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Investigating the role of auditory cues in modulating 
motor timing: insights from EEG and deep learning 
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Rd, Merced, CA 95343, United States. Email: hbortfeld@ucmerced.edu 

Research on action-based timing has shed light on the temporal dynamics of sensorimotor coordination. This study investigates the 
neural mechanisms underlying action-based timing, particularly during finger-tapping tasks involving synchronized and syncopated 
patterns. Twelve healthy participants completed a continuation task, alternating between tapping in time with an auditory metronome 
(pacing) and continuing without it (continuation). Electroencephalography data were collected to explore how neural activity changes 
across these coordination modes and phases. We applied deep learning methods to classify single-trial electroencephalography data 
and predict behavioral timing conditions. Results showed significant classification accuracy for distinguishing between pacing and 
continuation phases, particularly during the presence of auditory cues, emphasizing the role of auditory input in motor timing. 
However, when auditory components were removed from the electroencephalography data, the differentiation between phases became 
inconclusive. Mean accuracy asynchrony, a measure of timing error, emerged as a superior predictor of performance variability 
compared to inter-response interval. These findings highlight the importance of auditory cues in modulating motor timing behaviors 
and present the challenges of isolating motor activation in the absence of auditory stimuli. Our study offers new insights into the neural 
dynamics of motor timing and demonstrates the utility of deep learning in analyzing single-trial electroencephalography data. 

Key words: coordination mode; deep learning; ERP; auditory cues; timing indexes. 

Introduction 
Action-based timing, particularly in rhythmic motor tasks like 
finger tapping, involves complex neural processes that integrate 
external sensory cues with internal motor commands. One 
longstanding challenge in motor neuroscience is the motor 
equivalence problem, which refers to the phenomenon where 
motor actions involving different neural and muscular pathways 
(Lashley 1930) can produce the same behavioral outcome. Motor 
equivalence highlights the brain’s ability to generate flexible 
motor solutions based on context, sensory input, and individual 
variability. 

In the context of rhythmic behavior, motor equivalence plays a 
crucial role, as it allows individuals to maintain consistent timing 
even when the underlying motor patterns differ. For instance, 
synchronized and syncopated tapping may appear behaviorally 
similar in terms of motor output (tapping in time with or between 
an auditory beat), but the neural processes guiding these actions 
differ significantly due to the varying demands of auditory–motor 
integration and timing complexity. This distinction is central to 
understanding the neural mechanisms of motor timing (Kelso 
et al. 1998). 

Our study addresses this issue by investigating how differ-
ent timing behaviors—synchronization, syncopation, pacing, and 
continuation—are represented in neural activity and whether 

these distinct motor patterns can be accurately classified using 
deep learning techniques. By analyzing the neural signatures of 
these behaviors at a single-trial level, we aim to shed light on how 
the brain resolves the motor equivalence problem and adapts its 
neural output to maintain consistent motor timing. Said differ-
ently, even though motor behavior (as evidenced by movement 
trajectories) is similar for synchronization and syncopation in 
the presence or absence a stimulus train, the underlying cortical 
patterns may be quite different. 

The human motor system supports motor function and 
organizes different movement sequences (Rizzolatti and Luppino 
2001), enabling actions with a wide range of complexities, 
including the number of limbs used, number of trajectories 
involved, sequence length, and relative timing of movement 
(Wolpert and Ghahramani 2000; Pabst and Balasubramaniam 
2018). The ability to accurately and precisely perform time-
dependent actions is critical for a variety of skills, such as 
playing sports or playing a musical instrument. Research has 
demonstrated that temporal mechanisms in the brain support 
such behaviors, and there is substantial interest in how action-
based timing is represented in the central nervous system. In this 
regard, finger tapping is a reliable and commonly used task for 
measuring motor performance and evaluating muscle control 
and motor ability in the upper extremities (Jantzen and Kelso 
2007; Witt et al. 2008).
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Methodologically, finger tapping allows investigation of the 
mental timing systems associated with motor actions and feed-
back mechanisms of varying complexity (Wing and Kristofferson 
1973; Sergent 1993; Ivry and Spencer 2004). For example, finger 
tapping has been used to probe the neural representation and 
maintenance of timing behavior, where maintenance refers to the 
accurate behavioral maintenance of temporal information follow-
ing the removal of timing cues. Likewise, finger tapping allows 
for measurement of relative changes in neural responses that 
reflect changes in coordination dynamics as participants perform 
different patterns of tapping with systematically varied levels of 
difficulty (Spencer et al. 1998; Jantzen et al. 2004). 

Here we used a modified finger-tapping task that builds on 
our previous examination of movement timing (Rahimpour et al. 
2020) to investigate the process by which individuals entrain to an 
external periodic stimulus (i.e. a metronome) and then internally 
maintain that entrainment (i.e. endogenous rhythmic process). 
We investigated this across two different timing contexts: syn-
chronized (i.e. on-beat) and syncopated (i.e. off-beat) tapping. 
Increased activity within neural subsystems associated with tim-
ing behavior has been postulated to reflect increases in cog-
nitive demand during coordination of complex action patterns. 
Examples include internal timing (basal ganglia and cerebellum) 
(Ivry and Keele 1989; Harrington et al. 1998; Serrien 2008), motor 
planning and preparation (supplementary motor area [SMA], and 
dorsal-premotor cortex) (Mayville et al. 2002), and working mem-
ory and attention (prefrontal cortex and parietal and occipital 
areas) (Smith and Jonides 1998; Nobre 2001; Davranche et al. 
2011). Other studies indicate that the brain areas recruited during 
finger tapping include the primary somatosensory-motor cortex 
(S1/M1), SMA, premotor cortex (PMC), the inferior parietal lobule, 
basal ganglia, and cerebellum (Nachev et al. 2008; Witt et al. 2008), 
with different task-specific parameters modulating the particular 
neural mechanisms that are engaged. 

Much progress has been made in identifying neural corre-
lates specific to different forms of sensory-motor synchronization 
(Repp 2005). For example, the similarities and differences in the 
neural circuits engaged by tapping to a metronomic tone (i.e. 
the pacing phase) and continuing to tap without the tone (i.e. 
the continuation phase) have been investigated using the pacing– 
continuation paradigm (Serrien 2008). Simple synchronized finger 
tapping engages the cerebellar-parietal network, while continua-
tion tapping engages prefrontal regions due to its load on working 
memory (Lewis et al. 2004). More complex sensory-motor synchro-
nization tasks result in greater activation in motor-related areas 
(pre-SMA, PMC, and cerebellum), as well as stronger coupling 
to the auditory cortex, such that there is less variability in tap 
timing when participants have a regular auditory tone—akin to 
a metronome—to guide the pacing of their action as compared 
to when they have no such auditory guide (Comstock et al. 2018; 
Comstock and Balasubramaniam 2018). Indeed, the ability to per-
ceive and respond to temporal periodicities (i.e. timing perception) 
requires tight coupling of the auditory and motor systems (Grahn 
and Brett 2007; Chen et al. 2008; Hove et al. 2013; Ebrahimzadeh 
et al. 2020; Sadjadi et al. 2021) and motor regions, including S1/M1, 
the SMA, and the anterior cerebellum, are activated during both 
pacing and continuation tapping (Witt et al. 2008). Meanwhile, 
frontal networks play an essential role in mediating coordination 
in tasks with increased complexity (Mayville et al. 2002; Jantzen 
and Kelso 2007). 

To examine the interaction between pattern and timing 
complexity, Jantzen et al. (2004) used functional magnetic 
resonance imaging (fMRI) to track cortical hemodynamics as 

participants performing either synchronized or syncopated finger 
tapping in response to an auditory cue and then continued 
their tapping in the absence of that cue. Results revealed that 
these timing-based behaviors engaged different neural regions 
depending on the initial pacing context and regardless of its 
complexity. Our recent findings using functional near-infrared 
spectroscopy (fNIRS) (Rahimpour et al. 2020) likewise indicate 
that the cortical activity elicited from timing behavior is task-
dependent and that the motor timing network further adapts 
to the presence or absence of an external stimulus train. In the 
current study, we explore temporal indicators of the relationship 
between coordination modes and timing phases and apply deep 
learning to assess whether the measures of this relationship are 
robust enough to guide classification. 

