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Data-driven insights can transform
women’s reproductive health

Check for updates

Tomiko T. Oskotsky1 , Ophelia Yin2, Umair Khan1, Leen Arnaout1 & Marina Sirota1,3

This perspective explores the transformative potential of data-driven insights to understand and
address women’s reproductive health conditions. Historically, clinical studies often excludedwomen,
hindering comprehensive research into conditions such as adverse pregnancy outcomes and
endometriosis. Recent advances in technology (e.g., next-generation sequencing techniques,
electronic medical records (EMRs), computational power) provide unprecedented opportunities for
research in women’s reproductive health. Studies of molecular data, including large-scale meta-
analyses, provide valuable insights into conditions like preterm birth and preeclampsia. Moreover,
EMRs and other clinical data sources enable researchers to study populations of individuals,
uncovering trends and associations in women’s reproductive health conditions. Despite these
advancements, challenges such as data completeness, accuracy, and representation persist. We
emphasize the importance of holistic approaches, greater inclusion, and refining and expanding on
howwe leveragedata andcomputational integrative approaches for discoveries so thatwecanbenefit
not only women’s reproductive health but overall human health.

Medicine involves evidence from research to guide its practice, but
historically, clinical studies routinely excluded women for reasons
including hormonal variability, potential harm to fetuses, and the belief
that findings from research on men could be extrapolated to women1.
These rationales and assumptions have hindered the study of how
conditions like heart disease, diabetes, and Alzheimer’s Disease may
affect women differently than men, as well as the study of conditions
associated with women’s reproductive health, including adverse preg-
nancy outcomes, infertility, preterm birth (PTB), pre-eclampsia,
recurrent pregnancy loss, endometriosis, adenomyosis, fibroids, and
others1,2. In addition, representation of women in clinical trials has been
traditionally lacking. Policy change is gradually resulting in improved
representation of women in clinical trials3; nevertheless, research on
women’s health conditions, particularly women’s reproductive health,
remains underfunded and underprioritized4–8.

With advances in technology over time, ever-growing amounts of data
have become available for basic science and translational research, such as
molecular measurements—genomics, bulk and single-cell transcriptomics,
proteomics, and also epidemiological and clinical data, including electronic
medical records, clinical notes, images, and clinical trial data. Moreover,
significantly greater computational power has allowed faster processing and
analysis of large amounts of data. These advances provide tremendous

opportunities to investigate amyriad of scientific questions in order tobetter
understand the disease, discover novel diagnostics and therapeutics, make
strides in precision medicine and more within many areas, including
reproductive health sciences and women’s health, more broadly.

The advent of next-generation sequencing techniques and public data-
sharing repositories have led to vast amounts of molecular data becoming
widely available in recent years, enabling numerous studies and meta-
analyses to gain insights into women’s health conditions (Fig. 1). For
example, transcriptomics analyses have helped to enhance our under-
standing of endometriosis, a disorder affecting approximately 10% of
women with pelvic pain and/or infertility whose diagnoses are made on
average a decade after onset of their pain9. A study of eutopic endometrial
transcriptomics data leveraging whole tissue deconvolution and single-cell
RNA sequencing (scRNAseq) analytic techniques shed light into the
immune as well as non-immune cells that most likely contribute to the pro-
inflammatory nature associated with this disorder10. This endometrial
expression data has been used to query the repository of drug expression
data to identify and validate therapeutic candidates to treat endometriosis
based on expression reversal. Fenoprofen, a non-steroidal anti-inflamma-
tory drug (NSAID) rarely prescribed for endometriosis, was identified as a
top candidate and tested in an animal model of endometriosis, which
demonstrated its ability to successfully alleviate endometriosis-associated
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vaginal hyperalgesia11.With regard to PTB, a condition that affects ~10% of
infants born each year and is the leading cause of infant morbidity and
mortalityworldwide12, ameta-analysis ofmaternal and fetal transcriptomics
data found that immune signals are largelymisregulated inwomenwho end
up delivering preterm with a reversed signal observed in babies13. This
maternal expression signaturewas further used to query a repository of drug
expression data to identify and validate therapeutic candidates to prevent
PTBbasedon expression reversal. The study focused its validation efforts on
lansoprazole, a proton-pump inhibitor, which has a strong reversal score
and a good safety profile. Lansoprazole was tested in an animal inflam-
mation model using LPS, which showed a significant increase in fetal via-
bility compared with LPS treatment alone14.

