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Abstract
Cuticular hydrocarbons (CHCs), the dominant fraction of the insects’ epicuticle and the primary barrier to desiccation, form the basis
for a wide range of chemical signaling systems. In eusocial insects, CHCs are key mediators of nestmate recognition, and colony
identity appears to be maintained through a uniform CHC profile. In the unicolonial Argentine ant Linepithema humile, an unpar-
alleled invasive expansion has led to vast supercolonies whose nestmates can still recognize each other across thousands of miles.
CHC profiles are expected to display considerable variation as they adapt to fundamentally differing environmental conditions across
the Argentine ant’s expanded range, yet this variation would largely conflict with the vastly extended nestmate recognition based on
CHC uniformity. To shed light on these seemingly contradictory selective pressures, we attempt to decipher which CHC classes
enable adaptation to such a wide array of environmental conditions and contrast them with the overall CHC profile uniformity
postulated to maintain nestmate recognition. n-Alkanes and n-alkenes showed the largest adaptability to environmental conditions
most closely associated with desiccation, pointing at their function for water-proofing. Trimethyl alkanes, on the other hand, were
reduced in environments associated with higher desiccation stress. However, CHC patterns correlated with environmental conditions
were largely overridenwhen taking overall CHC variation across the expanded range of L. humile into account, resulting in conserved
colony-specific CHC signatures. This delivers intriguing insights into the hierarchy of CHC functionality integrating both adaptation
to a wide array of different climatic conditions and the maintenance of a universally accepted chemical profile.

Keywords Nestmate recognition . Chemical communication . Water-proofing . Linepithema humile . Invasive species .

n-alkanes . n-alkenes .Methyl-branched alkanes . Gas chromatography .Mass spectrometry

Introduction

Varied interactions with the physical environment often have
direct consequences on the fitness of an organism and, by

extension, can be a crucial factor for species survival, partic-
ularly in novel environments (Burger and Lynch 1995;
Gomulkiewicz and Holt 1995). Introduced species are often
exposed to environments vastly different to their native range,
and those with the ability to withstand the novel conditions
may establish persistant populations (Clavero and García-
Berthou 2005). The natural history and physical characteris-
tics of introduced species determine how it can survive and
successfully establish itself in novel environments (Kolar and
Lodge 2001). Organisms with small body sizes, for example,
possess a higher surface area to volume ratio than larger or-
ganisms, increasing the importance of mediating homeostasis
across the boundary that divides the internal body from the
environment (Jackson and Baker 1969; Gibbs 1998). In ter-
restrial environments, organisms are typically surrounded by
air that is much drier than their internal, liquid-rich tissues and
organs, rendering the prevention of desiccation pivotal for
their survival (Chown et al. 2011; Schilman et al. 2005).
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In insects, one major barrier to desiccation is the waxy film
of hydrocarbons that coats their cuticle (Gibbs 1998; Hadley
1981). Common cuticular hydrocarbon (CHC) classes include
linear n-alkanes, linear n-alkenes, and methylated alkanes
(Blomquist and Bagnères 2010; Gibbs 1995). Other CHC
classes, such as alkadienes or methylated alkenes, occur more
rarely in insect CHC profiles (Blomquist et al. 1987; Martin
and Drijfhout 2009). CHC chain lengths generally vary be-
tween 20 and 40 carbon atoms, and previous studies have
indicated that their efficacy in preventing desiccation in-
creases with carbon chain length (Gibbs and Pomonis 1995;
Gibbs et al. 1997; Rouault et al. 2004). In addition, different
types of CHCs have different physical properties, and there-
fore vary in efficacy as barriers to water loss. The melting
temperature (Tm) of a particular hydrocarbon, for example,
is a crucial property because the transition from solid to liquid
results in a substantial increase in cuticular permeability, and
consequently, water loss (Gibbs 2002; Gibbs and Rajpurohit
2010). Previous research has revealed some general principles
on CHC properties: 1) Unbranched alkanes have the highest
Tm (increasing by 1–3 °C with each additional carbon), 2) Tm
is substantially reduced (by 20–50 °C) when CHCs possess
double bonds or methyl branches (Gibbs and Pomonis 1995;
Gibbs and Rajpurohit 2010). Thus, we would generally expect
higher proportions of CHC classes with higher Tm and thus
more efficient water-proofing in drier habitats characterized
by high temperature and low precipitation rates, and more
flexible CHC profile variation in more temperate habitats
(e.g., Chown et al. 2011; Gefen et al. 2015; Hadley 1981).

