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Abstract

Continuum solvation modeling based upon the Poisson-Boltzmann equation (PBE) is widely used 

in structural and functional analysis of biomolecules. In this work we proposed a charge-central 

interpretation of the full nonlinear PBE electrostatic interactions. The validity of the charge-central 

framework, as formulated as a vacuum Poisson equation with effective charges, was first 

demonstrated by reproducing both electrostatic potentials and energies from the original solvated 

full nonlinear PBE. There are at least two benefits when the charge-central framework is applied. 

Firstly the convergence analyses show that the use of polarization charges allows a much faster 

converging numerical procedure for electrostatic energy and forces calculation for the full 

nonlinear PBE. Secondly the formulation of the solvated electrostatic interactions as effective 

charges in vacuum allows scalable algorithms to be deployed for large biomolecular systems. Here 

we exploited the charge-central interpretation and developed a particle-particle particle-mesh 

(P3M) strategy for the full nonlinear PB systems. We also studied the accuracy and convergence of 

solvation forces with the charge-view and the P3M methods. It is interesting to note that the 

convergences of both the charge-view and the P3M methods are more rapid than the original full 

nonlinear PB method. Given the developments and validations documented here, we are working 

to adapt the P3M treatment of the full nonlinear PB model to molecular dynamics simulations.
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Introduction

Life as we know it occurs in water so that inclusion of water is crucial to model the 

structures and functions of biomolecules accurately.1–19 Since the cost of explicitly 

including water molecules in computer models is very high, approximating water 

interactions implicitly or in a continuum manner is a widely used strategy in computational 

studies of biomolecules.1–18 A key component in such approaches is the electrostatic 

solvation modeling based on the Poisson-Boltzmann equation (PBE). A number of pioneer 

works have been published to study the solvation electrostatic effects in biomolecular 

functions.1–18, 20 In these studies, numerical solution of the PBE is crucial because of the 

irregular shapes of biomolecules.3, 21–26 Currently, the finite-difference method,27–42 finite-

element method43–51 and boundary-element method52–68 are the most widely used 

numerical methods.

Due to its numerical nature, there are difficulties to incorporate PBE methods into molecular 

mechanics simulations, such as interpolating electrostatic forces, removing singular atomic 

charges,35, 43, 69–79 and achieving faster numerical convergence.80–82 Currently the 

numerical PBE methods are only applied in situations where a few fixed conformations are 

involved, limiting the potentials of the methods. Efforts have been invested to improve these 

numerical issues of the PBE methods35, 43, 57, 69–79, 83–90 in order to facilitate the 

incorporation of the model in molecular mechanics simulations. The “virtual work” method, 

which computes forces according to the numerical derivative of potential energy, is 

apparently the benchmark for all analytical methods, but it is only realistic when molecules 

are treated as rigid bodies. Thus analytical calculation of solvation forces is necessary for in 

most situations. Two broadly different schemes have been developed to interpolate solvation 

forces. For the classical abrupt-transitioned two-dielectric models, multiple strategies have 

been proposed by Davis and McCammon,69 Che et al.,74 Bo et al.,76 Cai et al.77 and most 

recently Li et al.79. These formulations were derived following different strategies and were 

found to be consistent. For the smooth-transitioned dielectric models, we have the ground-

breaking strategy by Gilson et al..73 Subsequent works by Im et al.35 and Cai et al.75 were 

shown to be consistent with that of Gilson et al.,73 though different strategies were proposed 

to enhance numerical stability and convergence in the later works. The numerical methods 

derived from these formulations are mostly adapted for the numerical solutions by the finite-

difference method. Boundary-element method is another promising approach to incorporate 

the PBE electrostatics into molecular mechanics simulations. The force calculation in a 

boundary-element calculation was first described by Zauhar.71 In addition, Cortis et al.43 

explored to compute the solvation force for their finite-element method calculations, leading 

to the same formulation as that of Zauhar.71
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In this study we address this issue in the context of full nonlinear PBE, which is useful in 

modeling of highly charged systems, i.e. nucleic acids or nucleic acid-binding proteins or 

ligands. Specifically we explored a charge central interpretation of the full PBE potentials 

and energies, which is to use the effective charge density to compute all electrostatic 

potentials, energies, and forces. There are at least two benefits in developing this strategy. 

Firstly the use of polarization charges allows a much faster converging numerical procedure 

for electrostatic energy and forces calculation for the Poisson’s equation and linear PBE as 

we have shown,75, 77, 82 and also for the full nonlinear PBE as shown below. Secondly the 

formulation of the solvated electrostatic interactions as effective charges in vacuum allows 

scalable algorithms to be deployed for large biomolecular systems. For example, we have 

explored to adapt the particle-particle particle-mesh (P3M) strategy for fully solvated 

electrostatic interactions as modeled by the full nonlinear PBE. P3M is a typical method for 

accurate and efficient calculation of Coulombic interactions of biomolecular systems.91–93 

Apparently P3M cannot be used directly in calculating energy and forces based on the 

nonlinear PBE because there are heterogeneous dielectrics in the solute and solvent regions. 

In the following we first present the charge-central strategy to model the full nonlinear PBE 

potentials, energies, and forces. This is followed by numerical implementations and how to 

use P3M to balance accuracy and efficiency in applying nonlinear PBE to complex 

molecular systems.

Theory and Computational Details

A. Effective charge interpretation of Poisson-Boltzmann equation

The full nonlinear PBE for systems with continuum mobile ions can be expressed as

(1)

Where ϕ is the potential, ε is the dielectric constant, ei is the charge of ion type i, ci is the 

bulk number density of ion type i, λ is the ion exclusion function, kB is the Boltzmann 

constant and T is the absolute temperature. Following our developments for the Poisson 

equation75, 77, 82, the solution of the PBE can be cast into a vacuum Poisson equation with 

effective charges only, as shown in detail in Appendix A. Briefly, consider a solute molecule 

with dielectric constant εi surrounded by a solvent medium with dielectric constant εo, the 

solution of the original PBE satisfies a vacuum Poisson equation in the form of

(2)

where
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(3)

Here ϕC is the Coulomb potential generated by solute charges (denoted by superscript f) or 

mobile ion charges (denoted by superscript m) in their respective uniform dielectric media 

throughout the whole space and ϕRF is the total reaction field potential.

