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Crowdsourcing elicitation data for semantic typologies
Barend Beekhuizen Suzanne Stevenson

Leiden University Centre for Linguistics Department of Computer Science
Leiden University University of Toronto

b.f.beekhuizen@hum.leidenuniv.nl suzanne@cs.toronto.edu

Abstract

In semantic typology, it is desirable to have quick and easy
access to crosslinguistic elicitations describing stimuli from a
semantic domain. We explore the use of crowdsourcing for
obtaining such data, and compare it with fieldwork data ob-
tained through in-person elicitations. Despite potential con-
cerns about the quality of crowdsourced data, we find no dif-
ference in the amount of between-language variation and can
replicate a cognitive modeling experiment using the crowd-
sourced data in place of the fieldwork data. Both results sug-
gest that crowdsourcing elicitations is a viable method for
gathering data for semantic typology and cognitive modeling.
Keywords: semantic typology; cognitive modeling; data col-
lection; spatial relations

Motivation
Languages vary quite a bit in where they place the seman-
tic boundaries between grammatical case affixes (Cysouw,
2014) and lexical items (Malt, Sloman, & Gennari, 1999;
Bowerman & Choi, 2001). Despite the variation in the exact
placement of the boundaries and the numbers of conceptual
distinctions, there are also seemingly universal tendencies to
group certain concepts together under one linguistic label.
Bowerman and Choi (2001) found, for instance, that situa-
tions of containment and surface support (expressed with on
and in in English) constitute prototypical cores of the mean-
ings of spatial adpositions cross-linguistically.

Recently, semantic typology—the study of semantic varia-
tion and similarity between languages—has begun to be ex-
plored with quantitative techniques. Much of this work starts
from the method pioneered by Berlin and Kay (1969), in
which speakers of various languages are asked to describe
the same set of stimuli. The resulting elicitation data cap-
ture crosslinguistic patterns of expression that can reveal in-
sights into a semantic domain and its encoding across lan-
guages. Using such data, researchers have been able to iden-
tify crosslinguistically-salient conceptual distinctions (Majid,
Boster, & Bowerman, 2008), to explore how semantic do-
mains are expressed using closed-class vs. open-class lexi-
cal items (Majid, Jordan, & Dunn, 2014), and to reveal con-
straints on how linguistic systems for verbalizing various se-
mantic domains form categories of expression (Khetarpal,
Majid, & Regier, 2009; Regier, Kay, & Khetarpal, 2009).

Beekhuizen, Fazly, and Stevenson (2014) (henceforth
BFS) extended this typological method to the domain of
cognitive modeling, in particular, modeling the aquisition of
word meaning. Using the crosslinguistic dataset from Levin-
son, Meira, et al. (2003), BFS derived a ‘universal’ semantic
space for the domain of spatial relations from the linguistic
expressions of native informants. This approach enabled us

to avoid manually devising a set of semantic primitives to en-
code the target word meanings. The semantic space captures
crosslinguistic patterns in the similarity of situations, such
that situations that are expressed similarly within many lan-
guages are closer together, whereas situations that are often
expressed differently within a language are farther apart. That
is, while each language may divide up the semantic space of
spatial relation situations more or less differently, the seman-
tic space encodes the common tendencies across languages
in where they place boundaries among words or affixes for
describing conceptual distinctions.

BFS used cognitive modeling to explore the Typological
Prevalence Hypothesis (Bowerman, 1993; Gentner & Bower-
man, 2009), which states that, all else being equal, semantic
groupings that are more common across languages are cogni-
tively more ‘natural’ and therefore easier to learn. Using the
semantic space described above for representing word mean-
ings, we trained a model that learned Dutch prepositions,
associating them with regions of the space. We simulated
Gentner and Bowerman’s (2009) finding that Dutch children
acquire the prepositions op and in (which correspond to com-
mon semantic groupings of spatial relations) earlier than aan
and om, and that children often use op in situations where
adult speakers use aan or om. Using the crosslinguistically-
derived semantic space enabled us to explore the interaction
between word frequencies and the lay-out of the space in driv-
ing patterns of acquisition of word meaning.