The Argentine ant, Linepithema humile, is a widespread
and damaging invader and is listed by the International
Union for Conservation of Nature (IUCN) as one of the
world’s 100 most damaging invasive species (Lowe et al.
2004). Argentine ants were introduced to North America in
1891 and had become established by 1907 in California
(Suarez et al. 2001). The Argentine ant possesses radically
different forms of social organization in its native and intro-
duced ranges (Tsutsui et al. 2000; Tsutsui and Case 2001). In
the native range, colonies occupy well-defined, spatially dis-
crete territories, typically tens to hundreds of meters in diam-
eter, that are aggressively defended against other Argentine
ant colonies (Pedersen et al. 2006; Suarez et al. 1999;
Tsutsui et al. 2000; Tsutsui and Case 2001). In contrast, intro-
duced populations of Argentine ants are unicolonial (Markin
1970; Newell and Barber 1913; Tsutsui et al. 2000; Tsutsui
and Case 2001), forming vastly expanded supercolonies that
lack territory boundaries. The success of Argentine ants in
their introduced range is a direct result of their unicolonial
structure. Reductions in aggression and intraspecific competi-
tion eliminate many costs associated with these behaviors,
such as mortality caused by aggression, allowing populations
to achieve high densities (Holway et al. 1998). In introduced
populations, genetic homogenization has resulted in

concomitant homogenization of recognition cues and, in turn,
the formation of spatially widespread supercolonies (Tsutsui
et al. 2000; Tsutsui and Case 2001).

Despite the unusual form of social organization in intro-
duced populations, the mechanism for colonymate recogni-
tion in Argentine ants is similar to that of other ants.
Workers use CHC profiles to distinguish between nestmates
(self) and non-nestmates (non-self) (Brandt et al. 2009; Suarez
et al. 2002; Torres et al. 2007). In Argentine ants, CHC vari-
ation appears to have a genetic basis: Genetically similar ants,
originating from the same supercolony, have similar CHC
profiles and are not aggressive towards each other, whereas
genetically different ants possess different CHC profiles and
display high levels of aggression towards each other (Brandt
et al. 2009; Suarez et al. 2002; Tsutsui et al. 2000, 2001;
Tsutsui and Suarez 2003). Although a single, Bmain^
supercolony occupies almost all of the introduced range in
California, several smaller, genetically different Bsecondary^
supercolonies also occur in Southern California and display
aggression between themselves and the main super colony,
not recognizing ants of the other supercolonies as nestmates
(Suarez et al. 1999; Tsutsui et al. 2000; Tsutsui and Case 2001;
Tsutsui et al. 2003). We have previously discovered, synthe-
sized, and behaviorally verified many of the specific CHCs
that are used for nestmate recognition between these colonies
(Brandt et al. 2009; van Wilgenburg et al. 2010, 2012). We
have shown that important structural features of key CHCs for
colonymate recognition are the numbers and positions of
methyl-branchings, whereas the carbon chain length appears
to be less important (van Wilgenburg et al. 2010).

Interestingly, Argentine ants are particularly sensitive to
desiccation. The availability of water limits their geograph-
ic range and expansion into new habitats, and Argentine
ants are more sensitive to desiccation than the native ants
they displace in their introduced range (Schilman et al.
2005). Here, we present results from a study of Argentine
ants that correlates CHC variation with climatic factors
across geographically distant sites over California that be-
long to the same main supercolony as well as to behavior-
ally and genetically different secondary supercolonies. We
compare variation in the identified CHC classes between
different L. humile populations in relation to environmental
conditions they are expected to encounter in their different
habitats, in order to contrast and identify colony-, habitat-,
and season-specific CHC signatures.

