10 μg/ml of polybrene (H9268 from Sigma Aldrich [St Louis,

Missouri]). To aid viral penetration, we centrifuged the cells at 1800 RPM for 45 min following each

transduction. 24 hr after the second transduction, we replaced the viral media with A-MEM + 10%

FBS, NEAA and Glutamax. Transduced fibroblasts were allowed to recover for a further 2 days and

then seeded on γ-irradiated, CF-1-derived MEF at a density of 10,000 cells/cm2, and maintained in

hESC media (DMEM/F12 supplemented with 20% KOSR, 0.1 mM NEAA, 2 mM GlutaMAX, 1% Pen/

Strep, 0.1 mM BME and 25 ng/ml human bFGF) supplemented with 0.5 mM valproic acid (Stemgent)

until day 14. We obtained iPSCs from 5 chimpanzees by using this protocol. Yet, when we performed

quality control and pluripotency checks on these lines we found that the exogenous transfected genes

were still expressed (Figure 1—figure supplement 5). Pluripotency in these lines could not be

maintained exclusively through endogenous expression. We discarded all 5 lines and proceeded with

a different reprograming strategy as detailed below.

Generation of episomally-reprogrammed iPSC lines
Fibroblasts were grown at 5% CO2/atmospheric O2 in primate fibroblast media until 70–80%

confluence and released by trypsinisation for transfection. 1.5 × 106 cells were transfected with 1.5 μg
per episomal vector containing the following genes: OCT3/4, SHp53, SOX2, KLF4, LIN28, and L-MYC

(Addgene plasmids 27,077, 27,078, 27,080 and 27,082; [Okita et al., 2011]). To boost the initial

retention of vectors following transfection, 3 μg of in vitro transcribed ARCA capped/polyadenylated

EBNA1 mRNA was cotransfected with the vectors (see below). Transfected cells were seeded at

15,000/cm2 on tissue culture plates precoated with 1 μg/cm2 vitronectin (Stemcell Technologies,

Vancouver, Canada). Cells were grown in Essential 8 media (made in house as previously described in

Chen et al. (2011)) without TGFβ1, supplemented with 0.5 mM sodium butyrate (NaB, Stemgent) and

100 nM hydrocortisone (Sigma Aldritch). Hydrocortisone was used between days 1–12, or until cell

density exceeded >70% confluence. At day 12, cells were detached using TrypLE (Life Technologies)

and replated at a density of 5000 cells/cm2 on cell culture dishes precoated with 0.01 mg/cm2 (1:100)

of hESC-grade Matrigel (BD Sciences) and grow in Essential 8 media without TGFβ1 or NaB. Colonies
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began to form at days 18–22 and were picked between days 24–30 onto dishes coated with

γ-irradiated CF-1 derived MEF and subsequently grown in hESC media (as described above)

supplemented with 100 ng/ml human bFGF (Miltenyi Biotech, Teterow, Germany). Clones were

routinely split using Rho-associated kinase (ROCK) inhibitor Y27632 (Tocris, Minneapolis, Minnesota)

at a concentration of 10 μM. Cells were migrated to 1:100 hESC Matrigel (BD Sciences) and

maintained on Essential 8 media after a minimum of 15 passages on MEF. Feeder free cells were

passaged using EDTA-based cell release solution as in Chen et al. (2011).

Generation of EBNA1 mRNA
To generate a template for in vitro transcription, an EBNA1 template was designed using the wild

type HHV4 EBNA1 as a reference sequence (NCBI accession YP_401677.1). The reference sequence

was modified by replacing the GA repeat region and domain B (amino acids 90–375) with a second,

tandem, chromatin-binding domain (domain A, amino acids 27–89), similar to what was done by

Howden et al. (2006). The nuclear localization signal (amino acids 379–386) was removed and

replaced with the sequence GRSS. Using the amino acid sequence as the starting template, the

corresponding DNA sequence was generated by reverse translation and optimized for expression in

human cell lines using Genscript’s OptimumGene codon algorithm. This sequence was synthesized by