Using patterns of elicitation data to understand how people
conceptually and linguistically carve up semantic domains
thus has been important for both analysis of semantic do-
mains and for cognitive modeling of word meaning acquisi-
tion. In order to extend this line of research to other semantic
domains and a wide range of languages, we need quick and
easy access to typological data for a sample of languages con-
cerning the semantic domains of interest. Major efforts have
been made to elicit expressions within a range of languages
across some selected cognitive domains (Majid et al., 2014).
However, thus far such efforts have relied on traditional in-
person elicitations that are labor-intensive to acquire, and thus
the number of languages and domains is limited. In this pa-
per, we explore the potential of crowdsourcing for obtaining
semantic elicitations as a way to broaden the scope of possi-
ble analytical and modeling research in this area.

Crowdsourcing crosslinguistic data
We aimed at using crowdsourcing to create a similar dataset
to that of Levinson, Meira, and The Language and Cogni-
tion Group (2003) (henceforth the LM data). This dataset
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Figure 1: Four examples from the BowPed stimuli, 71 pic-
tures of topological spatial relations between a Figure (the
highlighted object) and the Ground (the related object).

Table 1: The language sample.

Language Affiliation Country n Speakers

Arabic Afro-Asiatic Egypt 53,990,000
Basque isolate Spain 546,000
Dutch Indo-European the Netherlands 21,944,690
Indonesian Austronesian Indonesia 22,800,000
Nahuatl Uto-Aztecan Mexico 1,500,000
Quechua Quechuan Peru 8,913,000
Swahili Niger-Congo Kenya, Tanzania,

Uganda
15,457,000

Thai Tai-Kadai Thailand 20,397,000

contains in-person elicitations for 1–26 speakers within each
of 9 languages who were asked to describe 71 pictures in
the Topological Spatial Relations Set (Bowerman and Ped-
erson (1992); see Figure 1).

We used the same stimuli to elicit spatial descriptions on
a crowdsourcing platform (www.crowdflower.com) with the
dual goals of expanding the languages for which we had data
in that semantic space, and of evaluating the viability of us-
ing crowdsourcing as an alternative data collection method-
ology. As with the LM data, we aimed to obtain a sample
of genetically unrelated languages with a wide geographi-
cal spread. Since we wanted to both compare with and ex-
tend the LM data, we targeted two of the same languages
(Dutch and Basque), and added six new languages, shown
in Table 1. Some differences in the datasets arise from the
use of the crowdsourcing methodology: for example, we had
to select languages in which the number of speakers is rel-
atively large, in order to increase the likelihood of reaching
them online; we were unable to restrict responses to a par-
ticular variety of a language (e.g., for Nahuatl and Quechua,
which are better regarded as language groups); and we pre-
sumed that most speakers would be bilingual, given the use
of an English-based online crowdsourcing platform.1

In addition to differences in the properties of the languages
and participants, our methodology also led to the possibil-
ity of differences in the nature of responses compared to

1We restricted the locations per language to IP addresses from
the countries in Table 1.

Table 2: Coding schema and percentage of response type

Class description A
ra

B
as

D
ut

In
d

N
ah

Q
ue

Sw
a

T
ha

1 Contains a spatial marker 60 13 79 58 11 15 70 62
2 Non-spatial expression 4 2 1 0 3 2 5 7
3 Reversal of Figure-Ground 9 2 5 1 2 1 7 4
4 Other invalid responses 25 82 15 41 83 80 17 25
5 Coder uncertain 1 1 0 0 1 3 1 1

manually-gathered elicitations. Since participants are paid to
fulfill tasks, the data inevitably contains more noise. Our in-
structions had to be tailored to encourage full meaningful re-
sponses, also leading to more opportunity for a wider variety
of responses. We requested 15 responses per situation within
each language, effectively obtaining 0 to 15 useable ones.