Methods and Materials

Colony Sampling and Maintenance Argentine ant colonies
were collected at different time points during the first half of
2017 (Fig. 1). Collection sites from the main California
supercolony were Albany Bulb (AB, lat: 37.89013, long:
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−122.3163, collected in January), Ukiah (UK, lat: 39.14607,
long: −123.19234, January), Davis (DA, lat: 38.54258, long:
−121.76567, April), Mission Trails (MT, lat: 32.84006, long:
−117.12647, May) and Los Peñasquitos (LP, lat: 32.93845,
long: −117.12979, May). Collection sites from the
Bsecondary^ supercolonies in southern California were Lake
Hodges (LH, lat: 33.06271, long: −117.11886, January), Lake
Skinner (LS, lat: 33.58876, long: −117.04138, April) and
Sweetwater (SW, lat: 32.73395, long: −116.94099, January,
April, and May), with the latter one being sampled at all three
time points to control for seasonal variation.

At least 500 workers, including multiple queens, were
collected at each site and subsequently kept as stock labo-
ratory colonies to facilitate sampling for future experiments.
In the field, ants were collected from nesting substrate, such
as dead wood and earth, using trowels, and then placed into
5 gal plastic buckets (Home Depot Inc., Atlanta, Georgia,
USA). All buckets were coated with PTFE Fluoropolymer
(Insect-a-slip, BioQuip Products, Rancho Dominguez,
California, USA) to prevent the ants from escaping. At the
laboratory, the contents of the buckets including the collect-
ed ants and nest substrates were emptied into separate 27 L
plastic storage bins (58.4 cm × 41.3 cm × 15.2 cm, Sterilite,
Townsend, Massachusetts, USA) that were also coated with
PTFE Fluoropolymer. Ants were allowed to acclimate over-
night in storage bins with nest materials and covered with
water-moistened paper towels to prevent them from drying

out. New, clean 27 L bins were set up as permanent nests
containing 4–6 water-filled glass test tubes (18 mm ×
150 mm) plugged with cotton (Fisher Scientif ic ,
Pittsburgh, Pennsylvania, USA) and 4–6 plastic Petri dishes
(100 mm × 15 mm) drilled with a small hole (3 mm diame-
ter) and filled 0.5 cm deep with cured plaster-of-Paris. The
new nest bins were connected to the bins containing the
collected ants and the nesting material via paper cardstock
bridges. The storage bins containing ants and nesting mate-
rial were then slowly flooded with tap water to stimulate the
workers and queens to walk across the paper cardstock
bridge and move their brood (eggs, larvae, and pupae) into
the new lab nesting bins.

CHC Extraction Ants were directly collected after migration
into the lab nesting bins, freeze-killed during at least 1 h at
−20 °C (Frigidaire, Charlotte, North Carolina, USA), and
stored at 7 °C until further use. For single CHC extractions,
ants were placed individually into 2 ml GC screw-cap vials
(Agilent Technologies, Santa Clara, California, USA) where
they were covered with 100 μl of HPLC grade hexane (Fisher
Scientific, Fair Lawn, New Jersey, USA) and swirled for
10 min on a Thermolyne Roto Mix (Marshall Scientific,
Hampton, New Hampshire, USA). The hexane extracts where
then transferred to a fresh conical 250 μl GC insert (Agilent
Technologies, Santa Clara, California, USA), where the hex-
ane was subsequently evaporated under a flow of nitrogen