Genscript (Piscataway, New Jersey) and provided in the pUC57 cloning vector; the EBNA1 coding

sequence was subcloned into pcDNA3.1+ (Life Technologies) using the restriction enzymes BamHI and

HindIII. Capped and poly(A) mRNA transcripts were generated using the mMESSAGE mMACHINE T7

ULTRA kit (Life Technologies) with 1 μg of BamHI linearized pcDNA3.1+EBNA1 as the template. The

plasmids encoding the wild type and modified EBNA1 sequences have been deposited to Addgene as

plasmid ID#s 59,199 and 59,198 for the wild type and modified sequences respectively.

iPSC characterization by immunocytochemistry
iPSC colonies were cultured on MEF for 4–6 days and fixed using PBS containing 4% PFA (Santa Cruz

Biotech) for 15 min at room temperature. After rinsing with PBS, fixed cells were blocked and

permeabilised for 1 hr in PBS containing 0.3% triton and 5% BSA. Primary antibodies: OCT3/4

(SC-5279), SOX2 (SC-17320), NANOG (SC-33759), SSEA-4 (SC-21704), and Tra-1-81 (SC-21706), all

from Santa Cruz Biotech, were diluted 1:100 in blocking solution. Fixed cells were incubated with the

primary antibody solution overnight on a rocker at 4˚C. After washing out the primary antibody

solution, fixed cells were incubated with secondary antibodies (labeled with either Alexa-488 or Alexa-

594, 1:400, Life Technologies) diluted in blocking for 1 hr on a rocker at room temperature. Nuclei

were counterstained using 1 μg/ml Hoechst 33,342 (ThermoFisher Scientific, Waltham, Massachus-

sets). All fluorescence imaging was conducted using an AMG EVOS FL (Life Technologies).

Quantitative PCR for endogenous and exogenous gene expression
RNA was extracted using Qiagen RNA miniprep columns from cell pellets collected from fibroblasts,

day 7 post transfection and feeder free (Matrigel and Essential 8) iPSC lines at passage 10 or higher

for both the retroviral and episomal reprogrammings; 1 μg of total RNA was reverse transcribed using

the Maxima first strand cDNA synthesis kit (ThermoFisher Scientific). Quantitative PCR was performed

using a 1:96 dilution of cDNA and SYBR Select master mix (Life Technologies) with both forward and

reverse primers at a concentration of 0.2 μM. Data was collected and analysed using the Viia7 (Life

Technologies). Primer sequences are shown in Supplementary file 2, exogenous gene expression melt

curves are shown in Figure 1—figure supplement 5.

Generation of embryoid bodies and immunofluorescence
Colonies growing on MEF were detached using Dispase/Collagenase IV (1 mg/ml each; both from Life

Technologies) in DMEM/F12 and grown as a suspension culture on low adherent plates using hESC

media without bFGF. After 1 week of suspension growth, cells were transferred to 12 or 24-well plates

coated with 0.1% gelatin and grown in DMEM supplemented with 20% FBS, 0.1 mM nonessential amino

acids, 2 mM GlutaMAX, 1% Pen/Strep and 64 μg/ml L-Ascorbic acid 2-phosphate sesquimagnesium salt

hydrate. Embryoid bodies were grown for 1–2 weeks prior to fixation and immunofluorescence staining.

Cultures were fixed and stained as described above using the following antibodies: AFP (1:200,

SC-130302, Santa Cruz Biotech), FOXA2 (1:200, SC-6554, Santa Cruz Biotech), α-smooth muscle actin (1:
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1500, CBL171, EMDMillipore, Billerica, Massachussets) and MAP2 (1:200, sc-20172 and sc-74420, Santa

Cruz Biotech).

