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On the Prediction of Stationary Functional
Time Series

Alexander AUE, Diogo Dubart NORINHO, and Siegfried HÖRMANN

This article addresses the prediction of stationary functional time series. Existing contributions to this problem have largely focused on
the special case of first-order functional autoregressive processes because of their technical tractability and the current lack of advanced
functional time series methodology. It is shown here how standard multivariate prediction techniques can be used in this context. The
connection between functional and multivariate predictions is made precise for the important case of vector and functional autoregressions.
The proposed method is easy to implement, making use of existing statistical software packages, and may, therefore, be attractive to a broader,
possibly nonacademic, audience. Its practical applicability is enhanced through the introduction of a novel functional final prediction error
model selection criterion that allows for an automatic determination of the lag structure and the dimensionality of the model. The usefulness
of the proposed methodology is demonstrated in a simulation study and an application to environmental data, namely the prediction of daily
pollution curves describing the concentration of particulate matter in ambient air. It is found that the proposed prediction method often
significantly outperforms existing methods.

KEY WORDS: Dimension reduction; Final prediction error; Forecasting; Functional autoregressions; Functional principal components;
Particulate matter; Vector autoregressions.

1. INTRODUCTION

Functional data are often collected in sequential form. The
common situation is a continuous-time record that can be sep-
arated into natural consecutive time intervals, such as days, for
which a reasonably similar behavior is expected. Typical ex-
amples include the daily price and return curves of financial
transactions data and the daily patterns of geophysical, meteo-
rological, and environmental data. The resulting functions may
be described by a time series (Yk : k ∈ Z), each term in the
sequence being a (random) function Yk(t) defined for t taking
values in some interval [a, b]. Here, Z denotes the set of inte-
gers. The object (Yk : k ∈ Z) will be referred to as a functional
time series (see Hörmann and Kokoszka 2012 for a recent survey
on time series aspects, and Ferraty and Vieu 2010 and Ramsay
and Silverman 2005 for general introductions to functional data
analysis). Interest for this article is in the functional modeling of
concentration of particulate matter with an aerodynamic diam-
eter of less than 10μm in ambient air, measured half-hourly in
Graz, Austria. It is widely accepted that exposure to high con-
centrations can cause respiratory and related health problems.
Local policy makers, therefore, monitor these pollutants closely.
The prediction of concentration levels is then a particularly im-
portant tool for judging whether measures, such as partial traffic
regulation, have to be implemented to meet standards set by the
European Union.
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de Bruxelles, B-1050 Brussels, Belgium (E-mail: shormann@ulb.ac.be). The
authors are grateful to the editor, the associate editor and the reviewers for
constructive comments and support. This research was partially supported by
NSF grants DMS 0905400, DMS 1209226, and DMS 1305858, Communauté
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Providing reliable predictions for future realizations is in fact
one of the most important goals of any time series analysis. In the
univariate and multivariate framework, this is often achieved by
setting up general prediction equations that can be solved recur-
sively by methods such as the Durbin-Levinson and innovations
algorithms (see, e.g., Brockwell and Davis 1991; Shumway and
Stoffer 2011). Prediction equations may be derived explicitly
also for general stationary functional time series (see Section
1.6 of the monograph Bosq 2000) but they seem difficult to
solve and implement. As a consequence, much of the research
in the area has focused on the first-order functional autoregres-
sive model, shortly FAR(1). Bosq (2000) derived one-step ahead
predictors that are based on a functional form of the Yule-Walker
equations. Besse, Cardot, and Stephenson (2000) proposed non-
parametric kernel predictors and illustrated their methodology
by forecasting climatological cycles caused by the El Niño phe-
nomenon. While this article, and also Besse and Cardot (1996),
adapted classical spline smoothing techniques, Antoniadis and
Sapatinas (2003) (see also Antoniadis, Paparoditis, and Sap-
atinas 2006, 2009) studied FAR(1) curve prediction based on
linear wavelet methods. Kargin and Onatski (2008) introduced
the predictive factor method, which seeks to replace functional
principal components with directions most relevant for predic-
tions. Didericksen, Kokoszka, and Zhang (2012) evaluated sev-
eral competing prediction models in a comparative simulation
study, finding Bosq’s (2000) method to have the best overall
performance. Other contributions to the area are Aneiros-Pérez,
Cao, and Vilar-Fernánez (2010) and Aneiros-Pérez and Vieu
(2008).

In spite of its statistical relevance and its mathematical ap-
peal, functional time series modeling has still some unpleasant
limitations for the practitioner. First, to date there are not many
“ready to use” statistical software packages that can be used di-
rectly for estimation and prediction purposes. The only available
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packages that the authors are aware of are the far package of
Damon and Guillas (2010) and the ftsa package of Hyndman
and Shang (2012), both implemented for the statistical software
R. The lack of tailor-made procedures often requires manual im-
plementation. This may be challenging and, therefore, restrict
use of the methodology to an academic audience. Second, the
methodology developed for the FAR(1) case is difficult to gen-
eralize. If an FAR(1) approach is infeasible, one can use the
multiple testing procedure of Kokoszka and Reimherr (2013)
to determine an appropriate order p for a more general FAR(p)
process. In addition, exogenous predictors can be incorporated
using the work of Damon and Guillas (2002). These authors
included exogenous covariates of FAR(1) type into a first-order
autoregressive framework for functional ozone predictions. For
more general cases functional theory and estimation have not
yet been developed.

The goal of this article is then to fill in this gap by promot-
ing a simple alternative prediction algorithm which consists of
three basic steps, all of which are easy to implement by means
of existing software. First, use functional principal components
analysis, FPCA, to transform the functional time series obser-
vations Y1, . . . , Yn into a vector time series of FPCA scores
Y 1, . . . ,Yn of dimension d, where d is small compared to n.
Second, fit a vector time series to the FPCA scores and obtain
the predictor Ŷn+1 for Yn+1. Third, use the Karhunen–Loève
expansion to retransform Ŷn+1 into a curve predictor Ŷn+1. The
first and the third steps are simple and can be performed, for
example, with the fda package in R. The second step may be
tackled with standard multivariate time series methodology. De-
tails are developed in Section 2. While the proposed approach
is conceptually quite easy, several nontrivial questions need to
be raised:

1. How does the resulting method differ from existing ones?
2. Why is this method justified from a theoretical standpoint?
3. To minimize the prediction error, how can the number

of principal components in the dimension reduction for
Step 1 be determined and how should model selection be
performed in Step 2? Preferably, both choices should be
made simultaneously.

These issues will be addressed in Section 3. In particular, a com-
parison to Bosq’s (2000) classical benchmark FAR(p) prediction
is made. A theoretical bound for the prediction error of the pro-
posed methodology is established, which will imply asymptotic
consistency. In Section 3.4 a novel functional final prediction
error criterion is developed that jointly selects the order p and
the dimensionality d of the FPC score vectors, thereby allowing
for an automatic prediction process.

Functional principal components have been employed in
other approaches to functional prediction, for example, in
Bosq’s (2000) FAR(1) prediction method and in Aguilera,
Ocaña, and Valderrama (1999). Roughly speaking, these and
many other existing approaches have in common that Yk is
regressed onto the lagged observation Yk−1 by minimizing
E[

∫
[Yk(t) −�(Yk−1)(t)]2dt] with respect to a linear operator

�. The solution of this problem involves an infinite series rep-
resentation of � along FPCs. (More details will be given in
Section 3.1.) In contrast, the proposed approach first uses di-
mension reduction via FPCA and then fits a model to the reduced

data. No a priori knowledge of the functional model is needed
and instead of a single estimator, a variety of existing tools for
vector processes can be entertained. Further lags or exogenous
covariates are also easily included into the prediction algorithm
(see Section 4).

Hyndman and Ullah (2007) and Hyndman and Shang (2009)
suggested a curve prediction approach based on modeling FPC
scores by scalar time series. They argued that scores are uncor-
related and hence individual time series can be fit. Depending on
the structure of the data, this can be quick and efficient in some
cases but less accurate in other cases. The fact that FPC score
vectors have no instantaneous correlation, does not imply that
autocovariances at lags greater than zero remain diagonal. Hence
univariate modeling may invoke a loss of valuable information
hidden in the dependence of the data. This will be demonstrated
in Section 6 as part of a simulation study. This issue can be
avoided if one makes use of so-called dynamic functional prin-
cipal components recently introduced in Hörmann, Kidziński,
and Hallin (2013) and Panaretos and Tavakoli (2013). These
authors proposed a methodology which produces score vectors
with diagonal autocovariances via time invariant functional lin-
ear filters. Since the involved filters are two-sided (they require
past and future observations), it is not clear how this methodol-
ogy could be used for prediction.

It should be noted that, in this article, the data Yk are assumed
to be given in functional form, since the focus is on working out
functional prediction methodology without getting into aspects
of data preprocessing, which appears to be rather specific to
the particular data at hand and, therefore, not conducive to a
unified treatment. In practice, however, one observes only vec-
tors Yk(t1), . . . , Yk(tL), with spacings, t� − t�−1, and number of
intraday sampling points, L, potentially varying from day to
day. The problem of transforming the vector observations into
(smooth) functions has been treated in many articles and will
not be detailed here. As an excellent starting point for reading in
this direction the reader is referred to Chapters 3–7 of Ramsay
and Silverman (2005). It is expected that the comparative results
established in this article as part of simulations and the applica-
tion will hold also if the functions are not sampled equidistantly,
with the rate of improvement of the proposed method over its
competitors being of similar magnitude.