Fig. 1 Map of California
displaying the sample locations
for the different L. humile
supercolony populations
investigated in this study.
Longitudinal and latitudinal data
are displayed on the x- and y-axis,
respectively. Acronyms for
L. humile populations of the main
supercolony are AB: Albany
Bulb, DA: Davis, UK: Ukiah, LP:
Los Peñasquitos andMT:Mission
Trails, indicated by different
symbols in gold. Acronyms for
L. humile populations of the
secondary supercolonies are LH:
Lake Hodges, LS: Lake Skinner
and SW: Sweetwater, indicated
by different in symbols in shades
of blue and violet. Sampling
months are indicated in
parentheses, note that Sweetwater
was sampled at all three sampling
months as a seasonal control
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(Praxair, Inc., Danbury, Connecticut). Then, the dried extract
was resuspended in 10 μl of a hexane solution containing
7.5 ng/μl of n-dodecane (EMD Millipore Corp., Billerica,
Massachusetts, USA) as an internal standard.

For pooled extracts, 100 ants were extracted with 200 μl
of HPLC grade hexane and also swirled for 10 min on the
Thermolyne Roto Mix. To further separate the non-polar
CHC fraction from polar surface lipids in the more highly
concentrated pooled extracts, they were then transferred to
a Pasteur pipette plugged with glass wool (Supelco, Sigma-
Aldrich, St. Louis, Massachusetts, USA) and filled with ~
1 in. of silica gel desiccant (Fisher Scientific, Fair Lawn,
New Jersey, USA). After washing the plugged Pasteur pi-
pette two times with 1 ml of HPLC grade hexane, the
extract was added, and eluted with 200 μl of HPLC grade
hexane into a new 2 ml GC screw-cap vial with a fresh
250 μl GC insert. Afterwards, the eluted extract of the
pooled sample was evaporated under a flow of nitrogen
and resuspended in 10 μl of hexane solution containing
7.5 ng/μl of internal n-dodecane standard, undergoing the
same treatment as the individual extracts.

GC-MS Analysis Half of the resuspended CHC extract (5 μl)
was injected into a gas chromatograph coupled with a mass
selective detector (GC: 7890A; MS: 5975C; Agilent
Technologies, Santa Clara, California, USA) operating in
electron impact mode. The injection was performed in a
split/splitless injector in the splitless mode with a temper-
ature of 250 °C. Separation of compounds was performed
on a fused silica capillary column (DB-5MS, 30 m ×
0.32 mm × 0.25 μm, Agilent J&W GC columns, Santa
Clara, California, USA) with a temperature program
starting from 80 °C for 5 min and increasing by 80 °C
per min to 200 °C, followed by an increase of 5 °C per
min to 325 °C which was held for 3 min. Helium with a
constant flow of 1.8 ml per min was used as carrier gas.

Peak area integration and calculation was performed using
the data analysis software BEnhanced Chemstation^,
G1701EA, Version E.02.02 (Agilent Technologies, Santa
Clara, California, USA). Peaks were automatically integrated
with an initial area reject of 0, an initial peak width of 0.017,
and an initial threshold of 13. Shoulder detection was turned
off. All automatically integrated peak areas were visually
inspected and where necessary corrected by manual integra-
tion. CHCs were identified according to their retention indi-
ces, diagnostic ions, and mass spectra. Where identifications
were not possible or ambiguous due to low quantities in indi-
vidual CHC extracts, the non-polar fractions of the pooled
extracts from 100 ants with the same pattern but enriched
CHC quantities were consulted to clarify the diagnostic ion
based identifications. However, due to partially poor resolu-
tion, co-elution of particular methyl alkanes (Carlson et al.
1998) and ambiguities in certain diagnostic ion pairs (i.e.,

multiple possible positional isomers with different methyl
group positions deducible by the diagnostic ions), some co-
eluting CHCs could not unambigously be assigned (see also
Sunamura et al. 2009). Therefore, we decided to mainly re-
strict ourselves to the respective CHC compound classes and
chain lengths for simplicity and clarity.