Neural activation 
Tracking neural responsivity to different timing patterns requires 
a measure that can provide temporal resolution in the mil-
lisecond range. Electroencephalography (EEG) is just such a 
measure; event-related potentials (ERPs) derived from the EEG 
signal, in particular, measure phase-locked neural activity relative 
to a stimulus (i.e. auditory tone onset) or response (i.e. finger 
tap) (Makeig et al. 2004; Lopez-Calderon and Luck 2014). When 
combined with the continuation paradigm, EEG can be used to 
track patterns of neural engagement during both the pacing and 
continuation phases of the continuation task, while the timing 
of taps provides a behavioral measure of accuracy. For example, 
Peper et al. (1995) found that stimulus-locked ERPs (i.e. ERPs time-
locked to the auditory metronome) during the pacing phase of the 
continuation paradigm were associated with the motoric act of 
tapping and were phase-locked to tap onsets. In another study, the 
amplitude of the event-related changes decreased with increases 
in tapping cycle frequency (Boonstra et al. 2006). Furthermore, 
Serrien (2008) found greater EEG coherence—a measure of the 
degree of similarity in activity across electrodes—at central 
scalp sites during the continuation relative to the pacing phase 
of the continuation paradigm, as well as higher variability in 
tapping accuracy. Because activity in these areas (Clark et al. 
2001) is associated with working memory functions, Serrien 
(2008) interpreted the findings as reflecting increased demand 
on working memory to maintain the temporal representation of 
the now-absent auditory stimuli during the continuation phase. 

Only a few studies have investigated neural activity associated 
with both coordination dynamics (synchronization and synco-
pation) using EEG. Mayville et al. (1999) observed topographical 
changes in neural activity correlated with an automatic switch of 
dynamic coordination (from synchronized to syncopated tapping). 
However, Wallenstein et al. (1995) found that this coordination 
switch most impacted activity at left central electrode sites and 
that changes in neural activity increased significantly just prior 
to this transition. Thus, it seems that the transition from one 
to the other coordination mode introduces a point of instability 
in the brain–behavior entrainment pattern due to the change in 
coordination dynamics. 

Finally, an examination of how neural activity coupled with 
different behavioral movements is contributing to our under-
standing of action-based timing. For example, Bavassi et al. (2017) 
observed that the asynchrony between a tone and a tap during 
synchronized tapping (i.e. the synchronization error) was associ-
ated with the latency of specific components revealed by principal 
component analysis (PCA). In particular, PCA components PC1 and 
PC2 were analyzed to identify relationships with this asynchrony, 
although the study did not specify the exact ERP components
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analyzed. This relationship indicated that greater asynchrony 
corresponded to longer latency, suggesting that increased timing 
error resulted in delayed neural responses. Smit et al. (2013) 
likewise found a strong correlation between alpha-band oscil-
lations and the dynamics of tapping behavior, and Nozaradan 
et al. (2016) reported a link between cortical and behavioral mea-
sures of rhythmic movement, finding beat-related steady-state 
evoked potentials (SSEPs) to be associated with both synchronized 
and syncopated tapping. SSEPs are neural responses that are 
phase-locked to rhythmic stimuli and thus reflect how the brain 
synchronizes with external auditory cues. Researchers also have 
observed high correlations between the kinematic accuracy of 
repetitive finger tapping and delta band activity, localized in a 
central brain area contralateral to the responding hand (Paek et al. 
2014), consistent with the negative lateralized readiness potential 
(LRP) that has likewise been observed in the motor cortex con-
tralateral to the responding hand (Eimer 1998). Overall, there is 
greater neural responsivity during synchronized than syncopated 
rhythmic tapping (Chemin et al. 2014), higher amplitude of timing 
oscillations (reflecting brain activity associated with an increase 
in rhythmic movement to the metronome) during tapping com-
pared to a listening-only task (Nozaradan et al. 2016), and greater 
spectral power during synchronizing than listening to rhythmic 
beat without moving in both auditory and motor areas (Mathias 
et al. 2020). These findings highlight the relationship between 
brain responses and action-based timing, showing that neural 
dynamics, such as oscillations and phase-locked responses, are 
closely tied to the accuracy and synchronization of rhythmic 
motor actions like tapping. 

Current study 
The goal of the present study was to use a temporally sensi-
tive measure of neural activation, EEG, to track neural activity 
during a tapping task whose complexity varied in both pattern 
and timing. To this end, we collected EEG data from well-trained 
participants while they completed a continuation task, similar 
to the one employed in our prior study (Rahimpour et al. 2020). 
The task involved both in-phase (i.e. synchronized) and antiphase 
(i.e. syncopated) tapping. Each form of tapping took place across 
two phases: first relative to an auditory metronomic tone and 
then continued without the tone. However, where we blocked 
trials by tapping pattern in our original study, here, we intro-
duced an alternating design (Pabst and Balasubramaniam 2018) 
whereby the pattern of tapping alternated trial by trial between 
synchronization and syncopation, with each trial including both 
phases: pacing to a tone and continuation without the tone. 
This change from blocked to alternating trials increased the task 
difficulty by isolating the specific tapping pattern to a particular 
trial (Rahimpour Jounghani et al. 2023). 

The analytical methods used in the studies reviewed thus 
far were averaged across trials and did not explore individuals’ 
neurophysiological activity at the single trial level. In particular, 
the LRP is difficult to extract and is very sensitive to noise, making 
single-trial analysis difficult. Moreover, intertrial phase coherence 
can only be calculated from a group of trials (Van Diepen and 
Mazaheri 2018). Moreover, whereas ERPs can capture the temporal 
dynamics of neural responses to single events, SSEPs reflect the 
average response to repeated stimuli over a long period of time; 
this is a critical point as temporal resolution is one of the main 
advantages of using EEG for timing studies (De Pretto et al. 2018). 
In a recent study, Nave et al. (2022) used SSEPs to measure neural 
responses to musical rhythms that varied in beat salience and 
showed that beat perception is a subset of rhythm perception, 

involving the extraction of a regular pulse from a complex audi-
tory signal. However, it is important to note that this method 
may be more suited to investigating beat perception and may not 
be as applicable to other forms of timing behavior—a potential 
limitation. 

Although few studies have reported a linear relationship 
between the amplitude of neurophysiological activity and 
accuracy of task performance, Nozaradan et al. (2016) found 
that average asynchrony of taps relative to the guiding tone 
(i.e. synchronization error) strongly correlates with neural 
entrainment to a beat. For example, Mathias et al. (2020) observed 
that the N1 peak latency negatively correlates with the average 
divergence between the target and realized tap (i.e. mean tap 
asynchrony), meaning that as mean asynchrony in a complex 
timing task decreased, stimulus-locked N1 amplitude became 
more positive (Mathias et al. 2020). 

In addition to our discussion of motor equivalence earlier, 
the interrelation between behavior and the associated neuro-
physiological dynamics is not linear (Ebrahimzadeh et al. 2019; 
Vahid et al. 2020), even though most analytic approaches in the 
literature rely on the assumption of linearity when applying cor-
relational approaches to relate behavioral and neurophysiological 
data. Moreover, because ERP data are inherently noisy, it is difficult 
to establish functional connections at the single-participant or 
single-trial level via statistical techniques alone (Vahid et al. 2020; 
Ebrahimzadeh et al. 2021). These issues severely limit our capacity 
to relate specific patterns of neural activity to human behav-
ior. However, these deficiencies may be addressed by employing 
machine learning techniques. 

In particular, we aimed to establish a predictive relationship 
between neurophysiological activity and behavioral performance 
at the individual level while participants engaged in distinct 
action-based timing behaviors. Our primary hypothesis was that 
neural response as measured by EEG would correspond to the 
dynamic coordination process that manifests across two forms 
of timing guidance, exogenous (i.e. during pacing) and endoge-
nous (i.e. during continuation), and during two different tapping 
behaviors (i.e. synchronization and syncopation). We also aimed 
to investigate whether and how the individual and single-trial 
level of neurophysiological activity might predict behavioral accu-
racy performance across four tapping conditions: synchronized 
pacing, synchronized continuation, syncopated pacing, and syn-
copated continuation. Finally, we explore whether the patterns 
associated with these four tapping conditions can be exploited by 
deep learning. 