Integration analysis
To test for genomic integration and residual retention of episomal plasmids, each iPSC line was migrated

to feeder free conditions and grown beyond passage 15 on hESC-qualified Matrigel (1:100 dilution, BD

Sciences) coated plates in Essential 8 media (Life Technologies). DNA was extracted from feeder free

cultures using DNeasy Blood and Tissue Kits (Qiagen, Valencia, California). PCR was performed using

100 ng of genomic DNA, an annealing temperature of 72˚C and 25 cycles using primers designed to

amplify a region common to all episomal vectors used (Supplementary file 2). Genomic DNA (100 ng)

isolated from day 7 cultures, and 1 pg of each episomal vector were used as positive controls. PCR

products were run on a 1% agarose gel and visualised using ethidium bromide.

Karyotyping
After 15 passages on MEF and hESC media, cells were migrated to 1:100 hESC Matrigel (BD Sciences)

and maintained on Essential 8 media for upwards of 6 passages. Feeder-free adapted cells were sent

to Cell Line Genetics Inc (Madison, WI) for karyotyping as described in Meisner and Johnson (2008).

Teratoma formation assays
In vivo developmental potential of the reprogrammed cell lines was examined. Monolayer iPSCs from

three chimpanzee lines were grown on Matrigel (1:100) in E8 medium (Life Technologies) and collected

by EDTA treatment (Life Technologies). Cells were counted and resuspended at a ratio of 1:1 cell volume

to Matrigel and kept on ice until the injection. 6-week-old CB17.Cg-PrkdcscidLystbg-J/Crl immunodeficient

male mice were obtained (Charles River Laboratories, Wilmington, Massachussets) and approximately

1 million iPSCs for each clone were injected into the testis-capsule. After 5–8 weeks teratomas were

isolated, weighed, measured, dissected, and fixed in 10% formalin. The specimens were embedded in

paraffin, stained with hematoxylin and eosin, and analyzed by a histopathologist. All animal work was

conducted under the approval of the Institutional Care and Use Committee of UCSD (Protocol# S09090).

In addition, live feeder free iPSC cultures maintained in Essential 8 media on Matrigel iPSCs from

C4955 (passage 15 + 7) were provided to Applied Stem Cell Inc. (Menlo Park, CA) for teratoma analysis

as previously described (Chen et al., 2012).

Species-of-origin identity of teratoma samples
DNA was extracted from frozen teratoma tissue using DNeasy Blood and Tissue Kits (Qiagen). For

teratomas derived from individual C4955, core sections were isolated from FFPE embedded

teratomas tissue using a 3 mm dermal punch tool; DNA was extracted from core samples using

a QIAamp DNA FFPE Tissue Kit (Qiagen). PCR was performed using universal mitochondrial

primers ([Kocher et al., 1989] Supplementary file 2) amplifying cytochrome b (Cytb, chimpanzee

reference sequence NC_001643:bp 14,233–14,598) or the 12S ribosomal gene (12S, NC_001643:

bp 484–915) with 250–500 ng of genomic DNA as the starting template. Two-step PCR was

conducted with an annealing temperature of 50˚C for 1 min and an extension step at 72˚C for

4 min for a total of 30 cycles. DNA was purified using a Wizard SV gel and PCR Clean-up kit

(Promega, Madison, Wisconsin); dye terminator cycle sequencing was conducted by the University

of Chicago Comprehensive Cancer Center using 60 ng of purified PCR template and 4 μM of either

the forward or reverse primer. Alignment to the chimpanzee, human (NC_012920) and mouse

(NC_005089) reference sequences was accomplished using CLC Main Workbench 6.9 (Qiagen) and

MUSCLE (Edgar, 2004).

