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Abstract 
We conduct tests of a hybrid-similarity exemplar model on its 
ability to account for the context-dependent memorability of 
items embedded in high-dimensional category spaces. 
According to the model, recognition judgments are based on 
the summed similarity of test items to studied exemplars. The 
model allows for the idea that “self-similarity” among objects 
differs due to matching on highly salient distinctive features. 
Participants viewed a study list of rock images belonging to 
geologically defined categories where the number of studied 
items from each category was manipulated, and their old-new 
recognition performance was then tested. With a minimum of 
parameter estimation, the model provided good accounts of 
changing levels of memorability due to contextual effects of 
category size, within- and between-category similarity, and the 
presence of distinctive features. We discuss future directions 
for improving upon the current predictions from the model. 

Keywords: recognition memory, memorability, computational 
modeling, exemplar model, high-dimensional similarity space 

Introduction 
Modern research indicates that images of individual real-
world objects vary considerably in their memorability: some 
objects appear to be relatively easy to remember, whereas 
memories of other objects are difficult to maintain. This 
differential memorability is often studied in tasks of old-new 
recognition, in which observers are presented with lists of 
items to study, followed by test lists composed of old and new 
items. Certain old items are consistently recognized with 
higher accuracy than are others; and people also tend to false-
alarm to certain new items more than others (Bainbridge, 
2019; Kramer et al., 2023). 
 
There is a modern computer-science literature in which 
researchers have reported successful attempts to build deep-
learning networks that can predict which images will and will 
not be memorable (Bylinskii  et al., 2022; Dubey et al., 2015; 
Khosla et al., 2015; Needel & Bainbridge, 2022). Although 
these deep-learning networks have provided impressive 
predictions of individual-item memorability, a limitation is 
that they don’t provide insights into the psychological 
reasons why certain images are more memorable than others. 
 
A more fundamental limitation is that these deep learning 
models assume that variations in memorability are entirely 
due to the stimulus itself. An extensive cognitive-psychology 
literature has shown, however, that memory is highly 

dependent on the context of the study list in which the items 
are embedded - a stimulus can be memorable or non-
memorable depending on the other stimuli that accompany it 
on the study list. One example is the demonstration of 
category size effects, where increasing the number of items 
from the same category on the study list greatly increases 
false alarm rates to novel members of the same category (e.g., 
Robinson & Roediger, 1997; Shiffrin, Huber, & Marinelli, 
1995).  We discuss other examples below. 
 
There is a previous cognitive-psychology modeling literature 
that has also attempted to account for differences in 
individual-item memorability.  One approach that has shown 
some success involves the application of summed-similarity 
exemplar models (Nosofsky, 1991; Nosofsky et al., 2011). In 
this approach, studied items are presumed to be represented 
as individual exemplars in memory. The exemplars are 
embedded in multidimensional similarity spaces. Test probes 
are assumed to give rise to a global activation of memory via 
a summing of similarity to the exemplars in the space, where 
similarity between any pair of exemplars is a decreasing 
function of their distance in the space. The greater the 
summed similarity, the greater is a “familiarity signal” to 
which the test probes gives rise; and the greater the 
familiarity, the higher is the probability that the test probes 
will be judged to be old (cf. Gillund & Shiffrin, 1984; Osth 
& Dennis, in press). 
 
The summed-similarity signal can be conceptualized as being 
composed of two components. For old test probes, one 
component is the self-match of the test probe to its own 
representation in memory. And for both old and new test 
probes, the second component is inter-item similarity:  the 
similarity of a test probe to the memory representations of 
other exemplars besides itself.  In general, summed-similarity 
exemplar models predict higher recognition rates for old test 
probes (hit rates) than for new test probes (false-alarm rates) 
because the self-match of an old test probe to its own 
exemplar trace provides a significant boost to the summed-
similarity signal. However, the models also predict high 
false-alarm rates for new test probes that are highly similar to 
old exemplars stored in memory (such as category 
prototypes), because such items will also give rise to a large-
magnitude summed-similarity signal. Previous studies have 
been reported that illustrate that the summed-similarity 
exemplar model can indeed yield very accurate predictions of 
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individual-item hit and false-alarm rates (e.g., Nosofsky, 
1991; Nosofsky et al., 2011). 
 