There are a number of large-scale genetics studies to explore genomic
loci associated with PTB, including a landmark study by Zhang et al., which
consisted of 43,568 women of European ancestry using gestational duration
as a continuous trait and term or preterm birth as a binary outcome15. In the
discovery and replication data sets, four loci (EBF1, EEFSEC, AGTR2, and
WNT4) were significantly associated with gestational duration, and func-
tional analysis showed that an implicated variant in WNT4 alters the
binding of the estrogen receptor. To probe the role of environmental
exposures in pregnancy outcomes, an analysis of 590matchedmaternal and
cord blood samples (total 295 pairs) using non-targeted analysis (NTA)was
able to examine the differences in chemical abundance between maternal
and cord blood samples, hypothesizing which are able to cross the
placenta16. This has inspired further large-scale integrative analyses of
whole-genome sequences, RNAseq, and DNAmethylation data to identify
genomic variants and biomarker genes associated with PTB, such as

Knijnenburg et al.’s study of 270 PTB and 521 control family trios17. In this
study, they identified 72 candidate biomarker genes for very early PTB,
associated with growth signaling and immunity-related pathways such as
Notch1 and IFN-γ signaling. In addition, they identified PTB-associated
genes RAB31 and RBPJ from all three data modalities.

In the microbiome space, there has been increased interest in the past
few decades to characterize microbiome profiles across body sites in the
context of pregnancy outcomes and identify specific microbes that can be
associated with PTB. A meta-analysis of vaginal microbiome 16S rRNA
sequencing data from five different studies confirmed that multiple known
bacteria (e.g. Atopobium spp. and Prevotella spp.) and some novel organ-
isms (Clostridium sensu stricto andOlsenella) are associated with PTB, and
determined that diversity in the composition of the microbiome early
during pregnancy was associated with PTB18. A study by Huang et al.
integrated cross-sectional and longitudinal vaginal microbiome data from
12 previously published datasets and leveraged machine learning (ML)
models to predict PTB from vaginal microbiome compositions, showing
that the vaginal microbiome is a strong predictor of early PTB19.

A microbiome project led by our team applied the novel technique
MaLiAmPi20 to aggregate and harmonize vaginal microbiome 16S rRNA
sequencing data from a total of 11 different studies to see if PTB could be
successfully predicted frommicrobiome data. The ability to harmonize 16S
data across various studiesmarks amajor contribution to the field, allowing
researchers to collate larger datasets and askmore advancedquestions about
the effect of other factors, such as race and sampling time, on PTB. A
crowdsourcing strategy in the form of a DREAM challenge invited the
computational and scientific communities to develop and apply ML

Fig. 1 | Data-driven approach to women’s health. This diagram showcases a number of types of data that can be leveraged to improve women’s health research, including
genomics, transcriptomics, proteomics, microbiome, sociocultural, environmental exposures, EMRs and imaging. Created with BioRender.com.
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algorithms using this vaginal microbiome data to predict PTB. Model
performance was assessed by challenge organizers using a held-out vali-
dation dataset not available to challenge participants. Over 300 individuals
engaged in this challenge, and top-performing models from this challenge
achieved excellent prediction performance with an area under the receiver
operator characteristic (AUROC) curve of up to 0.87. Moreover, features
such as alpha diversity, VALENCIA community state types, and microbial
composition were found to be important for the top-performing models21.
The above serves as a model for the translation of both new and publicly
available molecular data into clinically relevant predictive models and a
better understanding of the treatment and prevention of PTB. Moreover,
studies are expanding beyond the associations betweenPTB and the vaginal
microbiome: for example, DiGiulio et al. studied the dynamics of vaginal,
distal gut, saliva, and tooth/gum microbiota throughout pregnancy in PTB
vs. TB cohorts22. In addition, other cohorts and studies have been estab-
lished, supplementing vaginal microbiome data with investigations of oral
and gut microbiome changes, among other microbiomes, in PTB vs. TB
pregnancies23,24. Advancements in genomic sequencing, such as whole-
genome shotgun sequencing, allow scientists to go beyond ecological
community characterization in PTB-associated microbiomes, exploring
species-level genetic profiles and trends that may be associated with PTB.
Liao et al. introduced the term “microdiversity” to describe genomic
molecular diversity in their study that explored how evolutionary processes
drive mutagenesis, nucleotide diversity, and antimicrobial resistance in
specific species and in the vaginal microbial ecosystem25.