Statistical Analysis All subsequent statistical analyses were
performed with the statistics program R (R Core Team
2018) on the absolute CHC quantities (in ng) determined
with the internal n-dodecane standard. Since total amounts
within the five different CHC classes were largely not
normally distributed across all sampled L. humile popula-
tions (see Supplementary Fig. 1), sequential Mann-
Whitney U tests were performed for each respective
CHC class for consistency. Originally obtained P-values
were then corrected for the false-discovery rate due to
multiple comparisons by Benjamini-Hochberg corrections
(Benjamini and Hochberg 1995).

Average monthly temperature and average monthly precip-
itation rates for each L. humile collection site were obtained
from the publicly available repository at http://www.
worldclim.org/ through matching with the longitudinal and
latitudinal data for each respective collection month and
location. Subsequent correlation analyses between the
obtained climatic factors and the respective total CHC
amounts were performed with Benjamini-Hochberg corrected
Spearman rank correlation tests.

To project the high-dimensional data points into two di-
mensions, the ordination method Bnonmetric multid-
imensional scaling^ (NMDS) from the R package Bvegan^
(Oksanen et al. 2007) was used. Reducing the dimensionality
with this method, the data points are plotted in a monotonous
way so that the calculated distances (δ) in the plot give the
most accurate reflection of the actual distances (d) between the
data. Two preconditions are met with the NMDS method:

1. The calculated distances in the plot are smaller or equal
to the actual data point distances (δi,j ≤ di,j)

2. The correlation between the calculated distances and the ac-
tual data point distances is maximized (cor(δi,j, di,j)↔ max)

Thus, the NMDS method attempts a visual representation
of data point distances emphasizing the maintenance of the
actual differences in the dataset. A further advantage of this
method is its independence from sample-size.

Results

CHC Distribution between Populations The CHC composition
of L. humile populations consists of five main classes: n-al-
kanes, n-alkenes, monomethyl alkanes, dimethyl alkanes, and
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trimethyl alkanes (Fig. 2, see also Table 1). Separated into
each respective CHC class, the total amounts partially differ
among our collected populations, though no discernible colo-
ny-, habitat-, or season-specific pattern could be observed.
The one collection site that was sampled on three different
time points (Sweetwater; SW) displayed changes in CHC

composition through time (Fig. 2a, b). Specifically, the sample
from SW collected in May showed significantly higher n--
alkene amounts than both SW samples collected in January
(Mann-Whitney U test, W = 4, P < 0.001) and in April (Mann-
Whitney U test, W = 13, P < 0.05) and significantly higher
n-alkane amounts than the sample collected in April (Mann-
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Whitney U test, W = 11, P < 0.01). The five samples from the
main California supercolony were not significantly different
for total amount of n-alkanes or dimethyl alkanes regardless of
collection month and site (Fig. 2a), whereas the other three
CHC classes (n-alkenes, mono-, and trimethyl alkanes) did,
indeed, show significantly different amounts across the sam-
pled populations (Fig. 2b–e). Comparing the secondary
supercolonies (LH, LS and SW), significant differences
emerge for all but monomethyl alkanes, although this partic-
ular CHC class still showed high variation within the LS pop-
ulation (Fig. 2c).

Correlations between Climate Factors and CHC Classes We
tested for correlations between total amounts of each CHC
class and two environmental factors closely associated with
desiccation: Average temperature and average precipitation
during month of collection (Fig. 3). We found that the total
amount of n-alkanes and n-alkenes were both positively cor-
related with average monthly temperature (Spearman rank
correlation, n-alkanes: ρ = 0.78, P = 0.01; n-alkenes: ρ =
0.91, P < 0.01) but negatively correlated with monthly precip-
itation rates (Spearman rank correlation, n-alkanes: ρ = −
0.81, P = 0.01; alkenes: ρ = − 0.9, P < 0.01, Fig. 3a, b).
Trimethyl alkanes, on the other hand, showed the reversed
pattern: The total amount of this CHC class was negatively
correlated with average monthly temperature (Spearman rank
correlation, ρ = − 0.85, P < 0.01), but positively correlated
with monthly precipitation rates (Spearman rank
correlation, ρ = 0.86, P < 0.01, Fig. 3c). It should be noted
that individually identified CHCs assigned to the latter CHC
class partially also contained traces of dimethyl alkanes (see
Table 1). Thus, dimethyl alkanes, despite not correlating as a
separate CHC class with temperature and precipitation, cannot
be ruled out completely in their contribution to the correlation
found together with trimethyl alkanes.