Materials and methods 
Participants 
We recruited 15 healthy volunteers with self-reported normal 
hearing to participate in the study. All had participated in a 
prior study in which they performed the same tapping task used 
here, meaning each had experience with the task. Data from 
three participants were excluded from the analyses due to a 
high number of motion artifacts in their EEG data based on 
visual inspection. Thus, 12 healthy right-handed adult volunteers 
(mean age 26, range 20 to 41 years) successfully participated in 
the study. None of the participants reported any neurological 
or skeletomuscular disorder or injury that would prevent them 
from performing a timing-based tapping task. The institutional 
review board approved the protocol for research ethics and the 
protection of human subjects at the University of California,
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Fig. 1. Schematic of the experimental paradigm adapted from Rahimpour et al. (2020) to perform repetitive right finger tapping in the presence of the 
auditory metronome in the alternating study design. 

Merced. All participants gave informed written consent after the 
experimental procedures were explained to them. 

Stimuli and task 
Each participant performed the finger-tapping task using the 
index finger of their dominant (right) hand in response to a 20-ms 
long, 1 kHz metronomic tone repeated every 1,000 ms (1 Hz). A 1-s-
long tone indicated the end of a trial and the start of a 20-s resting 
state. A 1-s interonset interval was employed in our study due to 
its prevalence in previous research investigating rhythm percep-
tion and production (e.g. Repp 2005), in addition to our own prior 
work (Rahimpour et al. 2020; Rahimpour Jounghani et al. 2023). 
This choice aligns with the optimal internal entrainment range for 
human synchronization with rhythmic tones, as demonstrated by 
Drake et al. (2000). 

The task involved two patterns of tapping: (i) taps with each 
tone (synchronization) and (ii) taps between two consecutive 
tones (syncopation). In order to avoid any neural adaptation to the 
particular tapping pattern during the performance of the task, we 
modified the original blocked design introduced by Jantzen et al. 
(2004) to one in which the tapping pattern alternated between 
synchronized and syncopated tapping from trial to trial (a synco-
pation trial always follows a synchronization trial and vice versa) 
for a total of 10 trials per timing condition (20 trials overall) (see 
Fig. 1). Regardless of the tapping pattern, within a given trial, 
tapping was first paced relative to a metronomic tone (15 cycles) 
and then continued without the tone (12 cycles). Distinct from the 
designs used in Jantzen et al. (2004) and Rahimpour et al. (2020), 
participants had experience performing the task in a prior study. 

To track tapping behavior, we used a temporally precise 
device—a smooth metal plate—that did not interfere with the 
accuracy of participants’ tapping during their performance of 
the task. Two leads were connected to the plate, one connected 

to a custom-built electronic input device produced from a 
MakeyMakey kit (Comstock and Balasubramaniam 2018) and  
the other held by the participant so that with each tap by the 
participant on the metal plate, the circuit was completed and 
delivered to the input device, which then sent a signal to the 
computer via USB, thus registering the tap (Collective and Shaw 
2012). 

For analytical purposes, we used each finger tap on the plate 
as the mark of the onset of each behavioral response. The device 
introduced a temporal delay of approximately 25 ms. The delay 
is due to the time for the internal circuitry in the MakeyMakey 
to process the input, which has a built-in delay for input reg-
istration to reduce accidental double inputs (similar to a com-
puter keyboard). The 25-ms delay was determined by a method 
recommended by the MakeyMakey engineers in which a high-
speed camera (240 fps) was utilized to simultaneously record the 
timings of the tap and the corresponding computer registration 
via a tone output from the computer, a method that computed the 
delay to be approximately 25 ms (+/−2 ms from the camera frame 
rate). Thus, we adjusted the time recorded for each response post 
hoc. Paradigm software was used to present the instructions and 
to synchronize the onset of each trial with a trigger sent to the 
EEG data. 

EEG data recording 
EEG data were continuously recorded with an ANT-Neuro 32 
electrode cap with electrodes placed according to the 10–20 Inter-
national electrode system, assigning Cz as the reference electrode. 
The data were recorded at a sampling rate of 1024 Hz with 
electrode impedance below 5 k�(Kappenman and Luck 2010). 
Following acquisition, the EEG data were processed with EEGLAB 
(Delorme and Makeig 2004) and ERPLAB (Lopez-Calderon and 
Luck 2014).
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Data processing and analysis 
Behavioral measurement 
We established two behavioral measures of performance. The first 
was accuracy asynchrony, defined as the time difference between 
the target onset and the participant’s actual tap (asynchrony = 
tap onset−stimulus onset). In this case, the target time was 0 ms 
(onset of tone) for synchronization and 500 ms for syncopation. 
The second was inter-response interval (IRI), defined as the time 
between two consecutive taps. 

We initiated data preprocessing by applying an interquartile 
range (IQR)–based method to identify and remove outliers in the 
mean accuracy asynchrony and intertap interval indices. The IQR 
was calculated as the difference between the 25th percentile (Q1) 
and the 75th percentile (Q3) of the two behavioral measures. Any 
data point falling outside 1.5 times the IQR in either direction was 
flagged as an outlier. After implementing this method, we iden-
tified and addressed the outliers to ensure the dataset’s integrity. 
We then handled missing data, with an average of 2.1 instances 
per timing condition, including single tap outliers and missing 
taps (1.43 outliers, 2.6 missing taps). To further refine the dataset 
and maintain balance, we employed a bootstrapping resampling 
method. 

Next, we utilized multiple linear regression (MLR) and piece-
wise growth curve modeling (using Python’s “pwlf” and “StatsMod-
els” libraries) to examine the behavioral effects of timing phase 
and coordination mode on the dependent variables (mean accu-
racy asynchronies and IRIs for each participant). This allowed us 
to model the relationship between timing conditions and motor 
performance across different phases. 

EEG data analysis 
Preprocessing 
EEG data were preprocessed by first downsampling to 512 Hz 
and then applying a Butterworth high-pass filter with a cut-off 
set at 0.1 Hz, an order of 6, and a filter roll-off of 24 dB/octave. 
Data were then visually examined for artifacts, and corrupted 
sections were removed. Bad channels were detected and removed 
using an automated EEGLAB algorithm that compares channels 
with their surrounding channels (probability measure with 
z-score threshold set to 4). Four participants had one channel 
each removed from their data; the other eight participants had 
no channels removed from their data. Independent component 
analysis (ICA) was performed using the Runica algorithm (with 
infomax rotation) within EEGLAB (Bell and Sejnowski 1995) for  
further artifact rejection. Components were visually inspected, 
and components related to eye-blink and eye-movement artifacts 
were removed, resulting in an average of 1.2 components (range: 
1 to 2 components) removed per participant. After running ICA, 
the bad channels (four channels total) were interpolated using 
spherical interpolation, and the data were re-referenced to the 
average reference. 

We adopted stimulus-locked epochs with the onset of the 
first tone in each trial as the reference point. Additionally, we 
accounted for the virtual onset of the continuation phase based 
on existing literature (Bavassi et al. 2017; Rahimpour Jounghani 
et al. 2023), which we included in our stimulus-locked analy-
sis. The stimulus-locked epochs served to provide insight into 
how participants perceived and encoded the presented rhyth-
mic pattern in each trial. Conversely, the response-locked epochs 
were employed to gain an understanding of how participants 
planned and executed their tapping response in each trial. There-
fore, data were epoched using ERPLAB in two different ways. 

To create stimulus-locked ERPs, epochs were time-locked to the 
auditory stimulus onset. Thus, epochs were time-locked to the 
auditory stimulus onset, and, for response-locked ERPs, epochs 
were time-locked to the participants’ behavioral responses (i.e. 
taps) after adjusting the triggers 25 ms earlier to account for 
the delay introduced by the MakeyMakey device, ensuring the 
taps coincide with their actual occurrence. Both stimulus-locked 
and response-locked ERPs were epoched from −100 to +500 ms 
relative to the time-locked event (total number of stimulus-locked 
epochs = 12,960; response-locked = 10,031). After removing linear 
trends for an entire epoch, baseline correction was performed 
to the mean voltage between −100 ms and the stimulus- or 
response-onset for each epoch. 

Further data cleaning was performed at the epoch level with 
individual epochs removed (mean: 62; range: 9 to 147) if voltage 
exceeded ±100 μV in any channels for total stimulus-locked and 
response-locked epochs. Next, we applied a Butterworth low-pass 
filter with a cut-off at 30 Hz, an order of 4, and a filter roll-off of 
24 dB/octave. 