The remainder of the article contains some possible exten-
sions of the new prediction methodology in Section 5, a sup-
porting simulation study in Section 6 and an application to the
prediction of intraday patterns of particulate matter concentra-
tions in Section 7. Section 8 concludes and technical proofs are
given in Appendix A.

2. METHODOLOGY

In what follows, let (Yk : k ∈ Z) be an arbitrary stationary
functional time series. It is assumed that the observations Yk are
elements of the Hilbert spaceH = L2([0, 1]) equipped with the
inner product 〈x, y〉 = ∫ 1

0 x(t)y(t) dt . Each Yk is, therefore, a

square integrable function satisfying ‖Yk‖2 = ∫ 1
0 Y

2
k (t)dt < ∞.

All random functions are defined on some common probability
space (�,A, P ). The notation Y ∈ LpH = L

p

H (�,A, P ) is used
to indicate that, for some p > 0, E[‖Y‖p] < ∞. Any Y ∈ L1

H

possesses then a mean curveμ = (E[Y (t)] : t ∈ [0, 1]), and any
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Y ∈ L2
H a covariance operator C, defined by C(x) = E[〈Y −

μ, x〉(Y − μ)]. The operator C is a kernel operator given by

C(x)(t) =
∫ 1

0
c(t, s)x(s)ds, c(t, s) = cov(Y (t), Y (s)).

As in the multivariate case, C admits the spectral decomposition

C(x) =
∞∑
�=1

λ�〈v�, x〉v�,

where (λ� : � ∈ N) are the eigenvalues (in strictly descending
order) and (v� : � ∈ N) the corresponding normalized eigen-
functions, so that C(v�) = λ�v� and ‖v�‖ = 1. Here, N is the
set of positive integers. The (v� : � ∈ N) form an orthonormal
basis ofL2([0, 1]). Hence Y allows for the Karhunen-Loéve rep-
resentation Y = ∑∞

�=1〈Y, v�〉v�. The coefficients 〈Y, v�〉 in this
expansion are called the FPC scores of Y .

Suppose now that we have observed Y1, . . . , Yn. In practice
μ as well as C and its spectral decomposition will be unknown
and need to be estimated from the sample. We estimate μ by

μ̂n(t) = 1

n

n∑
k=1

Yk(t), t ∈ [0, 1],

and the covariance operator by

Ĉn(x) = 1

n

n∑
k=1

〈Yk − μ̂n, x〉(Yk − μ̂n).

Under rather general weak dependence assumptions these es-
timators are

√
n-consistent. One may, for example, use the

concept of Lp-m-approximability introduced in Hörmann and
Kokoszka (2010) to prove that E[‖μ̂n − μ‖2] = O(n−1) and
E[‖Ĉn − C‖2

L] = O(n−1), where the operator norm ‖ · ‖L is,
for any operator A, defined by

‖A‖L = sup
‖x‖≤1

‖A(x)‖.

It is shown in Lemma A.1 of the Appendix that the general
results (see Theorems 5 and 6 of Hörmann and Kokoszka 2012)
apply to the functional autoregressive processes studied in this
article. From Ĉn, estimated eigenvalues λ̂1,n, . . . , λ̂d,n and es-
timated eigenfunctions v̂1,n, . . . , v̂d,n can be computed for an
arbitrary fixed, but typically small, d < n. These estimators in-
herit

√
n-consistency from Ĉn. See Theorem 7 in Hörmann and

Kokoszka (2012). For notational convenience, λ̂� and v̂� will be
used in place of λ̂�,n and v̂�,n.

Functional linear prediction equations for general stationary
processes have been derived in Section 1.6 of the monograph
Bosq (2000). They appear to be impractical for actual data anal-
ysis as there do not seem to be either articles discussing ap-
plications to real life examples or contributions concerned with
further foundational elaboration. As pointed out in the introduc-
tion, the notable exception is the FAR(1) process defined by the
stochastic recursion

Yk − μ = �(Yk−1 − μ) + εk, k ∈ Z, (2.1)

where (εk : k ∈ Z) are centered, independent and identically
distributed innovations in L2

H and � : H → H a bounded lin-
ear operator satisfying ‖�k0‖L < 1 for some k0 ≥ 1. The latter
condition ensures that the recurrence Equations (2.1) have a

strictly stationary and causal solution in L2
H . Bosq (2000) has

in the FAR(1) case used the prediction equations to devise what
is now often referred to as the common predictor. This one-
step ahead prediction is based on an estimator �̃n of � and
then given by Ỹn+1 = �̃nYn. Details of this method are given in
Section 3, where it will be used as a benchmark to compare with
the novel methodology to be introduced in the following. The
new prediction technique avoids estimating operators directly
and instead uses existing multivariate prediction methods.

The proposed prediction algorithm proceeds in three steps.
First, select d, the number of principal components to be in-
cluded in the analysis, for example, by ensuring that a certain
fraction of the data variation is explained. With the sample eigen-
functions, empirical FPC scores yek,� = 〈Yk, v̂�〉 can now be com-
puted for each combination of observations Yk , k = 1, . . . , n,
and sample eigenfunctions v̂�, � = 1, . . . , d. The superscript e
emphasizes that empirical versions are considered. Create from
the FPC scores the vectors

Y e
k = (

yek,1, . . . , y
e
k,d

)′
,

where ′ signifies transposition. By nature of FPCA, the vector Y e
k

contains most of the information on the curve Yk . In the second
step, fix the prediction lag h. Then, use multivariate prediction
techniques to produce the h-step ahead prediction

Ŷ
e

n+h = (ŷen+h,1, . . . , ŷ
e
n+h,d )′

given the vectors Y e
1, . . . ,Y e

n. Standard methods such as the
Durbin–Levinson and innovations algorithm can be readily ap-
plied, but other options such as exponential smoothing and non-
parametric prediction algorithms are available as well. In the
third and last step, the multivariate predictions are retransformed
to functional objects. This conversion is achieved by defining
the truncated Karhunen-Loéve representation

Ŷn+h = ŷen+h,1 v̂1 + · · · + ŷen+h,d v̂d (2.2)

based on the predicted FPC scores ŷek,� and the estimated eigen-
functions v̂�. The resulting Ŷn+h is then used as the h-step ahead
functional prediction of Yn+h. The three prediction steps are
summarized in Algorithm 1.

Algorithm 1 Functional prediction

1. Fix d. For k = 1, . . . , n, use the data Y1, . . . , Yn to com-
pute the vectors

Y e
k = (yek,1, . . . , y

e
k,d )′,

containing the first d empirical FPC scores yek,� = 〈Yk, v̂�〉.
2. Fix h. Use Y e

1, . . . ,Y e
n to determine the h-step ahead pre-

diction

Ŷ
e

n+h = (ŷen+h,1, . . . , ŷ
e
n+h,d )′

for Y e
n+h with an appropriate multivariate algorithm.

3. Use the functional object

Ŷn+h = ŷen+h,1 v̂1 + . . .+ ŷen+h,d v̂d

as h-step ahead prediction for Yn+h.
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Several remarks are in order. The proposed algorithm is con-
ceptually simple and allows for a number of immediate ex-
tensions and improvements as it is not bound by an assumed
FAR structure or, in fact, any other particular functional time
series specification. This is important because there is no well
developed theory for functional versions of the the well known
linear ARMA time series models ubiquitous in univariate and
multivariate settings. Moreover, if an FAR(p) structure is in-
deed imposed on (Yk : k ∈ Z), then it appears plausible that
Y e

1, . . . ,Y e
n should approximately follow a VAR(p) model. This

statement will be made precise in Appendix A.
The FAR(1) model should in practice be employed only if it

provides a reasonable approximation to the unknown underlying
dynamics. To allow for more flexible predictions, higher-order
FAR processes could be studied. The proposed methodology
offers an automatic way to select the appropriate order p along
with the dimensionality d (see Section 3.4). It can, in fact, be
applied to any stationary functional time series. For example,
by using the multivariate innovations algorithm (see sec. 11.4 in
Brockwell and Davis 1991) in the second step of Algorithm 1.
How this is done in the present prediction setting is briefly
outlined in Section 5.

It should be emphasized that the numerical implementation
of the new prediction methodology is convenient in R. For the
first step, FPC score matrix (Y e

1 : . . . : Y e
n) and corresponding

empirical eigenfunctions can be readily obtained with the fda
package. For the second step, forecasting for the FPC scores
can be done in another routine step using the vars package in
case VAR models are employed. The obtained quantities can be
easily combined for obtaining (2.2).

3. PREDICTING FUNCTIONAL AUTOREGRESSIONS

The FAR(1) model (2.1) is the most often applied functional
time series model. It will be used here as a benchmark to com-
pare the proposed methodology. Without loss of generality it is
assumed that μ = E[Yk] = 0. More generally, the higher-order
FAR(p) model

Yk = �1(Yk−1) + · · · +�p(Yk−p) + εk, k ∈ Z, (3.1)

is considered, assuming throughout that (i) (εk : k ∈ Z) is an
iid sequence in L2

H with E[εk] = 0, and (ii) the operators �j
are such that Equation (3.1) possesses a unique stationary and
causal solution. All the above conditions are summarized as
Assumption FAR.

