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Novel Multidimensional Models of Opinion
Dynamics in Social Networks

Sergey E. Parsegov, Anton V. Proskurnikov, Member, IEEE,
Roberto Tempo, Fellow, IEEE, and Noah E. Friedkin

Abstract—Unlike many complex networks studied in
the literature, social networks rarely exhibit unanimous
behavior, or consensus. This requires a development of
mathematical models that are sufficiently simple to be
examined and capture, at the same time, the complex
behavior of real social groups, where opinions and actions
related to them may form clusters of different size. One
such model, proposed by Friedkin and Johnsen, extends
the idea of conventional consensus algorithm (also referred
to as the iterative opinion pooling) to take into account the
actors’ prejudices, caused by some exogenous factors and
leading to disagreement in the final opinions. In this paper,
we offer a novel multidimensional extension, describing the
evolution of the agents’ opinions on several topics. Unlike
the existing models, these topics are interdependent, and
hence the opinions being formed on these topics are also
mutually dependent. We rigorously examine stability prop-
erties of the proposed model, in particular, convergence
of the agents’ opinions. Although our model assumes
synchronous communication among the agents, we show
that the same final opinions may be reached “on average”
via asynchronous gossip-based protocols.

Index Terms—Opinion dynamics, social network, multi-
agent system, decentralized algorithm.
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I. INTRODUCTION

A SOCIAL network is an important and attractive case study
in the theory of complex networks and multi-agent sys-

tems. Unlike many natural and man-made complex networks,
whose cooperative behavior is motivated by the attainment of
some global coordination among the agents, e.g., consensus,
opinions of social actors usually disagree and may form irregu-
lar factions (clusters). We use the term “opinion” to broadly refer
to individuals’ displayed cognitive orientations to objects (e.g.,
topics or issues); the term includes displayed attitudes (signed
orientations) and beliefs (subjective certainties). A challenging
problem is to develop a model of opinion dynamics, admitting
mathematically rigorous analysis, and yet sufficiently instruc-
tive to capture the main properties of real social networks.

The backbone of many mathematical models, explaining the
clustering of continuous opinions, is the idea of homophily or
biased assimilation [1]: a social actor readily adopts opinions
of like-minded individuals (under the assumption that its small
differences of opinion with others are not evaluated as impor-
tant), accepting the more deviant opinions with discretion. This
principle is prominently manifested by various bounded confi-
dence models, where the agents completely ignore the opinions
outside their confidence intervals [2]–[5]. These models demon-
strate clustering of opinions, however, their rigorous mathemati-
cal analysis remains a non-trivial problem; it is very difficult, for
instance, to predict the structure of opinion clusters for a given
initial condition. Another possible explanation of opinion dis-
agreement is antagonism among some pairs of agents, naturally
described by negative ties [6]. Special dynamics of this type,
leading to opinion polarization, were addressed in [7]–[11]. It
should be noticed, however, that experimental evidence secur-
ing the postulate of ubiquitous negative interpersonal influences
(also, known as boomerang effects) seems to be currently un-
available. Since the first definition of boomerang effects [12], the
empirical literature has concentrated on the special conditions
under which these effects might arise. This literature provides no
assertion that boomerang effects, sometimes observed in dyad
systems, are non-ignorable in multi-agent networks of social
influence.

It is known that even a network with positive and linear cou-
plings may exhibit persistent disagreement and clustering, if
its nodes are heterogeneous, e.g. some agents are “informed”,
that is, influenced by some external signals [13], [14]. One
of the first models of opinion dynamics, employing such a
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heterogeneity, was suggested in [15]–[17] and henceforth is re-
ferred to as the Friedkin-Johnsen (FJ) model. The FJ model pro-
motes and extends the DeGroot iterative pooling scheme [18],
taking its origins in French’s “theory of social power” [19], [20].
Unlike the DeGroot scheme, where each actor updates its opin-
ion based on its own and neighbors’ opinions, in the FJ model
actors can also factor their initial opinions, or prejudices, into
every iteration of opinion. In other words, some of the agents
are stubborn in the sense that they never forget their prejudices,
and thus remain persistently influenced by exogenous condi-
tions under which those prejudices were formed [15], [16]. In
the recent papers [21], [22] a sufficient condition for stability of
the FJ model was obtained. Furthermore, although the original
FJ model is based on synchronous communication, in [21], [22]
its “lazy” version was proposed. This version is based on asyn-
chronous gossip influence and provides the same steady opinion
on average, no matter if one considers the probabilistic average
(that is, the expectation) or time-average (the solution Cesàro
mean). The FJ model and its gossip modification are intimately
related to the PageRank computation algorithms [22]–[28]. In
special cases, the FJ model has been given a game-theoretic
[29] and an electric interpretation [30]. Similar dynamics arise
in Leontief economic models [31] and some protocols for multi-
agent coordination [32]. Further extensions of the FJ model are
discussed in the recent papers [33], [34].

Whereas many of the aforementioned models of opinion
dynamics deal with scalar opinions, we deal with influence that
may modify opinions on several topics, which makes it natural
to consider vector-valued opinions [4], [35]–[37]; each opinion
vector in such a model is constituted by d > 1 topic-specific
scalar opinions. A corresponding multidimensional extension
has been also suggested for the FJ model [17], [34]. However,
these extensions assumed that opinions’ dimensions are inde-
pendent, that is, agents’ attitudes to each specific topic evolve
as if the other dimensions did not exist. In contrast, if each
opinion vector is constituted by an agent’s opinions on several
interdependent issues, then the dynamics of the topic-specific
opinions are entangled. It has long been recognized that
such interdependence may exist and is important. A set of
interdependent positions on multiple issues is referred to as
schema in psychology, ideology in political science, and culture
in sociology and social anthropology; scientists more often use
the terms paradigm and doctrine. Converse in his seminal paper
[38] defined a belief system as a “configuration of ideas and
attitudes in which elements are bound together by some form
of constraints of functional interdependence”. All these closely
related concepts share the common idea of an interdependent
set of cognitive orientations to objects.

The main contribution of this paper is a novel multidimen-
sional extension of the FJ model, which describes the dynamics
of vector-valued opinions, representing individuals’ positions
on several interdependent issues. This extension, describing the
evolution of a belief system, cannot be obtained by a replication
of the scalar FJ model on each issue. For both classical and ex-
tended FJ models we obtain necessary and sufficient conditions
of stability and convergence. We also develop a randomized
asynchronous protocol, which provides convergence to the same
steady opinion vector as the original deterministic dynamics on

average. This paper significantly extends results of the paper
[39], which deals with a special case of the FJ model [15], [21],
[22] satisfying the “coupling condition”. This condition restricts
the agent’s susceptibility to neighbors’ opinions to coincide with
its self-weight.

The paper is organized as follows. Section II introduces
some concepts and notation to be used throughout the paper. In
Section III we introduce the scalar FJ model and related con-
cepts; its stability and convergence properties are studied in Sec-
tion IV. A novel multidimensional model of opinion dynamics
is presented in Section V. Section VI offers an asynchronous
randomized model of opinion dynamics, that is equivalent to
the deterministic model on average. We illustrate the results by
numerical experiments in Section VII. In Section VIII we dis-
cuss approaches to the estimation of the multi-issues dependen-
cies from experimental data. Proofs are collected in Section IX.
Section X concludes the paper.