It is worth pointing out that the equivalence of eqn (2) to eqn (1) is not based on the 

superposition principle, which does not hold for nonlinear partial differential equations in 

general. In addition the effective source terms ρm and ρpol cannot be known before solving 

eqn (1) via standard numerical procedures. A more rigorous presentation is also possible via 

the integral form utilizing the Green’s theorem.94 However, it is more physically intuitive by 

following the discussion presented here.

There are at least two benefits when the charge-central framework is applied. Firstly the use 

of polarization charges allows a much faster converging numerical procedure for 

electrostatic energy and forces calculation for the full nonlinear PBE as shown below. 

Secondly many efficient numerical algorithms developed to speed up vacuum electrostatic/

Coulombic field calculation can now be applied to the full PBE systems if the effective 

charge sources can be obtained, which will be discussed below.

B. Total electrostatic energy and forces of Poisson-Boltzmann systems

The total electrostatic energy of a Poisson-Boltzmann system can be written as87

(4)

Substitution of the PBE into eqn (4) leads to

(5)

Eqn (5) suggests that G be decomposed into three parts as G = Gf + Gm + GΠ. Here GΠ is 

the entropic term due to the excess osmotic pressure, apparently not due to charge-charge 

interactions so that no further treatment is attempted below. In contrast, Gf and Gm can be 

reformulated according to the effective charge view presented above.

Substitution of  into the first term of eqn (5) leads to
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(6)

Apparently Gf can be decomposed into three parts:

(7)

Thus the electrostatic energy associated with the fixed charges on the atoms is due to 

interactions with other atomic charges, mobile ion charges, and overall induced polarization 

charges.

Similarly the second term of eqn (5) can be written as follows upon the substitution of 

(8)

Thus the electrostatic energy associated with the mobile ion charges is due to interactions 

with atomic charges, other mobile ion charges, and overall induced polarization charges. 

Overall the conclusions in eqn (7) and (8) are consistent with the Coulomb’s law once the 

effective charge view of the PBE system is used.

We now turn to the formulation of electrostatic forces. Given the discussion in Refs 75, 77, 

the force density is the divergence of the Maxwell stress tensor95 for systems without 

singularities or discontinuities

(9)

which is consistent with the formulation derived by the variational strategy by Gilson et. 
al.73 Relying on an integral approach, Li et al. derived the total electrostatic forces 

throughout a system with singularities. For the solute region with or without singularity, it 

can be shown that the force density is universally
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(10)

The ionic boundary force (IBF) can also be computed using the integral approach, which is 

simply the difference in ionic pressure, expressed as

(11)

where Po and Pi are the corresponding outside and inside stress tensors, respectively, on the 

surfaces parallel the Stern layer. The integral approach can also be applied to compute the 

dielectric boundary force (DBF) for the piece-wise constant dielectric model as77

(12)

where n is the outward-directed normal unit vector of the molecular surface, and Pi and Po 

are the inside and outside stress tensors, respectively, on the surfaces parallel to the dielectric 

interface. Eo and Ei are the electric fields on the two sides of the solute, respectively, and Ein 

and Eon, are the electric field components on the n direction of Eo and Ei, respectively. This 

agrees with the conclusion by Davis and McCammon.69

We next turn to the electrostatic forces on atoms based on the charge-central interpretation. 

Similar to the expression of electrostatic energies, it is the summation of the Coulomb and 

reaction field forces, so that it can also be written as the pairwise charge-charge (eqn (10)) 

can interaction format. For the same reason as in the discussion of energies, ∫fdv be 

decomposed into three parts as following, given 

(13)

This shows that both Coulomb and reaction field forces can be grouped into interactions 

with atomic charges, mobile ion charges, and overall induced polarization charges. In 

summary the conclusions in eqn (13) are consistent with the Coulomb’s law once the 

effective charge view of the Poisson-Boltzmann system is used.

Cai et al. proposed a new DBF formulation based on the concept of boundary polarization 

charges as
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(14)

where ρpol is the boundary polarization charge density, D is the electric displacement vector, 

and Dn is the normal component of D. This “charge-central” method was designed for 

smooth-transitioned dielectric models. Nevertheless, the charge-central method appears to be 

in the highly similar mathematical form for the abrupt-transitional dielectric models.77 Due 

to the typical high value of dielectric constant of water versus that of the solute in molecular 

mechanics force fields, the tangential surface field is often extremely small when compared 

with the normal surface field. When we apply this normal field approximation, D = Dn. Thus 

the DBF force for both smooth-transitioned and abrupt-transitioned dielectric models can be 

approximated as

(15)

The ionic boundary force (IBF) is simply as

(16)

where  is the osmotic pressure outside of the Stern layer.

C. Numerical calculation of electrostatic energy and forces

Discretized Charges—According to eqn (2), the effective charges are composed of ρf, 

ρm and ρpol. ρf is simply atomic charges. Since it is usually singular point charges, we 

denote it as qf.  is the ionic charge density according to eqn 

(3). Finally ρpol is the polarization charge density at the dielectric boundaries, which can be 

computed as 75 for the smooth-transition dielectric treatment, assuming there 

is no atomic charges in any dielectric boundary region. For the abrupt-transition dielectric 

treatment, the surface charge density can be computed as , where Eoζ, 

Eiζ are the normal component of the electric field on the solvent and solute side, 

respectively.77

Next we introduce Qf, Qm and Qpol to denote the charges mapped onto the grid from ρf, ρm 

and ρpol, respectively. The following notations are introduced to accommodate the use is 

used to denote the solute grids with all of their of different potentials in different regions. Ωi 

is used to denote the solvent grids with all six neighbor grids also within the solute region. 
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Ωo is used to denote the solute grids with of their six neighbor grids within the solvent 

region. Γi is used to denote the solvent one or more of their six neighbor grids in the solvent 

region. Γo grids with one or more of their six neighbor grids in the solute region.