3.1 The Standard First-Order Predictor

To obtain Bosq’s (2000) predictor, estimation of the autore-
gressive operator � is briefly discussed. The approach is based
on a functional version of the Yule–Walker equations. Let then
(Yk : k ∈ Z) be the solution of (2.1). Applying E[〈·, x〉Yk−1] to
(2.1) for any x ∈ H , leads to

E[〈Yk, x〉Yk−1] = E[〈�(Yk−1), x〉Yk−1] + E[〈εk, x〉Yk−1]

= E[〈�(Yk−1), x〉Yk−1].

Let again C(x) = E[〈Y1, x〉Y1] be the covariance operator of
Y1 and also let D(x) = E[〈Y1, x〉Y0] be the cross-covariance
operator of Y0 and Y1. If � ′ denotes the adjoint operator of
�, given by the requirement 〈�(x), y〉 = 〈x,� ′(y)〉, the opera-

tor equation D(x) = C(� ′(x)) is obtained. This formally gives
�(x) = D′C−1(x), where D′(x) = E[〈Y0, x〉Y1]. The operator
D′ can be estimated by D̂′(x) = (n− 1)−1 ∑n

k=2〈Yk−1, x〉Yk .
A more complicated object is the unbounded operator C−1.
Using the spectral decomposition of Ĉn, it can be estimated
by Ĉ−1

n (x) = ∑d
�=1 λ̂

−1
� 〈v̂�, x〉v̂� for an appropriately chosen d.

Combining these results with an additional smoothing step, us-
ing the approximation Yk ≈ ∑d

�=1〈Yk, v̂�〉v̂�, gives the estimator

�̃n(x) = 1

n− 1

n∑
k=2

d∑
�=1

d∑
�′=1

λ̂−1
� 〈x, v̂�〉〈Yk−1, v̂�〉〈Yk, v̂�′ 〉v̂�′

(3.2)

for �(x). This is the estimator of Bosq (2000). It gives rise to
the functional predictor

Ỹn+1 = �̃n(Yn) (3.3)

for Yn+1. Theorem 8.7 of Bosq (2000) provides the strong con-
sistency of �̃ under certain technical assumptions. A recent
result of Hörmann and Kidziński (2012) (see their Corollary
2.1) shows that consistent predictions (meaning that ‖�(Yn) −
�̃(Yn)‖ P→ 0) can be obtained in the present setting if the in-
novations (εk : k ∈ Z) are elements of L4

H . For these results to
hold, it is naturally required that d = dn → ∞. The choice of
dn crucially depends on the decay rate of the eigenvalues of C
as well as on the spectral gaps (distances between eigenvalues).
As these parameters are unknown, a practical guideline for the
dimension reduction is needed. An approach to this problem in
the context of this article will be provided in Section 3.4.

3.2 Fitting Vector Autoregressions to FPC Scores

The goal of this section is to show that the one-step predictors
Ŷn+1 in (2.2), based on fitting VAR(1) models in Step 2 of
Algorithm 1, and Ỹn+1 in (3.3) are asymptotically equivalent
for FAR(1) processes. This statement is justified in the next
theorem.

Theorem 3.1. Suppose model (2.1) and let Assumption FAR
hold. Assume that a VAR(1) model is fit to Y e

1, . . . ,Y e
n by

means of ordinary least squares. The resulting predictor (2.2) is
asymptotically equivalent to (3.3). More specifically, if for both
estimators the same dimension d is chosen, then

‖Ŷn+1 − Ỹn+1‖ = OP

(
1

n

)
(n → ∞).

The proof of Theorem 3.1 is given in Section A.2, where the
exact difference between the two predictors is detailed. These
computations are based on a more detailed analysis given in
Section A.1 which reveals that the FPC score vectors Y e

1, . . . ,Y e
n

follow indeed a VAR(1) model, albeit the nonstandard one

Y e
k = BedY e

k−1 + δk, k = 2, . . . , n,

where the matrix Bed is random and the errors δk depend on the
lag Y e

k−1 (with precise definitions being given in Section A.1).
Given this structure, one might suspect that the use of gen-
eralized least squares, GLS, could be advantageous. This is,
however, not the case. Simulations not reported in this article
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indicate that the gains in efficiency for GLS are negligible in the
settings considered. This is arguably because possible improve-
ments may be significant only for small sample sizes for which,
in turn, estimation errors more than make up the presumed
advantage.

Turning to the case of FAR(p) processes, notice first that The-
orem 3.1 can be established for the more general autoregressive
Hilbertian model (ARH(1)). In this case, the space L2([0, 1])
is replaced by a general separable Hilbert space. The proof re-
mains literally unchanged. Using this fact, a version of Theorem
3.1 for higher-order functional autoregressions can be derived
by a change of Hilbert space. Following the approach in sec. 5.1
of Bosq (2000), write the FAR(p) process (3.1) in state space
form⎛

⎜⎜⎜⎝
Yk
Yk−1

...
Yk−p+1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝
�1 · · · �p−1 �p
Id 0

. . .
...

Id 0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝
Yk−1

Yk−2
...
Yk−p

⎞
⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎝
εk
0
...
0

⎞
⎟⎟⎟⎠ .

(3.4)

The left-hand side of (3.4) is a p-vector of functions. It
takes values in the space Hp = (L2[0, 1])p. The matrix on the
right-hand side of (3.4) is a matrix of operators which will
be denoted by �∗. The components Id and 0 stand for the
identity and the zero operator on H, respectively. Equipped
with the inner product 〈x, y〉p = ∑p

j=1〈xj , yj 〉 the space Hp
defines a Hilbert space. Setting Xk = (Yk, . . . , Yk−p+1)′ and
δk = (εk, 0, . . . , 0)′, Equation (3.4) can be written as Xk =
�∗(Xk−1) + δk , with δk ∈ L2

Hp
. Now, in analogy to (2.2) and

(3.3), one can derive the vector-functional predictors X̂k =
(X̂(1)

k , . . . , X̂
(p)
k )′ and X̃k = (X̃(1)

k , . . . , X̃
(p)
k )′ and obtain that

‖X̂k − X̃k‖p = OP (1/n), where ‖x‖p = √〈x, x〉p. Then, the
following corollary is immediate.

Corollary 3.1. Consider the FAR(p) model (3.1) and let As-
sumption FAR hold. Further suppose that ‖(�∗)k0‖L < 1 for
some k0 ≥ 1. Then setting Ŷk = X̂

(1)
k and Ỹk = X̃

(1)
k one obtains

‖Ŷn+1 − Ỹn+1‖ = OP (1/n), as n → ∞.

3.3 Assessing the Error Caused by Dimension
Reduction

Assume the underlying functional time series to be the
causal FAR(p) process. In the population setting, meaning the
model is fully known, the best linear one-step ahead predic-
tion (in the sense of mean-squared loss) is Y ∗

n+1 = �1(Yn) +
. . . �p(Yn−p+1), provided n ≥ p. In this case, the smallest at-
tainable mean-squared prediction error is σ 2 := E[‖εn+1‖2].
Both estimation methods described in Sections 3.1 and 3.2,
however, give predictions that live on a d-dimensional subspace
of the original function space. This dimension reduction step
clearly introduces a bias, whose magnitude is bounded in this
section. It turns out that the bias becomes negligible as d → ∞,
thereby providing a theoretical justification for the proposed
methodology described in the next section.

Unlike in the previous section, it will be avoided to build
the proposed procedure on the state space representation (3.4).
Rather a VAR(p) model is directly fit by means of ordinary
least squares to the d-dimensional score sequence. Continuing

to work on the population level, the theoretical predictor

Ŷn+1 = ŷn+1,1v1 + · · · + ŷn+1,dvd,

is analyzed, where yk,� = 〈Yk, v�〉 and ŷk,� its one-step-ahead
linear prediction. Recall that a bounded linear operator A is
called Hilbert–Schmidt if, for some orthonormal basis (e� : � ∈
N), ‖A‖2

S = ∑∞
�=1 ‖A(e�)‖2 < ∞. Note that ‖ · ‖S defines a

norm on the space of compact operators which can be shown to
be independent of the choice of basis (e� : � ∈ N).

Theorem 3.2. Consider the FAR(p) model (3.1) and suppose
that Assumption FAR holds. Suppose further that �1, . . . , �p
are Hilbert–Schmidt operators. Then

E
[‖Yn+1 − Ŷn+1‖2

] ≤ σ 2 + γd, (3.5)

where

γd=
(

1 +
[ p∑
j=1

ψj ;d

]2) ∞∑
�=d+1

λ� and ψ2
j ;d=

∞∑
�=d+1

‖�j (v�)‖2.

The proof of Theorem 3.2 is given in Appendix A.3.
The constant γd bounds the additional prediction error due

to dimension reduction. It decomposes into two terms. The first
is given by the fraction of variance explained by the principal
components (v� : � > d). The second term gives the contribu-
tion these principal components make to the Hilbert–Schmidt
norm of the�j . Note thatψj ;d ≤ ‖�j‖S and that

∑∞
�=1 λ� = σ 2.

As a simple consequence, the error in (3.5) tends indeed to σ 2

for d → ∞.
This useful result, however, does not provide a practical

guideline for choosing d in the proposed algorithm because
the bound in (3.5) becomes smaller with increasing d. Rather γd
has to be viewed as the asymptotic error due to dimension reduc-
tion, when d is fixed and n → ∞. In practice one does not have
full information on the model for the observations Y1, . . . , Yn
and consequently several quantities, such as the autocovariance
structure of the score vectors, have to be estimated. Then, with
larger d, the variance of these estimators increases. In the next
section, a novel criterion is provided that allows to simultane-
ously choose the dimension d and the order p in dependence
of the sample size n. This is achieved with the objective of
minimizing the mean squared prediction error MSE.