II. PRELIMINARIES AND NOTATION

Given two integers m and n ≥ m, let m : n denote the set
{m,m + 1, . . . , n}. Given a finite set V , its cardinality is de-
noted by |V |. We denote matrices with capital letters A = (aij ),
using lower case letters for vectors and scalar entries. The sym-
bol 1n denotes the column vector of ones (1, 1, . . . , 1)� ∈ Rn ,
and In is the identity matrix of size n.

Given a square matrix A = (aij )n
i,j=1 , let diag A =

diag(a11 , a22 , . . . , ann ) ∈ Rn×n stand for its main diagonal
and ρ(A) be its spectral radius. The matrix A is Schur sta-
ble if ρ(A) < 1. The matrix A is row-stochastic if aij ≥ 0
and

∑n
j=1 aij = 1∀i. Given a pair of matrices A ∈ Rm×n ,

B ∈ Rp×q , their Kronecker product [40], [41] is defined by

A ⊗ B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

a11B a12B · · · a1nB

a21B a22B · · · a2nB

...
. . .

...

am1B am2B · · · amnB

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ Rmp×nq .

A (directed) graph is a pair G = (V, E), where V stands for
the finite set of nodes or vertices and E ⊆ V × V is the set of arcs
or edges. A sequence i = i0 �→ i1 �→ . . . �→ ir = i′ is called a
walk from i to i′; the node i′ is reachable from the node i if at
least one walk leads from i to i′. The graph is strongly connected
if each node is reachable from any other node. Unless otherwise
stated, we assume that nodes of each graph are indexed from 1
to n = |V|, so that V = 1 : n.

III. THE FJ AND DEGROOT MODELS

Consider a community of n social actors (or agents) indexed 1
through n, and let x = (x1 , . . . , xn )� stand for the column vec-
tor of their scalar opinions xi ∈ R. The Friedkin-Johnsen (FJ)
model of opinions evolution [15]–[17] is determined by two ma-
trices, that is a row-stochastic matrix of interpersonal influences
W ∈ Rn×n and a diagonal matrix of actors’ susceptibilities to
the social influence 0 ≤ Λ ≤ I (we follow the notations from
[21], [22]). At each stage k = 0, 1, . . . of the influence process
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the agents’ opinions evolve as follows:

x(k + 1) = ΛWx(k) + (I − Λ)u, x(0) = u. (1)

The values ui = xi(0) are referred to as the agents prejudices.
The model (1) naturally extends DeGroot’s iterative scheme

of opinion pooling [18] where Λ = I . Similar to DeGroot’s
model, it assumes an averaging (convex combination) mecha-
nism of information integration. Each agent i allocates weights
to the displayed opinions of others under the constraint of an
ongoing allocation of weight to the agent’s initial opinion.
The natural and intensively investigated special case of this
model assumes the “coupling condition” λii = 1 − wii ∀i (that
is, Λ = I − diag W ). Under this assumption, the self-weight
wii plays a special role, considered to be a measure of stub-
borness or closure of the ith agent to interpersonal influence. If
wii = 1 and thus wij = 0∀j �= i, then it is maximally stubborn
and completely ignores opinions of its neighbors. Conversely,
if wii = 0 (and thus its susceptibility is maximal λii = 1), then
the agent is completely open to interpersonal influence, attaches
no weight to its own opinion (and thus forgets its initial con-
ditions), relying fully on others’ opinions. The susceptibility of
the ith agent λii = 1 − wii varies between 0 and 1, where the
extremal values correspond respectively to maximally stubborn
and open-minded agents. From its inception, the usefulness of
this special case has been empirically assessed with different
measures of opinion and alternative measurement models of the
interpersonal influence matrix W [15]–[17], [42].

In this section, we consider dynamics of (1) in the general
case, where the diagonal susceptibility matrix 0 ≤ Λ ≤ I may
differ from I − diag W . In the case where wii = 1 and hence
wij = 0 as i �= j, one has xi(1) = xi(0) = ui and then, via
induction on k, one easily gets xi(k) = ui for any k = 0, 1, . . .,
no matter how λii is chosen. On the other hand, if λii = 0,
then xi(k) = ui independent of the weights wij . Henceforth we
assume, without loss of generality, that for any i ∈ 1 : n one
either have λii = 0 and wii = 1 (entailing that xi(k) ≡ ui) or
λii < 1 and wii < 1.

It is convenient to associate the matrix W to the graphG[W ] =
(V, E [W ]). The set of nodes V = 1 : n of this graph is in one-
to-one correspondence with the agents and the arcs stand for
the inter-personal influences (or ties), that is (i, j) ∈ E [W ] if
and only if wij > 0. A positive self-influence weight wii >
0 corresponds to the self-loop (i, i). We call G = G[W ] the
interaction graph of the social network.

Example 1: Consider a social network of n = 4 actors,
addressed in [15] and having interpersonal influences as
follows:

W =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0.220 0.120 0.360 0.300

0.147 0.215 0.344 0.294

0 0 1 0

0.090 0.178 0.446 0.286

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (2)

Fig. 1 illustrates the corresponding interaction graph.
In this section, we are primarily interested in convergence of

the FJ model to a stationary point (if such a point exists).

Fig. 1. Interaction graph G[W ], corresponding to matrix (2).

Definition 1. (Convergence): The FJ model (1) is conver-
gent, if for any vector u ∈ Rn the sequence x(k) has a limit

x′ = lim
k→∞

x(k) =⇒ x′ = ΛWx′ + (I − Λ)u. (3)

It should be noticed that the limit value x′ = x′(u) in general
depends on the initial condition x(0) = u. A special situation
where any solution converges to the same equilibrium is the
exponential stability of the linear system (1), which means that
ΛW is a Schur stable matrix: ρ(ΛW ) < 1. A stable FJ model is
convergent, and the only stationary point is

x′ =
∞∑

k=0

(ΛW )k (I − Λ)u = (I − ΛW )−1(I − Λ)u. (4)

As will be shown, the class of convergent FJ models is in fact
wider than that of stable ones. This is not surprising since,
for instance, the classical DeGroot model [18] where Λ =
I is never stable, yet converges to a consensus value (x′

1 =
. . . = x′

n ) whenever W is stochastic indecomposable aperiodic
(SIA) [43], for instance, Wm is positive for some m > 0 (i.e.,
W is primitive) [18]. In fact, any unstable FJ model contains a
subgroup of agents whose opinions obey the DeGroot model,
being independent on the remaining network. To formulate the
corresponding results, we introduce the following definition.

Definition 2. (Stubborness and Oblivion): We call the ith
agent stubborn if λii < 1 and totally stubborn if λii = 0. An
agent that is neither stubborn nor influenced by a stubborn agent
(connected to some stubborn agent by a walk in the interaction
graph G[W ]) is called oblivious.

Example 2: Consider the FJ model (1), where W is from
(2) and Λ = I − diag W . It should be noticed that this model
was reconstructed from real data, obtained in experiments with
a small group of individuals, following the method proposed
in [15]. Fig. 2 illustrates the graph of the coupling matrix ΛW
and the constant “input” (prejudice) u. In this model the agent
3 (drawn in red) is totally stubborn, and the three agents 1, 2,
and 4 are stubborn. Hence, there are no oblivious agents in this
model. As will be shown in the next section (Theorem 1), the
absence of oblivious agents implies stability.