A major limitation of original versions of summed-similarity 
exemplar models, however, is that they failed to account for 
well-known phenomena from the face-recognition literature 
in which face targets with highly distinctive features (such as 
scars) often have higher hit rates than do more typical faces 
(e.g., Busey & Tunnicluff, 1999; Valentine & Ferrara, 1991). 
Because distinctive faces are presumably located in isolated 
regions of multidimensional similarity space, standard 
summed-similarity exemplar models predicted that 
distinctive faces would have lower summed similarity than 
typical ones, so they failed to predict the hit-rate advantage 
for old distinctive faces. 
 
To address this limitation, Nosofsky and Zaki (2003) 
proposed and tested a hybrid-similarity exemplar model.  As 
in classic versions of the models, test probes are assumed to 
give rise to a global activation of memory via a summing of 
similarity to studied exemplars, where similarity is assumed 
to be a decreasing function of distance in a multidimensional 
similarity space. However, unlike in the classic versions of 
the model, a key idea was that items with highly distinctive 
features may give rise to a greater degree of self-match than 
do items without such features (see below for formal details). 
This high degree of self-match can potentially dominate the 
summed-similarity signal, leading to high recognition hit 
rates for old items with such features. Nosofsky and Zaki 
(2003) demonstrated that the hybrid-similarity exemplar 
model provided good quantitative accounts of individual-
item old-new recognition in experiments in which artificial 
distinctive features were manually added to highly controlled 
stimuli embedded in low-dimensional similarity spaces (e.g., 
color patches varying in lightness,  saturation and hue). 
 
Despite the successes briefly reviewed above, a fundamental 
limitation of experimental tests of the cognitive-modeling 
approach to individual-item memorability is that the 
experiments all involved use of highly simplified perceptual 
stimuli and artificial category structures, rather than the real-
world, high-dimensional objects that are the focus of modern 
work. To begin to address this limitation, in recent research 
Nosofsky and Meagher (2022) and Meagher and Nosofsky 
(2023) applied the hybrid-similarity exemplar model to 
predict individual-item old-new recognition for a set of rock-
image stimuli.  They used multidimensional scaling methods 
to embed the rock stimuli in a high-dimensional similarity 
space. In addition, they collected ratings of the extent to 
which individual rock images contained highly distinctive 
features that made them stand out from other items in the set.  
Combining these sources of information, Nosofsky and 
Meagher (2022) and Meagher and Nosofsky (2023) were able 
to apply the hybrid-similarity exemplar model to account 
reasonably well for hit- and false-alarm rates associated with 
the individual rock images in their experiments. 
 

The main purpose of the present work was to pursue Meagher 
and Nosofsky’s (2023) recent investigations of the hybrid-
similarity exemplar model in this real-world high-
dimensional rocks domain with still more challenging tests. 
A critical new question concerned the extent to which the 
model could capture the context-dependent nature of 
memorability. We conducted an experiment in which 
participants first studied a list of rock images organized into 
categories and were then tested on their ability to judge 
whether test probes from the categories were old or new. 
Following previous research, a key variable that we 
manipulated was category size: some categories were 
composed of large numbers of studied items and other 
categories were composed of small numbers of studied items 
(see also Konkle, et al., 2010). The studied categories also 
varied in their degrees of within- and between-category 
similarity.  Finally, the rock images varied in the extent to 
which they contained distinctive features that were likely to 
make them stand out from other objects in the set.   The goal 
was to test the ability of the hybrid-similarity model to 
capture quantitatively how old-new recognition performance 
varied as a function of all these variables. 
 
Previously, such models have been demonstrated to capture 
increases in false-alarm rates with increasing category size 
because increasing the number of similar studied items 
increases the summed similarity between the probe and the 
contents of memory (Hintzman, 1988; Nosofsky et al., 2011; 
Shiffrin et al., 1995). However, to our knowledge, no models 
have simultaneously accounted for the joint effects of 
category size, within- and between-category similarity, and 
presence of distinctive features on variations in memorability 
for individual old and new items.  
 