1. Qf is obtained by a standard tri-linear mapping of atomic charges96

(17)

which is a sum over all the charged particles within the adjacent cubic grid 

(i, j, k), (xα, yα, zα) and  are the position and charge of atom α and 

W(xα − xi, yα − yj, zα − zk) is defined as

(18)

2. Qm is directly derived from the charge density from the grid point

(19)

3. Qpol represents the induced charge on grid points nearby dielectric 

boundaries defined by eqn (3)., which can be obtained as

(20)

where the subtraction of atomic charges and mobile ion charges in the last two terms is 

necessary because it is possible to observe mapped atomic charges/mobile ion charges on 

boundary grid points in the process of the finite-difference discretization.

Finite-Difference Energies—We now turn to numerical computation of electrostatic 

energies via the finite-difference method, i.e. the particle-mesh method. For the sake of clear 

presentation, we assume all individual potentials (ϕf, ϕm, ϕRF) on the grid are already 

known. The detailed procedures are presented in Computational Details below. According to 

eqn (5), the total electrostatic energy can be computed as

Xiao et al. Page 8

J Phys Chem B. Author manuscript; available in PMC 2016 November 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(21)

As discussed in section B, the total electrostatic energy can be computed in an alternative 

way as a charge-view method if we focus on each of the first two terms in eqn (21).

For the first term, i.e. energies due to interactions with the fixed atomic charges, our analysis 

in Section B shows that . Since  satisfies eqn eqn (3)., Coulombic 

energy  can be computed as

(22)

where εi is the solute interior dielectric constant,  and  are grid charges 

interpolated by atoms on grid (i, j, k) and (i′, j′, k′), respectively, (Δx,Δy,Δz) is the distance 

vector between two grid charges in the grid unit and 

 is the finite-difference 

Green’s function as shown by Luty and McCammon.87 According to eqn (7) and eqn (8), 

 can be computed together with the term  in Gm, i.e.  , and 

satisfies eqn (3)..  can then be computed in the following way

(23)

As for , we have

(24)

since ϕRF satisfies eqn (3).
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For the second term, i.e. energy due to interactions with the mobile ionic charges, our 

analysis in Section B shows that . Note that , the atom-ion 

interaction energy, has been taken care of in eqn (23) along with energies associated with 

atomic charges. Since  satisfies eqn(3),  can be computed in the following way

(25)

As for , we have

(26)

since ϕRF satisfies eqn (3).

Thus the total electrostatic energy in the Poisson-Boltzmann’s equation is finally written in 

pairwise charge-charge interactions except GΠ. In summary the total electrostatic energy is 

given by

(27)

after computing all energy terms in eqns (22) – (26).

Finite-Difference Forces—As shown above, the total energy can be decomposed into 

several charge-charge interaction terms by using effective charges, and each term can then 

be computed by either particle mesh or charge view methods. The same strategy can also be 

used to compute the electrostatic forces.

As shown in eqn (13), since  satisfies eqn (3), it can be computed in the following way

(28)
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where εi is the solute interior dielectric constant,  and  are grid charges 

interpolated by atoms on grid (i,j,k) and (i′,j′,k′), respectively, G(Δx,Δy,Δz) is the finite-

difference gradient of g(Δx,Δy,Δz). As for , since  satisfies eqn (3). we have

(29)

where εo is the solvent exterior dielectric constant. As for , since ERF satisfies eqn (3) 

we have

(30)

Combining eqn (28) to (30), the total electrostatic force on grid (i,j,k) is given by

(31)

Finally the grid force is then interpreted onto the atoms as

(32)

Finally, according to eqn (15) and eqn(16), the dielectric boundary forces can be computed 

as

(33)

and the ionic boundary force (IBF) is simply discretized as

(34)

at grid edges flanked by one ion excluded grid node and one ion occupied grid node.
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D. P3M implementation in calculations of energy and forces

In most current PBE implementations, the particle-mesh method is used to compute the 

system electrostatic energies, at least for the reaction field energies, i.e. the solvation 

electrostatic energies. Since particle-mesh methods involve mapping a system of particles 

onto grid nodes, the procedure apparently introduces discretization error in energy 

calculations, particularly for interaction energies between particles/charges that are close to 

each other. Besides the apparent issue of discretizing atomic charges onto a finite-difference 

grid (i.e. displace of charges from their analytical positions), another major reason behind 

the discretization error is due to the difference between analytical Green’s function and 

finite-difference Green’s function87 as we analyzed previously.93 A simple solution to 

reduce the discretization error is to use the analytic Green’s function (1/r) to replace finite-

difference Green’s function (g(Δx,Δy,Δz)) and to keep the particle charges at their original 

positions for eqn (22)–(26) and eqn (28)–(30). However, a brute-force pairwise summation 

approach is highly inefficient except for very simple/small systems due to the scaling of 

pairwise sums. This is the same problem that the particle-simulation community has 

addressed in the past. On the other hand, the difference becomes extremely small when the 

charges are separated by long distance (in terms of grid spacing). This motivated us to 

introduce the particle–particle particle–mesh (P3M) strategy method, initially in the 

computation of Coulomb interactions in the Poisson equation.93 Given the theoretical and 

numerical developments presented above, we are in the position to extend the method to the 

total electrostatic energy (i.e. both Coulomb and reaction field energies) in the full nonlinear 

PBE method.

According to eqn (27), the full PBE electrostatic energy can be split into six terms with each 

formulated as a pairwise summation of relevant effective charges, or its equivalent finite-

difference (FD) summation. This is equivalent to the original full PBE finite-difference 

electrostatic energy, eqn (21). Apparently the FD electrostatic energy (denoted as GFD below 

to highlight it is its particle-mesh nature) is an accurate approximation of pairwise 

summation at long distance, but not at short distance. Thus to reduce the FD discretization 

error, we can replace the particle-mesh method with the particle-particle method for short-

range interactions, with a predefined cutoff distance.93 This suggests that a P3M strategy can 

be used in computing the pairwise sums in eqn (27) to balance accuracy and efficiency. 