The prejudices ui are considered to be formed by some ex-
ogenous conditions [15], and the agent’s stubborness can be
considered as their ongoing influence. A totally stubborn agent
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Fig. 2. Structure of couplings among the agents and “inputs” for the FJ
model with W from (2) and Λ = I − diagW .

remains affected by those external “cues” and ignores the oth-
ers’ opinions, so its opinion is unchanged xi(k) ≡ ui . Stubborn
agents, being not completely “open-minded”, never forget their
prejudices and factor them into every iteration of opinion. Non-
stubborn agents are not “anchored” to their own prejudices yet
be influenced by the others’ prejudices via communication (such
an influence corresponds to a walk in G[W ] from the agent to
some stubborn individual), such individuals can be considered
as “implicitly stubborn”. Unlike them, for an oblivious agent
the prejudice does not affect any stage of the opinion iteration,
except for the first one. The dynamics of oblivious agents thus
depend on the “prehistory” of the social network only through
the initial condition x(0) = u.

After renumbering the agents, we assume that stubborn
agents, and agents influenced by them, are numbered 1 through
n′ ≤ n and oblivious agents (if they exist) have indices from
n′ + 1 to n. For the oblivious agent i, we have λii = 1 and
wij = 0∀j ≤ n′. Indeed, if wij > 0 for some j ≤ n′, then the
ith agent is connected by a walk to some stubborn agent via
agent j and hence is not oblivious. The matrices W,Λ and vec-
tors x(k) are therefore decomposed as follows:

W =

[
W 11 W 12

0 W 22

]

,Λ =

[
Λ11 0

0 I

]

, x(k) =

[
x1(k)

x2(k)

]

(5)

where x1 ∈ Rn ′
and W 11 and Λ11 have dimensions n′ ×

n′. If n′ = n then x2(k), W 12 and W 22 are absent, oth-
erwise the oblivious agents obey the conventional DeGroot
dynamics x2(k + 1) = W 22x2(k), being independent on the
remaining agents. If the FJ model is convergent, then the
limit W 22

∗ = lim
k→∞

(W 22)k obviously exists, in other words,

the matrix W 22 is regular in the sense of [44, Ch. XIII,
Section 7].

Definition 3. (Regularity): A matrix A ∈ Rd×d is called reg-
ular [44] if a limit A∗ = lim

k→∞
Ak exists. A regular row-

stochastic matrix A is called fully regular [44] or SIA [43] if
all rows of A∗ are identical, i.e. A∗ = 1dv

�, where v ∈ Rd .
In the literature, the regularity is usually defined for non-

negative matrices [44], but in this paper we use this term for a
general matrix. In the Appendix, we examine some properties
of stochastic regular matrices, which play an important role in
the convergence properties of the FJ model.

IV. STABILITY AND CONVERGENCE OF THE FJ MODEL

The main contribution of this section is the following crite-
rion for the convergence of the FJ model, which employs the
decomposition (5).

Theorem 1. (Stability and Convergence): The matrix Λ11

W 11 is Schur stable. The system (1) is stable if and only if
there are no oblivious agents, that is, ΛW = Λ11W 11 . The FJ
model with oblivious agents is convergent if and only if W 22 is
regular, i.e., the limit W 22

∗ = lim
k→∞

(W 22)k exists. In this case,

the limiting opinion x′ = lim
k→∞

x(k) is given by

x′ =

[
(I − Λ11W 11)−1 0

0 I

][
I − Λ11 Λ11W 12W 22

∗

0 W 22
∗

]

u.

(6)
An important consequence of Theorem 1 is the stability of

the FJ model, whose interaction graph is strongly connected (or,
equivalently, the matrix W is irreducible [44]).

Corollary 1: If the interaction graph G[W ] is strongly con-
nected and Λ �= I (i.e., at least one stubborn agent exists), then
the FJ model (1) is stable.

Proof: The strong connectivity implies that each agent is
either stubborn or connected by a walk to any of stubborn agents;
hence, there are no oblivious agents. �

Theorem 1 also implies that the FJ model is featured by the
following property. For a general system with constant input

x(k + 1) = Ax(k) + Bu (7)

the regularity of the matrix A is a necessary and sufficient
condition for convergence if Bu = 0, since x(k) = Akx(0) →
A∗x(0). For Bu �= 0, regularity is not sufficient for the exis-
tence of a limit lim

k→∞
x(k): a trivial counterexample is A = I .

Iterating the equation (7) with regular A, one obtains

x(k) = Akx(0) +
k∑

j=1

AjBu −−−→
k→∞

A∗x(0) +
∞∑

k=0

AkBu

(8)
where the convergence takes place if and only if the series in
the right-hand side converge. The convergence criterion from
Theorem 1 implies that for the FJ model (1) with A = ΛW and
B = I − Λ the regularity of A is necessary and sufficient for
convergence [34]; for any convergent FJ model (8) holds.

Corollary 2: The FJ model (1) is convergent if and only if
A = ΛW is regular. If this holds, the limit of powers A∗ is

A∗ = lim
k→∞

(ΛW )k =

[
0 (I − Λ11W 11)−1Λ11W 12W 22

∗

0 W 22
∗

]

,

(9)
and the series from (8) (with B = I − Λ) converge to

∞∑

k=0

(ΛW )k (I − Λ)u =

[
(I − Λ11W 11)−1(I − Λ11)u1

0

]

.

(10)
Due to (8), the final opinion x′ from (6) decomposes into

x′ = A∗u +
∞∑

k=0

(ΛW )k (I − Λ)u. (11)
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Proof: Theorem 1 implies that the matrix A = ΛW is
decomposed as follows

A =

[
Λ11W 11 Λ11W 12

0 W 22

]

where the submatrix Λ11W 11 is Schur stable. It is obvious that A
is not regular unless W 22 is regular, since Ak contains the right-
bottom block (W 22)k . A straightforward computation shows
that if W 22 is regular, then (9) and (10) hold, in particular, A is
regular as well. �

Note that the first equality in (4) in general fails for unstable
yet convergent FJ model, even though the series (10) converges
to a stationary point of the system (1) (the second equality in
(4) makes no sense as I − ΛW is not invertible). Unlike the
stable case, in the presence of oblivious agents the FJ model
has multiple stationary points for the same vector of prejudices
u; the opinions x(k) and the series (10) converge to distinct
stationary points unless W 22

∗ u2 = 0.
As shown in the Appendix, for a regular row-stochastic matrix

A the limit A∗ equals to

A∗ = lim
k→∞

Ak = lim
α→1

(I − αA)−1(1 − α). (12)

Theorem 1, combined with (12), entails the following important
approximation result. Along with the FJ model (1), consider the
following “stubborn” approximation

xα (k + 1) = αΛWxα (k) + (I − αΛ)u, xα (0) = u, (13)

where α ∈ (0; 1). Hence, αΛ < I , which implies that all agents
in the model (13) are stubborn, the model (13) is stable,
converging to the stationary opinion xα (k) −−−→

k→∞
x′

α = (I −
αΛW )−1(I − αΛ)u. It is obvious that xα (k) −−−→

α→1
x(k) for

any k = 1, 2, . . ., a question arises if such a convergence takes
place for k = ∞, that is, x′

α → x′ as α → 1. A straightforward
computation, using (12) for A = W 22 and (6), shows that this is
the case whenever the original model (1) is convergent. More-
over, the convergence is uniform in u, provided that u varies in
some compact set. In this sense any convergent FJ model can
be approximated with the models, where all of the agents are
stubborn (Λ < I). The proof of (12) in the Appendix allows to
get explicit estimates for ‖x′

α − x′‖ that, however, do not appear
useful for the subsequent analysis.