We organize the remainder of our article as follows. First, we 
report the experimental method. Next, we provide a brief 
presentation of the formal hybrid-similarity exemplar model 
itself, because the experimental results are best understood 
within the framework of the model. Finally, we report the 
experimental and modeling results along with a discussion of 
future directions for potentially improving the ability of the 
model to predict the context-dependent nature of individual-
item memorability. 
 

 
Experiment Method 

 
Subjects 
The subjects were 203 undergraduates from Indiana 
University who received credit towards an introductory 
psychology requirement.   
 
Stimuli 
The stimulus materials were a set of 240 rock images 
organized into 24 categories of 10 samples each. Most of the 
categories were ones defined in the geologic sciences. 
However, to strengthen the intended category-size 
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manipulation, we thought it important to use category 
structures in which within-category similarities tended to 
clearly exceed between-category similarities. This structural 
constraint is not always satisfied for geologically-defined 
categories. Hence, in constructing our stimulus set, we did 
not include outlier samples that we judged to be more similar 
to members of contrast categories than to members of their 
own category.   In addition, in several cases we created our 
own “psychological” categories.  For example, without use 
of physical and chemical tests, samples of shale and slate 
cannot be discriminated.  Hence, we defined a “gray slate” 
category composed of gray samples of both slate and shale 
and a “colored shale” category composed of colored samples 
of slate and shale (see Procedure section for further details).  
To take a second example, it is extremely difficult to 
discriminate between amphibolite and gabbro based solely on 
visual inspection.   Hence, we used light-shopping techniques 
to make dark gray in color all samples of gabbro and added a 
blue tint to all samples of amphibolite.   A listing of the set of 
24 rock categories along with a set of descriptors for the 
categories used in the experiment is provided at osf.io/mc6ys.  
 
Procedure 
Each subject saw a single list of 75 study items. For each 
subject, each of the 24 categories was randomly assigned to 
a different category-size condition. There were five size-1 
categories, 5 size-2, 5 size-4 and 5 size-8 categories. In 
addition, there were 4 size-0 categories that didn’t appear on 
the study list. For each individual subject, the rock-image 
samples chosen for study in each size condition were chosen 
randomly from each of the 24 categories. On each trial of the 
study phase, a rock image was presented on the computer 
screen together with a table listing the 24 category names 
along with a descriptor of each category (e.g., “Amphibolite.  
Blue, coarse-grained, rough.”). Subjects chose the category 
whose descriptor they believed best characterized the rock 
image. Following the response, corrective feedback was then 
provided.  The purpose of this manipulation was to keep 
subjects engaged in the task and to potentially strengthen the 
intended category-size manipulation by having subjects 
encode the images in terms of the category descriptors. The 
order of presentation of the 75 study images was fully 
randomized for each subject.  Following the study phase there 
was an 82-trial test phase in which we presented two 
randomly sampled old targets and two new lures from each 
of the categories (1 target and 1 lure from the size-1 
categories; and 2 lures from the size-0 categories) and 
subjects judged whether each test probe was old or new. The 
order of presentation of the test items was fully randomized 
for each subject and no corrective feedback was provided. 
 
Fitting the hybrid-similarity exemplar model to the data 
requires that it be provided with an input space that specifies 
the coordinates of each object along a set of psychological 
dimensions. As described extensively in previous articles 
(e.g. Nosofsky et al., 2018), we used multidimensional 
scaling (MDS) techniques based on the modeling of 

similarity-judgment data to derive this space.  As in the 
previous work, based on a combination of overall fit and 
interpretability of the derived dimensions, we settled on use 
of an 8-dimensional scaling solution for the present project 
(for a detailed statement and illustration of the underlying 
dimensions of the space, see, e.g., Nosofsky et al., 2018 and 
Meagher & Nosofsky, 2023). In addition, following Meagher 
and Nosofsky (2023), an independent group of participants 
provided ratings of the extent to which each rock image 
contained distinctive features that made it stand out from 
other objects in the set. The top row of Figure 1 provides 
examples of rock images that received high distinctive-
feature ratings, and the bottom row provides examples of 
rock images that received low distinctive-feature ratings. 
 