Finally, we generated each participant’s stimulus-locked 
and response-locked ERPs for each of the four tapping condi-
tions (i.e. synchronization-pacing, synchronization-continuation, 
syncopation-pacing, and syncopation-continuation). The total 
epochs included in the stimulus-locked ERP average per partici-
pant were 943±46 (mean ± SD) , for synchronized pacing, 912±51 
for syncopated pacing, 866 ± 51 for synchronized continuation, 
and 899 ± 86 for syncopated continuation. Also, the total epochs 
for response-locked were 741±53, 754±33, 844±76, and  878±29, 
respectively. 

Auditory component removal 
In order to test for differences in motor activation across condi-
tions without the interference of the auditory evoked response 
to the pacing metronome, we used ICA to isolate and remove 
auditory components before re-running our analyses. ICA was 
performed using the Runica algorithm (with infomax rotation) 
on the already cleaned and epoched datasets. For each subject, 
the primary auditory component was determined by visualizing 
both the scalp topography of the component and comparing 
component contributions to the ERP waveforms for stimulus-
locked epochs during the pacing conditions and response-locked 
epochs during the continuation epochs. The component that 
had the greatest contribution to the auditory evoked response 
was selected and then checked to ensure that it had a minimal 
contribution to the response evoked response. Once the primary 
auditory component was determined, it was removed from the 
dataset. 

Deep learning 
Using the conventional average-based ERP method, we did not 
find a significant main effect of the predictors of the regression 
model on the averaged ERPs in synchronized pacing (F1,11 = 
7.3, P = 0.1, η2 = 0.12). Additionally, no significant contrast effect 
was observed between pacing and continuation phases when 
averaged across coordination modes (F1,24 = 32.36, P = 0.22, η2 = 
0.05). Similarly, no significant contrast effect was found between 
synchronization and syncopation modes when averaged across 
timing phases (F1,24 = 19.11, P = 0.41, η2 = 0.01). To ensure an 
unbiased approach and avoid cherry-picking specific channels for 
analysis, we incorporated a deep learning method in our study. 

In this study, we examined how well single-trial neurophys-
iological data at the single-subject level could be used to clas-
sify trials into pacing and continuation phases and across two
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coordination modes (i.e. synchronized and syncopated tapping) 
using EEGNet as a classifier. EEGNet is available for download 
from https://github.com/vlawhern/arl-eegmodels, and we imple-
mented it using the TensorFlow library in Python to determine 
whether we could predict behavioral timing conditions based 
on single-trial EEG data. The methodology and structure of our 
study were similar to a previous study conducted by Vahid et al. 
(2020) that examined cognitive control using EEG. To use EEGNet, 
we converted single-trial EEG data into 2D arrays where chan-
nels (C) and time (T) were represented in columns and rows, 
respectively. 

The EEGNet architecture consists of two stages. In the first 
stage, convolutional filters with a width of 64 samples were 
applied to generate temporal feature maps, and depth-wise con-
volution was used to learn D (a parameter that controls the 
number of spatial filters and covers all EEG channels) for each 
temporal feature map. Within each temporal map, the model 
then learned spatial features. After applying temporal and spa-
tial filters, batch normalization followed an exponential linear 
unit (ELU) activation function. Average pooling over 4-time steps 
with a stride of 4 was also performed. In the second stage, a 
separate convolution was used consisting of depth-wise temporal 
filters with a width of 16, followed by a point-wise convolution. 
Batch normalization, ELU activation function, average pooling 
over 8-time steps, and dropout were sequentially applied. Finally, 
a dense layer with a SoftMax-activation function was used for 
classification. 

We used the “k-fold cross validation” approach (Refaeilzadeh 
et al. 2009) to evaluate classification performance. We set k to 
10 and trained the model for 7466 epochs and then tested it on 
747 epochs in the validation set. The number of temporal and 
spatial filters (F1, D) was set to (4,2), and the batch size was 32. 
We used the ADAM optimization (Kingma and Ba 2014) to train  
EEGNet. To account for the unbalanced datasets due to variable 
numbers of trials across participants and timing conditions, we 
applied a class weight that was the inverse of the proportion in 
the training data, with the majority class set to one. We reported 
the entire confusion matrix and accuracy to evaluate the model’s 
performance. 

To identify the EEG timepoints and electrode sites that had 
the highest impact on the classification decision, we used a 
“saliency map” approach (Simonyan et al. 2013). The gradient of 
the classification score was taken before applying the SoftMax-
activation function to the input data. This allowed us to generate 
a map that showed how the model’s output changed when there 
were small changes in the input data at the single-subject level. 
We averaged saliency maps for each trial belonging to a class 
and normalized them between 0 and 1 to ensure standardized 
visualization. Values close to 1 indicated that a particular fea-
ture/timepoint strongly contributed to classification accuracy. We 
calculated a threshold to ensure that the model’s classification 
performance in the 2-class (pacing-continuation) problem was 
significantly above chance for each participant by assuming that 
the classification error follows a binomial cumulative distribution 
(Vahid et al. 2019). 

Statistical analyses of behavior–brain relations 
For the neural–behavioral analysis, we investigated the relation-
ship between single-trial features extracted via deep learning and 
participants’ behavioral accuracy measures (mean asynchrony 
and IRI). The relationship was assessed using MLR (via Python’s 
“Scipy” and “StatsModels” libraries) (Seabold and Perktold 
2010). We explored linear similarities between the extracted 

features from stimulus-locked and response-locked ERPs and the 
behavioral indices to evaluate how well the neural activity aligned 
with the behavioral performance. 

Results 
Behavioral results 
We first calculated the mean asynchronies and IRIs for the four 
timing conditions: (i) synchronized pacing, (ii) synchronized con-
tinuation, (iii) syncopated pacing, and (iv) syncopated continua-
tion. We then used MLR to estimate a regression model and find 
the contrast effect between timing conditions post hoc. More-
over, piecewise growth curve approach is calculated to estimate 
and interpolate the temporal trend of timing conditions on each 
dependent variable (i.e. mean asynchrony and IRI, separately). 

Mean accuracy asynchrony 
Our estimated MLR model was calculated to predict mean accu-
racy asynchrony based on two factors: phase (pacing, continu-
ation) and coordination mode (synchronization, syncopation). A 
significant main effect of the entire model on the mean syn-
chrony index was found

(
F1,11 = 11.2, P < 0.02, η2 = 0.49

)
in our 

estimated regression model. There was a main effect of phase on 
mean accuracy asynchrony

(
F1,11 = 12.8, P < 0.01, η2 = 0.45

)
,with 

a 41.12-ms average increase in accuracy asynchrony during con-
tinuation compared to pacing. However, the average change in 
mean accuracy asynchrony for syncopation compared to synchro-
nization was not significant. Thus, the phase variable significantly 
impacted mean accuracy asynchrony. 

For synchronized and syncopated pacing and continuation, the 
mean accuracy asynchronies were −43.7±13.3 (ms) (mean ± SD), 
−50.3 ± 116.8 (ms), 12.2 ± 208.3 (ms), and  −8.3 ± 206.5 (ms), 
respectively, as illustrated in Fig. 2A. The results revealed that 
tapping during the continuation phase was as accurate as but 
less stable relative to tapping during the pacing phase. We also 
observed negative mean accuracy asynchrony in the syncopated 
continuation condition, as well as for both synchronized and 
syncopated pacing conditions. This describes an averaged 
accuracy asynchrony that is negative, meaning a participant 
demonstrates anticipatory timing behavior (rather than reactive 
tapping). This was only observed in the more complex tapping 
conditions. In untrained participants, performance in the pacing 
phase is often less accurate than what we observed in this study. 
Thus, our results appear to reflect faster rhythmic entrainment 
in these participants, each of whom had prior experience with the 
task. Nonetheless, significant differences in mean accuracy asyn-
chrony were observed between pacing and continuation phases 
for both synchronized (F1,11 = 19.3, P < 0.01, η2 = 0.39) and  
syncopated (F1,11 = 18.1, P < 0.01, η2 = 0.35) tapping. Specifically, 
we found a significant contrast effect between pacing and 
continuation phases averaged across coordination modes (F1,24 = 
6.6, P < 0.04, η2 = 0.25). 