V. A MULTIDIMENSIONAL EXTENSION OF THE FJ MODEL

In this section, we propose an extension of the FJ model,
dealing with vector opinions x1(k), . . . , xn (k) ∈ Rm . The ele-
ments of each vector xi(k) = (x1

i (k), . . . , xm
i (k)) stand for the

opinions of the ith agent on m different issues.

A. Opinions on Independent Issues

In the simplest situation where agents communicate on m
completely unrelated issues, it is natural to assume that the
particular issues xj

1(k), xj
2(k), . . . , xj

n (k) satisfy the FJ model

Fig. 3. Structure of the two-dimensional model (14).

(1) for any j = 1, . . . , m, and therefore

xi(k + 1) = λii

n∑

j=1

wijxj (k) + (1 − λii)ui, ui := xi(0).

(14)
Example 3: Consider the FJ model (14) with W from

(2) and Λ = I − diag W . Unlike Example 2, now the opin-
ions xj (k) are two-dimensional, that is, m = 2 and xj (k) =
(x1

j (k), x2
j (k))� represent the opinions on two independent

topics (a) and (b). The structure of the system, consisting of
two copies of the usual FJ model (1), is illustrated by Fig. 3.
Since the topic-specific opinions x1

j (k), x2
j (k) evolve indepen-

dently, their limits can be calculated independently, applying (4)
to ui = (xi

1(0), xi
2(0), xi

3(0), xi
4(0))�, i = 1, 2. For instance,

choosing the initial condition

x(0) = u = [ 25, 25,
︸ ︷︷ ︸

u1 =x1 (0)

25, 15,
︸ ︷︷ ︸

u2 =x2 (0)

75,−50,
︸ ︷︷ ︸
u3 =x3 (0)

85, 5
︸︷︷︸

u4 =x4 (0)

]�, (15)

the vector of steady agents’ opinion is

x′ = [60,−19.3, 60,−21.5, 75,−50, 75,−23.2]�. (16)

B. Interdependent Issues: A Belief System’s Dynamics

Dealing with opinions on interdependent topics, the opinions
being formed on one topic are influenced by the opinions held
on some of the other topics, so that the topic-specific opinions
are entangled. Consider a group of people discussing two related
topics, e.g., fish (as a part of diet) in general and salmon. Salmon
is nested in fish. A person disliking fish also dislikes salmon. If
the influence process changes individuals’ attitudes toward fish,
say promoting fish as a healthy part of a diet, then the door is
opened for influences on salmon as a part of this diet. If, on the
other hand, the influence process changes individuals’ attitudes
against fish, say warning that fish are now contaminated by toxic
chemicals, then the door is closed for influences on salmon as
part of this diet.

Adjusting his/her position on one of the interdependent
issues, an individual might have to adjust the positions on
several related issues simultaneously in order to maintain
the belief system’s consistency. Contradictions and other
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inconsistencies between beliefs, attitudes and ideas trigger
tensions and discomfort (“cognitive dissonance”) that can be
resolved by a within-individual (introspective) process. This
introspective process, studied in cognitive dissonance and
cognitive consistency theory, is thought to be an automatic
process of the human brain, enabling an individual to develop
a “coherent” system of attitudes and beliefs [45], [46].

To the best of the authors’ knowledge, no model describing
how networks of interpersonal influences may generate belief
systems is available in the literature. In this section, we make
the first step towards filling this gap and propose a model, based
on the classical FJ model, that takes issues’ interdependencies
into account. We modify the multidimensional FJ model (14)
(with xj (k) ∈ Rm ) as follows:

xi(k + 1) = λiiC
n∑

j=1

wijxj (k) + (1 − λii)ui. (17)

The model (17) inherits the structure of the usual FJ dynamics,
including the matrix of social influences W and the matrix of
agents’ susceptibilities Λ. On each stage of opinion iteration
the agent i calculates an “average” opinion, being the weighted
sum

∑
j wijxj (k) of its own and its neighbors’ opinions; along

with the agent’s prejudice ui it determines the updated opinion
xi(k + 1). The crucial difference with the FJ model is the pres-
ence of additional introspective transformation, adjusting and
mixing the averaged topic-specific opinions. This transforma-
tion is described by a constant “coupling matrix” C ∈ Rm×m ,
henceforth called the matrix of multi-issues dependence struc-
ture (MiDS). In the case C = Im the model (17) reduces to the
usual FJ model (14).

To clarify the role of the MiDS matrix C, consider for
the moment a network with star-shape topology where all
the agents follow a totally stubborn leader, i.e. there exists
j ∈ {1, 2, . . . , n} such that λjj = 0 and wij = 1 = λii for any
i �= j, so that xi(k + 1) = Cuj . The opinion changes in this sys-
tem are movements of the opinions of the followers toward the
initial opinions of the leader, and these movements are strictly
based on the direct influences of the leader. The entries of the
MiDS matrix govern the relative contributions of the leader’s
issue-specific opinions to the formation of the followers’ opin-
ions. Since xp

i (k + 1) =
∑m

q=1 cpqu
q
j , then cpq is a contribution

of the qth issue of the leader’s opinion to the pth issue of the
follower’s one. In general, instead of a simple leader-follower
network we have a group of agents, communicating on m dif-
ferent issues in accordance with the matrix of interpersonal
influences W . During such communications, the ith agent cal-
culates the average

∑
j wijxj (k) of its own opinion and those

displayed by the neighbors. The weight cpq measures the effect
of the qth issue of this averaged opinion to the pth issue of the
updated opinion xi(k + 1).

Notice that the origins and roles of matrices W and C in
the multidimensional model (17) are very different. The matrix
W is a property of the social network, describing its topol-
ogy and social influence structure, which is henceforth assumed
to be known (the measurement models for the structural ma-
trices Λ,W are discussed in [15]–[17]). At the same time, C

expresses the interrelations between different topics of interest.
It seems reasonable that the MiDS matrix should be indepen-
dent of the social network itself, depending on introspective
processes, forming an individual’s belief system.

We proceed with examples, which show that introducing the
MiDS matrix C can substantially change the opinion dynamics.
These examples deal with the social network of n = 4 actors
from [15], having the influence matrix (2) and the susceptibility
matrix Λ = I − diag W . Unlike Example 3, the agents discuss
interdependent topics.

Example 4: Let the agents discuss two topics, (a) and (b),
say the attitudes towards fish (as a part of diet) in general and
salmon. We start from the initial condition (15), which means
that agents 1 and 2 have modest positive liking for fish and
salmon; the third (totally stubborn) agent has a strong liking for
fish, but dislikes salmon; the agent 4 has a strong liking for fish
and a weak positive liking for salmon. Neglecting the issues
interdependence (C = I2), the final opinion was calculated in
Example 3 and is given in (16).