Given our use of pairwise sums of effective charge interactions, GFD, can be split into three 

parts as

(35)

Here  is the self-energy, i.e., the energy due to interactions of grid charges within the 

grid charges of one single atom, a pure artifact of the FD approach and must be removed.93 

 is the electrostatic energy for short-range interactions, and  is the electrostatic 

energy for long-range interactions. The partition of these two groups of interactions 

apparently needs a cutoff distance (Rcut).
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The FD self-energy and short-range FD energy can be computed by summing up all relevant 

pairwise interactions, i.e. Gi, j,k/i′, j′,k′, among all grid charges involved, as

(36)

where Qi,j,k is the grid charge at grid (i, j, k), and Qi′, j′,k′ is the grid charge at grid (i′, j′, k
′). f is the coefficient defined in eqn (22)–(26) depending on if Q is atomic charge, 

polarization charge, or ionic charge. Here the distance (r) between any pair of charges 

satisfies

(37)

(x,y,z) and (x′,y′,z′) are the coordinates of two charges at (i,j,k) and (i′, j′, k′). When grid 

charges are from the same atom, eqn (36) gives the FD self energy.

Therefore the full PBE electrostatic energy, G, can be computed via the P3M strategy by 

subtracting the FD self energy ( ) and FD short-range energy ( ) from the FD 

electrostatic energy and adding back the analytical short-range energy ( ) by using the 

Coulomb’s law for the short-range charge-charge pairs

(38)

where the double summation in  includes only pairs within the preset cutoff distance 

Rcut; ql and qn are atomic charges of atom l and n, respectively; εi is the solute interior 

dielectric constant εo is the solvent dielectric constant; and r is the distance between and 

charge positions defined in eqn (37).

It is worth mentioning that for a pair longer than the cutoff the relative error between 

g(Δx,Δy,Δz) and  is often not trivially small. For example, if we 

choose a cutoff distance as 14 grids, the relative error between the two is 1.1×10−3. 

However, since pairs in shorter distance contribute the dominant part of energy and forces, 

the errors are usually much smaller than the error as shown here. Otherwise, a cutoff 

distance much longer would have to be used and lead to a very inefficient P3M method.
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E. Treatment of salt-related terms

According to eqn (6) to (26), the total electrostatic energy in the full Poisson-Boltzmann’s 

equation can be written as

(39)

The first six terms on the right-hand side are all pairwise charge-charge interactions except 

the last term, GΠ. Now considering the salt-related term , Notice 

that computation of  with the charge view method needs a pair-wise summation of all 

grid points (N), so that the time scales quadratically with the grid points as O(N2), which is 

very computationally demanding, while with the original finite-difference method (particle 

mesh method) the time scales only linearly with the grid nodes as O(N). As shown later, 

salt-related energy is only a small portion of the total electrostatic energy and it also 

converges very rapidly with reducing grid spacing. Therefore in this development, the 

original finite-difference approach is used for the ionic energy terms for all tested methods. 

Only  and  are treated with P3M. eqn (38) finally becomes

(40)

Finally, according to eqn (13) and eqn (28)–(31), the force term F = ∫ρfEdv can also be 

computed by the P3M strategy, the force on a given atom l

(41)

Here in , (i, j, k) is looping over all the grid charges maps from atom l, and 

and  include only pairs within the preset cutoff distance Rcut.
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III. Results and Discussion

A. Consistency of charge-view equation and original full nonlinear PB equation

In the following we first demonstrate that the vacuum Poisson equation in the effective 

charges, eqn (2) and eqn (17)–(20), can reproduce the potential from the original full PBE, 

Fig. 1 shows the correlation between the charge-view potentials computed by eqn (2) and 

eqn (17)–(20) and the potential computed by eqn (1) for a single polyAT DNA with or 

without salt. Particularly, the full PB or Poisson equation was first solved for the polyAT 

system with given dielectric constants distribution and ion concentrations. The effective 

charges on all grid grids were then computed according to according to eqn (17)–(20). We 

then used the effective grid charges to compute the potential distribution by solving the 

Poisson equation in vacuum as eqn (2). Apparently the same finite-volume discretization and 

numerical solver was used. In this comparison, we purposely used different combination of 

solute/solvent dielectrics to highlight that the formulation is independent of the exact 

dielectrics used in modeling the original system in the full PB equation. Overall it can be 

seen that the charge-view method agrees with the original full PB equation, with relative 

error < 10−9 for all grid potentials.

B. Consistency between pairwise charge-view energies and the full nonlinear PB energies

Given that the charge-view equation reproduces the full PBE potential, we next investigated 

the possibility to reproduce the full PBE electrostatic energy (eqn (21)) with the pairwise 

summation as outlined by eqn (22)–(26) with the charge-view framework. Fig. 2 shows the 

correlation between the finite-difference charge-view energies and the original finite-

difference electrostatics energies using both Poisson equation and full PBE for a large set of 

nucleic acid PDB structures.37 Overall the charge-view energies reproduce both Poisson and 

full PBE energies very well with relative errors < 2×10−7.

C. Convergence of charge-view energies

Next we tested the convergence behavior of the pairwise charge-view strategy comparing 

with the original full PBE for total electrostatic energy calculation. Here we focus on the 

convergence behavior of the solvation free energy only since it is the component most 

susceptible to discretization errors. As shown in Fig. 3, the charge-view and the full PBE 

energies are compared in two different situations: (1) the polarization charges are mapped 

onto the molecular surface (top) and (2) the polarization charges remain on the grid points. 

And we also used a nonlinear function y = a + bhc to fit the convergence data. Thus y|h=0 is 

regarded as the “converged” energy. Table 1 shows the fitted coefficients for different 

strategies. For the original full PBE energies, the convergent value (in kcal/mol) is −7.7915 

with relative RMS error of (in kcal/mol) 0.0011.

In the top figure, the polarization charges are mapped onto the atomic surface, the fitted 

“converged” energy by the charge-view method is −7.7935 kcal/mol, which is within the 

RMS error of the converged energy for the full PBE method, indicating that the charge-view 

method and the full PBE method converge to the same value within fitting uncertainty. In 

addition, it is apparent that the convergence curve of the charge-view energy is almost flat, 

indicating that this method offers a good estimation of the full PBE energy at tested coarse 
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grid spacing. This supports our conclusion that the use of polarization charges allows a 

much faster converging numerical procedure for electrostatic energy calculation as we have 

shown for the Poisson’s equation and linear PB equation.75, 77, 82

In the bottom figure, the polarization charges are set to remain at the grid points. It can be 

seen that the fitted “converged” energy by the charge-view method is −7.7838 kcal/mol, 

which is also within the RMS error of the converged energy for the FDPB method. However, 

the charge-view energy also converges similarly as the full PBE energy, so that its energy is 

no longer a good approximation of the converged energy at coarse grid spacing if the 

polarization charges remain at the grid points.