The response data was subsequently coded by the first au-
thor using the five-code schema in Table 2, drawing on lan-
guage resources online. Class 1 was used to identify valid
expressions which contained some overt marking of the topo-
logical spatial relation. This could be an adposition, a spatial
noun, or a case ending. Only data coded as Class 1 is used
in the creation of our semantic representation, which uses the
spatial markers as dimensions in the space.

We used four additional categories to distinguish various
types of responses that did not fit this requirement, so that
we could explore other possible expressions in the future. In
Class 2, the relation between the Figure and Ground was ver-
balized using mechanistic rather than spatial language (e.g.,
the arrow pierces the apple), indicating a non-spatial concep-
tion of the situation. The reversals of Figure-Ground in Class
3 (e.g., the table under the lamp rather than the lamp above
the table) indicate how likely certain Figures are conceived
of as Grounds. Class 4 held cases of miscategorization of
the objects, non-relational responses, non-target language, or
nonsense. Responses that could not be resolved into one of
these classes were placed in Class 5.

As seen in Table 2, the quality of the data varies between
languages, with the proportion of Class-1 responses ranging
from 11% to 69%. This is especially an issue for minority
languages—Basque, Nahuatl, and Quechua—whose partic-
ipants frequently appeared not to be native speakers. (Re-
sponses for Basque often appeared to have been automati-
cally translated, and for the latter two were often in Spanish or
consisted solely of the Figure noun.) Quality control is diffi-
cult: we undertook what could be done within the constraints
of the platform. In future work, we plan to incorporate in-
sights from recent work on quality control in crowdsourcing
experiments (Chen & Dolan, 2011; Pavlick, Post, Irvine, &
Kachaev, 2014).2

Despite additional noise and a wide variety of response
types, the effort to code the data and extract the usable re-

2We thank all three reviewers for constructive suggestions con-
cerning quality control.
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sponses was only ±3-4 hours per language. Crowdsourc-
ing as a way to extend the reach of elicitation datasets thus
appears viable, so long as the resulting data has appropriate
properties, the topic we turn to next. We first look at directly
measuring a key aspect of elicitation data, and then turn to a
replication of our cognitive modeling work.

Comparing crowdsourced and fieldwork data
If crowdsourced data is to be used for linguistic study and
cognitive modeling, it needs to be the same in relevant prop-
erties as data gathered through fieldwork. One key property
is diversity: in order to use the resulting data as the basis for
a ‘universal’ semantic space, the languages must show varia-
tion reflective of the many ways in which that semantic space
can be divided up. The languages that have sufficient num-
bers of speakers available on a crowdsourcing platform con-
stitute a narrow subset of all languages spoken. We believe
this admittedly skewed typological sample can nonetheless be
used if the between-language variation it displays is not lower
than that of the manually-gathered sample of LM.

In order to assess the overall variation among the languages
in our dataset, we must consider a way to measure the dif-
ferences in how two languages carve up the semantic space.
Unlike lexicostatistical work on language varieties, we lack
readily identified labels (cognate expressions) in the two lan-
guages between which the distance can be calculated. Instead
we take an approach similar to Malt et al. (1999).

The elicitations for every language give us a count matrix C
containing a set of situations S on the rows, and a set of spatial
markers M in that language on the columns. Every cell is
filled with the count of participant responses to situation s that
use marker m. Matrix C captures the way that the language
carves up the space of situations: situations s and s′ are treated
similarly in the language to the extent that their use of spatial
markers have similar distributions, reflected in rows s and s′

of C. However, we cannot compare the spatial representation
of two languages l and l′ by simply comparing Cl and Cl′ ,
since the sets of spatial markers Ml and Ml′ are different, and
hence the matrices have different columns.