3.4 Model and Dimension Selection

Given that the objective of this article is prediction, it makes
sense to choose the model to be fitted to the data as well as
the dimension d of the proposed approach such that the MSE
is minimized. Population principal components are still consid-
ered (recalling that estimators are

√
n-consistent), but in con-

trast to the previous section estimated processes are studied.
The resulting additional estimation error will now be taken into
account.

Let (Yk) be a centered functional time series inL2
H . Motivated

by Corollary 3.1 VAR(p) models are fitted to the score vectors.
The target is to propose a fully automatic criterion for choosing
d and p. By orthogonality of the eigenfunctions (v� : � ∈ N) and
the fact that the FPC scores (yn,� : � ∈ N) are uncorrelated, the
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MSE can be decomposed as

E
[‖Yn+1 − Ŷn+1‖2

] = E

[∥∥∥∥
∞∑
�=1

yn+1,�v� −
d∑
�=1

ŷn+1,�v�

∥∥∥∥
2]

= E
[‖Yn+1 − Ŷn+1‖2

] +
∞∑

�=d+1

λ�,

where ‖ · ‖ is also used to denote the Euclidean norm of vectors.
The process (Yn) is again stationary. Assuming that it follows a
d-variate VAR(p) model, that is,

Yn+1 = �1Yn + · · · +�pYn−p+1 + Zn+1,

with some appropriate white-noise (Zn), it can be shown (see,
e.g., Lütkepohl 2006) that

√
n(β̂ − β)

d→ Npd2

(
0, �Z ⊗ 
−1

p

)
, (3.6)

where β = vec([�1, . . . , �p]′) and β̂ = vec([�̂1, . . . , �̂p]′)
is its least squares estimator, and where 
p =
var(vec[Yp, . . . ,Y 1]) and �Z = E[Z1 Z′

1]. Suppose now
that the estimator β̂ has been obtained from some indepen-

dent training sample (X1, . . . , Xn)
d= (Y 1, . . . ,Yn). Such an

assumption is common in the literature. See, for example, the
discussion on p. 95 of Lütkepohl (2006). It follows then that

E
[‖Yn+1 − Ŷn+1‖2

]
= E

[‖Yn+1 − (�̂1Yn + · · · + �̂pYn−p+1)‖2
]

= E
[‖Zn+1‖2

] + E
[‖(�1 − �̂1)Yn + · · ·

+ (�p − �̂p)Yn−p+1)‖2]
= tr(�Z) + E

[‖[Ip ⊗ (Y ′
n, . . . ,Y ′

n−p+1)](β − β̂)‖2
]
.

The independence of β̂ and (Y 1, . . . ,Yn) yields that

E
[‖[Ip ⊗ (Y ′

n, . . . ,Y ′
n−p+1)](β − β̂)‖2]

= E
[
tr

{
(β − β̂)′[Ip ⊗ 
p](β − β̂)

}]
= tr

{
[Ip ⊗ 
p]E

[
(β − β̂)(β − β̂)′

]}
.

Using (3.6), it follows that the last term is

1

n

(
tr

[
�Z ⊗ Ipd

] + o(1)
) ∼ pd

n
tr(�Z).

(Here an ∼ bn means an/bn → 1.) Combining the previous es-
timates and replacing tr(�Z) by n(n− pd)−1tr(�̂Z) , leads to

E
[‖Yn+1 − Ŷn+1‖2

] ≈ n+ pd

n− pd
tr(�̂Z) +

∑
�>d

λ�.

It is, therefore, proposed to jointly select the order p and the
dimension d as the minimizers of the functional final prediction
error-type criterion

fFPE(p, d) = n+ pd

n− pd
tr(�̂Z) +

∑
�>d

λ̂�. (3.7)

With the use of the functional FPE criterion, the proposed pre-
diction methodology becomes fully data-driven and does not
need the additional subjective specification of tuning parame-
ters. It is in particular noteworthy that the selection of d is now
made in dependence of the sample size n. The excellent prac-
tical performance of this method is demonstrated in Sections 6
and 7.

It should finally be noted that in a multivariate context Akaike
(1969) originally suggested the use of the log-determinant in
place of the trace in (3.7) so as to make his FPE criterion equiv-
alent to the AIC criterion (see Lütkepohl 2006). Here, however,
the use of the trace is recommended, since this puts the two
terms in (3.7) on the same scale.

4. PREDICTION WITH COVARIATES

In many practical problems, such as in the particulate mat-
ter example presented in Section 7, predictions could not only
contain lagged values of the functional time series of interest,
but also other exogenous covariates. These covariates might
be scalar, vector-valued, and functional. Formally the goal is
then to obtain a predictor Ŷn+h given observations of the curves
Y1, . . . , Yn and a number of covariates X(1)

n , . . . , X
(r)
n . The ex-

ogenous variables need not be defined on the same space. For
example, X(1)

n could be scalar, X(2)
n a function, and X(3)

n could
contain lagged values of X(2)

n . The following adaptation of the
methodology given in Algorithm 1 is derived under the assump-
tion that (Yk : k ∈ Z) as well as the covariates (X(i)

n : n ∈ N)
are stationary processes in their respective spaces. The modified
procedure is summarized in Algorithm 2.

Algorithm 2 Functional prediction with exogenous covariates

1. (a) Fix d. For k = 1, . . . , n, use the data Y1, . . . , Yn to
compute the vectors

Y e
k = (yek,1, . . . , y

e
k,d )′,

containing the first d empirical FPC scores yek,� =
〈Yk, v̂�〉.(b) For a functional covariate, fix d ′. For k =
1, . . . , n, use the data X1, . . . , Xn to compute the vectors

Xe
k = (xek,1, . . . , x

e
k,d ′ )′,

containing the first d ′ empirical FPC scores xek,� =
〈Xk, ŵ�〉. Repeat this step for each functional covari-
ate.(c) Combine all covariate vectors into one vector
Re
n = (Ren1, . . . , R

e
nr )

′.
2. Fix h. Use Y e

1, . . . ,Y e
n and Re

n to determine the h-step
ahead prediction

Ŷ
e

n+h = (ŷen+h,1, . . . , ŷ
e
n+h,d )′

for Y e
n+h with an appropriate multivariate algorithm.

3. Use the functional object

Ŷn+h = ŷen+h,1 v̂1 + · · · + ŷen+h,d v̂d

as h-step ahead prediction for Yn+h.

The first step of Algorithm 2 is expanded compared to Algo-
rithm 1. Step 1(a) performs FPCA on the response time series
curves Y1, . . . , Yn. In Step 1(b), all functional covariates are
first transformed via FPCA into empirical FPC score vectors.
For each functional covariate, a different number of principal
components can be selected. Vector-valued and scalar covari-
ates can be used directly. All exogenous covariates are finally
combined into one vector Re

n in Step 1(c).
Details for Step 2 and the one-step ahead prediction case

h = 1 could be as follows. Since stationarity is assumed for
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all involved processes, the resulting FPC scores form stationary
time series. Define hence


YY (i) = cov
(
Y e
k,Y e

k−i
)
, 
Y R(i) = cov

(
Y e
k, Re

k−i
)
,


RR = cov
(
Re
k, Re

k

)
and notice that these matrices are independent of k. Fix m ∈
{1, . . . , n}. The best linear predictor Ŷ

e

n+1 of Y e
n+1 given the

vector variables Y e
n, . . . ,Y e

n−m+1, Re
n can be obtained by pro-

jecting each component yen+1,� of Y e
n+1 onto sp{yek,i , Renj | 1 ≤

i ≤ d, 1 ≤ j ≤ r, n−m+ 1 ≤ k ≤ n}.Then there exist d × d

matrices �i and a d × r matrix �, such that

Ŷ
e

n+1 = �1Y e
n +�2Y e

n−1 + · · · +�mY e
n−m+1 +�Re

n.

Using the projection theorem, it can be easily shown that the
matrices �1, . . . , �m and � are characterized by the equations


YY (i + 1) = �1
YY (i) + · · · +�m
YY (i + 1 −m)

+�
RY (i), i = 0, . . . , m− 1;
Y R(1)

= �1
Y R(0) + · · · +�m
Y R(1 −m) +�
RR.

Let


 =

⎛
⎜⎜⎜⎜⎜⎝


YY (0) 
YY (1) · · · 
YY (m− 1) 
Y R(0)

YY (−1) 
YY (0) · · · 
YY (m− 2) 
Y R(−1)

...
...

. . .
...

...

YY (1 −m) 
YY (2 −m) · · · 
YY (0) 
Y R(1 −m)

RY (0) 
RY (1) · · · 
RY (m− 1) 
RR(0)

⎞
⎟⎟⎟⎟⎟⎠.

Assuming that 
 has full rank, it follows that

(�1,�2, . . . , �m,�) = (
YY (1), . . . , 
YY (m), 
Y R(1))
−1.

The matrices 
YY (i), 
Y R(i), and 
RR have to be replaced in
practice by the corresponding sample versions. This explains
why predictions should not be made conditional on all data
Y 1, . . . ,Yn. It would involve the matrices 
YY (n), 
YY (n−
1), . . . which cannot be reasonably estimated from the sample.
In the application of Section 7, a VARX(p) model of dimension
d is fitted. The dimension d and the order p are selected by the
adjusted fFPE criterion (7.1).