D. Convergence and treatment of ionic energy terms

The full PBE electrostatic energy is composed of the reaction field energy and the salt-

related energy. As discussed in the subsection E of Theory and Computational Details, salt-

related energy is only a small portion of the total electrostatic energy and it also converges 

very rapidly. We studied a typical-sized nucleic acid (PDBID: 420D), a 1026-atom solute. 

The convergence of salt-related energy of 420D by the full PBE method is shown in Fig. 4. 

The data was first fitted by nonlinear curve y = a + bhc, given a predicted energy y=1.865 

kcal/mol at h=0, which is less than 10−3 of the total electrostatic solvation free energy of 

4.7×103 kcal/mol. Fig. 4 also shows that the salt-related energy converges very well at 

typical grid spacing values (1/16 to 1/2 Angstrom). The convergence error is <10−4 of the 

total electrostatic solvation free energy at grid spacing values less than 1/2 Angstrom and is 

<10−5 at grid spacing values less than 1/4 Angstrom.

On the other hand, as shown in eqn (25), calculation of the ionic energy with the charge 

view method needs a pair-wise summation of all grid points (N), scaling quadratically with 

the number of grid points, O(N2), which is very computationally demanding, while the 

original finite-difference full PBE method (particle mesh) scales only linearly with the 

number of grid points, O(N). Therefore in the development of an efficient P3M method, the 

original finite-difference approach is used for the salt-related terms.

E. Accuracy and Efficiency of P3M method

As presented in Theory and Computational Details (subsection D), the essence of the P3M 

strategy is to use the more accurate charge-based treatments of energy and forces for short-

range interactions and keep the long-ranged interactions from the finite-difference full PBE 

treatment. Our discussion in Theory and Computational Details (subsection E) and the 

testing data above show that the ionic terms can generally be treated as in the finite-

difference full PBE treatment without introducing much error, so the charge-based method is 

only applied to Coulomb and reaction field interactions to balance accuracy and efficiency.

The pairwise cutoff for the short-range interactions in the P3M strategy apparently 

influences the accuracy of energy and forces calculation. In general, a larger cutoff leads to 

more accurate results but is more computationally demanding. Worth noting is that the total 

electrostatic energy converges very rapidly: the relative error is already less than 10−4 when 

a very short cutoff distance of six grids is used. This is already within the convergence errors 

of the pairwise charge view method at typical coarse grid spacing used, i.e. 1/2 or 1/4 
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Angstrom as shown in Fig. 3 and Table 1. For example, at 1/4 Angstrom, the charge view 

energy is −7.7962 kcal/mol, the relative error is 6×10−4 compares to the fitted value of the 

full PB equation, the relative error is larger when grid spacing is 1/2 Angstrom.

However the accuracy of atomic forces is more sensitive to cutoff. Table 2 summarizes the 

accuracy of atomic reaction forces for the tested nucleic acid 420D. The errors in forces by 

the P3M strategy with different cutoffs were analyzed with the charge-view method set as 

the benchmark. The grid spacing was set as 1/2 Angstrom and 1/4 Angstrom. It is clear that 

the errors of forces decrease when the cutoff distance increases. And the force errors at the 

1/4 Angstrom grid spacing are also smaller than those at the 1/2 Angstrom grid spacing. In 

the following analysis, the short-range cutoff distance is set as 14 grid spacing, with which 

the RMS error of the forces is < 5×10−4.

Next the consistency of the P3M method and the pairwise charge-based method was 

systematically validated with a large set of PDB structures of nucleic acids. Fig. 5 shows the 

electrostatic energy correlation between the charge view method and the P3M method for 

non-linear PB equations. It can be seen that these two sets of data are highly consistent with 

each other, with relative error less than 5×10−4.

Finally a timing analysis was conducted on the tested nucleic acids and is shown in Fig. 6, 

which plots the correlation of CPU times of energy/force computation versus the system 

sizes (no. of atoms). It is clear that the P3M time scales with system size much better than 

the pairwise charge view strategy, with the difference becomes significantly larger when the 

no. of atoms approaching 1,000’s.

F. Accuracy and convergence of electrostatic forces

The accuracy and convergence of electrostatic forces are important issues if we want to use 

the new method for dynamics simulations. A comparison of the original PBE method, 

pairwise charge view method, and the P3M method is shown in Fig. 7–Fig. 10 and Table 3–

4. We first studied the performance of the new methods with all polarization charges mapped 

to molecular surface as shown to improve the convergence of energies (Fig. 3).

Fig. 7 plots the correlations of forces computed at different grid spacing values with the 

benchmark data set obtained at the finest grid spacing used (1/16 Angstrom). It is clear that 

the correlation becomes better as the grid spacing decreases. Table 3 shows the RMS relative 

errors for the dominant force components (here chosen to be larger than 1 kcal/mol-Å) at 

tested grid spacing values with respect to the benchmark data set. The analysis shows that 

the RMS relative error becomes significantly smaller for all three tested strategies as the grid 

spacing is reduced. As the grid spacing reduces from 0.5 Angstrom to 0.125 Angstrom, the 

RMS relative error for the original full PB method is reduced from 0.084 to 0.0092, while 

for the charge view method and P3M method, the error is reduced from 0.025 to 0.0023. It is 

also interesting to notice that the RMS relative errors of the both the charge-view method 

and the P3M method are significantly smaller than those of the original finite-difference 

method at all tested grid spacing values (1/8 to 1/2 Angstrom). Finally, the consistency 

among the three different methods at 1/16 Angstroms is also shown in Fig. 8 and Table 3. 

The RMS relative error between the charge view method and the full PBE method is 0.0053. 
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This is similar to the convergence error of the full PBE energy (Fig. 3) at 1/16 Angstrom, 

around 0.0047, assuming the charge-view method converges much earlier as shown in Fig. 3 

(top panel). The RMS relative error between the charge view method and the P3M method is 

0.0002, which is consistent with the accuracy of the P3M method for energies as shown in 

Fig. 5.