In order to compare languages, instead of directly compar-
ing counts of markers, we need to compare the conceptualiza-
tion of the set of situations within one language to that of the
other language. Building on the observation that situations
are similar within a language l to the extent that their rows
in Cl are similar, we can compare the verbalization of each
situation s ∈ S with each other situation s′ ∈ S by looking at
rows s and s′ of Cl . First, we normalize each row of Cl to
yield the relative frequency of each of the markers given that
situation. Each row s now gives us a probability distribution
over the markers for a single situation in l, P(Ml |s). We can
then compute the distance between two situations as:

δ(s,s′|l) = 1− sim(P(Ml |s),P(Ml |s′)) (1)

where sim is the similarity of two distributions calculated us-
ing cosine. Calculating this δ for all situation pairs, we obtain

Figure 2: Between-language distances for all languages
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a distance matrix Dl , whose rows and columns are the situa-
tions, and each cell contains δ(s,s′|l).3

We can now compare two languages l and l′ by comparing
how similarly they verbalize each situations—i.e., comparing
the distance matrices Dl and Dl′ . We first compare the repre-
sentation of each situation across the two languages, and then
averaging that per-situation distance. The distance between s
in two languages l and l′ is the inverse of the cosine similarity
between the rows containing s in each of Dl and Dl′ :

δ(sl ,sl′) = 1− sim(Dl
s,,D

l′
s,) (2)

To compare how similar the two languages are in their over-
all conception of the semantic space, we calculate the mean
δ(sl ,sl′) over all situations in S:

∆(l, l′) = ∑
s∈S

δ(sl ,sl′) · 1
|S|

(3)

Calculating the distances between all pairs of languages
in each dataset, we can now determine how the between-
language distances for our dataset compare to those of the
LM data. Using a t-test for independent samples, we found
that the crowdsourced data displayed more between-language
variation than the LM data (µCF = 0.146,µLM = 0.098, t =
5.79, p < 0.001). However, as Levinson et al. (2003) did not
code general locative markers, we also compared our dataset
without such markers.4 In that case, our data is still more var-
ied, but the difference is no longer significant at the .05-level
(µCF = 0.115,µLM = 0.098, t = 1.90, p < 0.1). This means
that using this sample of languages is not narrower in the
range of between-language variation it captures.

Further insight in the between-language variation can be
obtained by calculating the distance between any pair of lan-
guages in either dataset—i.e., we find ∆(l, l′) for all l and
l′ in the LM dataset or our dataset (“CF”; we used the data
without the general locatives for this comparison). This

3A cell may be unfilled: if no markers are used for a situation (in
our case, because all participants’ responses fell in other classes than
Class 1), no probability distribution can be calculated and hence no
distance between that situation and any other situation.

4General locatives we consider: Basque -an, -tik; Indonesian di,
pada; Nahuatl -pan, -ko; Quechua -pi; Swahili ku, -ni; Thai thi.

204



Figure 3: Predicted prepositions for situations whose observed most-frequent preposition was one of the four under study.

(a) On the basis of the LM data.
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(b) On the basis of the crowdsourced data.
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yields a distance matrix whose results can be visualized two-
dimensionally with Multi-Dimensional Scaling, as in Fig-
ure 2. The fact that LM datapoints for Dutch and Basque
are very close in the space to those languages (respectively)
in our data constitutes a sanity check: Dutch participants in
both studies described the situations in very similar ways.

Overall, while there are many differences in the two
datasets in both language sample and response types, our
dataset shows as much between-language variation as the LM
dataset, supporting the view that crowdsourcing is a promis-
ing data collection method for typological research.

The crowdsourced data in cognitive modeling
BFS trained a word-learning model on a semantic space de-
rived from the LM dataset, and showed that crosslinguisti-
cally more common semantic distinctions are easier to learn.
Another way to evaluate the crowdsourced data is to consider
whether we can replicate those results. Doing so would fur-
ther support the similarity of crowdsourced data to the LM
data, and hence its viability.5

The phenomenon under study. Gentner and Bowerman
(2009) suggested that Dutch prepositions op (‘surface sup-
port’) and in (‘containment’) are acquired earlier than aan
(‘tenuous support’) and om (‘surrounding (support)’), be-
cause op and in reflect natural semantic groupings of spatial
relations. They noted that children regularly overgeneralize
the preposition op to situations where most adult speakers
would use aan or om.

