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EPIGRAPH

the writing of many books is endless,
and excessive devotion to books is wearying to the body.

—Fcclesiastes 12:12

The yearning to know what cannot be known, to comprehend the
incomprehensible, to touch and taste the unapproachable, arises from the image of
God in the nature of man. Deep calleth unto deep, and though polluted and
landlocked by the mighty disaster theologians call the Fall, the soul senses its
origin and longs to return to its source.

—A.W. Tozer
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ABSTRACT OF THE DISSERTATION

Biophysical Neuron and Synapse Circuits in Reconfigurable and
Scaleable Analog VLSI

by

Theodore Ernest Yu
Doctor of Philosophy in Electrical Engineering (Electronic Circuits and Systems)
University of California, San Diego, 2012

Professor Gert Cauwenberghs, Chair
Professor Paul Yu, Co-Chair

In this work we model and implement detailed and large-scale neural and
synaptic dynamics in silicon integrated circuits. The aims of this work are to accel-
erate neuroscience research through analysis by synthesis, and to explore scaleable,
hierarchical, sparse event-driven, computing architecture inspired by cortical struc-
ture for efficient information processing. In one approach, we implement biophys-
ical Hodgkin-Huxley based membrane dynamics with reconfigurable parameters
governing detailed generalized channel kinetics in NeuroDyn, a four neuron, twelve
synapse continuous-time analog VLSI programmable neural emulation platform in

0.5um CMOS chip measuring 3mm x 3mm, and consuming 1.29mW. We present



experimental results from the chip characterizing single neuron dynamics, single
synapse dynamics, and multi-neuron network dynamics showing phase-locking be-
havior as a function of synaptic coupling strength. In the same architecture, we
implement extended Morris-Lecar dynamics to demonstrate various neural spiking
dynamics over a wide range of time scales extending beyond 100ms neglected in
typical silicon models of tonic spiking neurons. In a second approach, we design
and implement large-scale neural arrays for modeling the spike-based dynamics
of cortical neural systems. Towards this end, we present three alternative real-
izations for highly compact and low-power designs of complex conductance-based
models, where each conductance is implemented using a single MOS transistor op-
erating in subthreshold. We present and characterize a mixed-signal VLSI event-
driven neural array with 65k two-compartment integrate-and-fire neurons each
with four time-multiplexed facilitating conductance-based synapses in a chip mea-
suring bmm x 5mm in 130nm CMOS and consumes 252uW from 1.5V supply at
5M event /s synaptic input rate resulting in 50pJ/spike power efficiency. The ar-
ray implements general spike-based neural models with dynamically reconfigurable
synaptic connectivity through hierarchical address-event routing of synaptic events.
We encode each synaptic event with parameters governing synaptic connectivity,
synaptic strength, and axonal delay with additional global configurable parameters
that govern neural and synaptic temporal dynamics. We demonstrate this archi-

tecture for spike-based event-driven coincidence detection in neural synchrony.

xxi



Chapter 1

Introduction

1.1 Neuromorphic Engineering

Biological models of channels and membrane dynamics are modeled and
implemented with circuit elements as illustrated in Fig. 1. Our approach utilizes
an analysis by synthesis approach to accelerate neuroscience research through the
development of biologically-inspired circuits and systems. The motivation lies
in the analogy between the voltage-dependent electron/hole channels in silicon
transistors and voltage-dependent ion channels in biology. The Boltzmann energy
distribution of both the hole/electron energy in silicon transistors and the channel
energy in biological ion channels scale exponentially in response to the gate and
membrane voltage respectively. We therefore leverage this analogy to implement
biological channels and membrane conductances with translinear MOS transistor
circuits in reconfigurable and scaleable integrated systems for intelligent signal

processing.

1.2 Reconfigurable Silicon Neuron Models

Neuromorphic engineering [65] takes inspiration from neurobiology in the
design of artificial neural systems in silicon integrated circuits, based on function
and structural organization of biological nervous systems. By emulating the form

and architecture of biological systems, neuromorphic engineering seeks to emulate
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Figure 1.1: We leverage the translinear MOS transistor implementation to ad-
vance neuroscience research through analysis by synthesis.

their function as well. Since the first silicon model of a biophysical neuron in 1990
[63], great advances have been made in the detail and the scale of modeling neural
function in silicon. Recently, the focus of the neuromorphic engineering effort
in silicon modeling of the nervous system has shifted from the sensory periphery
to central nervous function addressing higher levels of integration and cognitive
processing in cortex and other brain regions [60] [89] [95] [103], setting the stage
for further advances towards closed-loop integration of biological and silicon neural
systems [1] [44] [45] [92] [105] .

Biophysical modeling and implementation of neural function require a care-
ful account of channel opening and closing kinetics and their role in ion transport

through membranes that give rise to the rich neuronal and synaptic dynamics ob-



served in neurobiology as illustrated in Fig. 1.2 [54]. Hodgkin and Huxley’s seminal
work in the investigation and formalization of neuron membrane dynamics have
long been the standard of biophysical accuracy [43]. The difficulty of realizing the
complex functional form of the Hodgkin-Huxley membrane currents and channel
variables in analog circuits has motivated alternative realizations by simplifica-
tions in the model [28] [34] [59] [93]. The prevailing approach in neuromorphic
engineering design has been to abstract the neuron membrane action potential to
discrete-time spike events in simplified models that capture the essence of integrate-
and-fire dynamics and synaptic coupling between large numbers of neurons in an
address-event representation [6] [13] [48] [62] [68] [90] [104]. The advantage of these
approaches is that they support event-based inter-chip communication, including
direct input from neuromorphic audition [19] and vision [24] sensors, and may
lead to highly efficient and densely integrated implementations in analog VLSI
silicon [110] [111] .

Here we offer an alternative neuromorphic engineering approach that targets
applications where biophysical detail in modeling neural and synaptic dynamics
at the level of channel kinetics is critical. Examples of such applications include
modeling of the effect of neuromodulators, neurotoxins, as well as neurodegener-
ative diseases on neural and synaptic function through parameter changes in the
channel kinetics. For these and other applications in computational neuroscience,
a direct correspondence between the parameters governing the biophysics of neural
and synaptic function and those in the implemented computational model, is of
great benefit [30] [47] [83] [97]. The approach we propose here is the first in analog
VLSI to fully model the general voltage dependence of rate kinetics in the opening
and closing of membrane ion channels. We illustrate this approach with the imple-
mentation and demonstration of NeuroDyn, an analog VLSI network of 4 neurons
and 12 chemical synapses with a total of 384 digitally programmable parameters
governing the channel conductance, reversal potential, and opening and closing
kinetics voltage profile of 24 individually configurable channel variables.

Hodgkin and Huxley in their landmark paper [43] resorted to heuristics

in curve-fitting the rate kinetics of channel variables observed through ingenious
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Figure 1.2: An ion membrane channel is pictured [54] (top) with an accompany-
ing mathematical expression (bottom) describing the channel kinetics in terms of
opening « and closing ( rates.

measurements on the squid giant axon. Any model replicating the precise func-
tional form of this heuristic fit would at best produce an approximation to squid
giant axons. To a large extent the variety in dynamics between different neuron
types in different organisms, as well as the anomalies due to biomolecular agents
and neurodegenerative processes acting on membrane channels, arise from the re-
sulting differences in channel properties. These channel properties are compactly
characterized in our model by 16 (7 + 7 + 1 4+ 1) parameters for each channel
variable specifying the voltage dependence of channel opening and closing rates
(7 regression points each), besides values for the channel conductance and rever-
sal potential. Fewer parameters would impair the flexibility in modeling neural
and synaptic diversity in healthy and diseased nervous systems, although fewer

parameters would be appropriate in special purpose implementations of specific



model instances and their functional abstractions [8] [16] [31] [50] [108] where the
application warrants efficiency rather than flexibility and biophysical explanatory
power in parameter selections. Likewise, extensions to the models to incorporate
further biophysical detail such as short-term synaptic adaptation [22] [86] [112]
and multi-compartmental dynamics through linear [10] and nonlinear [107] den-
dritic coupling would incur larger numbers of parameters where the need for the
extended models justifies the increase in implementation complexity.

While the implementation of parameterized channel kinetic rate equations
in NeuroDyn provides the capacity to model a large variety of neuron and synapse
behaviors, it requires tuning over a large number of parameters. Since each of
these parameters have a direct physical correspondence in channel kinetics and
membrane dynamics, values for these parameters can be obtained from physical
considerations and measurements. Fine tuning of these parameters, to account for
uncertainties in the modeling as well as imprecisions in the implemented model,
would still be desirable. Extensive parameter fine-tuning was found unnecessary to
address transistor mismatch. A simple calibration and parameter fitting procedure
proved adequate to counteract mismatch and nonlinearities in setting parameters in
the biophysical model to desired values. The correspondence between biophysical
and circuit parameters are described in Section 2.4, with experimental alignment
documented in Section 2.5 and the parameter alignment procedure detailed in
Appendix B.

In the present implementation we have aimed for functional flexibility and
real-time control over parameters and internal dynamics, rather than efficiency
and density of integration. The NeuroDyn system interfaces through USB to Mat-
lab software on a workstation to update the 384 parameters in real-time, and to
continuously control and observe each of the 4 membrane potentials and 24 chan-
nel variables. To support this level of programmability, all parameters are stored
locally on chip in digital registers interfacing to a bank of 384 current multiply-
ing digital-to-analog converters (DACs). The neuromorphic modeling approach
presented here is extendable to other implementations where parameters may be

shared across individual neurons and/or channels for greater efficiency, and com-



bined with floating-gate non-volatile analog storage [17] [39] [42] [57] [61] [76] [96]
or dynamically refreshed volatile analog storage [18] of the parameters for greater
density of integration. For example, central pattern generators require only a few
neurons for implementation yet they can characterize complex behavior [105].

We envisage NeuroDyn as an enabling tool for computational and sys-
tems neuroscience, since all internal dynamical variables, and their parameters,
are grounded in the biophysics of membranes and ion channels. With its analog
interface to the physical world, the NeuroDyn chip may also serve as an elec-
tronic training tool for budding neuroscientists and neurobiologists to practice
patch clamp recording and other experimental techniques on “virtual” neurons.
The NeuroDyn system contains various analog and digital exposed probes in the
circuit board that allow for a real-time interface to the internal membrane potential
and channel dynamics.

Furthermore, the low-power and efficient circuit implementation, combined
with extensions for hardcoded parameter settings or high-density analog storage,
support applications of the device as an implantable computational neural inter-
face in wvivo. Such approaches, as described in [84], have great potential in the
realization of intelligent neural prostheses when combined with embedded signal
processing to process incoming neural spike data streams [44] [92] and activate

prostheses [1] [45].

1.3 Extended Morris-Lecar Neuron Model

Neuromorphic engineering, as an analysis by synthesis approach to com-
putational neuroscience, is increasingly offering physical tools for studying the
dynamics of complex neural systems [48] [85] [93] [94]. While analog neural chips
inherently have limited programming capability, recent designs have overcome this
limitation by incorporating a large number of parameters in a reconfigurable archi-
tecture [6] [10] [83] [82] [93] [96] [104]. This opens up opportunities in systematic
studies of the dependence of the dynamics upon biophysical parameters. Iterative

methods, such as gradient descent learning [27] and evolutionary algorithms [15]



[73] [81] can then be applied to estimate the model parameters for biological infer-
ence.

Here we present such a study on a silicon biophysical neural model with
wide-ranging membrane dynamics and channel kinetics [25] that, within the same
architecture, extends the Hodgkin-Huxley (HH) and Morris-Lecar (ML) paradigms
from tonic spiking to intrinsically bursting neural dynamics [51] and a variety of
other neural dynamics. Neurons exhibit dynamics at a wide range of time scales.
However, longer time scales extending beyond 100ms have been neglected in silicon
models. We include mechanisms at such longer time scales that provide network
models with new computational abilities, including central pattern generation [41]
and memory consolidation in thalamocortical networks [88].

One of the simplest neuron models, a leaky quadratic integrate-and-fire
model by Izhikevich [50], uses just two dynamical variables and four parameters to
generate 20 distinct types of neuronal dynamics. A further simplified model with
linear membrane dynamics has been shown by Mihalas and Niebur [67] to generate
an equivalent range of neuronal dynamics. Despite the success of these models to
efficiently emulate rich dynamics in analog VLSI [31] [80] [100] [108], the very com-
pact state representation does not offer a direct biophysical interpretation of their
parameters. Our work provides an alternative biophysically-based approach in an
extended HH-ML formalism with generalized channel kinetics. We demonstrate a
variety of neural dynamics through detailed control of the parameters governing
the voltage-dependence profile of the opening and closing channel kinetic rates.
Because each parameter is directly related to channel kinetics, the tuning of these
parameters may provide insight into neuroscientific or clinical questions related to
changes in, for instance, neuromodulators and pharmacological agents acting upon
the modeled channels.