We now introduce a MiDS matrix, taking into account the
dependencies between the topics

C1 =

[
0.8 0.2

0.3 0.7

]

. (18)

As will be shown in Theorem 2, the opinions converge to

x′
C1

= [39.2, 12, 39, 10.1, 75,−50, 56, 5.3]�. (19)

Hence, introducing the MiDS matrix C1 from (18), with its dom-
inant main diagonal, imposes a substantial drag in opinions of
the “open-minded” agents 1 and 2. In both cases their attitudes
toward fish become more positive and those toward salmon be-
come less positive, compared to the initial values (15). However,
in the case of dependent issues their attitudes toward salmon do
not become negative as they did in the case of independence.
As for the agent 4, its attitude towards salmon under the MiDS
matrix (18) becomes even more positive, compared to the initial
value (15), whereas for C = I2 this attitude becomes strongly
negative.

The difference in behavior of the systems (14) and (17) is
caused by the presence of additional ties (couplings) between
the topic-specific opinions, imposed by the MiDS matrix C,
drawn in Fig. 4 in green. For simplicity, we show only three
of these extra ties; there are also ties between the topic-specific
opinions 1b and 2a, 3a, 4a; 2a and 1b, 3b, 4b etc.

In Example 4, the additional ties are positive, bringing the
topic-specific opinions closer to each other. The requirement of
consistency of a belief systems may also imply the negative cou-
plings between different topics if the multidimensional opinion
contains attitudes to a pair of contrary issues.

Example 5: Consider Example 4, replacing the stochastic
MiDS matrix (18) with the non-positive matrix

C2 =

[
0.8 −0.2

−0.3 0.7

]

. (20)

The topics (a) and (b), discussed by the agents, are interrelated
but opposite, e.g., the agents discuss their attitudes to vegetarian
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Fig. 4. Structure of the two-dimensional FJ model (17) with C from
(18): emergent extra couplings between topic-specific opinions.

and all-meat diets. As will be shown, the system (17) remains
stable. Starting from the same initial opinion (15), the agents’
opinions converge to the final value

x′
C2

= [52.3,−30.9, 52.1,−33.3, 75,−50, 68.4,−33.2]�.

Similar to the case of uncoupled topics (Example 3), the agents
converge on positive attitude to vegetarian diets and negative
attitude to all-meat diet, following thus the prejudice of the
totally stubborn individual 3. However, the final opinions in
fact substantially differ. In the case of decoupled topic-specific
opinions (C = I2) the agents get stronger positive attitudes to
vegetarian diets than in the case of negative coupling (C = C2)
while their negative attitudes against all-meat diets are weaker.

Remark 1. (Restrictions on the MiDS Matrix): In many ap-
plications the topic-specific opinions may vary only in some
predefined interval. For instance, treating them as certainties of
belief [47] or subjective probabilities [18], [37], the model of
opinion evolution should imply that the topic-specific opinions
belong to [0, 1]. Similarly, the agents attitudes, i.e., signed orien-
tations towards some issues [34], are often scaled to the interval
[−1, 1]. Such a limitation on the opinions can make it natural to
choose the MiDS matrix C from a special class. For instance,
choosing C row-stochastic, the model (17) inherits important
property of the FJ model [34]: if uj

i = xj
i (0) ∈ [a, b]∀i, j then

xj
i (k) ∈ [a, b]∀i, j for any k ≥ 0 (here [a, b] ⊂ R is a given in-

terval, i ∈ 1 : n and j ∈ 1 : m). This is easily derived from (17)
via induction on k: if xi(k) ∈ [a, b]m for k = 0, . . . , s and any
i, then Cxi(k) ∈ [a, b]m and hence xi(s + 1) ∈ [a, b]m .

In the case of special a and b the assumption of row-
stochasticity can be further relaxed. For instance, to keep
the vector opinions xi(k) in [0, 1]m whenever ui ∈ [0, 1]m ,
the matrix C should be chosen substochastic: cij ≥ 0 and∑m

j=1 cij ≤ 1 for any m. To provide the invariance of the hy-
percube [−1, 1]m , the matrix C should satisfy the condition

‖C‖∞ = max
i

m∑

j=1

|cij | ≤ 1. (21)

More generally, via induction on k the following invariance
property can be proved: if D is a convex set and Cx ∈ D for

any x ∈ D, then D is an invariant set for the dynamics (17): if
ui = xi(0) ∈ D then xi(k) ∈ D for any k.

In the next subsection, the problems of stability and conver-
gence of the model (17) are addressed.

C. Convergence of the Multidimensional FJ Model

Similar to (15), the stack vectors of opinions x(k) =
(x1(k)�, . . . , xn (k)�)� and prejudices u = (u�

1 , . . . , u�
n )� =

x(0) can be constructed. The dynamics (17) now becomes

x(k + 1) = [(ΛW ) ⊗ C]x(k) + [(In − Λ) ⊗ Im ], (22)

which is a convenient representation of (17) in the matrix form.
We begin with stability analysis of the model (22). In the case

when C is row-stochastic, the stability conditions remain the
same as for the initial model (1). However, the model (22) re-
mains stable for many non-stochastic matrices, including those
with exponentially unstable eigenvalues.

Theorem 2. (Stability): The model (22) is stable (i.e., ΛW ⊗
C is Schur stable) if and only if ρ(ΛW )ρ(C) < 1. If this holds,
then the vector of ultimate opinions is

x′
C := lim

k→∞
x(k) = (Imn − ΛW ⊗ C)−1 [(In − Λ) ⊗ Im ]u.

(23)
If ρ(C) = 1, the stability of (22) is equivalent to the stability of
the FJ model (1), i.e. to the absence of oblivious agents.

Remark 2: Theorem 2, in particular, guarantees stability
when the original FJ model (1) is stable (ρ(ΛW ) < 1) and C
is row-stochastic or, more generally, satisfies (21). These condi-
tions, however, are not necessary for stability; the system (22)
remains stable whenever ρ(C) < ρ(ΛW )−1 .

In the case where some agents are oblivious, the convergence
of the model (22) is not possible unless C is regular, that is,
the limit C∗ = lim

k→∞
Ck exists (in particular, ρ(C) ≤ 1). As in

Theorem 1, we assume that oblivious agents are indexed n′ + 1
through n and consider the decomposition (5).

Theorem 3. (Convergence): Let n′ < n. The model (22) is
convergent if and only if C is regular and either C∗ = 0 or W 22

is regular. If this holds then x(k) −−−→
k→∞

x′
C , where

x′
C =

[
(I − Λ11W 11 ⊗ C)−1 0

0 I

]

Pu,

P =

[
(I − Λ11) ⊗ Im (Λ11W 12W 22

∗ ) ⊗ CC∗

0 W 22
∗ ⊗ C∗

]

. (24)

By definition, in the case where C∗ = 0 but the limit
limk→∞(W 22)k does not exist, we put W∗ = 0.

Remark 3. (Extensions): In the model (22), we do not as-
sume the interdependencies between the initial topic-specific
opinions; one may also consider a more general case when
xi(0) = Dui and hence x(0) = [In ⊗ D]u, where D is a con-
stant m × m matrix. This affects neither stability nor conver-
gence conditions, and formulas (23), (24) for x′

C remain valid,
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replacing P in the latter equation with

P =

[
(I − Λ11) ⊗ Im (Λ11W 12W 22

∗ ) ⊗ CC∗D

0 W 22
∗ ⊗ C∗D

]

.