Beyond preterm birth, other reproductive health conditions have
gained greater understanding from analyses of molecular data, including
preeclampsia. The pregnancy-specific hypertensive disorders of pre-
eclampsia, severe preeclampsia, and eclampsia affect ~6% of the US
population and confer significant obstetric morbidity and mortality26.
Efforts to find accurate diagnostic tools, preventative measures, and ther-
apeutic treatments for preeclampsia have been elusive in part due to het-
erogeneity in its clinical presentation. Recently, computational approaches
have made great strides in differentiating subtypes of preeclampsia using
transcriptional analyses, effectively grouping the disorder into maternal,
immunologic, and canonical groups based on gene expression27 as well as
early (before 34weeks gestation) vs. late (at or after34weeks gestation) onset
preeclampsia28. Another recent study identified 946 unique differentially
expressed genes in preeclampsia cited by prior microarray studies, defined
the “ignorome”, which included 445 candidate genes that had never been
experimentally explored, and utilized a biomedical knowledge graph to
reveal 53 clinically relevant and biologically actionable mechanistic
associations29. As technology has advanced from large chip microarray to
bulk RNA sequencing and now to single-cell RNA sequencing, so too has
our ability to develop greater granularity into the disorder. Most recently,
immune profiling of peripheral blood mononuclear cells in preeclampsia
and single-cell analyses of preeclampsia placentas offer mechanistic insight
into individual cell-type contributions to the disorder30, lending hypotheses
that can be tested in cell culture or animal models of preeclampsia. Taken
together, the approaches demonstrate our ability to leveragemolecular data
to better understand the nature of this complicated condition.

A growing amount of clinical data has become available in this mil-
lennium since 2004, when the Bush administration outlined the Health
Information Technology plan to assure Americans would have electronic
health records to enable improved quality, affordability, and efficiency of
health care31, and 2009 when the Obama administration prioritized and
financially incentivized the transition fromwritten todigitalmedical records
as part of the Health Information Technology for Economic and Clinical
Health (HITECH) Act32. Like written medical records, electronic medical
records (EMR) capture clinical data on patient populations, including
demographics, diagnosis codes, medication orders, and laboratory tests for
patient care purposes. However, unlike their written counterpart, electronic
records can be more readily de-identified and analyzed. Together with
advanced computational approaches, researchers have been able to leverage
billions of data points on millions of patients from sources such as EMRs,

registries, and claimsdatabases for clinical and translational research.Access
to de-identified health records of individuals is currently limited and can be
expensive to acquire through commercial sources. The availability of EMR
data currently tends to be restricted to those who have affiliations with
healthcare institutions, although there are efforts to have health records data
available more broadly to those outside these settings33.