A variety of silicon neuron circuits have been proposed to implement mod-
els with varying degree of biophysical realism [49]. A parameterized library of
biophysically-based analog operators in the HH model framework has been pre-
sented in [82]. A floating gate silicon neuron implementation also demonstrates a

variety of neural dynamics and bifurcations [9].



We use the NeuroDyn system described in Chapter 2 as an experimental
analog continuous-time platform to study parameterized biophysical neural dy-
namics over an extended range of time scales within a generalized HH-ML frame-
work [79]. Fidelity between circuit simulation and measurement data, along with
a low-power and compact circuit implementation, are key factors in utilizing a
continuous-time analog VLSI emulation platform, such as NeuroDyn, as a versa-

tile tool in neuromorphic modeling and silicon-neuron interfaces [37] [72] [74].

1.4 Scalable Translinear and Transcapacitance

Synapse and Neuron Circuits

Rapid developments in the density and efficiency of silicon microtechnology
are driving transformative advances in neuroengineering by enabling microscale
interfaces between living and artificial neurons. For example, silicon spike-based
processors have been embedded in live insect brains to study the neural basis of
flight locomotion [26], and hybrid neural network dynamics at the resolution of
individual cells in vitro [14]. Membrane conductance and capacitance constitute
the fundamental electrical components of neural computation in biological neu-
ral and synaptic networks. Large-scale neuromorphic VLSI systems [6] [89] [90]
rely on accurate, energy efficient, and densely integrated implementation of the
neural and synaptic dynamics resulting from network activity involving very large
numbers of voltage gated conductances with capacitive loading. Previously, the
subthreshold MOS translinear principle has been applied to realize large networks
of conductances to realize layered network models of retinal vision where linear con-
ductances are implemented with single transistors through a log-transformation of
voltage variables [2] [29] [99] [102]. Design and implementation of a log-domain
Izhikevich and Mihalas-Niebur model neuron using translinear circuits in analog
VLSI were presented in [80] [100] [101].

Analysis of a variety of different implementations of conductance-based dy-
namical synapses, and new circuit that overcomes some of their limitations, are

presented in [7]. In particular, [7] analyzes the trade-offs among the different im-



plementations regarding functionality of the temporal dynamics and the required
layout size, and offers a circuit with linear dynamics in conductance. Earlier im-
plementations of VLSI synapses such as the pulse current-source synapse [65] and
reset-and-discharge synapse [58] suffer from inability to integrate input spikes into
continuous output currents and linearly sum postsynaptic currents respectively.
Other previous circuits such as the linear charge-and-discharge synapse [5] and
current-mirror-integrator synapse [12] [46] [21] also suffer from nonlinear summa-
tion of postsynaptic currents. The synapse implementations of log-domain integra-
tor synapse [66] and diff-pair integrator synapse [7] implement linear summation
of postsynaptic currents, but they require an M,, p-FET or additional transistors.

The advent of neuromorphic nano-scale integrated electronics has made it
possible to realize synaptic arrays at integration densities [36] and energy effi-
ciencies [55] [56] approaching that of synaptic transmission in the human brain.
Here we show that conductance-based neural and synaptic dynamics can be im-
plemented using a single MOS transistor per conductance element, supported by
translinear circuits at the periphery of the conductance array implementing linear
membrane capacitance. The advantage of this approach is that it scales to offer
high integration density and energy efficiency for large numbers of conductances

per neural compartment, as in realistic neural models for cortical vision.

1.5 Scaleable Event-based Neural Array

Analog and mixed-signal VLSI circuits emulating neural function and synap-
tic connectivity in cortex offer opportunities to realize adaptive machine intelli-
gence in sensory interfaces but also pose challenges in scalable and energy-efficient
implementation. Inspired by the efficiency and resilience of neural computation in
biological brains, several lines of research over the past decades are converging on

event-driven spike-based “neuromorphic” implementations [6] [69] [89] [90].
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1.6 Event-driven Coincidence Detection Dynam-
ics

There research efforts in developing very large-scale spike-based cortical
neural systems in silicon are being used as a means to study synchronous neural
and synaptic dynamics underlying neural information processing. One approach
[38] uses spike rate-based algorithms to perform various computations. This ap-
proach relies upon the readily accessible spike rate statistics as a measure of spike
activity. Another approach [71] seeks to exploit the efficiency of spike-based com-
putation. This approach emphasizes that each individual spike carries information
that either creates, corroborates or corrects previous information. Some imple-
mentations of spike-based computation perform spike-timing dependent plasticity
(STDP) [11, 48] to utilize the relative spike timing between associated presynap-
tic and postsynaptic events to determine the change in the synaptic connection
strength. STDP is used to describe how the synaptic connections in a network
of spiking neurons evolve over time. Another implementation of spike-based com-
putation recognizes that the coincidence of two or more synaptic events upon the
postsynaptic membrane results in the activation of a subsequent neural event [109].
Through a multi-layered and interwoven construction of neurons computing this
coincidence detection of incoming synaptic events, the neural network can imple-
ment an arbitrary function dependent upon the synaptic connectivity, synaptic

strength, and axonal delay between neuron elements.



Chapter 2

Biophysical Silicon Neurons

2.1 Introduction

Here we offer a neuromorphic engineering approach that targets applica-
tions where biophysical detail in modeling neural and synaptic dynamics at the
level of channel kinetics is critical. Examples of such applications include mod-
eling of the effect of neuromodulators, neurotoxins, as well as neurodegenerative
diseases on neural and synaptic function through parameter changes in the channel
kinetics. For these and other applications in computational neuroscience, a direct
correspondence between the parameters governing the biophysics of neural and
synaptic function and those in the implemented computational model, is of great
benefit [30] [47] [83] [97]. The approach we propose here is the first in analog VLSI
to fully model the general voltage dependence of rate kinetics in the opening and
closing of membrane ion channels. We illustrate this approach with the implemen-
tation and demonstration of NeuroDyn, an analog VLSI network of 4 neurons and
12 chemical synapses with a total of 384 digitally programmable parameters govern-
ing the channel conductance, reversal potential, and opening and closing kinetics
voltage profile of 24 individually configurable channel variables. Each neuron in
the analog VLSI chip (NeuroDyn) implements generalized Hodgkin-Huxley neural
dynamics in 3 channel variables, each with 16 parameters defining channel conduc-
tance, reversal potential, and voltage-dependence profile of the channel kinetics.

Likewise, 12 synaptic channel variables implement a rate-based first-order kinetic

11
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DACs membranes - -

Figure 2.1: NeuroDyn chip micrograph (a, top left) and system diagram (b,
top right). Four neurons are interconnected by twelve synapses, each with pro-
grammable channel kinetics, conductances, and reversal potentials (see Table 2.1).

model of neurotransmitter and receptor dynamics, accounting for NMDA and non-
NMDA type chemical synapses. The biophysical origin of all 384 parameters in 24
channel variables supports direct interpretation of the results of adapting/tuning
the parameters in terms of neurobiology. We provide details on the circuit imple-
mentation and complete experimental characterization of the neural and synaptic
circuits, and present calibration and parameter fitting procedures to align neu-
ral and synaptic characteristics from models or recorded data onto the digitally
programmable analog hardware. We demonstrate the operation of the system by
replicating opening and closing rates, gating variable kinetics, and action poten-
tials of the Hodgkin-Huxley model, and study the dynamics of a network of two
neurons coupled through reciprocal inhibitory synapses. Uniform temporal scaling
of the dynamics of membrane and gating variables is demonstrated by tuning a
single current parameter, yielding variable speed output exceeding real time. The

0.5um CMOS chip measures 3mm x 3mm, and consumes 1.29 mW.
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Figure 2.2: System diagram for one of the four neurons in the NeuroDyn chip.

2.2 NeuroDyn Architecture

2.2.1 System Overview

The NeuroDyn Board consists of 4 Hodgkin-Huxley based neurons fully
connected through 12 conductance-based synapses as shown in Fig. 2.1(b). All
parameters are individually addressable and individually programmable and are
biophysically-based governing the conductances, reversal potentials, and voltage-
dependence of the channel kinetics. There are a total of 384 programmable pa-

rameters governing the dynamics as shown in Table 2.1. Each parameter is stored
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Table 2.1: NeuroDyn DAC Parameters

Neurons V;:
Qn, (V) 6m (V) ZNa; ENai
Om; (V) ﬁmz (V) gK; EKi
Oh; (V) ﬂhi (V) gL; ELi

Ax3xT7* 4x3xT7* 4x3 4x3

Synapses s;;:
Oérij (‘/pre> ﬁrij (%ost) gsynij Esynij

12x7* 12x7* 12 12

*All rates «, B are functions of voltage as 7-point sigmoidal splines (Sec. 2.4.1).

on-chip in a 10-bit DAC.

2.2.2 Chip Architecture

The NeuroDyn chip is organized into four quadrants with each quadrant
containing one neuron, and three synaptic inputs from the other neurons. Each
neural and synaptic membrane channel current follows the same general form as
illustrated in Fig. 2.2. Each channel current is a product of a conductance term
modulated by a product of gating variables and the difference between the mem-
brane voltage and reverse potential as illustrated below in (2.2). The similar form
for both the neuron channel currents and synaptic current allow for a small number

of circuits to model each component of the channel current.
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2.3 Biophysical Models

2.3.1 Membrane Dynamics

The Hodgkin-Huxley (HH) membrane dynamics [43], including conductance-
based synaptic input, is described by

dV;
Cmem% = _[Nai - IKZ - [Li - ; [symj (21)
where 7,7 =0...3, and
]Nai = mi3hi 9Na; (V; - ENai)
I, = 0 gx, (Vi — Ek,)
‘[Li = 9L, (‘/Z - ELi) (2'2)

ISym-j = Tij Gsyny; (Vi — Esy%-)

All conductances in the model including the synaptic conductances gsyn,; are posi-
tive. Excitatory synapses are characterized by reversal potentials Fj,,, . above the
rest potential, whereas for inhibitory synapses the reversal potential Ey,,,. is below

the rest potential.

2.3.2 Channel Kinetics

The neuron channel gating variables n;, m;, and h;, as in the HH neuron
formulation, are modeled by a rate-based first-order approximation to the kinetics

governing the random opening and closing of membrane channels:

d?’LZ‘

i ap, (1 —ny) — Bp,n; (2.3)
dmi

ol A, (1 —my) — B,y (2.4)
dh;

dt = Ozhi(l — hz) — ﬁhlhz (25)

where the three channel variables n;, m;, and h; for each neuron ¢ denote the
fractions of corresponding channel gates in the open state, and where the o and (8

parameters are the corresponding voltage-dependent opening and closing rates.
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Similarly, the synaptic channel currents are modeled using first-order kinet-

ics in the receptor variables r;;, the fraction of receptors in the open state [25]:

' = &Tij<1 - TZ]) - 6T‘ijrij- (26)

The opening rates ., are dependent on presynaptic voltage V;, modeling both the
release of neurotransmitter and its binding at the postsynaptic receptor effecting
the channel opening. In contrast, the closing rates (3,,; are generally dependent on
postsynaptic voltage V;. For non-NMDA synapses, this dependence is a constant,
given by the rate of unbinding and resulting decrease in the channel conductance
following presynaptic deactivation. For NMDA synapses, this dependence models
the effect of Magnesium blocking of synaptic conductance triggered by postsynaptic
potential.

The point of departure from the prevailing models in computational neuro-
science is that the channel gate/receptor opening and closing rates are not specified
and implemented as analytic functions, but are parameterized as regression func-
tions, leaving significant flexibility in accommodating diversity in channel proper-

ties in the implemented model.