VI. OPINION DYNAMICS UNDER GOSSIP-BASED

COMMUNICATION

A considerable restriction of the model (22), inherited from
the original Friedkin-Johnsen model, is the simultaneous com-
munication between the agents. That is, on each step the actors
simultaneously communicate to all of their neighbors. This type
of communication can hardly be implemented in a large-scale
social network, since, as was mentioned in [15], “it is obvious
that interpersonal influences do not occur in the simultaneous
way and there are complex sequences of interpersonal influ-
ences in a group”. A more realistic opinion dynamics can be
based on asynchronous gossip-based [48], [49] communica-
tion, assuming that only two agents interact during each step.
An asynchronous version of the FJ model (1) was proposed
in [21], [22].

The idea of the model from [21], [22] is as follows. On each
step an arc is randomly sampled with the uniform distribution
from the interaction graph G[W ] = (V, E). If this arc is (i, j),
then the ith agent updates its opinion in accordance with

xi(k + 1) = hi ((1 − γij )xi(k) + γijxj (k)) + (1 − hi)ui.
(25)

Hence, the new opinion of the agent is a weighted average of
his/her previous opinion, the prejudice and the neighbor’s pre-
vious opinion. The opinions of other agents remain unchanged

xl(k + 1) = xl(k) ∀l �= i. (26)

The coefficient hi ∈ [0, 1] is a measure of the agent “obstinacy”.
If an arc (i, i) is sampled, then

xi(k + 1) = hixi(k) + (1 − hi)ui. (27)

The smaller is hi , the more stubborn is the agent, for hi = 0 it
becomes totally stubborn. Conversely, for hi = 1 the agent is
“open-minded” and forgets its prejudice. The coefficient γij ∈
[0, 1] expresses how strong is the influence of the jth agent on
the ith one. Since the arc (i, j) exists if and only if wij > 0, one
may assume that γij = 0 whenever wij = 0.

It was shown in [21], [22] that, for stable FJ model with
Λ = I − diag W , under proper choice of the coefficients hi

and γij , the expectation Ex(k) converges to the same steady
value x′ as the Friedkin-Johnsen model and, moreover, the pro-
cess is ergodic in both mean-square and almost sure sense. In
other words, both probabilistic averages (expectations) and time
averages (referred to as the Cesàro or Polyak averages) of the
random opinions converge to the final opinion in the FJ model.
It should be noticed that opinions themselves are not convergent
(see numerical simulations below) but oscillate around their ex-
pected values. In this section, we extend the gossip algorithm
from [21], [22] to the case where Λ �= I − diag W and the opin-
ions are multidimensional.

Let G[W ] = (V, E) be the interaction graph of the net-
work. Given two matrices Γ1 ,Γ2 such that γ1

ij , γ
2
ij ≥ 0 and

γ1
ij + γ2

ij ≤ 1, we consider the following multidimensional ex-
tension of the algorithm (25), (26). On each step an arc is uni-
formly sampled in the set E . If this arc is (i, j), then agent i
communicates to agent j and updates its opinion as follows

xi(k + 1) = (1 − γ1
ij − γ2

ij )xi(k) + γ1
ijCxj (k) + γ2

ij ui .
(28)

Hence during each interaction the agent’s opinion is averaged
with its own prejudice and modified neighbors’ opinion Cxj (k).
The other opinions remain unchanged as in (26).

The following theorem shows that under the assumption of
the stability of the original FJ model (22) and proper choice of
Γ1 ,Γ2 the model (28), (26) inherits the asymptotic properties
of the deterministic model (22).

Theorem 4. (Ergodicity): Assume that ρ(ΛW ) < 1, i.e.,
there are no oblivious agents, and C is row-stochastic. Let Γ1 =
ΛW and Γ2 = (I − Λ)W . Then, the limit x∗ = lim

k→∞
Ex(k) ex-

ists and equals to the final opinion (23) of the FJ model (22),
i.e. x∗ = x′

C . The random process x(k) is almost sure ergodic,
which means that x̄(k) → x∗ with probability 1, and Lp -ergodic
so that E‖x̄(k) − x∗‖p −−−→

k→∞
0, where

x̄(k) :=
1

k + 1

k∑

l=0

x(l). (29)

Both equality x∗ = x′
C and ergodicity remain valid, replacing

Γ2 = (I − Λ)W with any matrix, such that 0 ≤ γ2
ij ≤ 1 − γ1

ij ,∑n
j=1 γ2

ij = 1 − λii and γ2
ij = 0 as (i, j) �∈ E .

As a corollary, we obtain the result from [21], [22], stating
the equivalence on average between the asynchronous opinion
dynamics (25), (26) and the scalar FJ model (1).

Corollary 3: Let di be the out-branch degree of the ith node,
i.e. the cardinality of the set {j : (i, j) ∈ E}. Consider the
algorithm (25), (26), where xi ∈ R, (1 − hi)di = 1 − λii ∀i,
γij ∈ [0, 1] and hiγij = λiiwij whenever i �= j. Then, the limit
x∗ = lim

k→∞
Ex(k) exists and equals to the steady-state opinion

(4) of the FJ model (1): x∗ = x′. The random process x(k) is
almost sure and mean-square ergodic.

Proof: The algorithm (25), (26) can be considered as a
special case of (28), (26), where C = 1, γ1

ij = hiγij and
γ2

ij = 1 − hi . Since the values γ1
ii have no effect on the dynam-

ics (28) with C = 1, one can, changing γ1
ii if necessary, assume

that Γ1 = ΛW . The claim now follows from Theorem 4 since
1 − γ2

ij = hi ≥ γ1
ij and

∑
j γ2

ij = (1 − hi)di = 1 − λii . �
Hence, the gossip algorithm, proposed in [21], [22] is only

one element of a broad class of protocols (28) (with C = 1),
satisfying assumptions of Theorem 4.

Remark 4. (Random Opinions): Whereas the Cesàro-Polyak
averages x̄(k) do converge to their average value x∗, the ran-
dom opinions x(k) themselves do not, exhibiting non-decaying
oscillations around x∗, see [21] and the numerical simulations
in Section VII. As implied by [22, Theorem 1], x(k) converges
in probability to a random vector x∞, whose distribution is the
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unique invariant distribution of the dynamics (28), (26) and is
determined by the triple (Λ,W,C).

VII. NUMERICAL EXPERIMENTS

In this section, we give numerical tests, which illustrate the
convergence of the “synchronous” multidimensional FJ model
and its “lazy” gossip version.

We start with the opinion dynamics of a social network with
n = 4 actors, the matrix of interpersonal influences W from (2)
and susceptibility matrix Λ = I − diag W . In Fig. 5 we illus-
trate the dynamics of opinions in Examples 3-5: Fig. 5(a) shows
the case of independent issues C = I2 , Fig. 5(b) illustrates the
model (17) with the stochastic matrix C from (18), and Fig. 5(c)
demonstrates the dynamics under the MiDS matrix (20). As was
discussed in Examples 4 and 5, the interdependencies between
the topics lead to substantial drags in the opinions of the agents
1, 2 and 4, compared with the case of independent topics.

It is useful to compare the final opinion of the models just
considered with the DeGroot-like dynamics1 (Fig. 6) where the
initial opinions and matrices C are the same, however, Λ = In .
In the case of independent issues C = I2 all the opinions are
attracted by the stubborn agent’s opinion [Fig. 6(a)]

lim
k→∞

x(k) = [75,−50, 75,−50, 75,−50, 75,−50]�.

In the case of positive ties between topics [Fig. 6(b)] we have

lim
k→∞

x(k) = [25, 25, 25, 25, 25, 25, 25, 25]�.