Previous experiments. BFS simulated Gentner and Bow-
erman’s (2009) finding and further explored the interaction
between the semantic domain and word frequencies. They
did so by applying Principal Component Analysis (PCA) to

5The cognitive modeling experiments involve learning semantics
of Dutch prepositions. Although the Dutch data was the cleanest,
this remains a valid test of the dataset, since the semantic space was
derived from the entirety of the data, and as such reflects the proper-
ties of all languages, not just Dutch.

the LM data, thus obtaining a semantic space within which all
situations were located. Using the first 6 components of the
PCA, BFS trained a Gaussian Naı̈ve Bayes classifier on pair-
ings of a situation—i.e., its PCA semantic representation—
and a preposition in Dutch expressing that situation in the
LM data. The input items were generated on the basis of the
frequency of the prepositions in child-directed speech, and
the frequency of association of a situation with a particular
preposition in the elicitation data. Within every simulation,
BFS incremented the size of training data with 20 new items
at a time, up to 1000 input items, and at each iteration used
a “leave-one-out” methodology to classify each situation on
the basis of the data points associated with the other 70 situa-
tions. The classification of a situation yielded the preposition
the model predicted was best for that situation.

Figure 3a shows how the model classified the situations
associated with the four prepositions over time; each graph
corresponds to the group of situations whose most frequent
response was the labelled preposition (i.e., this is the target
response for the model on that set of situations). In line
with the Typological Prevalence Hypothesis, the model ini-
tially overextends op to situations where most language users
would use aan or om. After 1000 input items, the model pre-
dicted the correct label in 74% of all cases on average.

Replication using the crowdsourced data. We follow the
exact same procedure above, replacing the semantic represen-
tation of each situation with one derived from the new data
(including general locatives). As we see in Figure 3b, the
qualitative pattern is the same as in BFS: op is overgeneral-
ized in the early stages of learning to situations where aan
and om are expected to be used by adult speakers, and after
this phase of overgeneralization, the model uses the correct
preposition in most of the cases. The final overall accuracy is
76% over 30 simulations.6

Error analysis Given that the model never reaches full ac-

6Data and software are available on github.com/dnrb/cogsci15
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Figure 4: Model errors. Situations are plotted on the PCA space, using text labels with the correct preposition for that situation.
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(b) After 1000 input items.
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curacy, it is interesting to see for which situations it makes
errors; see Figures 4a and 4b. We limit the discussion to the
four prepositions studied by Gentner and Bowerman (2009).

With the model trained on only 40 inputs, the overgeneral-
ization of op to the aan and om regions is very evident. For
the aan region, this is striking, as large parts of it are rela-
tively remote from any instance of op. We interpret this as
an effect of the frequencies of the prepositions: with spatial
op being far more frequent in child-directed speech than spa-
tial aan, the stronger representation of the more frequent op
extends into the aan region of the space early on.

After the model has seen 1000 input items, most aan errors
are resolved, but four items between the op and in clusters
defy classification. Interestingly, none of these cases is a pro-
totypical instance of surface support or containment: ‘apple
in ring’, ‘hole in towel’, and ‘cork in bottle’ (all in in Dutch)
and ‘boat on water’ (op in Dutch). Because languages vary
in their grouping of these situations (e.g., Thai groups ‘hole
in towel’ with an on-like preposition), the situations fall be-
tween the two clusters. To the extent that the semantic space
captures universal tendencies, these results would predict that
children may have persistent difficulties in such cases as well.

Further exploration of the crowdsourced data
The crowdsourced data displays similar between-language
variation and yields comparable modeling results to
manually-gathered data, but do the differences in methodol-
ogy behind our crowdsourced data also lead to new insights
in the understanding of semantic typologies? One difference
is that we were not able to give feedback to participants in
the online environment on the appropriateness of a response.
While this resulted in many non-target responses, many of
these are nonetheless informative. Notably, responses in
Classes 2 and 3 (non-spatial expressions and Figure-Ground
reversals) could not be used for the comparison with the LM
data (which contain only spatial relation markers), but contain
valid relational descriptions. We suggest that when a situa-
tion has many Class 2 and 3 responses, it is less readily con-
strued as a spatial relation between the particular Figure and
Ground. Under this assumption, we expect that most Class 2
and 3 responses will be found in the region where the Dutch
children make errors: the aan and om situations (cf. Fig. 4).