As can be seen in Fig. 2B, the average accuracy asynchrony 
during the continuation phase was greater than during pacing 
for both coordination modes. This is consistent with our previous 
findings (Rahimpour Jounghani et al. 2023) that behavioral perfor-
mance based on endogenous cues is less accurate than that based 
on exogenous cues. 

We used piecewise growth curve modeling to estimate the 
fitted model for trial cycles for both pacing and continuation 
tapping, as shown in Fig. 2C. The top plot in this figure shows the 
temporal trends for the averaged tapping cycles corresponding to 
the two coordination modes. The two modes follow each other

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article/34/10/bhae427/7848901 by guest on 30 O

ctober 2024

https://github.com/vlawhern/arl-eegmodels
https://github.com/vlawhern/arl-eegmodels
https://github.com/vlawhern/arl-eegmodels
https://github.com/vlawhern/arl-eegmodels
https://github.com/vlawhern/arl-eegmodels
https://github.com/vlawhern/arl-eegmodels


Jounghani et al. | 7

Fig. 2. A) Mean accuracy asynchronies for each timing condition. Error bars show standard deviation (SD). Solid brackets indicate statistically significant 
comparisons between timing conditions. Synch, Syncop, and Cont indicate synchronized, syncopated, and continuation, respectively. B) Values of mean 
accuracy asynchrony from each timing condition: Synchronization (top); syncopation (bottom); (C—top) Estimated accuracy asynchrony trend during 
maintenance (pacing followed by continuation). (C—bottom) Second derivatives of the corresponding trends locating the turning points (square marks) 
in: synchronization; syncopation; vertical solid line represents continuation phase onset. 

closely across the first 10 s, at which point the trend toward syn-
chronization across time reveals more variation than syncopation 
(during timepoints 10 to 17 s); subsequent to that, the time series 
for synchronization stabilizes (during timepoints 17 to 27 s), albeit 
to a pattern closer to that seen during syncopation. This means 
that although the behavioral accuracy of syncopation is less 
accurate overall, it is stably so. The bottom plot shows the second 
derivative of the trends specifying the turning point estimated by 
our interpolated model. As can be seen, the estimated turning 
point for both synchronized and syncopated tapping occurs at 
10 s (5 s before the phase change timepoint) and at 25 s (10 s 
after phase transition). This effect is consistent with our previous 
finding reported in Rahimpour Jounghani et al. (2023). 

Behavioral IRI 
We estimated the MLR model’s ability to predict IRI based on 
coordination mode and phase. A significant effect of each of 
the independent variables on the mean accuracy asynchrony 
index was found

(
F1,11 = 5.8, P < 0.05, η2 = 0.31

)
in our estimated 

regression model. Moreover, there was a marginally significant 
main effect of phase on IRI

(
F1,11 = 5.13, P = 0.05, η2 = 0.27

)
. 

As shown in Fig. 3A, the average performance of trained par-
ticipants was very consistent for all timing conditions, where 
IRI represents how evenly spaced taps are consistent. However, 
the stability of performance decreases as the timing complexity 
increases. For synchronized and syncopated pacing and contin-
uation, the IRIs were 997.1 ± 43.2 (ms) (mean ± SD) , 998.4 ± 
45.8 (ms), 1000.8±62.9 (ms), and  1016.3±71.1 (ms), respectively. 
The only significant difference we observed was between the syn-
copated pacing and the syncopated continuation (F1,11 = 6.43, P < 

0.05, η2 = 0.23) conditions. As can be seen in Fig. 3B, the IRI index 
in the syncopated continuation condition was higher than in 
other conditions (consistent with Rahimpour et al.’s 2020 finding). 
Finally, we found an interaction between phase and coordination 
mode (F3,11 = 6.51, P = 0.04, η2 = 0.18), which is also consistent 
with our previous findings (Rahimpour et al. 2020). 

We used piecewise growth curve modeling to estimate the 
fitted model of averaged pacing and continuation tapping trial 
cycles, as shown in Figs. 3C. The top plot in this figure shows the 
temporal trends for the averaged tapping cycles corresponding 
to the two coordination modes. The trend for synchronization 
over time was consistent and close to an ideal IRI value (i.e. 
1,000 ms); however, abrupt changes were observed in the 10- to 17-
s time range, particularly before the continuation onset timepoint. 
Similar to mean accuracy asynchrony, the temporal trends for 
the two coordination modes follow each other very closely at the 
beginning and at the end of the cycles. The bottom plot shows 
the second derivative of the trends, which specifies the turning 
point estimated by our interpolated model. As can be seen, the 
estimated turning point for synchronized and syncopated tapping 
occurred at 11 s (4 s before the phase transition timepoint) and at 
12 s (3 s after phase transition). These observations are consistent 
with the findings (from the fNIRS alternating study) reported in 
Rahimpour Jounghani et al. (2023). 

The identification of a turning point is crucial, as it enables us 
to determine whether the data-driven transition from pacing to 
continuation aligns with the intended experimental manipulation 
(i.e. the switch from pacing to continuation). These results under-
score the importance of predicting action-based timing behavior 
at the single-trial level using neurophysiological data, as this
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8 | Cerebral Cortex, 2024, Vol. 34, No. 10

Fig. 3. A) IRIs of each timing condition (i.e. from left to right: synchronized pacing, syncopated pacing, synchronized continuation, and syncopated 
continuation). Error bars show SD. Solid brackets indicate statistically significant comparisons between timing conditions. B) Averaged IRI values from 
each timing condition: syncopation (top); synchronization (bottom); (C—top) Estimated IRI trend during maintenance (pacing followed by continuation). 
(C—bottom) Second derivatives of the corresponding trends locating the turning points (square marks) in: synchronization; syncopation; vertical solid 
line represents continuation phase onset. 

approach helps to account for potential misalignments between 
the designed experimental phases and the patterns that emerge 
from the data-driven analysis. 

Neural results 
In this study, we first aimed to use deep learning to extract neu-
rophysiological features that predicted brain states. Because the 
significant contrasts of behavioral accuracy (i.e. mean accuracy 
asynchrony and IRI) were only observed for two timing phases and 
not for the two coordination modes, we aimed to classify pacing 
and continuation phases for each coordination mode (synchro-
nization and syncopation). Finally, we measured the monotonic 
association between the extracted neurophysiological and behav-
ioral indexes (i.e. mean asynchrony and IRI) using Spearman’s 
rank correlation method. 

Feature extraction and classification 
As described in the Materials and Methods section, we used 
deep learning to investigate whether classification emerged 
within electrodes for stimulus- and response-locked ERPs. Deep 
learning predicts the presence of neurobiological markers to 
classify behavioral phases. Since the behavioral data revealed the 
performance differences modulated with pacing–continuation 
behavioral phases, this factor was considered in the deep learning 
step. Therefore, the study focused on the 2-class problem 
of pacing-continuation within two coordination dynamics— 
synchronization and syncopation—to train the deep learning 
architecture (EEGNet) on a training dataset. The trained model 
was then applied to the test/validation dataset to determine 
how well it identified the two different timing conditions for 
each coordination mode. That is, for evaluating classification 

performance, we used the “10-fold cross validation” approach (see 
Materials and Methods for more details). The chance level of our 
2-class problem would be 50% classification accuracy. We thus 
calculated a threshold that indicated classification accuracies 
significantly above chance by assuming the classification error 
conformed to a binomial cumulative distribution. 

Pacing-continuation classification 
Synchronization coordination mode 
The average accuracy of trial class prediction given stimulus-
locked, single-trial EEG data was 70% (SD = 28%), which was 
20% (SD = 17.2%) higher than the individual chance level 
[t (11) = 16.3; P = 0.02, η2 = 0.44]. The confusion matrix for the 
2-class problem is shown in Fig. 4A. Rows show real (“true”) labels, 
while the columns show the classification labels, which were 
generated by the model based on the single-trial EEG data. The 
average prediction accuracy of 70% can be seen in the confusion 
matrix (see diagonal from top left to bottom right of the confusion 
matrix). Thus, performance was above chance and then correct 
predictions outnumbered incorrect predictions. In particular, 
synchronized continuation trials were incorrectly classified as 
synchronized pacing for only 26% of the cases. In contrast, 
synchronized continuation trials were correctly classified as such 
in 74% of cases. Generally, the confusion matrix shows that the 
deep learning approach employed here can classify trial class 
(experimental timing phase) based on single-trial data. 