5. ADDITIONAL OPTIONS

5.1 Using the Innovations Algorithm

The proposed methodology has been developed with a fo-
cus on functional autoregressive processes. For this case, a
fully automatic prediction procedure has been constructed in
Section 3.4. It should be noted, however, that other options are
generally available to the practitioner as well if one seeks to
go beyond the FAR framework. One way to do this would be
to view the fitted FAR process as a best approximation to the
underlying stationary functional time series in the sense of the
functional FPE-type criterion in 3.4.

In certain cases, a more parsimonious modeling could be
achieved if one instead used the innovations algorithm in Step
2 of Algorithm 1. The advantage of the innovations algorithm
is that it can be updated quickly when new observations arrive.
It should be particularly useful if one has to predict functional
moving average processes that have an infinite functional autore-
gressive representation with coefficient operators whose norms
only slowly decay with the lag. The application of Algorithm 3

requires the estimation of covariances 
(k) for increasing lag k.
Such estimates are less reliable the smaller n and the larger k.
Therefore, including too many lag values has a negative effect
on the estimation accuracy. If estimated eigenfunctions and the
covariance matrices 
̂(k) are replaced by population analogues,
then this algorithm gives the best linear prediction (in mean
square sense) of the population FPC scores based on the last m
observations.

Algorithm 3 The innovations algorithm for Step 2 in
Algorithm 3

1. Fix m ∈ {1, . . . , n}. The last m observations will be used
to compute the predictor.

2. For k = 0, 1, . . . , m, compute


̂(k) = 1

k

k∑
j=1

(Ŷ
e

j − Ȳ e)(Ŷ
e

j − Ȳ e)′,

where Ȳ e = 1
n

∑n
k=1 Ŷ

e

k .
3. Set

Ŷ
e

n+1 =
m∑
j=1

�mj (Y e
n+1−j − Ŷ

e

n+1−j ),

where

�00 = 
̂(0),

�m,m−k =
⎛
⎝
̂(n− k) −

k−1∑
j=0

�m,m−j�j0�
′
k,k−j

⎞
⎠�−1

k0 ,

k = 0, . . . , m− 1,

�m0 = 
̂(0) −
m−1∑
j=0

�m,m−j�j0�
′
m,m−j .

The recursion is solved in the order
�00;�11,�10;�22,�21,�20; . . .

Algorithm 4 Algorithm for determining prediction bands

1. Compute the d-variate score vectors Y e
1, . . . ,Y e

n and the-
sample FPCs v̂1, . . . , v̂d .

2. For L > 0 fix k ∈ {L+ 1, . . . , n− 1} and compute

Ŷk+1 = ŷek+1,1 v̂1 + · · · + ŷek+1,d v̂d ,

where ŷek+1,1, . . . , ŷ
e
k+1,d , are the components of the one-

step ahead prediction obtained from Y e
1, . . . ,Y e

k by means
of a multivariate algorithm.

3. Let M = n− L. For k ∈ {1, . . . ,M}, define the residuals
ε̂k = Yk+L − Ŷk+L.

4. For t ∈ [0, 1], define γ (t) = sd(ε̂k(t) : k = 1 . . . ,M).
5. Determine ξ

α
, ξα such that α × 100% of the residuals

satisfy

−ξ
α
γ (t) ≤ ε̂i(t) ≤ ξαγ (t) for all t ∈ [0, 1].

5.2 Prediction Bands

To assess the forecast accuracy, a method for computing uni-
form prediction bands is provided in this section. The target is
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to find parameters ξ
α
, ξα ≥ 0, such that, for a given α ∈ (0, 1)

and γ : [0, 1] → [0,∞),

P
(
Ŷn+1(t) − ξ

α
γ (t) ≤ Yn+1(t) ≤ Ŷn+1(t) + ξαγ (t)

for all t ∈ [0, 1]
) = α.

There is no a priori restriction on the function γ , but clearly
it should account for the structure and variation of the data.
Although this problem is very interesting from a theoretical
standpoint, only a practical approach for the determination of
ξ
α
, ξα , and γ is proposed here. It is outlined in Algorithm 4.
The purpose of the parameter L is to ensure a reasonable

sample size for the predictions in Step 2 of Algorithm 4. The
residuals ε̂1, . . . ε̂M are then expected to be approximately sta-
tionary and, by a law of large numbers effect, to satisfy

1

M

M∑
k=1

I
( − ξ

α
γ (t) ≤ ε̂k(t) ≤ ξαγ (t) for all t ∈ [0, 1]

)
≈ P

( − ξ
α
γ (t) ≤ Yn+1(t) − Ŷn+1(t) ≤ ξαγ (t)

for all t ∈ [0, 1]
)
.

Note that, in Step 1, the principal components v̂1, . . . , v̂d have
been obtained from the entire sample Y1, . . . , Yn and not just
from the first k observations. The choice of γ in Step 4 clearly
accounts for the variation of the data. For an intraday time
exhibiting a higher volatility there should also be a broader
prediction interval. Typically the constants ξ

α
and ξα are chosen

equal, but there may be situations when this is not desired.
One advantage of this method is that it does not require partic-

ular model assumptions. If two competing prediction methods
exist, then the one which is performing better on the sample
will lead to narrower prediction bands. Simulation results not
reported in this article indicate that Algorithm 4 performs well
in finite samples even for moderate sample sizes.

6. SIMULATIONS

6.1 General Setting

To analyze the finite sample properties of the new prediction
method, a comparative simulation study was conducted. The
proposed method was tested on a number of functional time se-
ries, namely first- and second-order FAR processes, first-order
FMA processes, and FARMA processes of order (1,2). In each
simulation run, n = 200 (or 1000) observations were generated
of which the first m = 180 (or 900) were used for parame-
ter estimation as well as order and dimension selection with
the fFPE(p, d) criterion (3.7). On the remaining 20 (or 100)
observations one-step ahead predictions and the correspond-
ing squared prediction errors were computed. From these mean
(MSE), median (medSE), and standard deviation (SD) were cal-
culated. If not otherwise mentioned, this procedure was repeated
N = 100 times. More details and a summary of the results are
given in Sections 6.2–6.4.

Since in simulations one can only work in finite dimensions,
the setting consisted of D Fourier basis functions v1, . . . , vD
on the unit interval [0, 1], which together determine the (finite-
dimensional) space H = sp{v1, . . . , vD}. Note that an arbitrary
element x ∈ H has the representation x(t) = ∑D

�=1 c�v�(t) with
coefficients c = (c1, . . . , cD)′. If � : H → H is a linear opera-

tor, then

�(x) =
D∑
�=1

c��(v�) =
D∑
�=1

D∑
�′=1

c�〈�(v�), v�′ 〉v�′ = (�c)′v,

where � is the matrix whose �th column and �′th row is
〈�(v�), v�′ 〉, and v = (v1, . . . , vD)′ is the vector of basis func-
tions. The linear operators needed to simulate the functional
time series of interest can thus be represented by a D ×D

matrix that acts on the coefficients in the basis function rep-
resentation of the curves. The corresponding innovations were
generated according to

εk(t) =
D∑
�=1

Ak,�v�(t), (6.1)

where Ak,� are iid normal random variables with mean zero and
standard deviations σ� that will be specified below.

6.2 Comparison With Scalar Prediction

As mentioned in the introduction, a special case of the pro-
posed method was considered by Hyndman and Ullah (2007)
and Hyndman and Shang (2009). Motivated by the fact that PCA
score vectors have uncorrelated components, these authors have
proposed to predict the scores individually as univariate time
series. This will be referred to as the scalar method, in contrast
to the vector method promoted in this article. The scalar method
is fast and works well as long as the cross-spectra related to the
score vectors are close to zero. However, in general the score
vectors have nondiagonal autocorrelations. Then, scalar models
are not theoretically justified. To explore the effect of neglect-
ing cross-sectional dependence, FAR(1) time series of length
n = 200 were generated as described above. For the purpose of
demonstrationD = 3 and σ1 = σ2 = σ3 = 1 were chosen. Two
autocovariance operators�(1) and�(2) with corresponding ma-
trices

�(1) =
⎛
⎝ −0.05 −0.23 0.76

0.80 −0.05 0.04
0.04 0.76 0.23

⎞
⎠ and

� (2) = 0.8

⎛
⎝ 1 0 0

0 1 0
0 0 1

⎞
⎠,

were tested. Both matrices are orthogonal with norm 0.8. In
these simple settings, it is easy to compute the population au-
tocorrelation function (ACF) of the three-dimensional FPCA
score vectors. The ACF related to the score sequences of the
process generated by�(1) is displayed in Figure 1. It shows that
two scores are uncorrelated at lag zero and that there is almost
no temporal correlation in the individual score sequences. How-
ever, at lags greater than 1 there is considerable dependence
in the cross-correlations between the first and the third score
sequence. The analogous plot for �(2) would reveal a contrary
behavior: while the autocorrelations of the individual score se-
quences decay slowly, cross-correlations are zero at all lags.

Given these observations, it is expected that the scalar method
will do very well in forecasting the scores when data are gen-
erated by operator �(2), while it should not be competitive with
the vector method if �(1) is used. This conjecture is confirmed
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Figure 1. Autocorrelation function for the scores related to the sequence generated from operator � (1).

in Figure 2 which shows histograms of the ratios

ri = MSE vector method

MSE scalar method
, i = 1, . . . , 1000, (6.2)

obtained from 1000 simulation runs. The gray histogram refers
to the time series generated by �(2). It indicates that the scalar
method is a bit favorable, as the ratios tend to be slightly larger
than one. Contrary to this, a clear superiority of the vector
method can be seen when data stem from the sequence generated
by �(1). In a majority of the cases, the MSE resulting from the
vector methods is less than half as large as the corresponding
MSE obtained by the scalar method. It should also be mentioned
that p and d were estimated for the proposed method, while they
were fixed at the true values p = 1 and d = 3 for the scalar
predictions.