2.4 Neuromorphic Implementation and Charac-

terization

2.4.1 Voltage Dependent Channel Kinetics
Seven-Point Sigmoidal Spline Regression

Opening rates « and closing rates 3 are modeled and regressed as 7-point ad-
ditive spline sigmoidal functions implemented in the circuit illustrated in Fig. 2.3.
Each sigmoid in the regression spline is implemented by a simple differential pair of
MOS transistors operating in subthreshold, where a bias current scales the sigmoid
while a bias voltage determines the sigmoid offset [65]. These bias voltages are lin-
early spaced and are set through a voltage divider resistor string. A programmable

10-bit MOSFET-only R-2R DAC supplies the bias currents. An additional sign
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10 bit DACs

Figure 2.3: Generalized channel rate variables a and 3 implemented in the cur-
rent domain with additive 7-point sigmoidal functions. Programmable parameters
scaling the sigmoidal currents are stored in 10-bit MOSFET-only R-2R DACs with

an additional bit governing polarity.

bit controls a switch circuit that determines the polarity of the output current
slope, which selects either a monotonically increasing or a monotonically decreas-
ing voltage dependence. The output currents from each differential pair are then
additively combined to provide the composite function for the opening or closing
rate. Each of the spline amplitudes and sign selection bits are individually pro-
grammable. By properly setting the current bias values and sign bit for each of the
7 sigmoidal functions, the summation can accommodate a wide range of functions
approximating typical rate functions a and :

7 7
Ly,
La(V) =Y do L (V) =) 1+ e2nVee—V)/Vr (27)
k=1

k=1

where the output current I,,; denotes either one of the I, and Iz rates, and where
Vr = kT'/q is the thermal voltage.

To enforce a consistent temporal scale of the dynamics across membrane
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and gating variables, the currents implementing the opening and closing rates as
well as the membrane conductances are globally scaled with a current I that drives

the multiplying DACs:

I, = al (2.8)
Iy = BI, (2.9)
I, = gl (2.10)

and thus uniformly controls the time base of all dynamic variables with a global

temporal scale parameter 7 = CVrp/I..

Programmable Channel Kinetics

The gate opening and closing variables for one neuron were programmed to
implement the Hodgkin-Huxley (HH) model (Sec. 2.3), with the target functions
for the channel kinetics defined according to the HH opening and closing rate func-
tions. The sigmoidal spline functions were measured from the chip to provide the
basis functions at each spline location. Rectified linear least squares optimization
was then applied to determine the current bias parameters based on chip char-
acteristics. Further parameter fitting details are provided in Appendix B. 10-bit
programming for each of the 7 spline amplitude levels in the regression functions
results in the fit illustrated in Fig. 2.4. Closeness of fit is limited by the dynamic
range of the 10-bit DACs to simultaneously fit the steep slope of the mg gating
variable and the gradual slopes of the h, and ng parameters. Parameter fitting was
achieved by applying rectified linear regression and iterative linear least squares

residue correction as described in Appendix B.

2.4.2 Gated Conductances

Gating variables m;, h;, n;, and r;; are implemented as currents by the log-

domain circuit shown in Fig. 2.5, which implements the kinetics (2.3)-(2.6) as:

d Iout
CVr—
Tt Ies

[out
[ref

[out
Iref

— (1 —

) — I (2.11)
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Figure 2.4: Target and measured channel opening and closing rates o and (8
for gating variables n, m, and h of a single NeuroDyn neuron approximating the
HH model, obtained by fitting of the on-chip programmed parameters to the HH
model.

where I+ represents the gating variable output current, and where I, is a current
reference that only affects the amplitude scale of the gating variables, but not the
temporal scale of their dynamics.

The use of MOS transistors operating in the subthreshold region allows ana-
log multiplication through the exponential relationship between transistor input
voltage and output current in translinear circuits [3]. The addition of the capaci-
tor transforms the circuit from a translinear multiplier into a log-domain filter [29]
that implements the desired first-order dynamics. The derivation is provided in
Appendix A.

The circuit is similar in implementation complexity to a previous implemen-

tation of rate kinetics [47] but avoids the back-gate effect in the bulk CMOS process
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Figure 2.5: Log-domain circuit implementing channel kinetics (2.3), (2.4), (2.5),
or (2.6).

on the linearity in the first-order dynamics, and provides full programmability in
the voltage profile of the dynamics. The circuit offers 14 parameters specifying the
detailed voltage dependence of the opening and closing rates offering flexibility in

accurately modeling the channel kinetics.

Steady-state (In)activation Functions

The steady-state (in)activation functions for one NeuroDyn programmed to
replicate the HH model are shown in Fig. 2.6. This data was gathered by clamping
the membrane voltage and slowly sweeping the membrane voltage while recording
the values for the m, h, and n gating variables. The results closely match the
expected steady-state values according to the HH model [43]. Notice that there is
little variation between the fast and slow time scale implementations obtained by
varying the global temporal scale parameter I,. This desirable time-independence

in the steady-state (in)activation functions is clearly reflected in Fig. 2.6.
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Figure 2.6: Steady-state (in)activation functions measured on one neuron of Neu-
roDyn programmed to replicate the Hodgkin-Huxley model, (a) for fast setting of
the neuron parameters, and (b) for slow setting of the parameters, obtained with-
out recalibration by increasing the global temporal scale parameter I, 2.5-fold.

Voltage-dependent Time Constants

The measured voltage-dependent time constants of the implemented HH
model are shown in Fig. 2.7. The time constants were estimated by averaging
measured rise and fall times of changes in the gating variables under alternating

small-amplitude voltage steps around the swept membrane voltage. The observed
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Figure 2.7: Voltage-dependent time constants measured for one NeuroDyn neuron
approximating the Hodgkin-Huxley model.

Iref"'lm Ire]""lm

Figure 2.8: Translinear circuit implementing gated conductances of the form 3y g
such as m3h gy, and n* gx. Synaptic gated conductances 7 gs,,, are implemented
by a 2-stage version of the 5-stage translinear circuit shown.

dynamics are consistent with the HH model [43] except for the larger observed time
constants of the m gating variable due to delays imposed by the on-chip output

buffers.
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2.4.3 Translinear Multiplier

A translinear multiplier shown in Fig. 2.8 implements gating of the mem-
brane conductances with the gating variables. A translinear multiplier exploits the

zero sum of voltages along a loop to implement a multiplication of current sources

[91] and [3]:
L, \* I,
]m3h INa — ‘[9 (L‘ef) Iref (212>

where I,.; is the same current reference controlling the amplitude of the gating
variables (2.11) for dimensionless operation. Similar translinear circuits implement
the other gated conductances of the form z* with a + 1 stages, where x = n and
a = 4 for the K+ channel; and x = r and a = 1 for the conductance-based

synapses.

Channel Conductance Dynamics

The channel conductance dynamics of an implemented Hodgkin-Huxley
model are shown in Fig. 2.9. The membrane voltage was clamped to the spec-
ified voltage levels and then released to measure the conductance dynamics for the
Na+ and K+ channels. The results for the Na+ channel show an increase in the
magnitude and speed (as seen in the width of the curve) of the curve proportional
to the magnitude of the depolarizing voltage step. The results for the K+ channel
also reflect an increase in magnitude and slope proportional to the magnitude of

the depolarizing voltage step.

2.4.4 Membrane Dynamics

Each membrane conductance is implemented by a differential transcon-
ductance amplifier, linearized through shunting in the differential pairs for wide
dynamic range in subthreshold MOS operation [33]. Unity gain connection of the

amplifier yields a membrane current

K
INa - V—ImSh INa (Vm - EN(L>. (2].3)
th
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Figure 2.9: Channel conductance dynamics measured from one NeuroDyn neuron
approximating the Hodgkin-Huxley model, (a) for the Na+ channel, and (b) for
the K+ channel. Channel conductance was measured for different depolarizing
voltage steps away from the resting potential.

For each of the membrane conductances, one amplifier is connected in parallel as
shown in Fig. 2.10. A capacitance C),.,, = C' on the membrane node realizes the

membrane dynamics (2.1).
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Figure 2.10: Transconductance-C circuit implementing membrane dynamics for
one neuron with synaptic input from the other three neurons.

2.5 Experimental Results

2.5.1 Neuron Spiking Dynamics

We observed the dynamics of the membrane and gating variables for one
neuron programmed to implement the HH model. We also demonstrated temporal
control through the variation of the global temporal scale parameter set by current
I,. As shown in Fig. 2.11, variation of I, scales the time axis of the waveforms by
a factor greater than 2. The amplitude scaling in the gating parameters reflects
scaling proportional to I, consistent with (2.8), (2.9), and (2.10). We implemented
the HH model in one neuron and observed the dynamics of the membrane and
gating variables as shown in Fig. 2.11. A small, constant [.,; is applied to the

neuron in order to provide DC input inducing spiking dynamics.
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Figure 2.11: Measured dynamics of membrane voltage V,, and gating variables
n,m, and h for a single HH neuron. (a) and (b) show the effect of setting the
global temporal scale parameter I, uniformly speeding or slowing the dynamics

across all variables.

2.5.2 Synapse Dynamics

To observe the synapse dynamics, we took the spiking HH neuron from

before and connected that as a presynaptic input to a synapse.

The synapse

parameters were configured to implement a GABA 4 inhibitory synapse. The con-
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Figure 2.12: (a) Synapse with presynaptic spiking neuron diagram (above). (b)
Oscilloscope trace of the conductance curve of a synapse with a spiking presynaptic
neuron input. Notice that the spiking neuron waveform (purple) and conductance
curves for the synapse (pink) are in phase (below).

figuration is illustrated in Fig. 2.12(a). The conductance curves of the synapse
are shown in Fig. 2.12(b). The synapse conductance curve was observed to rise
quickly in time with the spiking neuron and slowly decay in accordance to expected

behavior.

2.5.3 Neuron Network Dynamics

We chose to demonstrate synaptic dynamics using a simple network of two
neurons coupled with reciprocal inhibitory synapses as illustrated in Fig. 2.13.
The neuron parameters were configured to implement the channel kinetic rate

equations of the Hodgkin-Huxley model. The synapse parameters were configured



28

1 t1 1 Xt2

ex e.

Figure 2.13: Coupled neurons diagram. Two spiking neurons are connected with
inhibitory synapses.

to implement GABA,4 inhibitory synapses. The network was first initialized by
disconnecting all of the synaptic connections by setting each of the synaptic con-
ductances to zero. Then separate external currents I..;1 and I..» were applied to
the neurons Vi and V5 respectively to induce spiking behavior. The values for 1,41
and [, were chosen such that there was a small difference in the spiking frequency
between the two neurons. Then the synaptic conductances were increased until
coupling was observed between the neurons, in the form of phase-locking. The
resulting waveforms are shown in Fig. 2.14. Notice that especially in the oscillo-
scope capture from the coupled neurons, that there is an observable timing jitter
in the spiking neuron waveforms. This phase noise is primarily due to the noise
intrinsic in the analog circuit implementation. Noise has also been observed in in
vivo recordings of neuronal activity that can be attributed to thermal, stochastic,
and other sources [64]. Thus the noise from the circuit implementation may prove

advantageous to provide a more biorealistic implementation.

2.6 Conclusion

We presented an analog VLSI network of biophysical neurons and synapses
that implements general detailed models of continuous-time membrane dynamics
and channel kinetics, in a fully digitally programmable and reconfigurable inter-
face. Each neuron and synapse in the network offer individually programmable pa-
rameters setting reversal potentials, conductances, and voltage-dependent channel

opening and closing rates. Least squares parameter fitting was shown to accurately
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Figure 2.14: Oscilloscope traces showing synaptic coupling in neural dynamics.
(a) through (c): Individual uncoupled spiking neurons. (d) Neurons coupled with
inhibitory synapses spiking in synchrony.

reproduce biophysical neural data of channel opening and closing rates, gating vari-
able dynamics, and action potentials. We further observed coupled neural spiking
dynamics in a network with inhibitory synapses.

The implemented neural model extends on the Hodgkin-Huxley formulation

by allowing for arbitrary voltage profiles for channel opening and closing rates. The
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approach can be further extended, using similar principles, to include adaptation
mechanisms using Calcium dynamics, and to implement resistively coupled multi-
compartment neurons. The work shown here represents a first step towards de-
tailed silicon modeling of general neural and synaptic dynamics, combining digital
and analog VLSI for maximum configurability and functionality.

Chapter Two is largely a reprint of material that appeared in the 2010 IEEE
Transactions on Biomedical Circuits and Systems Journal: T. Yu and G. Cauwen-
berghs, “Analog VLSI Biophysical Neurons and Synapses With Programmable
Membrane Channel Kinetics,” IEEE Trans. on Biomedical Circuits and Systems,
vol. 4, no. 3, pp. 139-148, May 2010. The author is the primary author and

investigator of this work.