Figure 4B presents separate visualization (“saliency”) maps for 
each of the two classes of pacing and continuation. As can be seen 
in Fig. 4B, the FC1 electrode strongly contributed to classification 
accuracy in the time window from 110 to 180 ms. Moreover, we 
observed contribution to classification for C4 and T8 in the time
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Fig. 4. A) Confusion matrix showing the classification results for the stimulus-locked trials of the pacing (the same as continuation) in synchronization 
mode. Color shadings and number in the matrix denote the frequency at which the read data “true” label was classified into one of the two possible 
predicted classes. B) Visualization maps showing the relevance of all timepoints and electrodes for the classification of two classes of pacing and 
continuation stimulus-locked trials in synchronization mode. Values close to 1 indicate that the specific feature at the specific timepoints contributes 
most to classification accuracy. The x axis denotes the time in ms after auditory stimulus presentation. The y axis indicates the different electrode sites. 

range from 110 to 140 and 190 to 260 ms, as well as for T7, 
C3, and Cz in the time range from 190 to 260 ms. Importantly, 
this was the case for both classes of pacing and continuation 
trials. The ERP plots showing activity at these electrodes can be 
seen in Fig. 5. The identified time window overlaps with the audi-
tory N1 and P2 peak latency component, which reflects auditory 
stimulus processing. Therefore, it appears that auditory attention 
contributes to the predictive power of stimulus-locked single trials 
from the synchronized form of the experiment. However, we did 
not observe meaningful classification of response-locked single Stimulus-locked ERPs 
trials of synchronization mode. Furthermore, the initial positivity 
in channels T7 and T8 is likely a polarity reversal of the N1b and 
P2 components seen on top of the head, rather than a reflection 
of the N1c/Ta/Tb subcomponents, which are typically focal in 
temporal electrodes and exhibit sensitivity to alterations in pitch 
and timbre (Näätänen and Picton 1987). Our primary emphasis is 
directed toward the N1b component, which is the predominant 

and enduring facet of the N1 complex, elucidating stimulus onset 
processing. The auditory N1b component (during synchronized 
pacing, see Fig. 5 top-left topography) is likely co-occurring with 
a motor-timing process that results in a widespread negativity 
across the scalp. However, we acknowledge that the N1c/Ta/Tb 
subcomponents may exert their influence on rhythm perception 
and production (Näätänen and Picton 1987). 

Syncopation coordination mode 

The average accuracy of trial-level classification on the basis 
of the stimulus-locked single-trial EEG data was 70% (SD = 26%) 
and thus 20% (SD = 19.2%) higher than the individual chance 
level [t (11) = 15.3; P = 0.02, η2 = 0.51]. The confusion matrix for 
the 2-class (pacing–continuation) problem is shown in Fig. 6A. 
Rows show real (“true”) labels and columns show classification 
labels as predicted on the basis of the single-trial EEG data.
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Fig. 5. Stimulus-locked ERPs at the electrode sites contributing most to classification accuracy (for pacing vs. continuation) during synchronized tapping 
in the deep learning model. The x axis indicates the time in ms after auditory stimulus-locked presentation. The curves indicate the averaged ERP values 
for pacing and continuation phases, respectively. The shading indicates the SE across the time. The y axis indicates the voltage in μV (note that the scaling 
of the y axis differs between the plots). The shading shows the time interval that was found to contribute strongly to classification performance in the 
deep learning network. The scalp maps in bottom right side indicate the amplitude of electrode sites in extracted N1 peak latency (time range: 110 to 
140 ms) and P2 peak latency (190 to 260 ms). Please note that the y axis limits are scaled to the data amplitudes for each plot. 

As can be seen in the confusion matrix, the average prediction 
accuracy was 70% (see diagonal from top left to bottom right in 
the confusion matrix). This was above chance and substantially 
larger than the percentage of incorrect predictions. For exam-
ple, syncopated continuation trials were only incorrectly classi-
fied as syncopated pacing in 25% of cases, meaning syncopated 

continuation trials were correctly classified as such in 75% of 
cases. 

Figure 6B presents separate visualization (“saliency”) maps for 
each of these two classes of pacing and continuation. As can 
be seen in Fig. 6B, C3, C4, T8, and CP6 electrodes strongly con-
tributed to classification accuracy of timing phase in the time
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Fig. 6. A) Confusion matrix showing the classification results for the pacing in the syncopation coordination mode. Color shadings and number in the 
matrix denote the frequency at which the read data “true” label was classified into one of the two possible predicted classes. B) Visualization maps 
showing the relevance of all timepoints and electrodes for classification between two classes of pacing trials and continuation stimulus-locked trials in 
syncopation mode. Values close to 1 indicate that the specific feature at the specific timepoints contributes most to classification accuracy. The x axis 
denotes the time in ms after auditory stimulus presentation. The y axis indicates the different electrode sites. 

window from 115 to 135 and 190 to 250 ms. Electrode Pz also 
contributed to the classification accuracy in the time window 190 
to 250 ms. Crucially, this was the case for both classes of pacing 
and continuation trials. The ERP plots showing activity at these 
electrodes are given in Fig. 7. The identified time window overlaps 
with the auditory N1 and P2 ERP peak latency components, which 
reflects auditory processes. Therefore, auditory attention appears 
to be predictive of which phase of tapping a person is in given 
syncopated coordination mode. 

Response-locked ERPs 
The average accuracy of trial-level classification prediction on 
the basis of the response-locked single-trial EEG data was 66% 
(SD = 29.5%) and thus 16% (SD = 23.2%) higher than the individ-
ual chance level [t (11) = 18.7; P = 0.046, η2 = 0.24]. The confusion 
matrix for the 2-class (pacing–continuation) problem is shown 
in Fig. 8A. Rows show real (“true”) label; the columns show the 
classification label, which was predicted on the basis of the 

single-trial EEG data. As can be seen in the confusion matrix, 
the average prediction accuracy was 66% (see diagonal from top 
left to bottom right in the confusion matrix). Syncopated pacing 
trials were only incorrectly classified as syncopated continua-
tion in 28% of cases. In contrast, syncopated pacing trials were 
correctly classified as such in 72% of cases. Generally, the con-
fusion matrix shows that the deep learning approach employed 
here was able to classify trial class (i.e. phases) on the basis of 
single-trial data. 

Figure 8B presents separate visualization (“saliency”) maps for 
each of these two classes of pacing and continuation. As can be 
seen in Fig. 8B, the strong contribution for classification accuracy 
can be observed in the following electrodes and time ranges: Fz: 
80 to 130 ms; FC1: 60 to 100 ms; C3: 110 to 140 ms, 200 to 270 ms; 
C4: 90 to 140 ms, 200 to 250 ms; T8:100 to 130 ms, 210 to 250 ms; 
CP5: 0 to 20 ms, 80 to 120 ms, 200 to 220 ms; CP6: 115 to 145 ms; 220 
to 280 ms; and Pz: 50 to 100 ms, 180 to 220 ms. Crucially, this was 
the case for both classes of pacing and continuation trials. The
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Fig. 7. Stimulus-locked ERPs at the electrode sites contributing most to classification (pacing–continuation phases) accuracy of syncopation mode in the 
deep learning model. The x axis indicates the time in ms after auditory stimulus-locked presentation. The curves indicate the averaged ERP values of 
pacing and continuation phases, respectively. The shading indicates the SE across the time. The y axis indicates the voltage in μV (note that the scaling 
of the y axis differs between the plots). The shading shows the time interval that was found to contribute strongly to classification performance in the 
deep learning network. The scalp maps in the bottom-right side indicate the amplitude of electrode sites in extracted N1 (time range: 115 to 135 ms) 
and P2 peak latency component (190 to 260 ms). Please note that the y axis limits are scaled to the data amplitudes for each plot. 

ERP plots showing activity at these electrodes are given in Fig. 9. 
The identified time window overlaps with specified time range of 
motor components, which is known to reflect motor processes. 
Therefore, motor response processes are predictive of response-
locked timing phases in syncopation mode. 

It should be noted that the classification accuracy between 
synchronized and syncopated pacing was not above the chance 
level (for stimulus-locked single-trial ERPs: 55%; response-locked: 
60%) and between synchronized continuation and syncopated 
continuation was not acceptable (for stimulus-locked single-trial 
ERPs: 52%; response-locked: 61%). 