Another methodological difference with Levinson et al.
(2003) is that they did not consider markers with a general
locative meaning. As we could not discriminate general loca-
tives on the crowdsourcing platform, our data contains many
cases of these as well. The reason a speaker uses a gen-
eral locative may be pragmatic (i.e., no communicative need
to mark the specific spatial relation), or more systemic (the
language has no specific marker for that relation). Since
the pragmatic set-up in our task (responding to the instruc-
tion) does not vary, any between-situation differences in the
amount of general locatives are likely due to systemic rea-
sons. Here, we assume that general locatives are used when
the situation is not prototypical ‘support’ or ‘containment’.
We therefore expect that, as with Class 2 and 3 items, the sit-
uations where general locatives are used will fall in the space
of situations for which children make errors.

As expected, we find higher amounts of all three of these
response types—non-spatial expressions (Class 2), Figure-
Ground reversals (Class 3), and general locatives—in the cen-
tral upper region of the space (Fig. 5). This is also the region
where children make underextension errors (cf. Fig. 4a). All
three are remarkably less frequent in the regions where we
find prototypical ‘support’ (bottom left) and ‘containment’
(bottom right) situations. Following Gentner and Bower-
man’s (2009) reasoning, the higher amount of non-specific or
non-spatial marking in the central region suggests that these
situations are less naturally construed as involving a (specific)
spatial relationship than the prototypical cases of ‘contain-
ment’ and ‘support’. Furthermore, if languages differ in the
set of situations they (conventionally) conceptualize as ‘spa-
tial’, learning what the boundaries of this set are (i.e., taking
into account Class 2 and 3 responses) should ideally be part
of the cognitive modeling task.

Conclusion
When doing semantic typology, it is desirable to have quick
and easy access to elicitation data. In this paper, we explored
the use of crowdsourcing platforms for obtaining such data.
We gathered a dataset of elicitations for the Topological Spa-
tial Relations stimuli set (Bowerman & Pederson, 1992), and
compared it to the in-person elicitations of Levinson et al.
(2003). The between-language variation is similar for both
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Figure 5: Further exploration of the data
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(b) Class 3 codings per situation.
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data sets, suggesting that using only languages accessible
through crowdsourcing does not limit the variational band-
width of the typological sample.

In Beekhuizen et al. (2014), we trained a model of word-
meaning acquisition on a semantic space derived from the
elicitation data of Levinson et al. (2003). The interaction
of the lay-out of this space and the frequencies of the vari-
ous words accounted for the overgeneralization of the Dutch
preposition op to cases where the prepositions aan and om are
licensed. In this paper, we replicate those findings using the
crowdsourced data, further supporting that the information in
the online elicitations yields a semantic space that is usable
for purposes of cognitive modeling.

Our method of using a crowdsourcing platform allows for
quick access to semantic elicitations. However, quality con-
trol remains an issue. Many respondents give invalid answers,
and even for valid answers, it is sometimes hard to judge
whether respondents are native speakers. A next step is to
adapt recent mechanisms for quality control available within
the technical constraints of the crowdsourcing platforms.

Nonetheless, the use of crowdsourcing to obtain semantic
elicitations is a viable method. With relatively little effort,
a usable dataset ranging over geographically and genetically
distant languages can be created. Paradoxically, there are
benefits to having less control over the nature of the responses
compared to manual elicitations, and getting responses that
were not what one hoped for. For some situations, many re-
spondents avoided static spatial terms, opting for a mecha-
nistic description instead. Findings like these provide insight
into the boundaries of the semantic domain of static space.
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