Correlations between Climate Factors and Individual CHCs
For each CHC class that was correlated with average monthly
temperature and precipitation (i.e., n-alkanes, n-alkenes, and
trimethyl alkanes), we plotted the individual CHCs
simulaneously into two chromatograms obtained from pooled
non-polar fractions from one main (AB) and one secondary
(LS) supercolony collection site (Fig. 4). In total, two n-al-
kenes were positively correlated with average monthly tem-
perature and negatively with average monthly precipitation,
with chain lengths of 17 and 19 carbons, respectively, whereas
the five n-alkanes with these same correlations had carbon
chain lengths from 27 to 31. All trimethyl alkanes (as well
as the co-eluting traces of dimethyl alkanes), which showed
reverse correlations (see Fig. 3), had longer carbon chains
ranging from 33 to 37. Thus, all of the correlating
methylbranched CHCs were found at the end of the detectable
spectrum of compounds and possessed the highest number ofT
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carbons (Fig. 4). Correlation plots and the respective test sta-
tistics for all correlated individual CHCs are given in
Supplementary Fig. 2 and Supplementary Table 1,
respectively.

Total CHC Variation and Colony DivergenceWhen we visual-
ized the total CHC variation, including all compounds

regardless of their correlations with environmental factors,
the L. humile populations clearly clustered into two groups
reflecting their respective colony affiliation (Fig. 5). The ants
from the main supercolony were separated from the various
secondary supercolonies when total CHC divergence was tak-
en into account, irrespective of collection month and site (see
also Fig. 1). It is interesting to note that while all SW samples
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generally clustered together with the other secondary
supercolonies, the seasonal variation was still reflected in the
slight divergence between all three SW samples collected in
different months, most notably for the sample collected in
May (compare to Fig. 2).

Discussion

Although CHCs are known to play a central role in insect
desiccation resistance, specific contributions of particular
CHC classes or individual CHCs are rarely assessed (Chung
and Carroll 2015; Menzel et al. 2017). To identify candidate
CHCs for desiccation resistance, we examined CHC profiles
of the invasive Argentine ant, Linepithema humile, across a
variety of geographically distant sites in northern and southern

California (Fig. 1). Focusing on two climatic factors closely
associated with humidity and desiccation, i.e., temperature
and precipitation, we found interesting reciprocal correlations
with a subset of CHCs classes identified from our various
L. humile populations. The total amounts of n-alkanes and n-
alkenes were positively correlated with monthly average tem-
perature, but negatively with monthly average precipitation
(Fig. 3). This indicates their potential to be functionally re-
cruited for waterproofing and desiccation resistance, a trait
found to be closely associated with n-alkanes in several stud-
ies, but much less with n-alkenes so far (e.g., Gibbs and
Rajpurohit 2010; Wagner et al. 2001). However, despite inter-
mediate melting temperatures and volatility of n-alkenes as
opposed to the superior waterproofing properties of n-alkanes,
it has recently been suggested that n-alkenes could directly
influence desiccation resistance as well (Chung and Carroll
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2015; Ferveur et al. 2018). Trimethyl alkanes, on the other
hand, showed the reverse correlation, being negatively correlated
with monthly average temperature, but positively with monthly
average precipitation (Fig. 3). This suggests that this compound
class is generally less important for desiccation resistance, which
has been hypothesized for a long time due to their physiological
properties being less suited for water-proofing (Chung and
Carroll 2015; Gibbs and Pomonis 1995; Gibbs and Rajpurohit
2010;). This might also indicate a higher degree of flexibility for
this compound class to be used in other functions, e.g., signaling,
as the selective constraints to be recruited for dessication resis-
tance seem less strong. This is in accordance with studies
reporting that due to their higher potential for coding information,
CHCs with several methyl branches comprise main signaling
components in CHC profiles, while generally being less impor-
tant for water-proofing (Blomquist and Bagnères 2010; Howard
and Blomquist 2005). However, empirical studies using isolated
methyl-branched CHCs as the sole conveyors of chemical infor-
mation are still relatively scarce (e.g., Brandt et al. 2009; Krasnec
and Breed 2013; Sakata et al. 2017).