Classification of timing conditions after removing auditory tri 

components cl 

We also fed the auditory component-removed ERPs to deep learn-
ing to test for differences in motor activation between two coor-
dination modes in the pacing phase as well as between phases 
(pacing vs. continuation) in both synchronization and synco-
pation modes separately. The classification accuracy between 
synchronization and syncopation modes was low, with correct 
predictions not outnumbering incorrect predictions (for stimulus-
locked single-trial ERPs: 45%; response-locked: 53%). Similarly, 
the classification accuracy between phases in the continuation 
paradigm was low (for stimulus-locked single-trial ERPs: 49%; 
response-locked: 48%). These results suggest that the auditory 
component may be driving the differentiation effect we observed 
in the original ERP data between pacing and continuation phases. 
Without the auditory contribution, neural responses did not reli-
ably differentiate these phases, highlighting the importance of 
auditory cues in modulating motor activation during timing task. 

Relations between single-trial ERPs and behavioral 
measures 
Based on the findings of single-trial ERP classification, we 
predicted that individual differences in extracted cortical features 
(contributed auditory and motor components) would correlate 
with behavioral indices. Thus, separate MLR analyses were 
conducted to examine the relationship between individual 
differences in extracted single-trial features and our behavioral 
accuracy measures (i.e. mean accuracy asynchrony and IRI). 
The behavioral mean accuracy asynchrony and IRI were the 
dependent variables in the regression model (n = 12). The 
independent variables in the model are the extracted single-

al amplitudes in each electrode sites that contributed to the 
assification. We explored all possible correlations and plotted 

the ones in which the relationship was statistically significant. 

Mean accuracy asynchrony 
The MLR analysis yielded a model with rs = −0.42, F (1, 11) = 
6.33, P = 0.03 with the average stimulus-locked ERP emerg-
ing as the only significant unique predictor of mean accuracy 
asynchrony performance in synchronized pacing. A scatterplot 
showing the negative correlation between the extracted stimulus-
locked ERP amplitude (included P2 peak latency: 180 to 220 ms) 
and mean accuracy asynchrony is shown in Fig. 10. In support of 
our general hypothesis about the predictive power of single-trial 
ERPs, stronger neural activity in CP6 electrode site relates to more 
negative mean accuracy asynchrony in the synchronized pacing 
condition. 

We also found a correlation between the average response-
locked ERP emerging as the predictor of mean accuracy
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Fig. 8. A) Confusion matrix showing the classification results for the response-locked trials of the pacing and continuation in syncopation mode. Color 
shadings and number in the matrix denote the frequency at which the read data “true” label was classified into one of the two possible predicted classes. 
B) Visualization maps showing the relevance of all timepoints and electrodes for classification between two classes of pacing trials and continuation 
tapping response-locked trials in syncopation mode. Values close to 1 indicate that the specific feature at the specific timepoints contributes most to  
classification accuracy. The x axis denotes the time in ms after tapping response presentation. The y axis indicates the different electrode sites. 

asynchrony [rs = 0.39, F (1, 11) = 7.24, P = 0.04] in syncopated 
pacing. A scatterplot showing the positive correlation between 
the extracted tapping-locked ERP amplitude in FC1 electrode site 
extracted from the deep learning method and mean accuracy 
asynchrony is shown in Fig. 11. The greater neural activity at the 
FC1 electrode site relates to lower mean accuracy asynchrony in 
the syncopated pacing condition. 

In addition, a correlation was observed between averaged 
extracted single-trial response-locked ERP emerging as the pre-
dictor of mean asynchrony [rs = −0.56, F (1, 11) = 6.77, P = 0.01] 
in syncopated continuation condition. A scatterplot showing 
the negative correlation between the extracted tapping-locked 
ERP amplitude at the Pz electrode site extracted from our deep 
learning model and mean accuracy asynchrony is shown in 
Fig. 12. Thus, stronger neural activity at the Pz electrode site 
related to higher mean accuracy asynchrony in the syncopated 
continuation condition. 

IRI 
We estimated our regression model in syncopation mode and 
found strong correlation rs = 0.66, F (1, 11) = 9.05, P = 0.01 
with the average auditory-locked ERP in Pz as another predictor 
of IRI performance. A scatterplot showing the strong positive 
correlation between the extracted stimulus-locked ERP amplitude 
(included P2 peak latency: 180 to 220 ms) and IRI index is shown in 
Fig. 13, indicating that stronger neural activity at the Pz electrode 
site relates to higher IRI in the syncopated pacing condition. 

Moreover, this analysis yielded a model with rs = −0.55, 
F (1, 11) = 7.69, P = 0.01 with the average selective response-
locked ERP emerging as the significant predictor of IRI perfor-
mance accuracy. A scatterplot indicating the negative correlation 
between the extracted ERP amplitude at the T8 electrode site and 
IRI accuracy is shown in Fig. 14. Thus, stronger neural activity at 
the T8 electrode site relates to lower IRI in the syncopated pacing 
condition.
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Fig. 9. Response-locked ERPs at the electrode sites contributing most to classification accuracy (syncopated pacing and syncopated continuation) in the 
deep learning model. The x axis indicates the time in ms after auditory tapping response-locked presentation. The curves indicate the averaged ERP 
values of pacing and continuation phases, respectively. The shading indicates the SE across the time. The y axis indicates the voltage in μV (note that the 
scaling of the y axis differs between the plots. The shading shows the time interval that was found to contribute strongly to classification performance 
in the deep learning network. The scalp maps in the bottom-right side indicate the amplitude of electrode sites in extracted motor components (time 
range: 110 to 130 ms and 220 to 250 ms). Please note that the y axis limits are scaled to the data amplitudes for each plot. 

Discussion 
Here, we investigated the neurophysiological activity correspond-
ing to finger-tapping processes given systematic manipulation of 
tapping pattern (coordination mode) and phase in the continua-
tion paradigm (pacing or continuation). Our findings go beyond 
conventional ERP component analyses to functionally relate EEG 

features to behavioral performance. We were able to achieve this 
at the time scale of single trials, demonstrating the neurophysio-
logical processes corresponding to a single behavior. 

Our results revealed temporal changes in tapping accuracy 
and precision across coordination modes, demonstrating that the 
more challenging timing condition to perform corresponds to the
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Fig. 10. Scatterplots showing individual indices of extracted auditory 
locked single-trial neural features corresponding to mean accuracy asyn-
chrony in the synchronized pacing condition. The plot illustrates that 
behavioral accuracy improves with increasing negative amplitude of 
selective neural features in CP6. 

Fig. 11. Scatterplots showing individual indices of extracted response 
tapping–locked single-trial neural features corresponding to mean accu-
racy asynchrony in syncopated pacing condition. The plot illustrates that 
behavioral accuracy improves with increasing strength of amplitude of 
selective neural features in FC1. 

lowest absolute tapping accuracy and precision. This could indi-
cate that behavioral performance reflects the cognitive demand 
or effort required to perform the tapping task and that this 
demand is higher when the tapping pattern is more complex, for 
example, syncopation without a pacing stimulus. Alternatively, it 
could indicate that different asynchrony accuracy and IRI across 
time reflects the degree of mismatch or conflict between the 
produced rhythms with/without tones and that this mismatch is 
higher when the tapping pattern is more dissimilar or incongruent 
with the stimulus rhythm and particularly during the transition 
from pacing to continuation. These interpretations are consis-
tent with previous studies that have shown increased neural 

Fig. 12. Scatterplots showing individual indices of extracted response tap-
ping–locked single-trial neural features corresponding to mean accuracy 
asynchrony in the syncopated continuation condition. The plot illustrates 
that behavioral accuracy improves with decreasing strength of amplitude 
of selective neural features in Pz. 

Fig. 13. Scatterplots showing individual indices of extracted auditory-
locked single-trial neural features corresponding to IRI in syncopated 
pacing condition. The plot illustrates that behavioral accuracy improves 
with decreasing strength of amplitude of selective neural features in Pz. 

activity and complexity in response to increased task difficulty or 
unpredictability in timing tasks ( Chemin et al. 2014; Nozaradan 
et al. 2016; Comstock et al. 2018). Moreover, our findings suggest 
that different coordination modes may recruit different neural 
mechanisms for maintaining temporal accuracy and precision, as 
evidenced by the distinct patterns of EEG features extracted by our 
deep learning approach. 