Chapter 3

Extended Morris-Lecar Dynamics

3.1 Introduction

While analog neural chips inherently have limited programming capability,
recent designs have overcome this limitation by incorporating a large number of
parameters in a reconfigurable architecture [6] [10] [83] [82] [93] [96] [104]. This
opens up opportunities in systematic studies of the dependence of the dynamics
upon biophysical parameters. Here we present a study on a silicon biophysical
neural model with wide-ranging membrane dynamics and channel kinetics [25] that,
within the same architecture, as illustrated in Fig. 3.1, extends the Hodgkin-Huxley
(HH) and Morris-Lecar (ML) paradigms from tonic spiking to intrinsically bursting
neural dynamics [51] and a variety of other neural dynamics. The dynamics exhibit
a wide range of time scales extending beyond 100ms neglected in typical silicon
models of tonic spiking neurons.

Here we demonstrate that the addition of a slow inactivation term to the
ML neuron model results in bursting neural dynamics in the NeuroDyn analog
VLSI implementation. Calculation of inter-spiking interval (ISI) for both simu-
lated and measured bursting waveforms over the variation of a single conductance
parameter g, governing calcium accommodation show agreement in behavior be-
tween simulation and circuit measurement data. In addition to tonic spiking and
intrinsically bursting dynamics, a wider range of neural dynamics including phasic

spiking and spike-frequency adaptation within the same NeuroDyn analog VLSI

31
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implementation platform by systematic variation of parameters governing Na™ and
K™ channel kinetics. We also present class 1 graded and class 2 all-or-none neural
excitability dynamics and show that variation of the dynamical voltage-dependent
profile of 7,, governing K inactivation results in an exchange between the two
behaviors. Calculation of ISI for both simulated and measured class 1 and class 2
neural excitability ramp responses show agreement in behavior between simulation

and circuit measurement data.

3.2 NeuroDyn Overview

The NeuroDyn system [113] [114] [115] [118], illustrated in Fig. 3.1, con-
sists of 4 neurons with Hodgkin-Huxley type membrane dynamics fully connected
through 12 conductance-based synapses. All parameters are individually address-
able and individually programmable and are biophysically-based governing the
conductances, reversal potentials, and voltage-dependence of the channel kinetics.
Each opening and closing channel kinetic rate is approximated with a 7-point spline
regression function allowing for detailed control of the channel kinetics. These 14
parameters with two additional terms governing reversal potential and conduc-
tance per channel result in a total of 384 parameters each stored on-chip in a
10-bit DAC. Parameter fitting is achieved through rectified linear regression and
iterative least squares residue correction. Scalable neural and synaptic arrays can
be implemented by abstracting the desired dynamics of the neurons and synapses
models and pooling together parameter control from individual to populations of
neurons.

The analog VLSI design of the NeuroDyn system, and preliminary exper-
imental results were presented in [113]. First results on coupled neural dynamics
with inhibitory synapses were reported in [114]. Details on the circuit imple-
mentation and complete experimental characterization of the neural and synaptic
circuits, as well as presentation of calibration and parameter fitting procedures to
align neural and synaptic characteristics from models or recorded data onto the

digitally programmable analog hardware are presented in [115]. In the following



33

gating channel d .
. ynamics
variables  currents
Vi
neuron |
// ]syn
Vi 1 ;
BN | Synapse |
(a) Hodgkin-Huxley
ga‘tmg channel dynamics
variables  currents
Vi
------ neuron |
LY
// ]Syn
Vi r z
J I r I I synapse |

(b) Morris-Lecar

gating channel
variables currents

Vi L] mi
h neuron
FTx /

dynamics

h@
Mo Lwt
LW ] L K

]Eyn

7/
IE I r Isynapse|

(c) Extended Morris-Lecar
and Hodgkin-Huxley

Figure 3.1: The NeuroDyn analog VLSI programmable neural emulation plat-
form [113]-[115] is used to generate both tonic firing and intrinsic bursting dynam-
ics using extensions on Hodgkin-Huxley and Morris-Lecar paradigms.

sections we focus on the extension of the HH model implemented in NeuroDyn to

accommodate generalized dynamics over extended time scales.
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Figure 3.2: Tonic spiking neural dynamics in the ML model with the extension
to include slow inactivation dynamics set as a constant parameter showing simu-
lated and measured data for (a),(c) steady-state (in)activation dynamics, (b),(d)
T voltage-dependent dynamics, and (e),(f) membrane voltage and gating variable
waveforms.

3.3 Methodology

3.3.1 Membrane Dynamics

The Hodgkin-Huxley membrane dynamics [43] describe neural dynamics
as a sum of conductance-based channel currents. Gating variables m, h, and n
describe the voltage-dependent dynamical profiles of each channel and described
n (2.1).

In order to emulate bursting neural dynamics, the Hodgkin-Huxley model
requires the addition of a slow-modulation due to Ca inactivation dynamics. We ac-
commodate this extra inactivation channel by first considering the two-dimensional

“reduced” excitation model as described by Morris-Lecar [70]:

dv;
Omemﬁ = _[Cai - IKZ - IL.L- - Isynij (31)
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Figure 3.3: Tonic bursting neural dynamics in the MLL model with an extension
to include slow inactivation dynamics showing simulated and measured data for
(a),(c) steady-state (in)activation dynamics, (b),(d) 7 voltage-dependent dynam-
ics, and (e),(f) membrane voltage and gating variable waveforms.

where 7,7 =0...3, and

ICai == mOOi gCai (‘/; - ECal)
Ix, = wigk, (Vi— Ek,)
I, = grL; (‘/A - ELz) (32)

]Synij = Tij Gsyni; (‘/’L - Esynij)

We then reintroduce the variable h; as a multiplicative term in the calcium
conductance in (3), modeling the calcium recovery rather than calcium inactiva-
tion, on a slower timescale spanning several action potentials. We also revert to
the cubic form of fast Ca (Na) activation in the Hodgkin-Huxley model, of the
form (1). We show that we can adapt this model (1) to reproduce rich spiking and
bursting dynamics, with only changes in the conductance and channel kinetics,

illustrated in Fig. 3.1 and described below.
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Figure 3.4: Simulated tonic bursting neuron with variation of a single conduc-
tance parameter g, governing calcium recovery with increasing values from (a) to

(c)-

3.3.2 Channel Kinetics

The neuron channel gating variables are modeled by a rate-based first-
order approximation to the kinetics governing the random opening and closing of
membrane channels for any of the gating variables = (e.g. m, h,n, w):

dx i
dt

= g, (1 — ) — B, (3.3)

where each channel variable denotes the fractions of corresponding channel gates in
the open state, and where the a and # parameters are the corresponding voltage-
dependent opening and closing rates. The channel variables can be equivalently

expressed as:

dIi

e

tdt

with asymptotes To, = o, /(; + ;) and time constants 7,, = 1/(c, + Bz, )-

I (3.4)

We model each of the opening and closing channel kinetics in the Neuro-
Dyn system using the seven-point sigmoidal regression functions implemented as

cascaded differential pairs. As described in [115], we use a least squares fit regres-
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Figure 3.5: Measured tonic bursting neuron with variation of a single conductance
parameter g,, governing calcium recovery with increasing values from (a) to (c).

sion technique to determine the appropriate current biases to fit the generalized
channel kinetic functions.

Simulation data was obtained by implementing the models described using
MATLAB. The simulation and circuit measurement data illustrating the neural
spiking behavior before and after the inclusion of the slow inactivation channel
are shown in Fig. 3.2 and Fig. 3.3 respectively. Neural spiking behavior before
the inclusion of the slow inactivation channel is realized by setting the h gating
variable channel kinetics with voltage-independent opening and closing rates. The
slow inactivation channel is realized by implementing the the h gating variable

channel kinetics as a slow inactivation channel.

3.4 Spiking to Bursting Behaviors

We calculate the IST histogram for each burst of spikes over the variation of a
single parameter g,, governing calcium recovery [51] for both simulation and circuit

measurement data as displayed in Fig. 3.4 and Fig. 3.5. We observe consistent
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Figure 3.6: Phasic spiking neural dynamics with simulated and measured data
for (a),(c) steady-state (in)activation dynamics, (b),(d) 7 voltage-dependent dy-
namics, and (e),(f) membrane voltage and gating variable waveforms.

spiking behavior over a wide regime of neural dynamics. For low g, conductance
values, the neuron spikes and is followed by subthreshold oscillations. As the g,
conductance value is increased, the neuron spikes and the following subthreshold
oscillations are more pronounced. And when the g, conductance value is further
increased, the neuron spikes in a bursting manner. When the g, conductance
value is further increased, the number of subsequent bursting spikes is reduced
as we observed quadruplets then triplets then doublets and finally single neuron
spikes. Mismatch between simulation and measurement results can be attributed
to circuit noise which manifests as fluctuations in spike and burst rates as well as

the number of spikes per burst.
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Figure 3.7: Spike frequency adaptation neural dynamics with simulated and
measured data for (a),(c) steady-state (in)activation dynamics, (b),(d) 7 voltage-
dependent dynamics, and (e),(f) membrane voltage and gating variable waveforms.

3.5 Additional Spiking Behaviors

3.5.1 Phasic Spiking

Phasic spiking dynamics refers to the property of certain neurons to respond
with a single action potential corresponding to the onset of an applied excitatory
current input pulse. We present simulation and circuit measurement results in
Fig. 3.6. We demonstrate phasic spiking dynamics by increasing values of 7,, with

respect to 7, from the tonic spiking model channel kinetic rate parameters.

3.5.2 Spike Frequency Adaptation

Spike frequency adaptation refers to the property of certain neurons to spike
with greater frequency at the onset of an applied pulse of current and decrease in
spike frequency through the duration of the pulse. We present simulation and
circuit measurement results for spike frequency adaptation dynamics in Fig. 3.7.

We decrease values of 7, with respect to 7, in order to more readily observe spike
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Figure 3.8: Class 1 excitable neural dynamics with simulated and measured
data for (a),(c) steady-state (in)activation dynamics, (b),(d) 7 voltage-dependent
dynamics, and (e),(f) membrane voltage and gating variable waveforms.

frequency adaptation dynamics.

3.5.3 Neural Excitability
Class 1 Neural Excitability

Class 1 neural excitability refers to the property of certain neurons to re-
spond to an applied excitatory current ramp with a train of action potentials. The
frequency of the action potentials starts from an arbitrarily low frequency and
increases in frequency through the duration of the applied ramp input resulting a
large band of frequency response. We present simulation and circuit measurement

data for class 1 neural excitability in Fig. 3.8.

Class 2 Neural Excitability

In contrast, neurons that exhibit class 2 neural excitability display a narrow
band of frequencies in response to an applied excitatory current ramp. Class 2

excitability is further distinguished from class 1 excitability by the high frequency
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Figure 3.9: Class 2 excitable neural dynamics with simulated and measured
data for (a),(c) steady-state (in)activation dynamics, (b),(d) 7 voltage-dependent
dynamics, and (e),(f) membrane voltage and gating variable waveforms.

of its initial response to the applied current ramp. We present simulation and
circuit measurement data for class 2 neural excitability in Fig. 3.9. We vary the
dynamical profile of gating variable n to decrease the values of 7,, governing K+
channel dynamics in order to achieve class 2 neural excitability dynamics. The
decrease in 7, results in a corresponding decrease in refractory period between

action potentials.

Transition from Class 1 to Class 2 Neural Excitability Dynamics

We calculate the ISI histogram for each ramp response over the variation of a
set of parameters governing 7,, and corresponding to Kt channel dynamics for both
simulation and circuit measurement data as displayed in Fig. 3.10 and Fig. 3.11.
For low values of 7,, the neuron responds with a narrow band of frequencies at
relatively low ISI characteristic of class 2 excitable neural dynamics. As the value
for 7, is increased, the refractory period between action potentials increases and
becomes more pronounced at the onset of the current ramp input. This results in

a broader band of frequency response over the course of the applied current ramp



42

60
50
w
8}
=
40
@ >
E =
~ 30 «©
»n o8 )
= g
20
S
g
. i
0! 224 42 . "276 304 3 479
(a) Tn T
B wgwwm B S BBy
< i) < i <8 D
‘“”[\ i Q”H % QMMNWVWWW‘MWVWWMWM
o o YYYYYYYYVYYYY o
““ﬁwmmmmmmmmwwm = ] mummmmmmwmmmmumum “LAUMMMMMMJM
1 + e P— e
T)me (Hlb) Tune (mb) Tune (ma)

Figure 3.10: ISI Histogram of increasing values for 7,, from (a) to (c) governing
K™ channel dynamics of simulations between class 1 and class 2 excitable neural
dynamics.

input. As the value for 7, is further increased, the band of frequency responses
continues to increase as is characteristic of class 1 excitable neural dynamics.
When current is injected into the HH model, there is a threshold where the
firing rate jumps from zero to some finite value. The addition of an “A-current”
K™ conductance to the model makes the input-output curve contiguous as first
shown by Connor and Stevens [23]. In the augmented model, the deinactivation
rate of the “A-current” limits the rise time of the membrane potential between

action potentials.