Directed differentiation of chimpanzee iPSCs to hepatocytes and
cardiomyocytes
In order to demonstrate that chimpanzee iPSCs can be directly differentiated into other cell types, we

differentiated C2 iPSC into hepatocytes and C7 into cardiomyocytes using the published protocols of

Cheng et al. (2012) and Lian et al. (2013) respectively, with the following modifications: In both cases

we plated iPSCs at 0.35 × 106 cells/cm2 in 0.44 ml/cm2 and cultured them in Essential 8 media 24 hr

prior to initiating all differentiations. To increase hepatocyte differentiation efficiency, 1 μM of sodium
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butyrate was added during the first 24 hr of differentiation. After 24 days of differentiation, cells were

immunostained as described above with a primary antibody for albumin (1:200, A6684, Sigma Aldrich;

Figure 2—figure supplement 2).

After 10 days of differentiation, differentiated C7 cultures were enriched for cardiomyoctes by

culture in RPMI based media without glucose supplemented with 5 mM sodium DL-lactate for 10 days

as described previously (Tohyama et al., 2013; Burridge et al., 2014). After day 20 purified

cardiomyocytes were cultured in media lacking glucose supplemented with 10 mM galactose (Rana

et al., 2012). After 25 days of cardiac differentiation, we characterized calcium flux in and out of iPSC-

derived cardiomyocytes by treating cultures with 5 μM Fluo-4 AM (F-14217, Life Technologies) for

15 min, washing cultures once and imaging them with an AMG EVOS FL microscope (Video 1).

Microarray genotyping and PluriTest
RNA from passage ≥15 iPSCs was extracted using the Qiagen RNeasy kit according to the

manufacturer’s instructions. Quality of the extracted RNA was assessed using an Agilent (Santa Clara,

California) Bioanalyzer 2100 (RIN scores for all samples ranged from 9.9 to 10), and RNA was

processed into biotinylated cRNA and hybridized to the HT12v4 array using standard Illumina (San

Diego, California) reagents as directed by the manufacturer. Arrays were scanned using an Illumina

HiScan, and data processed using Illumina’s GenomeStudio software. Using these data, we carried

out PluriTest as previously described (Müller et al., 2011). Additionally, we mapped all detected

HT12v4 probe sequences (n = 46,297) to the chimpanzee (panTro3) genome using BWA 0.6.3 (Li and

Durbin, 2009). Probes that mapped to a single genomic location with no mismatches were retained (n

= 21, 320, 46.2% of all probes) for the analysis that was restricted only to the chimpanzee lines.

When we considered data from human and chimpanzee iPSCs together, without excluding probes

based on sequence matches to the chimpanzee genome, all chimpanzee lines in the panel had

pluripotency scores slightly below the pluripotency threshold (Figure 3—figure supplement 1, lighter

points). However, low pluripotency scores could stem from differences in our ability to estimate gene

expression levels in the chimpanzee compared to the human due to attenuated hybridization caused by

sequence divergence (Gilad et al., 2005). Indeed, when we subset the array to retain only those

detected probes that map to the chimpanzee genome with no ambiguity or mismatches, all chimpanzee

lines have pluripotency scores greater than the pluripotency threshold value of 20 (Figure 3—figure

supplement 1, darker points).

RNA sequencing and differential expression testing between iPSCs
50 bp single-end RNA sequencing libraries were generated from RNA extracted from 7 chimpanzee

and 7 human iPSC lines using the Illumina TruSeq kit as directed by the manufacturer, as well as from

their precursor fibroblast or LCL cell lines. All iPSC samples were multiplexed and sequenced on four

lanes of an Illumina HiSeq 2500; while the precursor cell lines were multiplexed and sequenced on six

lanes of the same sequencer. We generated a minimum of 28,010,126 raw reads per sample

(Supplementary file 6), and confirmed the raw data were of high quality using FastQC (available

online at http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). We mapped raw reads to the

chimpanzee (panTro3) or human (hg19) genome as appropriate using TopHat 2.0.8 (Trapnell et al.,