In Fig. 9 and 10 and Table 4 the same analysis was conducted but with the polarization 

charges set to remain on the grid points for charge-view and P3M methods. Fig. 9 shows that 

the correlation becomes better as the grid spacing decreases, similar to Fig. 7. Table 4 shows 

that for the charge view method and P3M method, the RMS relative errors at all grid spacing 

values are larger than those with the polarization charges mapped onto the molecular surface 

(Table 3). Table 4 also shows that the consistency among the three methods is higher at the 

finest grid spacing (1/16 Angstrom) when charges are set to remain at the grid points. This is 

also in agreement with the convergence trend of energies as presented in Fig. 3 (bottom 

panel). Note too the benefits of mapping charges remain to be high at finer grid spacing 

tested, i.e. 1/4 and 1/8 Angstrom. In summary the two sets of convergence data support the 

practice of mapping polarization charges onto the molecular surface.

G. Net force analysis

In molecular dynamics simulation, the net system force is supposed to be zero given the use 

of a conservative force field. However, due to numerical error, the net force is in general not 

zero. Thus this is a simple initial test to assess whether the force interpolation is accurate 

enough before it is tested in the complex molecular dynamics programs.

Here the analysis was conducted on the 1026-atom nucleic acid (420D) and also a 1389-

atom protein (1F81), to demonstrate the performance of the P3M method. As shown in Table 

5, the net force is first computed and averaged over each atom, and then the unsigned 

average of the force components over all the atoms are also computed as references. As 

shown in Table 5, the averaged net force components are always less than 10−3 of the 

unsigned average force components. This should be viewed in the context of typical 

continuum dynamics simulations, where Langevin thermostat is often used. Given a small 

collision frequency (1 ps−1) often used in continuum dynamics simulations, a time step of 

0.001 ps, and 300K simulation temperature, the average random forces are ~1.7 kcal/mol-Å 

on the lightest hydrogen atoms. Thus the nonzero net force plays a less significant role in 

biasing the dynamics simulations.

Conclusions

In this work, we proposed a charge-central interpretation of the full nonlinear PBE 

electrostatic interactions. The validity of this charge-view framework, formulated as a 

vacuum Poisson equation with effective charges, was first demonstrated by reproducing the 

electrostatic potentials of the original solvated full nonlinear PBE for a tested DNA molecule 

with or without salt. In addition the full nonlinear PB electrostatics energy can be 

reproduced by the pairwise summation of effective charges within the charge-view 

framework for a large set of tested biomolecules. Finally, the energy convergence analyses 

show the use of polarization charges allows a much faster converging numerical procedure 
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for electrostatic energy calculation as we have shown for the Poisson’s equation and linear 

PB equation.

Given the validity of the charge-view framework, we went ahead to propose a full particle-

particle particle-mesh treatment for the total electrostatic interactions of full nonlinear PB 

systems. It is interesting to note that salt-related term is only a small portion of the total 

electrostatic energy and it also converges very rapidly, with convergence error less than 10−4 

of the total electrostatic free energy at typical grid spacing used for biomolecular 

applications. This allows us to use the relatively more efficient particle-mesh, i.e. the finite-

difference approach, to handle the salt-related terms. We also studied the influence of 

pairwise cutoff for the short-range interactions in the P3M strategy on the accuracy of 

energy and forces calculation. In general, a cutoff of 14 grid points can be used to achieve a 

good balance of accuracy and efficiency, with relative error less than 5×10−4 with respect to 

the pure particle-particle based charge-view method. Finally, we analyzed the accuracy and 

the convergence trend of numerical solvation forces with the P3M strategy. Our analysis 

shows that the P3M method can reproduce charge-view method well at all tested typical grid 

spacing values (1/16 to 1/2 Angstrom). In addition both the charge-view and P3M method 

deliver faster-converging forces with reducing grid spacing. The convergence tests also show 

that the forces computed by the P3M method, the pairwise charge view method, and the 

original full nonlinear PB method all converge to the consistent values as grid spacing 

decreases, demonstrating their mutual consistency.

Given the developments and validations documented here, we are working to adapt the P3M 

treatment of the full nonlinear PB model to molecular dynamics simulations. To support our 

ongoing development, we also conducted preliminary analysis to assess the feasibility of the 

numerical strategy presented here by first analyzing the net system force of the tested 

nontrivial systems. It is widely known that the net numerical force is in general not zero in 

the numerical methods due to intrinsic numerical errors. Our tests show that the averaged net 

force components are always less than 10−3 of average atomic force components, and also 

much smaller than the average atomic random forces on the lightest hydrogen atoms in the 

widely used Langevin thermo bath, indicating that the influence of error of numerical force 

is small. Apparently efficiency is also an important issue and we are also working to port the 

new method to the GPU platforms to further study the effect of the nonlinear PB modeling 

on nontrivial biomolecular problems.
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Appendices

A. Effective charge interpretation of Poisson-Boltzmann equation

Before exploring the general Poisson-Boltzmann’s equation, it is instructive to discuss the 

more fundamental Poisson’s equation

(42)

It is well known that ϕ can be split into Coulombic potential and reaction field potential, i.e., 

ϕ = ϕC +ϕRF in eqn (42). To see how this is possible, suppose a solute molecule with 

dielectric constant εi is surrounded by a solvent medium with a uniform dielectric constant 

εo, the Coulombic potential is defined as

(43)

which means that the Coulombic potential (ϕC) is generated by atomic charges in a uniform 

medium with dielectric constant εi throughout the whole space. Next introduce its associated 

electric displacement DC = −εi∇ϕC = εiEC. Given DC = EC + 4πPC, where PC is the 

polarization vector in the uniform dielectric of εi. It is clear that eqn (43) can be rewritten as

(44)

With the Coulombic field (EC) so defined, the reaction field is simply the electrostatic field 

generated by the charges induced by transferring the environment surrounding the solute 

from εo to εi. To obtain an equation for the reaction field potential, we first reformulate eqn 

(42) with the help of the electric displacement vector for the inhomogeneous dielectric D = 

−ε∇ϕ = εE

(45)
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Now define ERF and PRF so that they satisfy the following relation between the total 

electrostatic field/polarization and the Coulombic field/polarization:

(46)

Thus ERF and PRF are the reaction field and polarization, respectively, induced by the 

inhomogeneous dielectric with respect to the homogeneous dielectric as in eqn (44). 