Studies on the influence of environmental factors on CHC
profiles in other ant taxa yielded partially similar, but also
quite divergent correlations from those found in our study.
For instance, a survey encompassing 38 acrobat ant species
(genus Crematogaster) and 42 carpenter ant species (genus
Camponotus) found no correlations between mean annual
temperature and CHC quantities (Menzel et al. 2017). By

using average monthly temperatures matching the respective
collection months rather than annual mean temperature, we
were able to reveal temperature correlations with several
CHC classes (see above), indicating high sensitivity to tem-
perature and seasonality in L. humile CHC profiles.
Furthermore, the proportion of n-alkenes in the studied
Crematogaster and Camponotus species was found to be pos-
itively correlated with precipitation rates, a correlation appar-
ently reversed in L. humile (see Fig. 3). However, it should be
noted that n-alkenes occur in the lowest quantities in the
L. humile CHC profiles compared to all other CHC classes
(Fig. 2, see also profile comparison in Fig. 4). Interestingly, n-
alkenes only occur in the absence of dimethyl alkanes in the
studied Crematogaster and Camponotus species, hinting at
partially different biosynthetic mechanisms governing CHC
variation in these two genera as opposed to L. humile, where
the two compound classes do co-occur. In another study on
two species of the ant genus Temnothorax, portions of n-al-
kanes have been found to be increased in drought conditions,
whereas portions of di- and trimethyl alkanes are decreased
(Menzel et al. 2018). This partially parallels our results for
L. humile, as precipitation rates constitute a close approxima-
tion to the degree of drought in certain habitats. Also, Wagner
et al. (2001) reported that the red harvester ant Pogonomyrmex
barbatus has the same response as L. humile in terms of n-
alkanes, which are increased in conditions of low humidity
and high temperature.
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Even in more distantly related insect taxa, interesting sim-
ilarities to our findings have been discovered, implying more
general effects of climatic factors on CHC compositions con-
served over larger phylogenetic boundaries. For instance, in
three social wasp species of the subfamily Polistinae, temper-
ature was also positively correlatedwith relative amounts of n-
alkanes, but negatively with relative amounts of methyl al-
kanes (Michelutti et al. 2018). Even more distantly related
and beyond the Hymenoptera, the West Indian drywood ter-
mite, Cryptotermes brevis, exhibits very different CHC pro-
files than L. humile, with n-alkenes constituting the most prev-
alent compound class as opposed to the least prevalent one in
our study (Woodrow et al. 2000, see Fig. 2). Nevertheless,
similar correlative effects with environmental factors have
been found, with the total amount of n-alkenes showing a
positive correlation with temperature and n-alkanes showing
a negative correlation with humidity (Woodrow et al. 2000).
Moreover, it has recently been demonstrated in Drosophila
fruit flies that increased proportions of n-alkenes and
alkadienes are linked to increased resistance to desiccation,
hinting at similar adaptive mechanisms for n-alkenes as in
L. humile, allowing for acclimatization to related climatic con-
ditions (Ferveur et al. 2018).