6.3 Comparison With Standard Functional Prediction

In this section, the proposed prediction is compared on
FAR(2) processes Yk = �1Yk−1 +�2Yk−2 + εk to the standard
predicton of Bosq (2000). For the latter, the multiple testing
procedure of Kokoszka and Reimherr (2013) was used to deter-
mine the order p of the FAR model to be fitted. Following these
authors, d was chosen as the smallest integer such that the first
d principal components explain at least 80% of the variance of
the data. To ensure that the multiple testing procedure keeps an
overall asymptotic level of 10%, the levels in three subtests (so
testing up to a maximal order p = 3) were chosen to be 5%,
3%, and 2%, respectively. For ease of reference, this method
will be referred to as the BKR method. Owing to the results of
Section 3, both methods are expected to yield similar results if
the order p was known and if the same dimension d was chosen
for the two predictors.

The operators were generated such that �1 = κ1� and
�2 = κ2� with |κ1| + |κ2| < 1 to ensure stationarity. The case
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Table 1. Functional final prediction error (fFPE), mean squared prediction error based on the fFPE criterion (MSEa), mean squared prediction
error based on BKR (MSEb), and the corresponding proportions of variance explained by the chosen number of FPCs (PVEa , PVEb)

(σ1) (σ2)

κ1 κ2 fFPE MSEa MSEb PVEa PVEb fFPE MSEa MSEb PVEa PVEb

0.2 0.0 2.29 2.32 2.31 0.40 0.83 1.61 1.59 1.58 0.71 0.83
2.29 2.31 2.31 0.72 0.84 1.61 1.59 1.59 0.81 0.82

0.8 0.0 2.37 2.37 2.47 0.90 0.83 1.64 1.71 1.81 0.89 0.85
2.30 2.29 2.37 0.97 0.83 1.61 1.62 1.70 0.95 0.85

0.4 0.4 2.38 2.40 2.43 0.73 0.83 1.67 1.65 1.69 0.84 0.84
2.31 2.33 2.36 0.92 0.83 1.63 1.64 1.71 0.90 0.84

0.0 0.8 2.42 2.48 2.94 0.83 0.83 1.66 1.72 2.28 0.87 0.85
2.32 2.34 2.94 0.95 0.83 1.63 1.62 2.27 0.93 0.86

NOTE: The first row in each setting (κ1, κ2) corresponds to n = 200, the second row to n = 1000.

κ2 = 0 yields the FAR(1) process. The operator � was chosen
at random. More precisely, choosing D = 21, a D ×D matrix
of independent, zero-mean normal random variables with cor-
responding standard deviations σ��′ was generated. This matrix
was then scaled so that the resulting matrix � has induced norm
equal to 1. In every iteration of the simulation runs � was newly
generated. Two types of standard deviations for the innovations
in (6.1) were chosen, namely

(σ1) σ ′
1 = (�−1 : � = 1, . . . , D) and

(σ2) σ ′
2 = (1.2−� : � = 1, . . . , D).

Note that if � : L2 → L2, then 〈�(v�), v�′ 〉 → 0 if � → ∞
or �′ → ∞ by the Riemann–Lebesgue lemma. This will be
reflected in the corresponding matrices by choosing σ��′ as a
decaying sequence in � and �′. In particular we have chosen
((σ��′)) = σ 1σ

′
1 for setting (σ1) and ((σ��′)) = σ 2σ

′
2 for setting

(σ2).
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Figure 2. Histogram of the ratios ri in (6.2) for the FAR(1) processes
given by the operators � (1) (white) and � (2) (gray).

Results for four pairs of values (κ1, κ2) are shown in Table 1.
The numbers are averages from 100 iterations of the simulation
setting explained in Section 6.1. Recall that 10% of the data
were used in each simulation run to compute out-of-sample
predictions. This means that the MSE’s are based on 2000 fore-
casts when n = 200 and 10,000 forecasts when n = 1000. The
quantity MSEa refers to the MSE produced by the proposed
method and MSEb to the MSE obtained from the BKR method.
Similarly, PVEa and PVEb give the respective averages of the
proportions of variance explained by d principal components,
where d is the chosen dimension of the predictor. In summary,
the following was found:

• The proposed approach had slight advantages over BKR
in almost all considered settings. For κ1 = 0 and κ2 = 0.8,
the BKR method almost always failed to choose the cor-
rect order p (see Table 2). In this case, MSEb was about
30%–40% larger than MSEa .

• With increasing sample size MSEa decreases and ap-
proaches the value of the fFPE. The latter is an estimate for
the minimal possible MSE. Contrary to the BKR method,
the dimension parameter d chosen by fFPE grows with
increasing sample size. This is visualized in Figure 3.

• When both methods choose the correct order p, MSEa
still had a tendency to be smaller than MSEb. This may
arguably be because a data-driven criterion was applied to

Table 2. Selected order for different choices of κ1 and κ2 from 100
iterations under setting (σ1)

n = 200 n = 1000

κ1 κ2 p = 0 p = 1 p = 2 p = 3 p = 0 p = 1 p = 2 p = 3

0.2 0.0 40 48 8 4 2 94 3 1
48 51 1 0 0 98 2 0

0.8 0.0 0 97 3 0 0 100 0 0
0 95 5 0 0 81 17 2

0.4 0.4 1 3 90 6 0 0 99 1
3 3 94 0 0 0 95 5

0.0 0.8 0 0 95 5 0 0 99 1
94 0 5 1 93 0 7 0

NOTE: For each choice the top (bottom) row represents the order obtained via fFPE (BKR).
The number of correctly selected orders is shown in bold.
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Figure 3. Frequencies of the dimensions d chosen by fFPE in 100
simulation runs under setting (σ1) and (κ1, κ2) = (0.2, 0.0).

optimally select the dimension parameter d. It can also be
seen that the mean squared prediction errors are relatively
robust with respect to the choice of d but quite sensitive to
the choice of p. In particular, underestimating p can lead to
a nonnegligible increase of MSE.

• We have also experimented withD = 51. The conclusions
remain very similar.

6.4 Beyond Functional Autoregressions

To test the proposed procedure also for nonautoregressive
functional time series, it was applied to the functional FMA(2)
and FARMA(1,2) processes respectively given by the equations

Yk = εk +�εk−2, (6.3)

Yk = �1Yk−1 + εk +�1εk−1 +�2εk−2, (6.4)

with operators � = 0.8�, �1 = 0.1�, �1 = 0.1�, and �2 =
0.9� randomly generated as above. Both the fFPE-based pro-
posed procedure and the BKR method were applied to time
series of length n = 1000. Since a fitting of long autoregres-
sions is expected, the maximal order was set to be 10. The
rejection levels for the individual tests of the BKR method were
set to achieve an overall level of approximately 10%. The sim-
ulation results are displayed in Table 3. The conclusions of the
previous section still hold true. In particular, MSE reductions
of 15%–25% are seen, with the reduction being slightly greater
for the FARMA(1,2) process. The proposed method approxi-
mates the given time series structure generally with longer FAR
processes with average orders (taken over 100 simulation runs)

between p = 4 and p = 5 in all four cases. On the other hand,
the BKR method largely fails to make adjustments and selects
p = 0 more than 90% of the time.

7. PREDICTING PARTICULATE MATTER
CONCENTRATIONS

To demonstrate its practical usefulness, the new methodology
has been applied to environmental data on pollution concentra-
tions. The observations are half-hourly measurements of the
concentration (measured in μgm−3) of particulate matter with
an aerodynamic diameter of less than 10μm, abbreviated PM10,
in ambient air taken in Graz, Austria from October 1, 2010 until
March 31, 2011. Since epidemiological and toxicological stud-
ies have pointed to negative health effects, European Union (EU)
regulation sets pollution standards for the level of the concen-
tration. Policy makers have to ensure compliance with these EU
rules and need reliable statistical tools to determine, and justify
to the public, appropriate measures such as partial traffic reg-
ulation (see Stadlober, Hörmann, and Pfeiler 2008). Accurate
predictions are, therefore, paramount for well informed decision
making.