Substitution of D = E+ 4πP into eqn (42), we have

(47)

Given eqn (47), it can be simplified to

(48)

Thus the reaction field potential satisfies

(49)

Given ϕ = ϕC + ϕRF and eqn (43) and (49), the Poisson’s eqn (42) can then be reformulated 

as

(50)

Thus the total electrostatic potential can be viewed as the summation of two vacuum 

Coulombic potentials: ϕC from effective charge source  and reaction field potential ϕRF 

from effective charge source ρpol. In reformulating the Poisson’s equation this way, it is 

possible to explore alternative strategies in solving the equation. Of course, this requires an 

efficient way to compute the polarization charges, for example, as shown in one of our 

recent works.94

Now consider the more general Poisson-Boltzmann equation for systems with continuum 

mobile ions
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(51)

where ei is the charge of ion type i, ci is the bulk number density of ion type i, λ is the ion 

exclusion function, kB is the Boltzmann constant and T is the absolute temperature. 

Following the development in the Poisson’s equation, what is needed here is a 

decomposition of total electrostatic potential when the continuum ion terms present.

To build upon the previous analysis of Poisson’s equation, let us assume that the final state 

of the system is reached first by charging up the solute without any continuum ions, then by 

releasing the continuum ions. Thus, the final electrostatic potential for the Poisson-

Boltzmann’s equation (ϕ) can be regarded as a perturbation to the electrostatic potential for 

the Poisson’s equation (ϕPE), i.e. ϕ =ϕPE + ϕm, where ϕm is used to denote the perturbation 

due to the continuum ions. It is straightforward to show that ϕm satisfies the following 

equation

(52)

by substituting ϕ = ϕPE + ϕ m into the Poisson-Boltzmann’s equation. eqn shows that ϕm can 

be viewed as a potential caused by the charge distribution ρm in the dielectric environment 

just as ϕPE is caused by ρf in the same dielectric environment.

Similar to the treatment of potential by ρf, we shall decompose ρm into a Coulombic field 

and reaction field, . However, the difference from ρf is that ρm is immersed in 

the homogenous dielectric of solvent (εo), but not that of solute (εi). Therefore the equation 

for is

(53)

Similar to ϕRF,  can be viewed as generated by a polarization charge density, ρpol,m.

(54)

Therefore the perturbation potential  due to the continuum ions can be 

regarded as being caused by the charge distributions of  and ρpol,m

Xiao et al. Page 26

J Phys Chem B. Author manuscript; available in PMC 2016 November 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(55)

Now it is time to merge what we have derived in the treatment of Poisson’s equation and the 

perturbation due to the continuum ions. eqn (51) and (55) thus give us

(56)

where we have merged ρpol,m into ρpol. Here ϕRF satisfies the revised relation

B. High precision finite-difference Green’s function values

The finite-difference Green’s function needed for self-energy and short-range Coulombic 

energy was previously precomputed based on the work of Luty and McCammon.87 Due to 

limited computational resources, only function values up to 20-grid separation in each 

dimension were precomputed. In this study, finite-difference Green’s function values were 

computed in a brute-force manner by solving a vacuum Coulomb field of a point charge of 1 

unit charge with the standard finite-difference method. The charge was positioned at the 

center of the finite-difference grids, and the boundary potential was set analytically 

according to the Coulomb law. As the grid dimension increases, potentials on grid nodes 

close to the center converge to the values of the finite-difference Green’s function. Table A.1 

shows the maximum relative error of Green’s function as the grid dimension increases. The 

error analysis shows that 8 digits of accuracy can be achieved when Δx,Δy,Δz ≤ 20, and the 

error of the function values when Δx,Δy,Δz ≤ 40 is also very close, less than 1.4×10−8.

The updated finite difference Green’s function values along with the documented algorithms 

are incorporated in the latest Amber simulation package to be released in the spring of 2016.

Table A.1

Maximum convergence error of finite-difference Green’s function values when Δx, Δy, Δz ≤ 

40 or Δx, Δy, Δz ≤ 20.

Grid dimension Max error (Δx,Δy,Δz ≤ 40) Max error (Δx,Δy,Δz ≤ 20)

481×481×481 1.1×10−7 5.7×10−8

601×601×601 5.1×10−8 2.5×10−8

721×721×721 2.6×10−8 1.3×10−8

841×841×841 1.4×10−8 7.3×10−9
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Grid dimension Max error (Δx,Δy,Δz ≤ 40) Max error (Δx,Δy,Δz ≤ 20)

961×961×961 NA NA
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Figure 1. Correlations between grid potentials (kcal/mol-e) computed by the charge view and the 
full Poisson or PBE methods
A polyAT DNA was modeled with the full PB or the Poisson equations. The charge view 

potentials were computed with Poisson with effective charges. The grid spacing is 0.5 

Angstrom. Top: Poisson equation. The inside relative dielectric constant is 1.0 (epsin=1.0) 

and outside relative dielectric constant is 80.0 (epsout=80.0). The root-mean-squared (rms) 

relative deviation is 9.8×10−11. Bottom: PB equation with ionic strength of 1M 

(istrng=1000). The inside relative dielectric constant is 4.0 (epsin=4.0), and the outside 

relative dielectric constant is 80.0 (epsout=80.0). The rms relative deviation is 1.0×10−9.
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Figure 2. Correlations between electrostatic energies (kcal/mol) computed by the charge view 
and the full Poisson or PBE methods
A test set of 283 different nucleic acids was modeled with the full PB or the Poisson 

equations. The charge view energies were computed with the finite-difference Green’s 

function as eqn (22) – (26). The grid spacing is 1.0 Angstrom. No cutoff is used. Left: 

Energies from the two methods. Right: Relative Error between this two methods. Top: 

Poisson equation with the same set up as in Figure 1. The rms relative deviation is 4.0×10−8. 

Bottom: PB equation with the same set up as in Figure 1. The rms relative deviation is 

1.7×10−7.
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Figure 3. Convergence of the reaction field energies (kcal/mol) versus grid spacing (Ångstrom)
The AT base dimer was modeled with the full PBE (epsout=80.0, epsin=4.0, istrng=1000). 

Reaction field energies are computed with the full PBE (black), charge-view (red) strategies. 