The central nervous system supports the dynamic behavior of 
the motor system for planning, controlling, and learning actions 
(Wolpert et al. 1995; Kawato 1999; Ashe et al. 2006), and listening 
to rhythmic sound sequences activates not only the auditory 
system but also the sensorimotor system (Fujioka et al. 2009).
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Fig. 14. Scatterplots showing individual indices of extracted response 
tapping–locked single-trial neural features corresponding to IRI in synco-
pated pacing condition. The plot illustrates that IRI behavioral accuracy 
may improve with decreasing strength of amplitude of selective neural 
features on T8. 

Moreover, engagement of the inferior frontal lobule (supporting 
auditory–motor coupling) during synchronized pacing, and of 
the inferior parietal lobule during continuation, was observed by 
researchers using EEG frequency–based SSEPs ( De Pretto et al. 
2018). Pfurtscheller et al. (2003) found beta-band oscillation in 
the mid-central area, reflecting inhibition of neural subnetworks 
during synchronized continuation, and Ross et al. (2022) observed 
a significant role of mu rhythms in motor inhibition during beat 
perception. 

The findings we report here demonstrate how neurophysiolog-
ical activity corresponds to performance on our finger-tapping 
task, which in this case alternates in complexity from trial to 
trial. Electrophysiological activity is differentially modulated by 
specific movement parameters (Jäncke et al. 1998). Indeed, in the 
present study, each experimental condition activated a network 
compatible with the automatic, motor-related timing network, 
with additional contributions to motor coordination provided 
from frontal and central sites as required by different levels of 
timing complexity. This is consistent with our previous findings 
(Rahimpour et al. 2020), which demonstrated that increases in 
oxygenated hemoglobin (oxy-Hb) levels (indicating the amount of 
neurophysiological activity) corresponded to the degree of diffi-
culty of the different timing behaviors. 

The deep learning approach we implemented here revealed 
inherent differences between phases (pacing vs. continuation) 
by extracting meaningful contribution of ERP components and 
channels. This neural finding is consistent with the statistically 
significant contrast effects we observed in the behavioral results. 
The contrast of behavioral results reveals the superiority of mean 
accuracy asynchrony as compared to the IRI index in relation 
to the neural findings. In the stimulus-locked ERP waveforms, 
N1 and P2 peak latencies were significantly engaged in phase 
contrast in both synchronization and syncopation patterns. These 
two components are generally associated in the extant litera-
ture with sensory and perceptual processes, including sensory 
gating, selective attention, and stimulus identification (Fogarty 
et al. 2020). We also observed the contribution of response-locked 

single-trial features to sensorimotor electrode sites associated 
with motor responses, consistent with findings relating these 
electrode sites to sensory, motor-related, and attentional and 
working memory processes. 

Findings from the current study provide insight into the 
neural basis of timing behavior by exploiting phases (pacing-
continuation) of the continuation paradigm together with 
changes in coordination dynamics as introduced by the alter-
nating design we implemented. The results indicate that 
neurophysiological correlates of cognitive processes in frontal, 
parietal, temporal, and central sites exhibit distinct markers 
that may be used to guide classification of trial phase in the 
continuation paradigm. The results provide promising evidence 
for neurally based predictions about the various neural processes 
in timed actions and provide a way of dealing with studying 
the cortical dynamics that might serve as the basis for motor 
equivalence. Thus, deep learning may expand our understanding 
of neural processes by guiding the generation of new hypotheses 
about timing behavior, including moving beyond conventional ERP 
components and functionally relating EEG features to behavioral 
timing performance. 

In the post hoc power analysis using GPower software (Faul 
and Erdfelder 1992), our sample size of 12 was used, and a 
two-predictor variable equation (mode and phase) served as a 
baseline. Effect sizes were categorized as small (Cohen’s d = 0.14), 
medium (Cohen’s d = 0.39), and large (Cohen’s d = 0.59). The study 
demonstrated sufficient statistical power (power = 0.8) for detect-
ing moderate to large effect sizes but less than adequate power 
for detecting small effect sizes. The chosen significance level 
was P < 0.05 (α-level). Thus, while the study could reliably detect 
substantial effects, it may not be as sensitive to smaller effects. 

While the EEGNet model successfully distinguished between 
pacing and continuation phases, it encountered challenges when 
attempting to differentiate between synchronization and synco-
pation coordination modes. These modes both involve auditory– 
motor integration and error correction processes but differ in their 
levels of complexity. One plausible explanation for the model’s dif-
ficulties is the subtle neural activation differences between syn-
chronization and syncopation, which may not have been captured 
effectively due to the limited sensitivity of the EEGNet model. This 
limitation could be attributed to the model being trained on a 
relatively small and noisy dataset, which lacked constraints or 
prior knowledge of specific neural patterns of interest. Addition-
ally, the model may have overfitted to the more distinct pacing 
and continuation phases, which were more prominent in the 
data, while underperforming on the more transient and variable 
features associated with synchronization and syncopation. 

To improve classification performance, we propose the follow-
ing strategies : (i) employ alternative stimuli or tasks that can elicit 
more pronounced and consistent neural differences between syn-
chronization and syncopation, such as using musical or speech 
stimuli or incorporating adaptive, interactive tasks and (ii) explore 
more advanced deep neural network architectures, such as recur-
rent neural networks or transfer learning, which may be better 
suited to capturing the subtle neural differences between the two 
modes. After removing auditory components from the EEG data, 
the classification accuracy between synchronization and synco-
pation further declined. This suggests that auditory cues play a 
critical role in driving the neural differentiation between these 
two coordination modes. Without the auditory input, the ability 
to classify these conditions became inconclusive, highlighting the 
importance of sensory input in distinguishing between motor 
timing strategies.
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There are several limitations to be addressed in future research. 
First, the results of other classifications (between coordination 
modes) were inconclusive. Therefore, increasing sample size to 
improve the quality of the data that serves as the basis for 
the deep learning approach may improve overall classification 
performance. Second, although using deep learning further val-
idates the interpretation of some of our findings, particularly 
that attentional, working memory, and sensorimotor components 
are in play to different degrees in the different phases of the 
continuation paradigm, there are still some uncertainties in pre-
dicting behavioral accuracy based on single-trial neurophysiologi-
cal markers. Additional variables, encompassing motor planning, 
error monitoring, and feedback processing, might contribute to 
the observed disparities in EEG patterns among the conditions. 
The implications extend beyond the confines of attention and 
working memory as exclusive or principal cognitive functions 
implicated in sensorimotor synchronization. Further research will 
be needed to modify experimental tasks to directly target the 
association of these cognitive components and further refine 
these deep-learning models. We also suggest using connectivity 
analyses to identify the brain regions and networks associated 
with attention and working memory in sensorimotor synchro-
nization. Third, more complex timing trials (Fitch and Rosenfeld 
2007) and alternating designs may not accurately reflect the 
underlying neural activity in more extended timing scenarios 
(Rahimpour Jounghani et al. 2023). Dynamic alternation between 
complex actions may stymie our ability to reliably investigate 
neural activity associated within and across the various subsys-
tems involved in pacing and continuation phases of action-based 
timing behavior. 

Conclusion 
This study explored the neurophysiological correlates of action-
based timing behaviors using EEG and deep learning. Our find-
ings demonstrate that neural activity, as measured by EEG, can 
accurately differentiate between pacing and continuation phases, 
particularly when auditory cues are present. The significant clas-
sification accuracy observed during the pacing phase underscores 
the critical role of auditory stimuli in guiding motor timing behav-
iors. However, when auditory components were removed from the 
data, the classification of motor activation across phases became 
inconclusive, suggesting that the auditory input may be a key 
driver of the observed differentiation effects. 

The results emphasize the challenges of isolating motor-
related neural responses in the absence of external auditory 
cues. The superior performance of mean accuracy asynchrony, 
compared to the IRI index, highlights the relevance of this 
measure in reflecting the neural findings associated with timing 
behaviors. Future research should focus on further disentangling 
the contributions of auditory and motor components to timing 
behaviors and explore how different sensory modalities influence 
motor coordination in complex timing tasks. 
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