3.6 Conclusion

Previous studies [20] have shown intrinsically bursting neural dynamics
implemented with extensions to the HH model requiring more gating variables.
Other models are capable of emulating intrinsic bursting neural dynamics, such

as Izhikevich’s simple model [50] which uses just two dynamical variables and
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Figure 3.11: ISI Histogram of increasing values for 7,, from (a) to (c) governing
K" channel dynamics of measurements between class 1 and class 2 excitable neural
dynamics.

Mihalas-Niebur’s neural model [67] which uses three dynamical variables to also
govern threshold adaptation. Here we have presented an extended HH-ML model
that reproduces a variety of neural dynamics in three dynamical variables that
directly account for the biophysics of membranes and channels over an extended
range of time scales in the NeuroDyn neural emulation platform. The neural dy-
namics has been implemented with individual control over biophysical parameters
governing the dynamical profiles of the opening and closing channel rates, reversal
potential, and conductance. Intrinsic noise due to analog circuit implementation
results in quantitative and qualitative changes in the neuronal dynamics including
changes in the onset and regularity of spiking and bursting patterns, although we
observed general qualitative correspondence between simulations and circuit ex-
periments. Similarly, noise from thermal, stochastic, and other sources observed
in in vivo recordings play an important role in the dynamics of neuronal activ-
ity [64] [75]. Thus, the noise inherently present in the analog circuits adds to

the biological realism of the implementation avoiding quantization and periodicity
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artifacts commonly encountered in noise-free digital implementations.

Chapter Three is largely a reprint of material that appeared in the 2010
IEEE Transactions on Biomedical Circuits and Systems Journal: T. Yu and G.
Cauwenberghs, “Analog VLSI Biophysical Neurons and Synapses With Program-
mable Membrane Channel Kinetics,” IEEE Trans. on Biomedical Circuits and
Systems, vol. 4, no. 3, pp. 139-148, May 2010. The author is the primary author

and investigator of this work.



Chapter 4

Scalable Translinear and
Transcapacitance Synapse and

Neuron circuits

4.1 Introduction

Recent advances in neuromorphic engineering for brain-like computing and
neural prostheses are converging towards realization of electronic synaptic arrays
approaching the integration density and energy efficiency of the human brain.
Large-scale neuromorphic VLSI systems [6] [89] [90] rely on accurate, energy effi-
cient, and densely integrated implementation of the neural and synaptic dynam-
ics resulting from network activity involving very large numbers of voltage gated
conductances with capacitive loading. A major impediment in this development
is practical realization of complex conductance-based models of biophysical neural
and synaptic dynamics in nanoscale electronics. Previously, the subthreshold MOS
translinear principle has been applied to realize large networks of conductances to
realize layered network models of retinal vision where linear conductances are im-
plemented with single transistors through a log-transformation of voltage variables
2] [29] [99] [102].

Here we show that a variant on the log-domain implementation gives rise to

45
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linear conductance dynamics in more compact form. We present a three-transistor
realization of a dynamical conductance-based synapse element, serving multiple
synapses with common reversal potential and activation dynamics. The time-
multiplexing synapse element pools spike input events from multiple presynaptic
source addresses through the address-event representation (AER, [13]) commu-
nication framework as seen in Fig. 4.1. One such physical synapse element per
postsynaptic neuron is provided for each type, selected by type index along with
postsynaptic address. A log-domain encoding of first-order linear dynamics of
synaptic conductance results in a compact circuit realization with three MOS tran-
sistors per synapse element. Circuit simulations show low-power operation with
linear dynamics in conductance.

The dynamical extension to networks of conductors with capacitive loading
is less straightforward and requires a larger number of transistors to implement
the linear derivative of the log-transformed voltage variables “transcapacitance”
[32] [40]. This paper extends the subthreshold MOS translinear principle [91]
to implement single-transistor neural and synaptic conductances with log-domain
transformation of node voltage variables, with linear dynamics in the current do-
main using several alternatives of transcapacitance circuits. The first method to
implement linear conductance-based dynamics utilizes translinear current scaling
prior to capacitive integration on node voltages. A current conveyor is used to de-
couple the current scaling and voltage fixing at the synapse and neuron interface.
Two alternative realizations to produce linear dynamics are also presented. The
first alternative requires a exponential voltage-dependent capacitance. The second
alternative utilizes voltage driving of the node capacitance. We present simulation
results using parameters from a 90nm CMOS process to demonstrate the validity

of the voltage-driven node capacitance method.

4.2 Log-domain Model

A single linear conductor can be used to model a synapse with floating

gate presynaptic activation, dendritic segment, or excitable membrane patch as a
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Figure 4.1: Pooling of synapses with common reversal potential and activation
dynamics, but possibly with different conductances, by time-multiplexing input
events from j presynaptic neurons.

neuron. A single CMOS transistor operating in subthreshold, by virtue of the log
transform of its node voltages, can be expressed as a linear conductance as seen in

Fig. 4.2. The subthreshold drain current can be expressed as
w
i= ]Ofe’wﬁ’ (et — e Vrev) (4.1)

where v, is the gate node voltage, v, is the source node voltage, and vy, is
the drain node voltage with each expressed in terms of V. Transformed to the

“log-domain” or “pseudo-voltage domain”, each “pseudo-parameter” describes the
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Figure 4.2: A linear conductor is implemented by a single MOS transistor oper-
ating in subthreshold, through a logarithmic transformation of the voltage node
variables [4, 98].

associated signal in log-domain [32],[40]

i=G (Vi = V) (4.2)
with pseudo-parameters conductance G* = Io%emg, membrane voltage V* =
—e~ V", and reverse potential VI = —e Vrev.

4.3 Synapse Array Architecture

We first focus upon the architectural design of the pooled synapse input
for each neuron within the neural array. We assume that the number of distinct
synapse types is limited to a relatively low number £, e.g., k = 8. This assumption
is typically valid even in large-scale cortical models. We pool synapses of the same
type serving the same postsynaptic terminal into a time-multiplexed synapse ele-
ment. Synapse elements in the array are activated by presynaptic events presented
through an AER input interface [13]. Neurons receiving synaptic inputs from these
elements further interface through AER arbitration to generate postsynaptic out-

put events [13].
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Figure 4.3: Illustration of the convolution between the conductance dynamics
and conductance strength using two versions (a) a single decay 7, and (b) a rise
and fall time 7, and 7.

4.4 Synapse Element

4.4.1 Modeling of Conductance Dynamics

We assume a general conductance-based synapse with continuous activation

dynamics. The postsynaptic membrane receives synaptic current contributions,

Z lij = Z Zgijfij(t - t?)(vi — Eyj) (4.3)

J
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where ¢ denotes the post-synaptic neuron, j denotes the pre-synaptic neuron, k
indicates the spiking event number, g;; is the conductance strength between neu-
ron ¢ and neuron j, f;;(t — t;“) indicates the conductance dynamics profile, V; is
the membrane voltage of pre-synaptic neuron ¢, and Fj; is the reversal potential
between neuron 7 and neuron j.

Synaptic current contributions to postsynaptic neuron ¢ are partitioned

according to synapse type as
> L=> L0+ P+ 4> 1" (4.4)
J J J J

where each partition serves synapses with common synapse parameters in terms
of reversal potentials

EY =EO v, (4.5)

and activation dynamics
0 o
9 =f0vi, (4.6)

where 6 indicates the synapse type. The partitions pool each of the synaptic

contributions from the respective presynaptic neurons as:

STI = STSTS g0 — (v - BO)
J 0 J k
= > > Wi - EY) (4.7)
0 k

(6) () denotes the time-multiplexed pooled conductance of synapse element

7

where g

(0) of postsynaptic neuron i:
6 9
0”0 =0 O~ ). (4.8)
J

The temporal profile of gge) (t) is illustrated in Fig. 4.3. A log-domain recurrence re-
lation expressing this pooled conductance leads to compact realization as described

next.

4.4.2 Linear and Log-Domain Recurrence Relation

A general conductance dynamics profile f can be characterized by two

terms: a fall time 7'1(6) and a rise time 72(6). We start by modeling the transient
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Figure 4.4: The circuit implementing the synapse element consisting of 3 MOS
transistors.

conductance dynamics as a single decaying exponential with time constant 7(?) as
illustrated in Fig. 4.3(a), and note that the more general case can be implemented
()

by convolution of the activation functions g,

;. with decaying exponential on shorter

time scale as illustrated in Fig. 4.3(b). The convolution between the conductance
dynamics and conductance strength using a single delay 7 is expressed as:
d
) 0) 4k
(r?—+1)g, Zg” ot —tb) (4.9)
where §(t — tf) is an impulse centered at time tf, representing a presynaptic input
event from neuron j of synapse type € to postsynaptic neuron j.
We utilize a log-domain circuit to exploit the linear relationship between the
subthreshold MOSFET gate-source voltage and channel currents. So we express

gz-(e) in the log-domain:

u” = logg"(t) (4.10)
d_ ) 1 d o
— = t 4.11
7 = a0 (111)
leading to
() 0) g@(t)
0 ij k
70— 11 S(t—t 4.12
dt ;gz@(t) ( 7) (4.12)
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The solution to the integrator with constant delay (10) in between events
t;? and t?“ is:
©) OISl k1

and at the arrival of an event t?, for e — 0:

®
u (5 4 e) = ulV (1 —€) + gi(ge)e_“ig (t5=9), (4.14)

(

Transformed back to the current domain, the resulting conductance gie) follows

the desired linear dynamics in input activation:

0 0 0
gt +e) =gtk — ) + g (4.15)

)

and exponential decaying conductance in between presynaptic events with time
constant:

018) = e << (410

i

4.5 Circuit Architecture

The common reversal potential parameter for each synapse partition E©)
is simply implemented as a single nMOS transistor operating in the subthreshold
region:

Innos = MoetnVa/Ur (¢ VU — g=Vallr), (4.17)

where V, is the gate voltage, Vi is the source voltage, Vj is the drain voltage, A
is the W/L ratio of the transistor, Iy is the subthreshold pre-exponential current
factor, K, indicates the back gate effect, and Ur is the thermal voltage, kT'/q. The
transistor operates in the subthreshold region while the drain-to-source voltage
is less than 4Ur. Since the voltages are implemented in log-domain circuits, the

resulting output current can be expressed as:
I < KV, (V; = E©), (4.18)

To implement the input recurrence (12) composed of the input term of

(6)

the incoming conductance strength value g;;” multiplied by a negative exponen-

)
tial e (45 ). we utilize CMOS technology to implement the negative exponential
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Figure 4.5: Transistor-level circuit simulation illustrating both the: a) activation
function gz@ with 3 groups of different activation widths (detail shown in inset);
b) log-domain variable u and ¢) time-domain conductance g.

) : . . : .
e~ ) with a single diode-connected pMOS transistor operating in the subthresh-

old region:
Ipnos ox e F#Va/Ur, (4.19)

We activate the pMOS with a short pulse centered at t?. The conductance
strength g@ can in principle be implemented by modulating the pulse voltage log-

v

arithmically. Rather than adding this complication to the circuit and the drivers
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at the periphery of the array, we modulate the pulse width linearly in the conduc-

tance strength gg})

. Notice that a back gate effect parameter ,, and x, is present
in both of the expressions for the input (13) and output (15) of the synapse ele-
ment. The xk parameter indicates the efficiency of a change the gate voltage and
the resultant change in surface potential. This loss in efficiency is due to the bulk
terminal in a MOSFET, which can act as another gate terminal (also referred to
as the 'back-gate effect’). Fortunately, this effect will have little consequence if the
nMOS and pMOS devices have sufficiently close back-gate effects, x,, ~ k.

By virtue of the log-domain transformation, the decaying exponentials e ~*/7
in the conductance dynamics f;; (t—tf) are implemented using a single nMOS tran-
sistor operated in subthreshold and used as a constant current source to linearly
charge capacitor C. As shown in Fig. 4.3(b), the conductance dynamics f;;(t — t¥)
can be extended to a rise time 7 and fall time 7, through convolution. This could
be accomplished by driving the source of the pMOS with a sequence of pulses. The

complete dynamical conductance-based synapse circuit implementation is shown

in Fig. 4.4. The circuit is compact, requiring only 3 transistors to implement.