 
Figure 1. Examples of rock images that received high vs. 

low distinctive-feature ratings. 
 
 

Hybrid-Similarity Exemplar Model 
 
In this article we focus on a baseline version of the model that 
uses a minimum of parameter estimation. According to the 
model, each test item i is presumed to give rise to a familiarity 
signal Fi. The probability that the test item i is judged to be 
“old” is then given by P(Old|i) =  Fi / (Fi + k), where k is a 
response-criterion parameter. Familiarity Fi is computed by 
summing the hybrid-similarity of test item i to each of the 
individual study exemplars j. These hybrid-similarities (hsij) 
are computed as follows.  First, the continuous-distance of i 
to j is computed from the MDS solution derived for the 
exemplars by using a Euclidean metric,  dij=[∑|xim - xjm|2]1/2, 
where xim is the value of item i on dimension m.  Following 
Shepard (1987), the continuous-dimension similarity of item 
i to exemplar j is then assumed to be an exponential decay 
function of the distance between i and j, sij  = exp(-c∙dij), 
where c is an overall sensitivity parameter that describes the 
rate at which similarity declines with distance.  The hybrid 
similarities (hsij) are computed by multiplying the 
continuous-dimension similarities by factors associated with 
matching or mismatching distinctive features. The hybrid-
similarity ideas are motivated by Tversky’s (1977) classic 
feature-contrast model of similarity, which assumes that 
common features boost similarity (including self-similarity); 
and that features that differ between two items reduce 
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similarity. Thus, the self-similarity of item i to itself is 
assumed to be boosted by the factor exp(β∙δi), where δi is the 
mean distinctive-feature rating for item i. The intuition, for 
example, is that a face with a highly distinctive feature such 
as a scar is likely to produce a strong match to its trace in 
memory. By contrast, the hybrid-similarity of item i to a 
mismatching exemplar j is assumed to be reduced by the 
factor exp(-α∙δi). Our assumption is that to the extent that 
item i is judged to have a highly distinctive feature, it is 
unlikely that the feature would be shared by some 
mismatching exemplar in the stimulus set, so the natural 
assumption is that the distinctive feature would tend to reduce 
similarity between item i and a mismatching exemplar j. The 
factors β and α in the above hybrid-similarity equations are 
freely estimated scaling parameters. 
 

Experimental and Formal Modeling Results 
 
We fitted the model to the individual-trials data of the 
individual participants by using a maximum-likelihood 
criterion. Note that the baseline model makes use of only 4 
free parameters: the response-criterion parameter k, the 
sensitivity parameter c, and the distinctive-feature scaling 
parameters β and α.   For simplicity, here we report results in 
which the parameters were held fixed across all subjects.  The 
purpose is to demonstrate that even a low-parameter baseline 
version of the model is able to capture many of the 
fundamental phenomena that we observed in the experiment.  
We also conducted hierarchical Bayesian modeling to 
account for individual differences, but the predictions for the 
aggregate data were essentially identical to the ones we report 
here.  We emphasize that in the ensuing presentation of 
summary results and predictions, the 4 parameters are held 
fixed across all summary data sets. 
 
Figure 2 shows that false-alarm rates for new lures increased 
dramatically with increases in category size, a trend that is 
predicted well by the model (r = 0.997) and is consistent with  

 
 

Figure 2. Mean observed and predicted hit and false-alarm 
rates as a function of category size. 

prior studies manipulating category size. As category size 
increases, summed similarity of novel test probes to the study 
items increases, so false-alarm rates increase.  The figure also 
shows that there was a much smaller increase in hit rates with 
increases in category size, a trend that is again well captured 
by the model (r = 0.83). Clearly, the model also captures the 
overall magnitude of the hit and false-alarm rates for the 
different category-size conditions. 
 