Analyses of EMRs have provided critical information about the inci-
dence and prevalence of women’s health conditions and revealed associated
diagnoses. With respect to endometriosis, EMR studies have delivered new
insights across all these fronts. A decade-long retrospective cohort study
completed using EMR found that the incidence rate of endometriosis
declined from 2006 to 2015 while the frequency of chronic pelvic pain
diagnoses increased, indicating a potential shift in diagnosis patterns or a
relative change in the percentage of patients with endometriosis-associated
conditions34. Another study investigating the validity of self-reported
endometriosis by comparing it against medical record data found that self-
reported diagnoses were reasonably accurate, ranging from 72% to 95%
concordance across four international cohorts35. Towards phenotypic
efforts, an analysis of medical record data from several hundred patients
found a number of composite “pointers”, such as the onset of pain and
menstrual symptoms within the same year, as significantly correlated with
endometriosis years before an official diagnosis36. Moreover, when the
COVID-19 global pandemic arose and dramatically changed clinical
practice as well as the health of a population, researchers were able to
promptly explore EMRs and investigate how the pandemic impacted
women’s health. As pregnancy was a concern for being a risk factor for
severe COVID-19, one cohort study analyzed EMRs of over 20,000 women
from 82 healthcare centers across the U.S. during the first several months of
the pandemic and found no difference in the risk of severe COVID-19 or
mortality in pregnant versus non-pregnant women37. Another study
explored pregnancy-related complications and maternal death in a
healthcare database of 463 hospitals, with 849,544 women who were
pregnant before the pandemic and 805,324 women who were pregnant
during the pandemic. This study found that while the rates of several out-
comes, including preterm birth, fetal deaths, and stillbirths, were unchan-
ged, there were increases in maternal mortality during delivery
hospitalization, pregnancy-related hypertensive disorders (i.e., gestational
hypertension, pre-eclampsia, and eclampsia), and hemorrhage during the
pandemic comparedwith before38.With regard topreventive care, the effect
of COVID-19 stay-at-home orders on the rate of cervical cancer screening
tests was explored in a large EMRdatabase of nearly 1.5millionwomen that
found that cervical cancer screening rate decreased significantly by ~80%
during the lockdown compared to the year before the pandemic but
returned to near baseline levels after the stay-at-home orders were lifted39.
EMRs have also been leveraged to study the effects of various therapeutics in
the context of pregnancyoutcomes. For instance, a recent study explored the
potential effects of serotonin selective reuptake inhibitor (SSRI)medications
for the treatment of depression, which have been previously associated with
PTB. This retrospective cohort study utilizing a sizeable primary care EHR
dataset that included 216,070 deliveries of 176,866 patients over a 23-year
period and a large-scale propensity scorematchingmethod that included all
demographic and clinical covariates found that the risk of PTB is associated
more so with depression rather than treatment with antidepressants40.
While some previous observational studies found associations between
exposure toantidepressants duringpregnancy and increased riskofPTB41,42,
the findings from this larger observational study could provide hope for
those concerned about continuing antidepressant therapeutic regimen
duringpregnancy andmotivate additional studies, particularly clinical trials,
for further investigation. EMR data have also been used in efforts to predict
outcomes of interest. One EMR-based study successfully leveraged the
records of over 35,000 deliveries and found that when machine learning
models were applied to this data, the models could not only successfully
predict singleton PTB but outperform comparable models trained using
only known PTB risk factors. Moreover, the prediction models were vali-
dated on a cohort of nearly 6000deliveries fromadifferent healthcare center
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with accuracy of the models maintained in this independent cohort43. Of
course, there are many limitations to leveraging EMR data, including data
missingness. Nonetheless, it is an incredible opportunity to leverage real-
world patient data to impact disease diagnostics and therapeutics, as
demonstrated by the examples above, especially in the area of women’s
reproductive health.

Other sources of data have been investigated to better understand
women’s reproductive health conditions, including patient registries and
environmental exposure databases. Huang et al. linked the birth cohort file
maintained by the California Office of Statewide Health Planning and
Development across 1.8 million births and the CalEnviroScreen 3.0 dataset
from California Communities Environmental Health Screening Tool and
found an association between Pollution Burden, particulatematter≤2.5 μm
(PM2.5), and DrinkingWater Scores and PTB. Additional findings suggest
that certain drinking water contaminants, such as arsenic and nitrate, are
associated with higher rates of PTB in California44.

There is great potential in the landscapeof pretermbirth, preeclampsia,
endometriosis, and other women’s reproductive health disorders and the
utility of molecular, clinical, and other data. Advanced computational
models, machine learning approaches, and drug treatment identification
enable researchers and clinicians to gain a better understanding and
improve outcomes for these conditions. However, there are some limita-
tions that should be recognized. Public data often suffers from incomplete
and sometimes inaccurate meta-data. The populations that are captured in
these datasets are often not representative of the general population.
Therefore, we need data collection efforts to prioritize having an adequately
broad representation of people from different backgrounds to reduce dis-
parities and ensure that research findings and any resulting advances in
healthcare practices benefit not just a subset of individuals but everyone45,46.
Pregnant and lactating individuals should be specifically included in pro-
spective studies and clinical trials, as our experiencewith the recentCOVID-
19 pandemic has attested to their exclusion in almost all vaccine and
treatment trials and the subsequent gaps in data to provide counseling in
pregnancy47. Other areas in which we lack data in pregnancy include
immunologics utilized for autoimmunedisease andorgan transplant, aswell
as the best treatment for the pregnant person with significant medical
comorbidities. As there is a lack of diversity not just among those who
participate in and are represented in research but those who conduct
research work, there should also be efforts to train, recruit, and support
researchers from underrepresented backgrounds48.