4.6 Characterization

To verify the conductance dynamics, we performed transistor-level simula-
tions (using Spectre and parameters of a 0.13um CMOS process) of the synapse
circuit driven by a train of presynaptic impulses, modulated with three different
pulse widths, with relative magnitudes 1, 3, and 5, emulating the effect of three
time-multiplexed pooled synapses. The circuit output in response to the sequence
of input synaptic events is shown in Fig. 4.5.

To verify the linearity of postsynaptic conductance in presynaptic activa-
tion, we studied the dependence of the conductance time profile as a function of
pulse width and pulse interval. We observed the step in conductance Ag for a
train of pulses at variable pulse intervals, for four different values of pulse width
with relative magnitudes 1, 3, 5, and 7 as shown in Fig. 4.6. The four distinct

and compact groups for each of the four different activation widths indicate the
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Figure 4.6: Transistor-level circuit simulation illustrating Ag for 4 groups of
different activation widths.

linearity of the conductance according to the convolution model (4.15) and (4.16).
Furthermore, the centers of the clusters for each of the different activation widths

are colinear through the origin, confirming linearity in input pulse width.

4.7 Linear Conductance-based Dynamics

Directly connecting a log domain conductor to the membrane capacitor C,
which integrates current in the linear domain, results in non-linear conductance-
based dynamics. Here we explore three alternative realizations that preserve lin-

earity through translinear transformation of either current, capacitance, or voltage.

4.7.1 Current Scaling

First consider the case where the membrane potential v,, is directly applied
to the membrane capacitance C* = C, while the injected current I;,; is scaled to

compensate for the resulting nonlinearity in the pseudo-domain by predistortion.
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Figure 4.7: Overview of three approaches to implement linear conductance-based
dynamics as illustrated with the pseudo-voltage representation above. (a): current
scaling, (b): exponential voltage-dependent capacitance, and (c): voltage-driven
node capacitance.

To arrive at linear dynamics in the pseudo-domain:

Lave ,
J

the actual current feeding into the integration node v, is scaled in accordance to

the relationship between the derivatives of v,, and its pseudo-voltage equivalent.

By virtue of the log-domain relationship, % = e‘”mdfl—;” = —V;Ldg—;" which leads

to the following equivalent expression:
dvy, Imj [mj

C = — = 4.21
dt Ve  emvm (421)

This shows that linear current integration at the membrane capacitance in the

log-domain regime can be preserved by scaling the injected current by e’ prior to
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capacitive integration, while simultaneously fixing the incoming node voltage on

the membrane to the capacitor node voltage.

4.7.2 Capacitance Transformation

Consider now the case where the incoming node carrying the current I;,;
is directly applied to a capacitance C', which is appropriately transformed to im-
plement the desired membrane capacitance C* in the pseudo-voltage domain. In
general, let the capacitance value of C' be dependent on membrane voltage v,,, and
the bottom plate of the capacitor connected to a potential v, with voltage value

generally dependent on voltage v,,,. The dynamics may then be described by:

C’(vm)d(vm —d:c(vm)) _ ZZJ = I (4.22)

with the equivalent pseudo representation in (4.20) where the pseudo capacitance

C* is thought to be connected between V,* and ground. Utilizing the log-domain

dvm

o, and solving for v,

. dvE
relationship, == = e~

(Clon) — e ™) D~ )

dve(vy,)

- (4.23)

with two directly viable approaches described below.

Voltage-dependent Capacitance

Set v. = 0 and solve for C' = f(v,,) so that this assumption simplifies the

expression to:

v oy AU
(C(vy) — C"e )dt =0

Cop) = Cre™™m (4.24)

where the v, dependence of capacitance value C' is defined by the exponential e~

which requires the implementation of a non-linear voltage-dependent capacitance.
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Voltage-driven Capacitance

Set C' as a constant capacitance such that % = 0 where v* = % and solve
for v, = f(v,,) and now integrate solving again for v,
/ (1 —~"¢"")dv,, = /dvc(vm)
Upy, — /fy*e”mdfum = V() (4.25)
and since C' is a constant, with a constant value of +*,
Ve = Uy + 7 €™ (4.26)

showing that a voltage variation across capacitor C' equal to y*e~ " is required.

4.8 Circuit Implementation

4.8.1 Translinear Current Scaling

The transcapacitance circuit in [32] realizes the current scaling in the trans-
linear dynamics quite elegantly, but requires a special translinear conductor struc-
ture with a differential monopolar current. The current-scaling dynamic translin-
ear circuit operates on a single node with bipolar current. A class AB current
conveyor (CCII) is utilized to interface between the synapse and membrane capac-
itance nodes to decouple the injected current ¢ and applied membrane potential
Uy, as illustrated in Fig. 4.8. At the output of the current conveyor, the positive
portion iy =i < 0 and negative portion i_ = |i < 0| of the injected current i are
provided and fed into the corresponding inputs of the transcapacitor circuit. These
currents are then scaled by e and integrated upon the membrane capacitor C.
The current conveyor circuit then relays this capacitor voltage onto the log-domain

membrane node that supplies the input current.

4.8.2 Voltage Modulation of Capacitance

The desired exponential dependence of capacitance C(v,,) = C*e " is

readily implemented by a single MOS capacitance (MOSCAP) operated in sub-
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Figure 4.8: Circuit implementation of linear conductance-based dynamics
through current scaling. (a): Translinear circuit scaling the injected current ¢ by
e’m. The scaled current is integrated on the membrane capacitor C', and the re-
sulted voltage v, is applied onto the input node. (b): Current conveyor circuit
detail [87]. (c): Voltage buffer circuit detail.

threshold. Indeed, the channel charge in subthreshold for a MOSCAP with gate

voltage v, and channel voltage v, is approximately given by

I
Q= EOWLem’ge_”C (4.27)
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Figure 4.9: Circuit implementation of linear conductance-based dynamics
through voltage driven node capacitance.

where D is the diffusion coefficient which can be expressed in terms of mobility and

thermal voltage through Einstein’s relation D = pkT/q. Hence, the capacitance

dQ kT
A
— éI/I/'Le"/”vge_vc (428)
0

has the desired scaling in the channel voltage v., which corresponds to the mem-
brane voltage v,,.

In practice, the challenge with this elegant solution is that the capacitance
in subthreshold is small and hence requires large area to implement large time
constants typical in neurobiology. Furthermore, diode junction leakage on the
MOSCAP node affects the dynamics of the circuit. These problems are mitigated
by using an advanced silicon-on-insulator MOS process as an alternative to the

90nm bulk CMOS technology considered here.

4.8.3 Voltage Driven Node Capacitance

The membrane voltage v, is buffered through a source follower M; as il-

lustrated in Fig. 4.9. This buffered voltage along with V}; set the drain current
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Figure 4.10: Circuit simulation results for voltage-driven node capacitance
approach showing linear integration of currents from three conductance-based
synapses as illustrated in the matched waveforms between I;,,; and W,

V,
dt -

e~ through Mj. This current is then mirrored through the PMOS current mirror
and passes through diode-connected M, which operates in the ohmic regime as a
linearized resistance. The e~ current is limited by the bias current through M,.
Note that this circuit implements the equation v, = v, +v*e™"" with an additive

offset due to the source follower M;, which is inconsequential to the capacitance C'
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as long as the source follower has unity gain. The wells of M;, M3, and M, are tied
to their source terminals to improve the unity gain of the source followers. This
design can be implemented in a single-well technology because only one transistor

type requires a well connection separate from the supplies.

4.9 Integrated Synapse and Neuron Dynamics

Circuit simulations results in a 90nm CMOS technology process for the
voltage-driven node capacitance approach are shown in Fig. 4.10. The synaptic
output currents from three conductance-based synapses with constant reversal po-
tentials were used as input into the voltage-driven node capacitance circuit shown
in Fig. 4.9. The conductance G; of each synapse was driven by sine waves of
varying frequencies as seen in Fig. 4.10a with the associated output currents i; as

seen in Fig. 4.10b. The calculated sum of currents I;,; in Fig. 4.10c shows linear

dVin

integration of current when compared to the derivative of membrane voltage ==

The total power consumption of the voltage-driven node capacitance circuit with

3 input synapses is 88.1nW .

4.10 Conclusion

We have formulated a dynamical conductance-based synapse cell in a com-
pact circuit design. Circuit simulations verify log-domain implementation as well
as an output magnitude scaled to the input conductance strength. The circuit im-
plementation is compact, requiring only 3 transistors. This small footprint, coupled
with the low-power subthreshold design, make this design a suitable candidate for
large-scale implementation of synaptic arrays in addressable neuromorphic sys-
tems, with reconfigurable synaptic connectivity as well as individually selectable
synaptic dynamics.

The subthreshold MOS translinear principle has also been applied to realize
large networks of conductances where linear conductances are implemented with

single transistors operating in subthreshold. This approach enables practical imple-
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mentation of large-scale, densely integrated synaptic arrays modeling biophysical
cortical networks with several thousands of synaptic conductances per neural com-
partment. The approach also alleviate nonlinearities in current integration that
result from directly connecting log-domain synapses to the membrane capacitor.
To this end we have formulated several approaches toward linear conductance-
based dynamics of a log-domain synapse in analog VLSI. We also demonstrate the
viability of the voltage-driven node capacitance approach through transistor-level
circuit simulations with parameters from a 90nm CMOS process.

Chapter Four is largely a combination of material that appeared in the
2010 International Symposium on Circuits and Systems: T.Yu and G. Cauwen-
berghs, “Log-domain time-multiplexed realization of dynamical conductance-based
synapses,” Proc. IEEE Int. Symp. Circuits and Systems, 2010, pp. 2558-2561 and
2011 Neural Engineering Conference: T. Yu, S. Joshi, V. Rangan, and G. Cauwen-
berghs, “Subthreshold MOS dynamic translinear neural and synaptic conductance,
Proc. IEEE/EMBS Conf. Neur. Eng., 2011, pp. 68-71. The author is the primary

author and investigator of these works.



Chapter 5

Scaleable Event-driven Neural

Array

5.1 Introduction

We present a mixed-signal VLSI event-driven neural array with 65k two-
compartment integrate-and-fire neurons each with four time-multiplexed facilitat-
ing conductance-based synapses. The array provides a general and scalable frame-
work to efficiently implement general spike-based neural models with dynamically
reconfigurable synaptic connectivity through hierarchical address-event routing of
synaptic events. Here we present results illustrating the configurability of neural
and synaptic dynamics in the analog integrate-and-fire array transceiver (IFAT).
Specifically, we characterize a the core IFAT circuits and show measurement results
illustrating neural event generation dynamics and synapse input activation dynam-
ics of a single addressable cell. The chip measures 5mm x 5mm in 130nm CMOS
and consumes 252 pW from 1.5V at 5 M event/s synaptic input rate resulting in

50pJ/spike power efficiency.

64
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Figure 5.1: (a) VLSI layout of IFAT chip showing labelled quadrant partitions
consisting of 8 IFAT analog cores surrounding a single IFAT AER arbitration unit.
(b) System block diagram of a single IFAT analog core showing digital events input
address decoding units and digital events output arbitration with internal analog
neuron and synapse array. (c) Detailed system block diagram of an individual
neuron cell with neural spike generation and spike registration circuits [35] [104],
address-event routing (AER) translinear synaptic activation circuits [116], and
synaptic, leakage, and compartment coupling translinear conductances [117].

5.2 System Architecture

The presented IFAT integrated circuit serves the analog core function of
the HIAER-IFAT neural and synaptic event routing architecture[53] for scaleable
reconfigurable large-scale neuromorphic computing. The neural events are routed
in real-time through synaptic connections with configurable parameters governing
connectivity, synaptic strength, and axonal delay. Each analog chip is partitioned
into two halves each with individually controlled dynamics governing four types
of synapse input activation dynamics and synapse reversal potential in addition

to global parameters for membrane threshold values, etc. Each half is further
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partitioned into two quadrants of 8 IFAT sub-blocks of 2k neurons serviced by a
single AER input block as illustrated in Fig. 5.1(a) and Fig. 5.1(b).

All 216 neurons on the chip are individually addressable, and the spike events
that they generate are served sequentially through arbitration for transmission of
address-events over two communication buses. Here we experimentally characterize
the event activation and generation of a single addressed neuron in the HiAER-
[FAT architecture, complete with two membrane compartments and with neural
and synaptic activation circuits, as described in Fig. 5.1(c). Each synapse im-
plements time-multiplexed conductance-based dynamics in the log-domain with a
compact three transistor circuit [116]. Each neuron implements two-compartment

leaky integrate-and-fire (IFAT) dynamics [35] [77] [104] .