Figure 3 plots the observed against predicted false-alarm and 
hit rates for each of the 24 categories themselves, averaged 
across the different size conditions.  The model does a good 
job of capturing the false-alarm rates associated with the 24 
categories (r = 0.84).  Apparently, some categories have  
 

 
 

Figure 3. Mean observed against predicted hit and false-
alarm rates for each of the 24 categories. 

 
greater degrees of within-category similarity than do others, 
and the greater the degree of within-category similarity, the 
greater is the summed similarity.   There is not nearly as much 
variation in the hit rates as for the false-alarm rates in these 
data.   Nevertheless, the hybrid model captures reasonably 
well the variability in the overall hit rates across the 24 
categories (r = 0.50).  It is crucial to point out that without 
making use of the distinctive-feature scaling parameter β, the 
summed-similarity exemplar model failed to account for any 
of the variance in the category-level hit rates.  Apparently, 
some categories contain members with more distinctive 
features than do other categories, and those categories tend to 
have higher overall hit rates. 
   
In Figure 4 we plot the observed-against-predicted hit-minus-
false-alarm rates for each of the 24 categories, which provide 
a rough measure of the extent to which observers could  
discriminate the old members of each category from the new  
members.  The model does a good job of capturing this 
measure of performance as well (r = 0.89).   Note that to 
capture cases in which the hit-minus-false-alarm rate is high, 
the model needs to simultaneously predict a relatively high 
hit rate and a relatively low false-alarm rate for the category.  
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According to the model, this tends to occur when the items in 
the category contain highly distinctive features:  the self-
matches of target items on their distinctive features will tend 
to boost their hit rates, but the mismatch of lure items on their 
distinctive features will tend to reduce their false-alarm rates.  
 

 
 

Figure 4.  Mean observed against predicted hit-minus-false-
alarm rates for the 24 categories. 

 
In Figure 5 we plot the observed-against-predicted false-
alarm rates for lures from the size-0 categories. There is a 
significant correlation between the observed and predicted 
false-alarm rates (r = 0.57), but the model systematically 
under-predicts the overall magnitude of these false-alarm 
rates.   One reason why the correlation arises is because there 
are differing degrees of between-category similarity across 
the 24 categories:  Items from size-0 categories that are 
similar to members of other studied categories will tend to  
have higher false-alarm rates.  We discuss below possible 
reasons why the current version of the model tends to under- 
 

 
 

Figure 5. Mean observed against predicted false-alarm rates 
for the size-0 categories. 

 

predict the overall magnitude of the false-alarm rates for the 
size-0 categories. 
 
In our next analysis, we divided the 240 individual rock 
images into four equally sized distinctiveness-rating bins and 
computed the observed and predicted mean hit rates and false 
alarm rates for each bin. The results are shown in Figure 6.   
As can be seen, the mean hit rates increase with increases in 
rated distinctiveness, whereas the false-alarm rates decrease.  
The hybrid-similarity model does an excellent job of 
capturing both effects (rH = 0.95, rFA = 0.92). Recall that the 
hybrid-similarity model computes a β scaling parameter for 
estimating the boost in self-similarity that arises due to 
matching distinctive features. Crucially, if β is held fixed at 
zero, then the model fails to predict any increase in hit rates 
as a function of rated distinctiveness. The model predicts 
decreasing false-alarm rates with increases in rated 
distinctiveness for two reasons.  First, those items with high 
values of rated distinctiveness tend to lie in isolated regions 
of the derived MDS space for the rocks, resulting in low 
values of summed similarity. Second, the presence of a highly 
distinctive feature reduces even more the similarity of a lure 
item to the studied exemplars. 
 

 
 
Figure 6. Mean observed and predicted hit and false-alarm 

rates as a function of distinctive-feature rating bin. 
 
Finally, in a rather ambitious analysis, we computed the 
observed and predicted false-alarm and hit rates associated 
with the individual 240 items, averaged across the different 
category-size conditions of the experiment.  Sample size for 
each individual item is small because each participant was 
tested with only a small subset of items from each category; 
therefore, these results need to be interpreted with caution.  
However, as shown in Figure 7, the model captures much of 
the variation in the individual-item false-alarm rates (r = 
0.63).  Although the model also captures some of the 
individual-item variation in the hit rates (r = 0.32), 
accounting for this aspect of the data remains a big challenge.  
In part, the lower correlation for the hit rates may reflect that 
there is less overall variability in the hit-rate than in the false-
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alarm-rate data (so less total variability to account for).  
However, we discuss below various routes of future research 
that may yield improved accounts of the individual-item hit-
rate data as well. 