2009), allowing for a maximum of 2 mismatches in each read. Due to the relatively poor annotation of

the chimpanzee genome and to prevent biases in expression level estimates due to differences in

mRNA transcript size and genetic divergence between the two species, we limited the analysis to

reads that mapped to a list of orthologous metaexons across 30,030 Ensembl genes drawn from hg19

and panTro3, as in Blekhman et al. (2010). Following mapping, gene level read counts were

generated using featureCounts 1.4.4 as implemented in Subread (Liao et al., 2013). Due to mapping

biases between human and chimpanzee ribosomal proteins and pseudogenes, we removed all genes

associated with the Gene Ontology Cellular Compartment category ‘ribosome’ (GO:0005840, n =
141) and all annotated pseudogenes in Ensembl release 65 (n = 3170, December 2011, the oldest

available archival version of Ensembl) from the data at this point.

We considered two normalization approaches in our analysis. In one instance, we examined only

RNA-sequencing data from chimpanzee and human iPSCs, and retained 12,171 genes with at least 4

observations in one of the two species of log2 CPM > 1. CPM were then loess normalized by species

within individuals with voom (Law et al., 2014). As the orthologous genes are not constrained to be

Gallego Romero et al. eLife 2015;4:e07103. DOI: 10.7554/eLife.07103 19 of 29

Tools and resources Developmental biology and stem cells | Genomics and evolutionary biology

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://dx.doi.org/10.7554/eLife.07103


the same length in both species, we computed RPKM for each gene before carrying out any inter-

species comparisons. We then used the R/Bioconductor package limma 3.20.3 (Smyth, 2004) to test

for differential expression in our RNA-seq data, with a model that included only a species effect.

Finally, we tested for an enrichment of GO categories amongst DE genes using the R package topGO

2.16.0 (Alexa et al., 2006). These normalised values were used only to identify genes DE between

iPSCs of the two species.

For the dataset containing RNA-sequencing data from iPSCs and their precursors, we again only

retained 13,147 genes with at least 4 observations in one of the four groups (chimpanzee iPSCs,

chimpanzee precursors, human iPSCs or human precursors) of log2 CPM > 1. Gene counts were then

loess normalised within individuals by tissue, after correcting for the lack of independence within

different tissues from the same individual, through the function corfit. As above, we then computed

species-specific RPKM values, and used limma and topGO to test for differential expression and GO

category enrichment, respectively. In this instance, we used a model design with 6 parameters for the

main effect (chimpanzee iPSC, human LCL-derived iPSC, human fibroblast-derived iPSC, chimpanzee

fibroblast, human LCL and human fibroblast) and no additional covariates.

To confirm that our conclusions are robust with respect to the choice of normalization procedure,

in both cases, we also tried a variety of other normalization schemes, including correcting for %GC

content as in Risso et al. (2011), none of which had a substantial effect on the final results

(Supplementary file 6). Finally, we built neighbor joining trees using Manhattan distances calculated

from RPKM values at all 13,147genes using the nj function in the R library ape (Paradis et al., 2004).

All analyses were performed at a false discovery rate (Benjamini and Hochberg, 1995) threshold of

1% unless otherwise noted, using R 3.1.0 (R Development Core Team, 2013) and Bioconductor 2.14

(Gentleman et al., 2004).

DNA methylation arrays
To analyze DNA methylation, we extracted DNA from all chimpanzee and human iPSC lines described

above, as well as from the source fibroblast or LCLs. In all cases, 1000 ng of genomic DNA were

bisulphite-converted and hybridized to the Infinium HumanMethylation450 BeadChip at the University

of Chicago Functional Genomics facility as directed by the manufacturer. Since the probes on the

array were designed using the human reference genome, we followed the approach described in

Hernando-Herraez et al. (2013) to compare humans and chimpanzees. We retained those probes

that had either a perfect match to the chimpanzee reference genome, or had 1 or 2 mismatches in the

first 45 bp but no mismatches in the 3′ 5 bp closest to the CpG site being assayed. We also removed

all probes that contained human SNPs (MAF ≥0.05) or chimpanzee SNPs (MAF ≥0.15) within the last 5

bp of their binding site closest to the CpG being assayed. Within each individual, probes with

a detection p > 0.01 were excluded. This resulted in the retention of 335,307 autosomal probes, and

an additional 8210 X chromosome probes, which we normalized and analyzed separately by sex. In all

cases we performed a two-color channel signal adjustment, quantile normalization and β-value
recalculation as implemented in the lumi package (Du et al., 2008). Because the HumanMethylation450