5.3 Circuit Details

5.3.1 Neural Event Generation

Neurons are implemented as two-compartment leaky integrate and fire neu-

rons with two synaptic inputs per compartment with dynamics per compartment,

Cmn dt = Ifb,i(so + Z [syn(i,j)
J
+ILin + Icompin (51)

where ¢ indicates the post-synaptic neuron, j denotes the pre-synaptic neuron,
Chn,, denotes the membrane capacitance for neuron compartment n, Iy, denotes
the nonlinear positive feedback current for neuron compartment & = 0, I, denotes
the leak current, and Iy, denotes the current between compartments.

We model each synapse and neuron as a linear conductor for each synapse
and neuron with a single transistor operating in subthreshold by virtue of the
log transform of its node voltages as presented in Chapter 4. The subthreshold
drain current for a NMOS transistor is expressed in Eqn. 4.1 and provides the
“log-domain” or “psuedo-voltage domain” transformation expression.

This results in neural event activation dynamics for each neural compart-
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Figure 5.2: (a) Detail showing probabilistic neural event activation. (b) Oscillo-
scope trace showing probabilistic neural activation for fixed values of V;, = 940mV,
E,eo = 600mV | and T,, = 52. (c) Linear tradeoff between V};, and E,., for a con-
stant P(out|exc).

ment,

dv;
T dt

Ifb»i(sg + Z gsyn(i,j) (E:ev - V’r:n)
J

+Geompi, (Viny = Ving)(=1)" (5.2)
where g7, denotes the leak conductance, E; denotes the leak reversal potential,

Jeomp denotes the conductance between compartments, gqn; ;) denotes the synapse

conductance, and FE,., denotes the synapse reversal potential.
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Figure 5.3: (a) Detail showing linear rise in V,, proportional to width of 7}, indi-
cating synapse conductance strength. (b) Oscilloscope trace illustrating differing
AV, for different values of T,.(c) Measured change in synapse conductance value
AV corresponding to onset of a single input excitatory synaptic event for varying
values of synapse conductance strength T,,. We overlay the fit function V;; = log T,
to illustrate the log dependence.

We implement the positive feedback dynamics f(V;,) through a single tran-
sistor operating in subthreshold resulting in exponential nonlinear term in the feed-
back current. The threshold voltage V};, is a configurable global parameter, which

provides the threshold-initiated regeneration amplification in this circuit [35, 104].
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5.3.2 Synaptic Event Activation

The synaptic dynamics also utilize a single transistor operating in sub-
threshold to implement a linear conductor modeling time-multiplexed conductance-
based synapses [116] as expressed in Eqn. 4.2. We model the event activation
dynamics as a linear increase in conductance at the onset of each input event with
exponential decay inbetween events. The linear increase in synapse conductance is
achieved through the application of a pulse-width modulated signal at the source
of a diode-connected PMOS transistor as illustrated in Fig.5.1(c). Here, the two
parameters governing the reversal potential F,., and activation time constant V.
and are digitally selectable and globally configurable as one of four synapse types

unique for half of each chip and G7,,, o« e

denotes the pseudo-voltage synapse
conductance with exponential scaling with respect to node voltage V,,. Due to the
exponential relationship between I, and the gate node voltage V,,, the derivative

can be expressed as,

dl sy Kk d
-, — Is n77 o, Vu- .
dt " Ur i (5:3)
Where during each input spike, the dynamics of V,, oc log G, are described by
d
—V. = (Lin—1,)/Csyn. 5.4
Vi = (= 1)/Cy (54)

Combining expressions and utilizing the inverse relationship between I, and I;,, =

Ioeﬁvpulse/UT e_HVu/UT )

Ly, 1y

dt _ ISyTL — ] eRVpulse/UT (55)

T

n

where time constant 7 = %, Iy is the leakage current, k is the subthreshold

I;
slope factor, and Vs denotes the input synapse pulse magnitude. Solving the
first-order low-pass filter equation,

I t—t
an(t) = el V(1 = =) (56)

where ¢, indicates the spike time of event k. Therefore, the charge contribution

of an synaptic input of pulse-width 7;, and constant value of constant value Vyse

can be expressed as,

1
Qevent ~ Tul_oeHVpulse/UT- (57)

T
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Here the pulse width T, of the applied signal linearly encodes the input synapse
conductance strength and is digitally controllable in graded fashion provided thr-
ough internal counters in each AER input block serving a single 2k-neuron IFAT

core.

5.4 Results

5.4.1 Neural Activation Dynamics

We start by characterizing the neural activation dynamics of a single ad-
dressed neuron as illustrated in Fig. 5.2. In the presence of thermal noise, the
probability of the generation of an output neural event given the input of a single
excitatory synaptic event P(out|ext) can be described as a function of V4 at the

single transistor modeling the neuron where due to positive feedback dynamics,

P(outlext) = f(Vys)
— 1/(14-6_%5) (5.8)

where Vs = KEepe—Vin—Vru v where excitatory reversal potential F.,. determines
the maximum membrane voltage V,, and Vrg n indicates the NMOS threshold
voltage.

Thus for low values of membrane threshold V;; and high values of excita-
tion stimulus E.,., we observe high conditional spike probability response of event
generation for each input synaptic event. Conversely, for high values of membrane
threshold V;;, and low values of excitation stimulus E.,., we observe low condi-
tional spike probability response of event generation where the conditioning is on
the excitatory input. We can characterize the boundary of this region separating
high conditional spike probability from the low conditional spike probability by
rearranging Eqn. 5.8 in terms of Vj;, and showing that F.. o< Vi /k.

P(out|exc) can also be extrapolated for each neuron in the chip to provide

a profile of parameter offset and mismatch throughout the chip.
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5.4.2 Synapse Conductance Dynamics

We next characterize the synaptic event activation dynamics by measuring
AV, in response to input synaptic events of width 7,,. Fig. 5.3(a) illustrates the
linear rise in V,, proportional to width 7;,. Fig. 5.3(b) shows an oscilloscope trace
of V,, dynamics in response to various values of T,,. We then measured AV, in
response to a single synaptic event input for various values of T, and plotted in
MATLAB as seen in Fig. 5.3(c). The overlaid function V};; = log T, shows the log
relationship log T;, o< AVu.

5.4.3 Paired Pulse-width Facilitation

We notice that for closely spaced synaptic input pulses that the effective
synaptic contribution increases in subsequent pulses. This results in an adaptive

facilitation behavior that saturates over time and is observed in Fig. 5.4.

5.4.4 System-level Characterization

For stability, the typical system contains many more input events than
output events. There power consumption per spike is thereby primarily limited by
the rate at which the system can route input events. For a 20 MHz clock interface
between the FPGA and IFAT with 128 clock cycles per input pulse for clocking T,
and event arbitration among 32 IFAT cores, we can achieve a maximum throughout
of 5 M events/s operation. At this rate, we measure AV DD = 1.5V current draw
supplying the analog circuits at 33.3uA, VDD = 1.5V current draw supplying
the digital circuits at 134.5uA. Altogether this results in 252uW total chip power
dissipation and 50 pW //spike.

5.5 Conclusion

We have characterized a single cell of a 65k-neuron integrate-and-fire array
transceiver with address-event reconfigurable synaptic routing. Each neuron is

individually addressable and shares programmability of parameters within each
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Figure 5.4: Oscilloscope trace showing exponential saturation of synapse conduc-
tance for closely spaced consecutive input events in the synapse node conductance
Va.

partition of the neuron array chip. As a function of these analog parameters, we
show characterization of neural event activation dynamics, synaptic input event
activation dynamics, and neural event time-to-spike dynamics.

Chapter Five is largely a reprint of material that was submitted to 2012
Biomedical Circuits and Systems Conference: T. Yu, J. Park, S. Joshi, C. Maier,
and G. Cauwenberghs, “65k-Neuron integrate-and-fire array transceiver with addr-
ess-event reconfigurable synaptic routing,” Proc. IEEE Biomedical Circuits and

Systems, 2012. The author is the primary author and investigator of this work.



Chapter 6

Event-driven Coincidence

Detection

6.1 Introduction

Synchrony and temporal coding in the central nervous system, as the source
of local field potentials and complex neural dynamics, arises from precise tim-
ing relationships between spike action population events across neuronal assem-
blies. Recently it has been shown that coincidence detection based on spike event
timing also presents a robust neural code invariant to additive incoherent noise
from desynchronized and unrelated inputs. We present spike-based coincidence
detection using integrate-and-fire neural membrane dynamics along with pooled
conductance-based synaptic dynamics in a hierarchical address-event architecture.
Within this architecture, we encode each synaptic event with parameters that
govern synaptic connectivity, synaptic strength, and axonal delay with additional
global configurable parameters that govern neural and synaptic temporal dynam-
ics. Spike-based coincidence detection is observed and analyzed in measurements
on a log-domain analog VLSI implementation of the integrate-and-fire neuron and

conductance-based synapse dynamics.
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Figure 6.1: (a) Detailed system block diagram of an individual neuron cell with
neural spike generation and spike registration circuits [35, 104], address-event rout-
ing (AER) translinear synaptic activation circuits [116], and synaptic, leakage, and
compartment coupling translinear conductances [117]. (b) VLSI layout showing la-
belled block components.

6.2 System Architecture

We have developed the HIAER-IFAT communication architecture for rout-
ing neural events in a scaleable reconfigurable large-scale neuromorphic system.
The scaleable hierarchy allows for large-scale neural system implementation while

minimizing queue occupancy [53]. The neural events are routed in real-time
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through synaptic connections with configurable parameters governing connectiv-
ity, synaptic strength, and axonal delay. Each analog chip is partitioned into two
halves each with individually controlled dynamics governing four types of synapse
input activation dynamics and synapse reversal potential in addition to global
parameters for membrane threshold values, etc.

All 2% neurons on the chip are individually addressable, and spike events
that they generate are served sequentially through arbitration for transmission of
address-events over two communication buses. Here we experimentally charac-
terize a single addressed neuron in the HIAER-IFAT architecture, complete with
two membrane compartments and with neural and synaptic activation circuits, as
described in Figure 6.1. Each synapse implements time-multiplexed conductance-
based dynamics in the log-domain with a compact three transistor circuit [116].

Each neuron implements two-compartment leaky integrate-and-fire (IFAT) dynam-

ics [35] [77] [104] .

6.3 Biophysical Models

6.3.1 Time-multiplexed Conductance-based Synapse Dy-

namics

Coincidence detection of postsynaptic events upon the neuron membrane
occurs when two of more events arrive in a short time window “coincidentally” to
trigger a neural event. In order to ensure that only coincident postsynaptic events
integrate together upon the neural member, the conductance (G) -capacitance (C')
integration time constant must be short and comparable to the synapse activation
time constant. In addition to triggering a coincident neural event through the
mapping of several synaptic connections to a single neuron, we incorporate axonal
delays the the synaptic connectivity in our system through HiAER routing [77].
These axonal delays allow the coincidence detection to become very input specific
through temporal coding [52] [78] [106].

The postsynaptic current contribution for a single conductance-based syn-
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Figure 6.2: (a) Block diagram showing the conductance-capacitance relationship
for a single synaptic conductance connecting to the membrane capacitance C,
where the conductance strength Gy is modulated by the f(¢) function resulting in
G(t) and through integration upon C, V(). (b) Block diagram showing the con-
ductance-capacitance relationship for multiple conductance synapses. (c) Time-
varying G(t) from multiple conductance-synapses showing coincidence detection
when multiple input spike events coincide and are net excitatory.

apse can be expressed by a conductance G modulated by the potential difference

between reversal potential F,., and membrane potential V:

Isyn = G(Erev - V) (61)
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where the conductance G can be further expressed as:

G = Go(t) * (1) (6.2)

where * denotes convolution in time, Gy(t) denotes the pulse-width modulated
synaptic conductance strength, f(¢) denotes the synaptic input event activation
dynamics, which we model with an instantaneous rise time and finite exponential
decay fall time such that

flty=e" (6.3)

and as illustrated in Fig. 6.2. The coincidence of several postsynaptic events is
illustrated in Fig. 6.2(c).

We implement these dynamics in time-multiplexed conductance-based syn-
apses [116] where each synapse is composed of three parameters. The nominal
conductance Gy is digitally controllable in graded fashion while the other two
parameters governing reversal potential F,., and activation time constant V, are
digitally selectable and globally configurable as one of four synapse types unique

for half of each chip.