 

 
 

Figure 7.  Observed against predicted hit and false-alarm 
rates for the individual 240 items. 

 
 

Discussion 
 

Using a minimum of parameter estimation, a baseline version 
of a global-familiarity hybrid-similarity exemplar model was 
able to provide reasonably good accounts of a wide variety of 
phenomena involving the context-dependence of 
memorability in a complex, high-dimensional category 
domain.  The phenomena included effects of category size, 
within- and between-category similarity, and the presence of 
distinctive features on both false-alarm rates for lures and hit 
rates for old study items.  A core idea in the present modeling 
is that the presence of unique distinctive features is assumed 
to boost self-similarity but to decrease interitem similarity. 
This results in an interesting dynamic with respect to the 
prediction of how hit rates may vary with the presence of 
distinctive features.  Whether or not hit rates are predicted to 
increase depends on whether the boost to self-similarity 
exceeds the reduction in inter-item similarity in the overall 
summed-similarity computation. Here we tended to see 
boosts in hit rates with presence of distinctive features but it 
is conceivable that alternative contexts could lead to different 
patterns of results. 
 
There are various directions that are likely to yield still 
improved quantitative accounts of the present data.  First, 
more elaborate versions of the model make allowance for 
nonlinear relations between psychological familiarity and 
summed similarity and between psychological and rated 
distinctiveness (for details, see Meagher & Nosofsky, 2023). 
Second, we relied here on use of an 8-dimensional MDS 
solution for the objects derived from an independent set of 

similarity-ratings data.  Past work has suggested, however, 
that for purposes of learning categories, participants make use 
of a variety of supplementary diagnostic dimensions of the 
rock images not revealed by the MDS techniques (Nosofsky 
et al., 2020).  Incorporating these supplementary dimensions 
is likely to significantly improve the detailed quantitative 
predictions of old-new recognition as well.  Third, past 
research provides evidence that old-new recognition 
judgments are influenced by the structure and sequence of 
items presented during the test phase itself (e.g., Criss et al., 
2011; Fox & Osth, 2023; Osth, Jansson, Dennis, & 
Heathcote, 2018). Such test-phase information has not yet 
been incorporated in the present version of the model.  
Fourth, participants bring with them to the experiment a past 
history of memories of certain categories of rocks.  
Expanding the model with pre-loaded forms of rock 
familiarity  is also likely to yield improved accounts of these 
old-new recognition data.  Fifth, the present modeling did not 
take account of the well-established idea that observers may 
give differential attention weight to the dimensions that 
compose the objects in making their categorization and 
recognition judgments (Nosofsky, 1991).  
 
Perhaps most important, another limitation of the present 
research approach is that we relied on use of only generic 
ratings of presence of distinctive features as a source of input 
to the model.  The conception advanced by Nosofsky and 
Zaki (2003) in advancing the hybrid-similarity exemplar 
model was that the distinctive features of objects lie “outside” 
the continuous-dimension space in which the objects are 
embedded, causing them to “stand out” from the other objects 
in the set.  Using current psychological-scaling methods, the 
presence of such features is reflected only indirectly in the 
continuous-dimension MDS solutions for objects by locating 
such objects in more isolated parts of the continuous-
dimension space.  A crucial goal of future work is to instead 
develop techniques that can identify the specific distinctive 
features that play a role in influencing memorability and 
incorporate them as part of the feature space itself.    A 
potentially fruitful route to achieving this goal may be to 
merge the impressive deep-learning approaches to 
accounting for memorability with the present type of 
cognitive-modeling approach.  These future lines of research 
will also need to account for the idea that the extent to which 
an object is judged to have a “distinctive” feature is itself a 
highly context-dependent phenomenon.  For example,  a 
feature is likely to be judged as highly distinctive in study 
contexts in which it rarely occurs but to be lacking in 
distinctiveness in study contexts in which it is common.  In 
addition, it will be interesting to explore in future  research 
the precise manner in which the variables of category size and 
feature distinctiveness may interact. 
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