Functional data were obtained as follows. In a first step, very
few missing intraday data points were replaced through linear
interpolation. A square-root transformation was then applied to
the data to stabilize the variance. A visual inspection of the
data revealed several extreme outliers around New Year’s Eve
known to be caused by firework activities. The corresponding
week was removed from the sample. The data were then cen-
tered and adjusted for weekly seasonality by subtracting from
each observation the corresponding weekday average. This is
done because PM10 concentration levels are significantly dif-
ferent for the weekends when traffic volume is much lower. In
the next step, 48 observations for a given day were combined
into vectors and transformed into functional data using 10 cu-
bic B-spline basis functions and least squares fitting. The fda
package available for the statistical software R was applied here.
Eventually, 175 daily functional observations, say, Y1, . . . , Y175,
were obtained, roughly representing one winter season for which
pollution levels are known to be high. They are displayed in the
upper left panel of Figure 4. Shown in this figure are also the
effect of the first three FPCs on the mean curve. Following Ram-
say and Silverman (2005), a multiple (using the factor 0.5) of
the �th empirical eigenfunction v̂� was added to and subtracted
from the overall estimated mean curve μ̂ to study the effect of
large (small) first, second, or third FPC score. Notice that

Yk ≈ μ̂+ yek1v̂1 + yek2v̂2 + yek3v̂3, k = 1, . . . , 175,

where yek� = 〈Yk, v̂�〉 are the empirical FPC scores. These com-
bine to explain about 89% of variability in the data. The upper
right panel of Figure 4 indicates that if the first FPC score yek1,

Table 3. As in Table 1, but for the functional time series in (6.3) and (6.4) for n = 1000

(σ1) (σ2)

fFPE MSEa MSEb PVEa PVEb fFPE MSEa MSEb PVEa PVEb

FMA(2) 2.37 2.39 2.80 0.92 0.83 1.65 1.64 2.12 0.90 0.85
FARMA(1,2) 2.38 2.42 2.96 0.82 0.83 1.65 1.67 2.24 0.90 0.85
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Figure 4. Square-root transformed PM10 observations with fat overall mean curve (upper left panel), effect of the first FPC (upper right panel),
effect of the second FPC (lower left panel), and effect of the third FPC (lower right panel).

which explains about 72% of the variation, is large (small), then
a positive (negative) shift of the mean occurs. The second and
third FPCs are contrasts, explaining, respectively, 10% and 7%
of variation, with the second FPC describing an intraday trend
and the third FPC indicating whether the diurnal peaks are more
or less pronounced (see the lower panel of Figure 4).

For the comparison of the quality of the competing prediction
methods, the following was adopted. First, five blocks of con-
secutive functional observations Yk+1, . . . , Yk+100 were chosen,
with k = 0, 15, 30, 45, 60. Each block was then used to estimate
parameters and fit a certain model. Then, out-of-sample predic-
tions for the values of Yk+100+�, � = 1, . . . , 15, were made.
Finally, the resulting squared prediction errors

∫ 1

0

[
Yk+100+�(t) − Pr(Yk+100+�)(t)

]2
dt, � = 1, . . . , 15,

were computed, where Pr can stand for any of the predic-
tion methods tested. From the 15 resulting numbers, median
(MEDPr) and mean (MSEPr) were computed. Results are re-
ported in Table 4. With the exception of the first period (k = 0),
MSE and MED obtained from the new method are significantly
smaller than the ones resulting from the BKR method. In fact,
during the second and third period (k = 15 and k = 30) pre-
diction errors are on average only about half as big as the ones
obtained via BKR. This may arguably be due to an underes-
timation of the order by BKR method (as evidenced in the
simulations).

PM10 concentrations are known to be high at locations suffer-
ing from severe temperature inversions such as the basin areas
of the Alps. Following Stadlober, Hörmann, and Pfeiler (2008),
temperature difference between Graz (350 m above sea level)
and Kalkleiten (710m above sea level) can be used to model
this phenomenon. Temperature inversion is often seen as a key
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Table 4. Comparison of the three prediction methods. Subscript a (b, c) corresponds to method FPE (BKR, FPEX)

k pa pb pc da db dc MSEa MSEb MSEc MEDa MEDb MEDc

0 1 1 2 3 3 3 1.33 1.28 1.32 1.28 1.23 0.88
15 3 1 3 3 3 3 2.69 5.23 2.50 2.38 5.34 1.45
30 4 1 3 3 2 3 2.05 4.05 1.93 1.33 2.56 1.26
45 3 1 3 3 2 3 2.25 2.44 1.83 1.34 1.67 1.14
60 2 1 1 3 2 5 1.22 1.82 1.05 1.12 1.60 0.89

NOTE: Subscript a (b, c) corresponds to method FPE (BKR, FPEX). We report mean (MSE) and median (MED) of the 15 predictions from each block as well as the values of d and p
chosen by the respective methods.

factor influencing PM10 concentrations because temperatures
increasing with sea level result in a sagging exchange of air,
thereby yielding a higher pollutant load at the lower elevation.

To illustrate functional prediction with covariates, tempera-
ture difference curves of Graz and Kalkleiten have been included
as a dependent variable. For the overall sample, the first two
FPCs of the temperature difference curves describe about 92%
of the variance. Hence, FPCA was used for covariate dimen-
sion reduction, leading to the inclusion of a two-dimensional
exogenous regressor (which is almost equivalent to the true
regressor curve) in the second step of Algorithm 2. Then a d-
variate VARX(p) model was fit with d and p selected by the
functional final prediction error-type criterion adjusted for the
covariate:

fFPE(p, d) = n+ pd + r

n− pd − r
tr(�̂Z) +

∑
�>d

λ̂�. (7.1)

Here r is the dimension of the regressor vector (in the present
case, r = 2) and �̂Z is the covariance matrix of the residuals
when a model of order p and dimension d is fit. The latter method
is referred to as FPEX. The corresponding prediction results are
summarized in Table 4. A further significant improvement in
the mean and median square (out-of-sample) prediction error
can be observed.

8. CONCLUSIONS

This article proposes a new prediction methodology for func-
tional time series that appears to be widely and easily applicable.
It is based on the idea that dimension reduction with functional
principal components analysis should lead to a vector-valued
time series of FPC scores that can be predicted with any exist-
ing multivariate methodology, parametric and nonparametric.
The multivariate prediction is then transformed to a functional
prediction using a truncated Karhunen–Loéve decomposition.

The proposed methodology seems to be advantageous for
several reasons. Among them is its intuitive appeal, made rig-
orous for the predominant FAR(p) case, but also its ease of
application as existing software packages can be readily used,
even by nonexperts. It is in particular straightforward to extend
the procedure to include exogenous covariates into the predic-
tion algorithm. Simulations and an application to pollution data
suggest that the proposed method leads to predictions that are
always competitive with and often superior to the benchmark
predictions in the field.

It is hoped that the present article spawns interest among
researchers working in the active area of functional time series.

APPENDIX A: THEORETICAL CONSIDERATIONS

It is stated in Section 2 that empirical mean and covariance are
√
n-

consistent estimators for their population counterparts for a large class
of functional time series. The following lemma makes this statement
precise for FAR(p) processes. The notation of Section 3.2 is adopted.

Lemma A.1. Consider the FAR(p) model (3.1) and suppose that
Assumption FAR holds. Further suppose that ‖(�∗)k0‖L < 1 for some
k0 ≥ 1. Then (i) E[‖μ̂n − μ‖2] = O(1/n). (ii) If in addition (εk) in
L4
H , then E[‖Ĉn − C‖2] = O(1/n).

Proof. If follows from Proposition 2.1 in Hörmann and Kokoszka
(2010) and Theorem 3.1 in Bosq (2000) that (Xk) isL2-m-approximable
under (i) and L4-m-approximable under (ii). Lp-m-approximability is
inherited by the projection π (Xk) = X

(1)
k = Yk . Now the proof follows

from Theorems 5 and 6 in Hörmann and Kokoszka (2012). �

A.1 The VAR Structure

In case of a VAR(1), Step 2 of Algorithm 1 can be performed with
least squares. To explicitly calculate Ŷ

e

n+1, apply 〈·, v̂�〉 to both sides
of Yk = �(Yk−1) + εk to obtain

〈Yk, v̂�〉 = 〈�(Yk−1), v̂�〉 + 〈εk, v̂�〉

=
∞∑
�′=1

〈Yk−1, v̂�′ 〉〈�(v̂�′ ), v̂�〉 + 〈εk, v̂�〉

=
d∑

�′=1

〈Yk−1, v̂�′ 〉〈�(v̂�′ ), v̂�〉 + δk,�, (A.1)

with remainder terms δk,� = dk,� + 〈εk, v̂�〉 where

dk,� =
∞∑

�′=d+1

〈Yk−1, v̂�′ 〉〈�(v̂�′ ), v̂�〉,

noting that (v̂�) can always be extended to an orthonormal basis of
L2. Some notation is needed. Set ek = (〈εk, v1〉, . . . , 〈εk, vd〉)′ and
uk = (uk,1, . . . , uk,d )′, where uk,� = ∑

�′>d〈Yk−1, v�′ 〉〈�(v�′ ), v�〉, and
let Bd ∈ Rd×d be the matrix with entry 〈�(v�), v�′ 〉 in the �th row
and the �′th column, �, �′ = 1, . . . , d. Let moreover β = vec(B ′

d ), Z =
(Y ′

2, . . . ,Y ′
n)

′, E = (e′
2, . . . , e′

n)
′, U = (u′

2, . . . , u′
n)

′, Xk = Id ⊗ Y ′
k ,

and X = (X′
1 : . . . : X′

n−1)′. Replacing the eigenfunctions v� by their
sample counterparts v̂�, empirical versions of the above variables are
denoted by Y e

k , Ze, Xe
k , X

e, Bed , and βed . For a vector x ∈ Rd2
, the op-

eration mat(x) creates a d × d matrix, whose �th column contains the
elements v(1−�)d+1, . . . , v�d . Define now δk = (δk,1, . . . , δk,d )′ to arrive
at the equations

Y e
k = Bed Y e

k−1 + δk, k = 2, . . . , n. (A.2)
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The equations in (A.2) formally resemble VAR(1) equations. Notice,
however, that it is a nonstandard formulation, since the errors δk are
generally not centered and dependent. Furthermore, δk depends in a
complex way on Y e

k−1, so that the errors are not uncorrelated with past
observations. The coefficient matrix Bed is also random, but fixed for
fixed sample size n. In the sequel these effects are ignored. Using some
matrix algebra, (A.2) can be written as the linear regression

Ze = Xeβed + �, (A.3)

where � = (δ′
2, . . . , δ

′
n)

′. The ordinary least squares estimator is then
β̂
e

d = (Xe ′Xe)−1Xe ′ Ze, and the prediction equation

Ŷ
e

n+1 = B̂edY e
n = (ŷen+1,1, . . . , ŷ

e
n+1,d )′, (A.4)

follows directly, defining B̂ed = mat
(
β̂
e

d

)′
.