BeadChip contains two assay types which utilize different probe designs, we performed a BMIQ (beta

mixture quantile method) normalization (Teschendorff et al., 2013) on the quantile-normalized

autosomal data set. We did not perform this step on the X chromosome data, due to its methylation

patterns. We built neighbor joining trees using Manhattan distances at all 335,307 probes using the nj

function as above.

In order to identify DM probes we used an identical approach to that described above for the

identification of DE genes. First, we identified probes that were DM between the iPSCs of both species

using limma by using a reduced data set and model containing only data from the iPSCs themselves.

Then, we fit a linear model to the data using limma with 6 parameters corresponding to the 6 tissue/species

combinations in the data, classifying probes as DM at an FDR of 1%. As with the expression data, the

reduced model has more power to identify DM probes between the two iPSC groups than the full

model; however, there is great concordance between the two sets of results (Figure 7—figure

supplement 5). We excluded all probes with mean β inter-group differences <0.1 in order to group

DM probes into DMRs, which we define as 2 or more DM probes separated by <1 kb, with the

additional requirement that the effect be in the same direction in all DM probes within the region.

Finally, to examine the content of these DMRs, we used annotation files for the HumanMethylation450
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Bead Chip provided by the manufacturer and discarded all DMRs associated with either multiple or no

genes. We tested for enrichment of GO BP categories amongst the genes contained in the DMRs by

using the R package topGO 2.16.0 (Alexa et al., 2006), using as a background set all genes in which it

is theoretically possible to detect DMRs.

H3K27ac and H3K27me3 ChIP-seq data
ChIP-seq assays were performed as previously described (Schmidt et al., 2009), with slight

modifications. Specifically, approximately 60 million iPSCs from three chimpanzee individuals (C2, C5

and C7) were cross-linked with 1% formaldehyde for 10 min. Cells were lysed and chromatin sheared

with a Covaris S2 (settings: 4 min, duty cycle 10%, 5 intensity, 200 cycles per burst in 4 6 ×
16 mm tubes per individual). H3K27ac- and H3K27me3-enriched regions were isolated using 5 μg of

either H3K27ac antibody (ab4729, Abcam, Cambridge, MA, USA) or H3K27me3 antibody (07–449,

Millipore, Billerica, MA, USA). ChIP and input DNA from each individual were end-repaired, A-tailed

and ligated to Illumina Truseq sequencing adapters before 18 cycles of PCR amplification. 200–300 bp

DNA fragments were selected for sequencing. Input libraries were multiplexed and sequenced on one

lane of an Illumina HiSeq2500 using the rapid run mode, ChIP libraries were multiplexed and

sequenced on three lanes of an Illumina HiSeq2500 using the rapid run mode.

For comparison purposes, we downloaded ChIP input, H3K27ac and H3K27me3 data from 3 human

iPSC lines (iPS 6.9, iPS-18a, and iPS.20b, all of them release 5) generated by the Roadmap Epigenomics

Consortium (Roadmap Epigenomics Consortium et al., 2015) from the NIH GEO database

(Supplementary file 6). Human and chimpanzee samples were mapped to either hg19 or panTro3 using

BWA 0.7.9 (Li and Durbin, 2009); reads that mapped outside chromosomes 1–22 + X were discarded, as

were reads that did not map uniquely to a single genomic region with less than 2 mismatches, or reads

that were marked by Picard (http://picard.sourceforge.net) as originating from PCR duplicates.