In fact, the stubborn agent 3 constantly averages the issues of
its opinions so that they reach agreement, all other issues are
also attracted to this consensus value. In the case of negatively
coupled topics [Fig. 6(c)] the topic-specific opinions polarize

lim
k→∞

x(k) = [65,−65, 65,−65, 65,−65, 65,−65]�.

The next simulation (Fig. 7) deals with the randomized
gossip-based counterparts of the models from Examples (3) and
(4). The Cesàro-Polyak averages [Fig. 7(a) and 7(b)] x̄(k) of
the opinions under the gossip-based protocol from Theorem 4
converge to the same limits as the deterministic model (22) (blue
circles). However, the random opinions x(k) themselves do not
converge and exhibit oscillations [Fig. 7(c)].

The last example deals with the group of n = 51 agents, con-
sisting of a totally stubborn “leader” and N = 10 groups, each
containing 5 agents (Fig. 8). In each subgroup a “local leader”
or “representative” exists, who is the only subgroup member
influenced from outside. The leader of the first subgroup is in-
fluenced by the totally stubborn agent, and the leader of the ith
subgroup (i = 2, . . . , N ) is influenced by that of the (i − 1)th
subgroup. All other members in each subgroup are influenced
by the local leader and by each other, as shown in Fig. 8. Notice

1In the DeGroot model [18] the components of the opinion vectors xi (k) are
independent. This corresponds to the case where C = Im . One can consider
a generalized DeGroot’s model as well, which is a special case of (22) with
Λ = In but C �= Im . This implies the issues interdependency, which can make
all topic-specific opinions (that is, opinions on different issues) converge to the
same consensus value or polarize, as shown in Fig. 6.

Fig. 5. Dynamics of opinions in Examples 3–5. (a) Example 3: top-
ics are independent, (b) Example 4: topics are positively coupled, (c)
Example 5: topics are negatively coupled.

that each agent has a non-zero self-weight, but we intentionally
do not draw self-loops around the nodes in order to make the
network structure more clear. We simulated the dynamics of the
network, assuming that the first local leader has the self-weight
0.1 (and assigns the weight 0.9 to the opinion of the totally
stubborn agent), and the other local leaders have self-weights
0.5 (assigning the weight 0.5 to the leaders of predecessing
subgroups). All the weights inside the subgroups are chosen
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Fig. 6. Opinion dynamics in the extended DeGroot model. (a) DeG-
root’s model: independent issues. (b) Extended DeGroot’s model: MiDS
matrix (18). (c) Extended DeGroot’s model: MiDS matrix (20).

randomly in a way that W is row-stochastic (we do not pro-
vide this matrix here due to space limitations). We assume that
Λ = I − diag W and choose the MiDS matrix as follows

C =

[
0.9 0.1

0.1 0.9

]

.

The initial conditions for the totally stubborn agent are
x1(0) = [100,−100]�, the other initial conditions are ran-
domly distributed in [−10, 10]. The dynamics of opinions in the

Fig. 7. Gossip-based counterparts of Examples 3 and 4. (a) Con-
vergence of the Cesàro-Polyak averages, the MiDS matrix C = I2 .
(b) Convergence of the Cesàro-Polyak averages, the MiDS matrix (18).
(c) Dynamics of opinions with the MiDS matrix (18) show no conver-
gence.

deterministic model and averaged opinions in the gossip model
are shown, respectively, in Figs. 9(a) and (b). One can see that
several clusters of opinions emerge, and the gossip-based proto-
col is equivalent to the deterministic model on average, in spite
of rather slow convergence.

VIII. ESTIMATION OF THE MIDS MATRIX

Identification of structures and dynamics in social networks,
using experimental data, is an emerging area, which is actively
studied by different research communities, working on statistics
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Fig. 8. Hierarchical structure with n = 51 agents.

[50], physics [51], and signal processing [52]. We assume that
the structure of social influence, that is, the matrices W and Λ
are known. A procedure for their experimental identification was
discussed in [15], [17]. In this section, we focus on the estimation
of the MiDS matrix C. As discussed in [52], identification of
social network is an important step from network analysis to
network control and “sensing” (that is, observing or filtering).

To estimate C, an experiment can be performed where a group
of individuals with given matrices Λ and W communicates on
m interdependent issues. The agents are asked to record their
initial opinions, constituting the vector u = x(0), after which
they start to communicate. The agents interact in pairs and can
be separated from each other; the matrix W determines the
interaction topology of the network, that is, which pairs of agent
are able to interact. Two natural types of methods, allowing to
estimate C, can be referred to as “finite-horizon” and “infinite
horizon” identification procedures.

A. Finite-Horizon Identification Procedure

In the experiment of the first kind the agents are asked to
accomplish T ≥ 1 full rounds of conversations and record their
opinions xj (1), . . . , xj (T ) after each of these rounds, which can
be grouped into stack vectors x(1), . . . , x(T ). After collection
of this data, C can be estimated as the matrix best fitting the
equations (22) for 0 ≤ k < T . Given x(0) = u, x(1), . . . , x(T ),
consider the optimization problem

minimize
T∑

j=1

‖εj‖2
2 subject to

εj = x(j) − (ΛW ⊗ C x(j − 1) + (I − Λ) ⊗ I u) . (30)

Fig. 9. Opinion dynamics of n = 51 agents: (a) the deterministic model
and (b) averaged opinions in the gossip-based model.

As was discussed in Remark 1, to provide the model “feasibil-
ity”, that is, belonging of the opinions to a given set, it can be
natural to restrict the MiDS matrix to some known set C ∈ C,
which may e.g. consist of all row-stochastic matrices

m∑

j=1

cij = 1 ∀i, cij ≥ 0 ∀i, j (31)

or all matrices, satisfying (21). In both of these examples, the
problem (30) remains a convex QP problem, adding the con-
straint C ∈ C. More generally, one may replace (30) with the
following convex optimization problem

minimize f(ε1 , . . . , εT ) subject to

εj = x(j) − (ΛW ⊗ C x(j − 1) + (I − Λ) ⊗ I u) ,

C ∈ C.

(32)

Here f is a convex and positive definite function (that is,
f(ε1 , . . . , εT ) ≥ 0 and the inequality is strict unless ε1 = . . . =
εT = 0) and C stands for a closed convex set. In the case where
f(ε1 , . . . , εT ) =

∑T
j=1 |εj | or f(ε1 , . . . , εT ) = maxj |εj | the

problem (32) becomes a standard linear programming problem.
Remark 5: In the case where C is a (non-empty) compact set,

the minimum in (32) exists whenever f is continuous. Moreover,
if f stands for a strictly convex norm [53, Section 8.1] on RT

then the minimum exists even for unbounded closed convex sets
C since the set of all possible vectors {(ε1 , . . . , εT )} is closed
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and convex, and the optimization problem (32) boils down to
the projection on this set. For instance, the minimum in the
unconstrained optimization problem (30) is always achieved.

B. Infinite-Horizon Identification Procedure

The experiment of the second kind is applicable only to stable
models, which inevitably implies a restriction on the MiDS
matrix C. As in the previous section, we suppose that C ∈ C,
where C is convex closed set of matrices. We suppose also that
all elements of C satisfy Theorem 2, that is, ρ(C) < ρ(ΛW )−1 .
As discussed in Remark 2, the set C may consist e.g. of all
stochastic matrices (31) or matrices, satisfying (21).