6.3.2 Neural Membrane Dynamics

Neurons are implemented as two-compartment leaky integrate and fire neu-

rons with two synaptic inputs per compartment and dynamics,

d;/;l = Z Lij, + gu(EL — Vi)
+gcomp(V — Vi) (6.4)
Codc‘l/;o = f(Vi,) + Z ijo T 90(EL — Vi)
+gcomp(V — Vi) (6.5)

where (), denotes the membrane capacitance for neuron compartment n, f(V;,)
denotes the nonlinear positive feedback dynamics, I;;, denotes the synaptic cur-
rent contributions, g;, denotes the leak conductance, E; denotes the leak reversal

potential, and geomp denotes the conductance between compartments.
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We implement the positive feedback dynamics f(V;,) through a single tran-
sistor operating in subthreshold resulting in exponential nonlinear term in the
feedback current. We fix the configurable global parameter, threshold voltage
Vin, which provides the threshold-initiated regeneration amplification in this cir-

cuit [35, 104].

6.4 Log-domain Mapping

We model each synapse and neuron as a linear conductor for each synapse
and neuron with a single transistor operating in subthreshold by virtue of the
log transform of its node voltages as presented in Chapter 4. The subthreshold
drain current for a NMOS transistor is expressed in Eqn. 4.1 and provides the
“log-domain” or “psuedo-voltage domain” transformation expression.

Thus we can express the postsynaptic current contribution from synapses

of type (0) to be:
0 —(t—tk) /7O (0
Y Lamy =D g (e COTED V) (6.6)
J ik

where ¢ denotes the post-synaptic neuron, j denotes the pre-synaptic neuron, k
indicates the spiking event number, g;; is the conductance strength between neuron
i and neuron j for synapse type (), 7 indicates the decaying exponentials in the
conductance dynamics profile for synapse type (), E;; is the reversal potential
between neuron ¢ and neuron j, and V; is the membrane voltage of post-synaptic
neuron .

The decaying exponential synaptic input activation dynamics (6.3) is im-
plemented in the log domain as a linear decay by constant current draining the
synapse gate capacitance [116]. The current circuit realization does not implement
transcapacitance [117], but instead uses constant capacitance in the log domain
leading to nonlinear membrane dynamics in the current domain, with faster onset

and slower decay times.
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Figure 6.3: Oscilloscope traces showing periodic synaptic input train of exci-
tatory synaptic events with constant delay between events and varying synapse
conductance strength amplitude resulting in neural event activation.

6.5 Results

We test three scenarios to verify integration of neural events and coincidence
detection. First we input a periodic stream of regularly spaced excitatory synaptic
events into alternating neural compartments with varying synapse strength G, as
seen in Fig. 6.3. We observe that only the sequences of synaptic events with suffi-
cient synapse strength such that the time of decay is greater than the time between
pulses results in integration of events upon the neural membrane and subsequent
event activation. Next we input a periodic stream of excitatory synaptic events
with equal strength into alternating neural compartments with varying delay be-
tween events as seen in Fig. 6.4. We observe that only the sequences of synaptic
events that occur with delay small enough to allow for integration of events upon
the neural membrane results in subsequent event activation. Finally, we input a

periodic stream of synaptic events with two packets of events with short delay in-
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Figure 6.4: Oscilloscope traces showing periodic synaptic input train of excita-
tory synaptic events with constant synaptic conductance strength amplitude and
varying delay between events resulting in neural event activation.

between as seen in Fig. 6.5. The first packet is comprised of five excitatory events
and the second is the same except the fourth event is inhibitory. We observe that a
single inhibitory event is sufficient to prevent integration of events upon the neural

membrane resulting in subsequent event activation.

6.6 Conclusion

We have presented and analyzed coincidence detection of convergent presy-
naptic action potentials and its effect on synchronous postsynaptic action poten-
tial firing. To this end we have described the architecture of a two-compartment
conductance-based integrate-and-fire transceiver array (IFAT) for scaleable neu-
ral dynamics, and presented experimental results characterizing two-compartment
membrane voltage and synaptic conductance dynamics for a single addressed neu-

ron in the architecture. We outline the biophysical models of the synapse and
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Figure 6.5: Oscilloscope traces showing periodic synaptic input train of excitatory
and inhibitory synaptic events resulting in neural event activation with additional
inhibitory synaptic events resulting in removal of neural event activation.

neural dynamics that results in integration of events and coincidence detection.
We show integration of postsynaptic events resulting in coincident event detec-
tion under several schemes with variation of synapse parameters governing synapse
strength, axonal delay, and synapse type. Robust postsynaptic output spike events
were observed under varying presynaptic conductance, spike timing, and multiplic-
ity, while synchronous inhibition was effective in eliminating postsynaptic firing.
Chapter Six is largely a reprint of material that will appear in the 2012
Engineering in Medicine and Biology Conference: T. Yu, J. Park, S. Joshi, C.
Maier, and G. Cauwenberghs, “Event-driven synchronous neural integration in
analog VLSIL,” it Proc. IEEE Eng. in Med. Bio. Conf., 2012, (to appear). The

author is the primary author and investigator of this work.



Chapter 7
Conclusion

We have presented both detailed and large-scale neural and synaptic dy-
namics in silicon integrated circuits for advances in computational neuroscience and
applications in intelligent information processing systems. We leverage an analysis
by synthesis approach to explore scalable, hierarchical, sparse event-driven, com-
puting architecture inspired by cortical structure for efficient information process-
ing. Central to these efforts has been the subthreshold MOS translinear principle
has been applied to realize large networks of conductances where linear conduc-
tances are implemented with single transistors operating in subthreshold. This ap-
proach enables practical implementation of large-scale, densely integrated synaptic
arrays modeling biophysical cortical networks with several thousands of synaptic
conductances per neural compartment.

We first presented an analog VLSI network of biophysical neurons and
synapses that implements general detailed models of continuous-time membrane
dynamics and channel kinetics, in a fully digitally programmable and reconfig-
urable interface. The implemented neural model extends on the Hodgkin-Huxley
formulation by allowing for arbitrary voltage profiles for each channel opening and
closing rates. Furthermore, each neuron and synapse in the network offer individu-
ally programmable parameters setting reversal potentials and conductances. Least
squares parameter fitting was shown to accurately reproduce biophysical neural
data of channel opening and closing rates, gating variable dynamics, and action

potentials. We further observed coupled neural spiking dynamics in a network
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with inhibitory synapses.

Previous studies [20] have shown intrinsically bursting neural dynamics im-
plemented with extensions to the HH model requiring more gating variables. Other
models are capable of emulating intrinsic bursting neural dynamics, such as Izhike-
vich’s simple model [50] which uses just two dynamical variables and Mihalas-
Niebur’s neural model [67] which uses three dynamical variables to also govern
threshold adaptation. Here we have presented an extended HH-ML model that
reproduces a variety of neural dynamics in three dynamical variables that directly
account for the biophysics of membranes and channels over an extended range of
time scales in the NeuroDyn neural emulation platform. The neural dynamics has
been implemented with individual control over biophysical parameters governing
the dynamical profiles of the opening and closing channel rates, reversal potential,
and conductance.

We have formulated a dynamical conductance-based synapse cell in a com-
pact circuit design. Circuit simulations verify log-domain implementation as well
as an output magnitude scaled to the input conductance strength. The circuit im-
plementation is compact, requiring only 3 transistors. This small footprint, coupled
with the low-power subthreshold design, make this design a suitable candidate for
large-scale implementation of synaptic arrays in addressable neuromorphic sys-
tems, with reconfigurable synaptic connectivity as well as individually selectable
synaptic dynamics.

In order to further leverage the subthreshold MOS translinear principle
in large-scale systems, we have formulated a compact, log-domain, dynamical,
conductance-based synapse cell requiring only 3 transistors. This small footprint,
coupled with the low-power subthreshold design, make this design a suitable can-
didate for large-scale implementation of synaptic arrays in addressable neuromor-
phic systems, with reconfigurable synaptic connectivity as well as individually
selectable synaptic dynamics. We have also discussed the nonlinearities in the cur-
rent integration that result from directly connecting log-domain synapses to the
membrane capacitor. To this end we have formulated several approaches toward

linear conductance-based dynamics of a log-domain synapse in analog VLSI. We
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also demonstrate the viability of the voltage-driven node capacitance approach
through transistor-level circuit simulations with parameters from a 90nm CMOS
process.

We have also implemented a scaleable, hierarchical, event-driven 65k-neuron
integrate-and-fire array transceiver with address-event reconfigurable synaptic rout-
ing. We present characterization results of s single neuron cell where each neuron
is individually addressable and shares programmability of parameters within each
partition of the neuron array chip. As a function of these analog parameters, we
show characterization of neural event activation dynamics, synaptic input event
activation dynamics, and neural event time-to-spike dynamics. We have also pre-
sented and analyzed coincidence detection of convergent presynaptic action poten-
tials and its effect on synchronous postsynaptic action potential firing. We further
outline the biophysical models of the synapse and neural dynamics that results in
integration of events and coincidence detection. Robust postsynaptic output spike
events were observed under varying presynaptic conductance, spike timing, and
multiplicity, while synchronous inhibition was effective in eliminating postsynaptic

firing.



Appendix A

NeuroDyn

A.1 Derivation of the circuit implementing ki-
netics of channel gating variables

Here we derive the dynamics of the circuit in Fig. 2.5 implementing the
kinetics in the channel gating variables by combining the v and 3 rate currents.
The log-domain circuit [29] uses the dynamic translinear principle, exploiting the
exponential current-voltage dependence of MOS transistors operating in the sub-
threshold region [3]. Drain currents are modeled as I; = [(W/Lexp((kV,—V5)/Vr)
in gate voltage V, and source voltage V; relative to the bulk, where V7 is the ther-
mal voltage k7T'/q and x is the bulk back-gate effect factor [91]. The resulting
translinear loop relation Iy, Ins, = Ing, In, combined with Kirchhoft’s current law

leads to

d
lo Ires = (Ia + I+ O (Vs = V1)) Lows. (A1)

Since Loyt/ILes = I, /In, = exp(k(Vs — V1) /Vr), the voltage dynamics of V3 — Vj

in (A.1) is expressed in the current log-domain as

d ]ou Kk d ]ou
t v _<‘/3_‘/1) t

pu— A-2
dt 1o, Vi di (2-2)

]ref

leading to (2.11).

85



86

A.2 Calibration procedure for o and § parameter

fitting

A.2.1 Rectified linear regression

Let Lneas(V, Ip1, - .., Iy7) be the measured a or  function of V' obtained
with current bias parameter settings Iy, ..., I;. Then for calibration we measure

the individual sigmoid contributions:
Ia,k(v) = [meas(v7 5]61; cee 76167)

where 0;; = 1 for k = j, and 0 otherwise. Hence because of linearity in current

summation, we may assume
7
eas(V, Iyt - Do) = Y T Loi(V). (A.3)
k=1

To proceed, we perform a first linear fit of I,eas(V, Iy, - - -, Iy7) to the target func-

tion lirget(V) using rectified linear least squares regression in the coefficients Iy

min > O I Iok(V) = Tiarger(V)? (A.4)

Iy, Ip7 >0

The rectification is necessary because of the positivity constraints on the bias

current parameters.

A.2.2 TIterative linear least squares residue correction

Next, we correct for residual errors due to nonlinearities in the current mul-
tiplying DACs implementing the sigmoid weighting (A.3). To do so, we linearize
the system around the current operating point, by regressing the residue to locally

differential sigmoid contributions:
Ala,k(v) = Imeas(‘/a ]bl + €5k17 cee 7]b7 + 65k7) -
]meas(‘/a Ibl’ c e 7Ib7)

where € is chosen sufficiently small for linear analysis to be valid, but sufficiently

large for reliable measurement. We proceed with another round of rectified linear
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least squares regression in the parameters I, + Al subject to the same positiv-
ity constraints, and iterate until the changes in parameter values Al are small
compared to the DAC precision.

Appendix A is largely a reprint of material that appeared in the 2010 IEEE
Transactions on Biomedical Circuits and Systems Journal: T. Yu and G. Cauwen-
berghs, “Analog VLSI Biophysical Neurons and Synapses With Programmable
Membrane Channel Kinetics,” IEEE Trans. on Biomedical Circuits and Systems,
vol. 4, no. 3, pp. 139-148, May 2010. The author is the primary author and

investigator of this work.
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