After mapping and filtering, we used MACS 1.4.4 (Zhang et al., 2008) and RSEG 0.4.4 (Song and

Smith, 2011) to identify peaks in the H3K27ac and H3K27me3 data respectively. Our analyses in this

section follow those of Zhou et al. (2014). Briefly, for MACS, we specified an initial p-value threshold

of H3K27ac, 0.001, and used each line’s ChIP input file for comparison. For RSEG, we used the

‘rseg-diff’ function to compare H3K27me3 enrichment against each individual’s ChIP input file, with

the recommended 20 maximum iterations for hidden Markov model training. We then filtered

enriched regions or peaks identified by either program by retaining only those that overlapped

a previously defined set of 200 bp orthologous windows (Zhou et al., 2014), where at least 80% of

bases are mappable across species using liftOver. We define mappability as the ability of each 20 bp

kmer beginning in that window to be uniquely mapped to the genome.

To ensure that sequence divergence did not confound our analyses, we mapped each identified

region or peak in humans to the chimpanzee genome, and vice versa, using liftOver, and excluded

regions and peaks where 80% or greater of bases in the enriched peaks or regions failed to align to

the other genome. To further minimise the number of false positive results in our interspecies

comparison (due to incomplete power), we applied a two-step cutoff (Cain et al., 2011) to the list of

enriched regions and peaks. For H3K27ac, we retained all peaks that were identified with a first,

stringent cutoff of FDR < 5% in one species and a, second, relaxed cutoff of FDR < 15% in the other,

as in Zhou et al. (2014). Because RSEG does not report FDR values for enriched regions, we used

each region’s domain score, which is the sum of the posterior scores of all bins within the domain, and

set a first, stringent cutoff of 20 in one species, and a second, relaxed threshold demanding only that

the region be classified as ‘enriched’ by RSEG, without a specific score requirement.

Having done this, we integrated data from multiple peaks (when present) to generate a gene-level

metric of ChIP signal in each individual. Specifically, we computed an enrichment score for each histone

mark in each individual in a set of previously defined 26,115 orthologous TSSs (Zhou et al., 2014) by

dividing RPKM values at each TSS at gene i for either mark minus RPKM values in TSS at gene i for ChIP

input, all of it over the genome-wide average RPKM for either mark minus the genome-wide average RPKM

for ChIP input. Given the way in which we have defined this enrichment score, a score >0 indicates those

genes where we detected more histonemark reads than input reads, while a score >1 indicates a gene with

an excess of histone mark reads greater than what we would expect given the genome-wide distribution.

Because 8 of the 22 genes in the list of pluripotency master genes used to generate Figure 5D

do not have clearly defined orthologous TSSs, we also examined whether MACS identified peaks in
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the 2 kb ± TSS for all 22 genes and their orthologous position in the chimpanzee genome, identified

solely through liftOver—that is, without taking into account whether there is evidence for a TSS at that

position in the chimpanzee genome. To generate Figure 5—figure supplement 3, we simply asked

how many of the 22 genes had at least 1 peak at an FDR < 5% in at least 1 individual in either species,

regardless of orthology and sequence conservation.

We note that since different labs produced the human and chimpanzee data, we expect

a considerable technical batch effect to be completely confounded with species annotation. Given this

study design, we expect the technical batch effect to result in the appearance of inter-species

differences; yet, our goal is to demonstrate similarity across species. Thus, our conclusions (of high

overlap across species), are conservative with respect to the technical batch effect.