Top: the polarization charges are mapped onto the molecular surface. Bottom: the 

polarization charges remain on the boundary grid points. For the full PBE and the charge-

view methods, the convergence trend lines are fitted with respect to grid spacing in the form 

of y = a + bxc. Since the deviation of the field view and charge view without charge mapping 

(bottom) are large at course grids, only data with grid spacing equal or less than 0.3 Å were 

used when fitting those curves. See Table 2 for all fitted parameters.
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Figure 4. Convergence of salt-related energy term (kcal/mol) versus grid spacing (Ångstrom)
The nucleic acid 420D was modeled with the full PBE (epsout=80.0, epsin=1.0, 

istrng=1000). The salt energy is the sum of the ionic energy term and the entropy term in the 

full PB electrostatic free energy. Top: The salt energy versus grid spacing. The convergence 

trend lines are fitted with respect to grid spacing in the form of y = a + bxc. Bottom: The 

deviation between the salt energies and predicted energy at h=0 according to the curve 

fitting. The deviation is relative and is respect to predicted total solvation free energy.
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Figure 5. Correlations between full PBE electrostatic energies (kcal/mol) computed by the charge 
view and the P3M methods
A test set of 283 different nucleic acids was modeled with the full PBE (epsout=80.0, 

epsin=4.0, istrng=1000). The charge view energies were computed with the analytical 

Green’s function, i.e. Coulomb’s law. P3M cutoff is 14. The rms relative deviation is 

3.3×10−4.
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Figure 6. CPU time versus no. of solute atoms for the pairwise charge view method and the P3M 
method
The same test set of nucleic acids was modeled with the full PB equation (epsout=80.0, 

epsin=4.0, istrng=1000) as in Figure 5. The x-axis is the number of atoms in each nucleic 

acids, the y-axis is the cost of CPU time for computing the energies. The trend lines are 

fitted functions in the form of y = ax2 + bx + c.

Xiao et al. Page 34

J Phys Chem B. Author manuscript; available in PMC 2016 November 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. Self-convergence of reaction field forces (kcal/mol-Å)
The AT base dimer was modeled with the full PBE. (epsout=80.0, epsin=4.0, istrng=1000). 

Left: field-view method. Center: charge-view method. Right: P3M method. The polarization 

charges are mapped onto the molecular surface. See Table 4 for correlation analyses.
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Figure 8. Consistency of reaction field forces (kcal/mol-Å) among different force interpretation 
methods at the tested fine grid spacing
Polarization charges are mapped onto the molecular surface. (epsout=80.0, epsin=4.0, 

istrng=1000). Top: The full PBE versus charge view. The rms relative deviation is 0.0052 for 

nontrivial force components (absolute values > 1 kcal/mol-Å). Bottom: P3M versus charge 

view. The rms relative deviation is 0.0002 for nontrivial force components. The fine grid 

spacing is set at 1/16 Angstrom as in Figure 7.
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Figure 9. Self-convergence of reaction field forces (kcal/mol-Å)
Same as Figure 7, except that the polarization charges remain on the boundary grid points. 

See Table 5 for correlation analyses.
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Figure 10. Consistency of reaction field forces (kcal/mol-Å) among different force interpretation 
methods at tested fine grid spacing
Same as Figure 8, except that the polarization charges remain on the boundary grid points. 

Top: the rms relative deviation is 0.0002. Bottom: the rms relative deviation is 0.0002.
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Table 2

Root-mean-squared relative deviations in P3M reaction field forces on DNA 420D with absolute values 

greater than 1 kcal/mol-Å for the P3M strategy with different cutoff (in grid spacing) compared to the charge 

view method. Both grid spacing of 0.25 Å and grid spacing of 0.50 Å are computed. Polarization charges are 

mapped onto the atomic surface.

Cutoff RMSrD force components (0.50 Å) RMSrD force components (0.25 Å)

6 2.7×10−3 1.1×10−3

8 1.3×10−3 5.6×10−4

10 9.4×10−4 4.3×10−4

12 6.2×10−4 3.2×10−4

14 4.4×10−4 2.4×10−4

16 3.4×10−4 1.9×10−4
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Table 3

Root-mean-squared relative deviations in reaction field forces with absolute values greater than 1 kcal/mol-Å 

between strategy y and strategy x. Polarization charges are mapped onto the atomic surface.

x y RMSrD

0.0625 full PBE 0.5 full PBE 0.084

0.0625 full PBE 0.25 full PBE 0.038

0.0625 full PBE 0.125 full PBE 0.0092

0.0625 charge view 0.5 charge view 0.025

0.0625 charge view 0.25 charge view 0.0077

0.0625 charge view 0.125 charge view 0.0023

0.0625 P3M 0.5 P3M 0.025

0.0625 P3M 0.25 P3M 0.0076

0.0625 P3M 0.125 P3M 0.0023

0.0625 charge view 0.0625 full PB 0.0053

0.0625 charge view 0.0625 P3M 0.00020

J Phys Chem B. Author manuscript; available in PMC 2016 November 18.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Xiao et al. Page 42

Table 4

Root-mean-squared relative deviations in reaction field forces with absolute values greater than 1 kcal/mol-Å 

between strategy y and strategy x. Polarization charges are not mapped onto the atomic surface.

x y RMSrD

0.0625 full PBE 0.5 full PBE 0.084

0.0625 full PBE 0.25 full PBE 0.038

0.0625 full PBE 0.125 full PBE 0.0092

0.0625 charge view 0.5 charge view 0.078

0.0625 charge view 0.25 charge view 0.035

0.0625 charge view 0.125 charge view 0.0090

0.0625 P3M 0.5 P3M 0.077

0.0625 P3M 0.25 P3M 0.035

0.0625 P3M 0.125 P3M 0.0092

0.0625 charge view 0.0625 full PB 0.00024

0.0625 charge view 0.0625 P3M 0.00024
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Table 5

Averaged net force and unsigned average of force components in x, y, z directions for nucleic acid 420D and 

protein 1F81. The unit is kcal/mol-Å.

Biomolecules 420D 1F81

Average net force x −3.2×10−4 −2.1×10−4

Average unsigned force x 3.4 2.5

Average net force y −6.2×10−4 −7.7×10−4

Average unsigned force y 3.7 2.5

Average net force z −9.1×10−4 −9.3×10−5

Average unsigned force z 2.7 2.5
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