A.2 Proof of Theorem 3.1

Recall the notations introduced above Equation (A.2). To prove the
asymptotic equivalence between Ỹn+1 in (2.2) and Ŷn+1 in (3.3) for the
case of FAR(1) functional time series, observe first that(

1

n− 1
Xe ′Xe

)−1

= Id ⊗ 
̂−1,

where 
̂ is the d × d matrix with entries 
̂(�, �′) = 1
n−1

∑n−1
k=1 y

e
k,�y

e
k,�′

determined by the FPC scores yek,� = 〈Yk, v̂�〉, and ⊗ signifies the Kro-
necker product. With the help of (A.4), the VAR(1) based predictor
(2.2) can be written in the form

Ŷn+1 = 1

n− 1

{(
mat

([
Id ⊗ 
̂−1

]
Xe ′ Ze

))′
Y e
n

}′
v̂,

with v̂ = (v̂1, . . . , v̂d )′ being the vector of the first d empirical eigen-
functions. On the other hand, defining the d × d matrix 
̃ by the en-
tries 
̃(�, �′) = 1

n

∑n

k=1 y
e
k,�y

e
k,�′ = diag(λ̂1, . . . , λ̂d ), direct verification

shows that (3.3) takes the form

Ỹn+1 = 1

n− 1

{(
mat

([
Id ⊗ 
̃−1

]
Xe ′ Ze

))′
Y e
n

}′
v̂.

The only formal difference between the two predictors under considera-
tion is therefore in the matrices 
̂ and 
̃. Now, for any �, �′ = 1, . . . , d,


̂(�, �′) = 
̃(�, �′) + 1

n− 1

1

n

n∑
k=1

yek,�y
e
k,�′ − 1

n− 1
yen,�y

e
n,�′

= 
̃(�, �′) + 1

n− 1

(
λ̂�I {� = �′} − yen,�y

e
n,�′

)
,

so that Yn ∈ L2
H implies

∣∣
̂(�, �′) − 
̃(�, �′)
∣∣ ≤ 1

n− 1

(
1

n

n∑
k=1

‖Yk‖2 + ‖Yn‖2

)
= OP

(
1

n

)
.

In the following ‖ · ‖ will be used for the L2 norm, the Euclidean norm
in Rd and matrix norm ‖A‖ = sup‖x‖=1 ‖Ax‖, for a square matrix
A ∈ Rd×d . Let

� = mat

([
Id ⊗ (


̂−1 − 
̃−1
)] 1

n− 1
Xe ′ Ze

)
.

The orthogonality of the v̂� together with Pythagoras’ theorem and
Bessel’s inequality imply that

‖Ŷn+1 − Ỹn+1‖ = ∥∥�′Y e
n

∥∥ ≤ ‖�‖‖Y e
n‖ = ‖�‖

(
d∑
�=1

(yen,�)
2

)1/2

≤ ‖�‖‖Yn‖.
Define S = mat( 1

n−1X
e ′ Ze) and notice that � = (
̂−1 − 
̃−1)S and

hence ‖�‖ ≤ ∥∥
̂−1 − 
̃−1
∥∥‖S‖.

Let w = (w1, . . . , wd )′. Since S(�, �′) = 1
n−1

∑n−1
k=1 y

e
k,�y

e
k+1,�′ , iter-

ative applications of the Cauchy-Schwarz inequality yield

‖S‖2 = sup
‖w‖=1

d∑
�=1

( d∑
�′=1

1

n− 1

n−1∑
k=1

yek,�y
e
k+1,�′w�′

)2

≤
d∑
�=1

d∑
�′=1

(
1

n− 1

n−1∑
k=1

yek,�y
e
k+1,�′

)2

≤
d∑
�=1

d∑
�′=1

1

n− 1

n∑
k=1

(
yek,�

)2 1

n− 1

n∑
k=1

(
yek,�′

)2

≤
(

1

n− 1

n∑
k=1

‖Yk‖2

)2

= OP (1).

It remains to estimate ‖
̂−1 − 
̃−1‖. The next step consists of us-
ing the fact that, for any A,B ∈ Rd×d , it holds that (A+ B)−1 =
A−1 − A−1(I + BA−1)−1BA−1, provided all inverse matrices exist.
Now chooseA = 
̃ andB = 
̂ − 
̃. Since in the given setting the time
series (Yn) is stationary and ergodic, it can be deduced that λ̂d → λd
with probability one. Thus λ̂−1

d ‖
̃ − 
̂‖ < 1 for large enough n, and
consequently

∥∥
̂−1 − 
̃−1
∥∥ =

∥∥∥
̃−1
[
Id + (
̂ − 
̃)
̃−1

]−1
(
̂ − 
̃)
̃−1

∥∥∥
≤ ∥∥
̃−1

∥∥2∥∥
̂ − 
̃
∥∥∥∥∥[

Id + (
̂ − 
̃)
̃−1
]−1

∥∥∥
≤

∥∥
̃ − 
̂
∥∥

λ̂2
d

∞∑
�=0

(‖
̃ − 
̂‖
λ̂d

)�

= OP

(
1

n

)
.

It has been assumed here that λd > 0. If λd = 0, then the model has
dimension d ′ < d . In this case both estimators will of course be based
on at most d ′ principal components.

Putting together all results, the statement of Theorem 3.1 is estab-
lished.

A.3 Proof of Theorem 3.2

Using the results and notations of Section 3.4, it follows that

E
[‖Yn+1 − Ŷn+1‖2

] = E
[‖Y n+1 − Ŷ n+1‖2

] +
∑
i>d

λi .

Some algebra shows that

Y n+1 = �1Y n + · · · + �pY n−p+1 + En,

where the d × d matrices �j have entry 〈�j (v�′ ), v�〉 in the �′th column
and �th row, and En = T n + Sn with d-variate vectors T n and Sn
taking the respective values

∑p

j=1

∑∞
�′=d+1 yn+1−j,�′ 〈�j (v�′ ), v�〉 and

〈εn+1, v�〉 in the �th coordinate.
The best linear predictor Ŷ n+1 of Y n+1 based on Y 1, . . . ,Y n satisfies

E
[‖Y n+1 − Ŷ n+1‖2

] ≤ E
[‖Y n+1 − (�1Y n + · · · + �pY n−p+1)‖2

]
= E

[‖Sn‖2
] + E

[‖T n‖2
]
.

The last equality comes from the fact that, due to causality, the compo-
nents in Sn and in T n are uncorrelated. Observe next that, by Bessel’s
inequality,E[‖Sn‖2] = ∑d

�=1 E[〈εn+1, v�〉2] ≤ σ 2. It remains to bound
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E[‖T n‖2]. For this term, it holds

E
[‖T n‖2

] = E

[ d∑
�=1

( p∑
j=1

∞∑
�′=d+1

yn+1−j,�′ 〈�j (v�′ ), v�〉
)2]

≤ E

[ ∞∑
d=1

〈 p∑
j=1

∞∑
�′=d+1

yn+1−j,�′�j (v�′ ), v�

〉2]

= E

[∥∥∥∥
p∑
j=1

∞∑
�′=d+1

yn+1−j,�′�j (v�′ )

∥∥∥∥
2]
,

where Parseval’s identity was applied in the final step. Repeatedly
using the Cauchy–Schwarz inequality, the last expectation can be
estimated as
p∑

j,j ′=1

∞∑
�,�′=d+1

E
[
yn+1−j,� yn+1−j ′,�′

]〈
�j (v�), �j ′ (v�′ )

〉

≤
p∑

j,j ′=1

( ∞∑
�=d+1

√
λ�‖�j (v�)‖

)( ∞∑
�′=d+1

√
λ�′ ‖�j ′ (v�′ )‖

)

≤
∞∑

�′′=d+1

λ�′′

p∑
j,j ′=1

( ∞∑
�=d+1

‖�j (v�)‖2

)1/2( ∞∑
�′=d+1

‖�j ′ (v�′ )‖2

)1/2

=
∞∑

�=d+1

λ�

( p∑
j=1

[ ∞∑
�=d+1

‖�j (v�)‖2

]1/2)2

.

Collecting all estimates finishes the proof.

[Received August 2013. Revised February 2014.]

REFERENCES

Aguilera, A. M., Ocaña, F. A., and Valderrama, M. J. (1999), “Forecasting Time
Series by Functional PCA. Discussion of Several Weighted Approaches,”
Computational Statistics, 14, 443–467. [379]

Akaike, H. (1969), “Fitting Autoregressive Models for Prediction,” The Annals
of the Institute of Statistical Mathematics, 21, 243–247. [383]

Aneiros-Pérez, G., Cao, R., and Vilar-Fernánez, J. M. (2010), “Functional Meth-
ods for Time Series Prediction: A Nonparametric Approach,” Journal of
Forecasting, 30, 377–392. [378]
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