REX1 expression and function
To examine the possible consequences of reduced expression of REX1 in chimpanzee iPSCs, we

retrieved genes that responded to a REX1 knockdown in mESCs from Supplementary files 2, 3 of

Scotland et al. (2009) and converted Affymetrix MG 430 2.0 probe IDs to ENSM and ultimately to

orthologous ENSG identifiers using Biomart release 66 (to control for deprecated identifiers). Because

Masui et al. (2008); Scotland et al. (2009); Son et al. (2013) have highlighted REX1’s function in

controlling cell cycle progression, glycolysis and cellular differentiation, we additionally retrieved

genes associated with these terms to generate Figure 6C as follows: The core set of pluripotency TFs

are those described by Orkin and Hochedlinger (2011) and Ng and Surani (2011). Cell cycle and

glycolysis categories contain all genes associated with GO BP:0007049 and BP:0006096 respectively,

whereas cell fate contains genes associated with any GO term that contains the words ‘ectoderm’,

‘mesoderm’ or ‘endoderm’. We also examined individual examples of cell fate differentiation:

CNS development genes are associated with BP:0007417 or any of its offspring; cardiovascular system

development genes are associated with BP:0072358 or any of its offspring; hepatobiliary system

development genes are associated with BP:0055123 or any of its offspring. Confidence intervals

around the null hypothesis were generated independently for each category from 100,000

permutations in R.

Finally, to compare our data with a previously published set of chimpanzee and bonobo iPSC lines

(Marchetto et al., 2013b), we downloaded fastq files from GEO (Series GSE47626) and mapped only

the first mate from all reads using the same approach as above, but allowing 4 mismatches in the

entire 100 bp read. We normalised expression estimates jointly with our own cell lines to generate

Figure 6—figure supplement 2, and used all data points from a given species, irrespective of origin,

to generate boxplots.

To generate figure 6—figure supplement 3, we took Illumina HT12v4 array data from 73 human

iPSC lines generated in house and calculated Pluritest pluripotency and novelty scores as above, using

the full probe set. Independently, we normalised and background-corrected the raw array intensities

using the lumiExpresso function in lumi and extracted expression values for all 73 human iPSC lines at

the single array probe associated with REX1.

In order to examine REX1 methylation levels in other human PSCs, we obtained Infinium

HumanMethylation450 BeadChip for the lines reported in Ziller et al. (2011) from the authors, and

normalised it jointly with our own data as described above. We then extracted normalised methylation

β levels at the 13 probes that map to REX1 in both chimpanzees and humans to generate

Figure 6—figure supplement 4.

Other indicators of genomic stability
Finally, we assessed two broad indicators of stability in our chimpanzee lines. All iPSC lines derived

from female chimpanzees, and 3 of 4 lines derived from human females, show strong evidence for

elevated expression of XIST relative to male lines (FDR-adjusted p = 0.0010; Figure 7—figure

supplement 6) and maintenance of X-chromosome inactivation during pluripotency. X-chromosome

methylation patterns in females corroborate these observations, with the majority of probes mapping to

the X-chromosome in our data being either hemimethylated (0.2 < β < 0.8) or hypermethylated (β ≥ 0.8) in

females but not in males (Figure 7—figure supplement 7). We also used a list of 168 imprinted probes

fromMa et al. (2014) to check for maintenance of genomic imprinting after reprogramming. We find that

the majority of imprinted loci remain hemimethylated following reprogramming in both human and
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chimpanzee iPSC lines (Figure 7—figure supplement 8). However, we identify two sets of probes that are

consistently hypermethylated in pluripotent lines but were hemimethylated in their precursor cells. The first

cluster contains 5 probes that are hypermethylated across both chimpanzee and human iPSCs; these

probes are associated with the genes KCNK9, ANKRD11 andMKRN3. The second cluster is comprised of

21 probes that are hypermethylated in all human iPSCs but only 2 chimpanzee iPSCs in our data, and is

associated with the gene PEG3-ZIM2, which has been previously shown to be abnormally methylated in

both hESCs and hiPSCs (Lund et al., 2012).

Data Access
All novel RNA-sequencing, DNA methylation and ChIP-seq data are available at the GEO under

SuperSeries number GSE61343. Additionally, a table with p-values for all hypothesis testing performed

using the methylation data (by probe) is available on the Gilad lab website (http://giladlab.uchicago.edu/

Data.html).

All chimpanzee iPSC lines described in this publication are available fully and without restrictions to

other investigators upon request to the corresponding authors.
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