Although the degree of phenotypic plasticity of CHC pro-
files appears to be highly variable and species-dependent (e.g.,
Ingleby 2015; Liu et al. 2001; Nielsen et al. 1999), several
intriguing case studies clearly showed individual adaptability
of CHC profiles to environmental conditions, sometimes on a
timescale of weeks (e.g., Gefen et al. 2015; Rajpurohit et al.
2017; Rouault et al. 2004; Wagner et al. 2001). This raises the
interesting question about the capabilty of L. humile to active-
ly adjust their CHC profiles according to the climatic condi-
tions they encounter, which should be adressed in future stud-
ies. In fact, results from our study suggest that some of the
identified CHC classes in certain L. humile populations have
the capability to vary seasonally. The Sweetwater (SW) pop-
ulation was sampled in the same months as all the other stud-
ied L. humile populations (i.e., January, April and May) to
control for seasonal variation (see Fig. 1). Surprisingly, we
found a high degree of variation, particularly when comparing
total amounts of n-alkanes and n-alkenes, for the SW samples
at the three different time points (Fig. 2), clearly suggesting a
potential seasonal effect. Although our study was not designed
to test this, it would be useful for future studies to directly
address phenotypic plasticity and seasonal variation of CHC
profiles in L. humile. However, we did not find a consistent
seasonal effect when separating CHC variation by compound
class. The two populations from the main supercolony (LP
and MT) sampled at the same time point and in close proxim-
ity to SW (see Fig. 1) only partially showed congruence in
total amounts of CHCs with the latter, secondary supercolony,
with amounts of n-alkanes and monomethyl alkanes being the
most divergent compound classes (Fig. 2). Similarly, sample

location and colony affiliation did not yield any consistent
pattern with total amounts for all five identified CHC classes.
However, when plotting CHC variation as a whole, the diver-
gence into main supercolony and secondary supercolonies
became very apparent (Fig. 5). This is in accordance with
other studies showing that information on species and colony
affiliation is coded in the whole collective complexity of CHC
profiles rather than in single CHCs or classes (e.g., Buckner
et al. 2009; Greene and Gordon 2007).

Regardless of CHC profile adaptability to different envi-
ronmental conditions, it has been suggested that rainfall in
general greatly facilitated the invasion of L. humile into new
habitats (Heller et al. 2008; Holway et al. 2002), and that
proximity to human urban structures, particularly water re-
serves, appears to have played a major role in their invasive
success as well (Gordon and Heller 2014). These factors
should also be accounted for in future studies and added to
the plethora of potential causes and influences on the tremen-
dous invasive success of L. humile. In general, it is difficult to
discriminate whether environmental factors have actually
shaped CHC profile variation or whether organisms have ac-
tively occupied micro-environments according to the already
present physiological properties of their CHC profiles. It
should also be noted that desiccation resistance is a complex
phenotype, likely driven by multiple factors, and it would be
useful for future studies to include variables such as body size,
food availability, or habitat structure in different populations
of L. humile supercolonies to achieve a more holistic view on
the causes of adaptation to such a vast array of micro-climates.

In conclusion, we found converse correlations between a
subset of the CHC classes identified in different L. humile
populations across California and two climatic factors closely
associated with humidity and desiccation. n-Alkanes and n-
alkenes were positively correlated with average monthly tem-
perature but correlated negatively with average monthly pre-
cipitation, whereas these correlations were reversed for
trimethyl alkanes. These findings point to different functional
recruitments for these compound classes. n-Alkanes and n-
alkenes potentially play a more important role in dessication
prevention as their total amounts increase in hotter and less
humid environments. The total amount of trimethyl alkanes,
on the other hand, is reduced in environments with higher
desiccation stress, potentially indicating that their presence
in the CHC profile plays a different role than desiccation re-
sistance, with signaling being a likely and widely hypothe-
sized candidate. Interestingly, although we did not find any
consistent colony-, habitat- or season-specific pattern for sep-
arated CHC classes alone, colony-specific signatures (main
vs. secondary supercolonies) clearly prevail when the total
CHC profile variation is taken into account. However, we
found hints of phenotypic plasticity and seasonality potential-
ly affecting CHC profile variation in L. humile as well. These
should be taken into account in future studies to broaden our
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understanding on the potential hierachy and synergy of differ-
ent factors driving CHC profile divergence.
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