It is also important to note that issues of data quality and bias,
whichmust be tackled in all data-driven efforts, are equally relevant in
women’s health research. In observational studies, selection bias
(which itself has historically led to the exclusion of women in health
research, as discussed in this perspective) can skew the composition of
study populations along any number of demographic or clinical axes
and profoundly affect the generalizability of findings49. Both clinical
and experimental efforts can be prone to measurement errors, stem-
ming from myriad causes such as mistakes in preparation or data
collection and instrumentation flaws, which can then lead to deceptive
conclusions50. Furthermore, confounding variables present a perva-
sive challenge throughout science, potentially masking the true effects
of the variable of interest by being associated with both the exposure
and the outcome51. In response to these challenges, we advocate for the
continued improvement of research methods through the develop-
ment and incorporation of standardized protocols52 and validation
efforts53. Moreover, the adoption of transparent reporting practices,
such as those laid out by CONSORT and STROBE initiatives54 or the
Cell Press STAR Methods model55, will enhance reproducibility and
underpin the integrity and credibility of data-driven findings in
women’s reproductive health.

While advancements on the data collection and technical analysis
methods fronts are essential to exploring concerns in women’s health, it is
crucial to consider the impact of social determinants of health on patients’
presentations and clinical outcomes. For example, patients from low

socioeconomic status who rely on Medicare or Medicaid or are under- or
uninsured may not have reliable access to a physician to help manage
gynecological conditions, causing adverse health outcomes56. In addition,
medical racism is a culprit in the increased preterm birth rates in non-white
women in the US57, and inequalities that can manifest in different forms—
such as maternal stress and environmental exposure to toxins due to his-
torical redlining—can contribute to preterm birth risk, as surveyed by
epigenetic and gene-environment interaction studies58. Thus, it is crucial to
adopt an intersectional approach to studying women’s health conditions,
taking into account how cultural, socioeconomic, geographic, and racial
disparity factors influence patients’ outcomes and healthcare experiences,
which can informamoreholistic understandingof disease and contribute to
improved approaches to care. A good first step would be to recruit larger,
more diverse cohorts for studies to represent more realistic patient popu-
lations. Studies of women’s reproductive health should not focus solely on a
person’s ability to have children or not but consider the individual holi-
stically, including mental health and quality of life.

Challenges going forward will not necessarily be generating sufficient
amounts of data for computational analyses but accurate phenotyping
strategies, refining the analytical methods to gain greater biological insights,
expanding on computational drug discovery opportunities for the
advancement of therapeutics, finding ways that large language models and
other new technological developments can enable discoveries, and bringing
closer to reality the promise of precision medicine. Integrating and ana-
lyzing different types of -omics data to studywomen’s health conditions can
provide revelations in causes of disease and targets for treatment59. Multi-
omics approaches have resulted in greater insights into biological signals
associated with term and preterm birth60,61 and could be increasingly
leveraged to better understand pregnancy and other women’s health con-
ditions. Moreover, digital twins can provide a data-driven way of mon-
itoring, modeling, and managing conditions that can be tailored to an
individual’s specificneedsby integrating real-timedata fromvarious sources
(e.g., clinical records, sensors, mobile health tracking applications, wearable
devices) and artificial intelligence62. Digital twin technology could offer a
transformative approach to women’s reproductive health, from identifying
potential pregnancy complications early to managing endometriosis
symptoms, finding optimal drugs and doses for treatments, and more. It is
imperative, however, that we ensure discoveries from future research and
technologies developed for women’s reproductive health do not widen the
gap between those who are well-represented and privileged and those from
under-represented and under-resourced backgrounds. Expanding on how
we leveragemolecular, clinical, sociocultural, and other data combinedwith
robust computational integrative approaches for discoveries while we
prioritize broader representation in studies will benefit not just women’s
reproductive health but all areas of human health for everyone.
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