The agents are not required to trace the history of their opin-
ions, and their interactions are not limited to any prescribed
number of rounds. Instead, similar to the experiments from [15],
the agents interact until their opinions stabilize (“agents com-
municate until consensus or deadlock is reached” [15]). In this
sense, one may assume that the agents know the final opinion
x′. The matrix C should satisfy the equation

x′ = ΛW ⊗ C x′ + (In − Λ) ⊗ Im u (33)

obtained as a limit of (22) as k → ∞. To find a matrix C best
fitting (33) we solve an optimization problem similar to (30)

minimize ‖ε‖2
2 subject to

ε = x′ − (ΛW ⊗ C x′ + (In − Λ) ⊗ Im u) ,

C ∈ C.

(34)

In the case where C stands for the polyhedron of matrices (e.g.,
we are confined to row-stochastic MiDS matrices C), the prob-
lem (34) boils down to a convex QP problem; replacing ‖ · ‖2

2
with ‖ · ‖1 or ‖ · ‖∞ norm, one gets a LP problem. The solu-
tion in the optimization problem (34) exists for any closed and
convex set C for the reasons explained in Remark 5.

Both types of experiments thus lead to convex optimization
problems. The advantage of the “finite-horizon” experiment is
its independence of the system convergence. Also, allocating
some fixed time for each dyadic interaction (and hence for the
round of interactions), the data collection can be accomplished
in known time (linearly depending on T ). In many applications,
one is primarily interested in the opinion dynamics on a finite
interval. This approach, however, requires to store the whole
trajectory of the system, collecting thus a large amount of data
(growing as nT ) and leads to a larger convex optimization prob-
lem. The loss of data from one of the agents in general requires to
restart the experiment. On the other hand, the “infinite-horizon”
experiment is applicable only to stable models, and one cannot
predict how fast the convergence will be. This experiment does
not require agents to trace their history and thus reduces the size
of the optimization problem.

C. Transformation of the Equality Constraints

Both optimization problems (30) and (34) are featured by
non-standard linear constraints, involving Kronecker products.
To avoid Kronecker operations, we transform the constraints
into a standard form Ax = b, where A is a matrix and x, b are
vectors. To this end, we perform a vectorization operation. Given

a matrix M , its vectorization vec M is a column vector obtained
by stacking the columns of M , one on top of one another [40],
e.g., vec( 1

2
0
1 ) = [1, 2, 0, 1]�.

Lemma 1: [40] For any three matrices A,B, C such that the
product ABC is defined, one has

vecABC = (C� ⊗ A) vecB. (35)

In particular, for A ∈ Rm×l and B ∈ Rl×n one obtains

vecAB = (In ⊗A) vecB = (B� ⊗ Im ) vecA. (36)

The constraints in (30), (34) can be simplified. Consider first
the constraint in (34). Let x′

i be the final opinion of the ith
agent and X ′ = [x′

1 , . . . , x
′
n ] be the matrix constituted by them,

hence x′ = vec X ′. Applying (36) for A = C and B = X ′ en-
tails that [In ⊗ C]x′ = [(X ′� ⊗ Im ] vec C, thus [ΛW ⊗ C]x′ =
[ΛW ⊗ Im ][In ⊗ C]x′ = [ΛW (X ′)� ⊗ Im ] vec C. Denoting
c = vec C, the constraint in (34) shapes into

ε + [ΛWX ′� ⊗ Im ]c = x′ − [(In − Λ) ⊗ Im ]u, (37)

where the matrix ΛWX̂� ⊗ Im and the right-hand side are
known. The constraints in (30) can be rewritten as

εj + [ΛWX(j − 1)� ⊗ Im ]c = x(j) − [(In − Λ) ⊗ Im ]u.
(38)

Here, X(j) is the matrix [x1(j), . . . , xn (j)] and hence x(j) =
vec X(j).

D. Numerical Examples

To illustrate the identification procedures, we consider two
numerical examples.

Example 6: Consider a social network with the matrix W
from (2), Λ = I − diag W and the prejudice vector (15). Un-
like Example 4, C is unknown and is to be found from the
“infinite-horizon” experiment. Suppose that agents were asked
to compute the final opinion, obtaining

x′ = [35, 11, 35, 10, 75,−50, 53, 5]�.

Solving the problem (34), one gets the minimal residual ‖ε‖2 =
0.9322, which gives the MiDS matrix

C =

[
0.7562 0.2438

0.3032 0.6968

]

.

In accordance with (23), this matrix C corresponds to the steady
opinion

x′
C =[35.316, 11.443, 35.092, 9.483, 75,−50, 52.386, 4.915]�.

Example 7: For Λ, W and u from the previous example,
agents were asked to conduct T = 3 full rounds of conversation
(“finite horizon” experiment), obtaining the opinions

x(1) = [42.80, 14.05, 43.59, 12.51, 75,−50, 61.49, 7.18]�

x(2) = [41.31, 13.37, 41.45, 11.43, 75,−50, 55.48, 6.45]�

x(3) = [41.74, 12.30, 40.41, 10.84, 75,−50, 58.99, 6.02]�.
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We are interested in finding a row-stochastic matrix C best
fitting the data. Solving the corresponding QP problem (30)
with additional constraints (31), the MiDS matrix is

C =

[
0.8181 0.1819

0.2983 0.7017

]

.

The model (17) with this matrix C gives the opinions

x̃(1) = [43.12, 14.66, 42.54, 12.37, 75,−50, 59.90, 7.17]�

x̃(2) = [41.93, 13.26, 41.73, 11.35, 75,−50, 58.37, 6.26]�

x̃(3) = [41.30, 12.69, 41.12, 10.79, 75,−50, 57.90, 5.83]�.

Remark 6: Examples 6 and 7, demonstrating the estima-
tion procedures, are constructed as follows. We get the model
(22) with W from (2), Λ = I − diag W and C from (18) and
slightly change its final value (19) (Example 6) and trajectory
(Example 7). Due to these perturbations, the estimated MiDS
matrix does not exactly coincide with (18) yet is close to it.

IX. PROOFS

We start with the proof of Theorem 1, which requires some
additional techniques.

Definition 4. (Substochasticity): A non-negative matrix A =
(aij ) is row-substochastic, if

∑
j aij ≤ 1∀i. Given such a ma-

trix sized n × n, we call a subset of indices J ⊆ 1 : n stochastic
if the corresponding submatrix (aij )i,j∈J is row-stochastic, i.e.∑

j∈J

aij = 1∀i ∈ J .

The Gerschgorin Disk Theorem [44] implies that any sub-
stochastic matrix A has ρ(A) ≤ 1. Our aim is to identify the
class of substochastic matrices with ρ(A) = 1. As it will be
shown, such matrices are either row-stochastic or contain a row-
stochastic submatrix, i.e., has a non-empty stochastic subset of
indices.

Lemma 2: Any square substochastic matrix A with ρ(A) =
1 admits a non-empty stochastic subset of indices. The union of
two stochastic subsets is stochastic again, so that the maximal
stochastic subset J∗ exists. Making a permutation of indices
such that J∗ = (n′ + 1) : n, where 0 ≤ n′ < n, the matrix A is
decomposed into upper triangular form

A =

(
A11 A12

0 A22

)

, (39)

where A11 is a Schur stable n′ × n′-matrix (ρ(A11) < 1) and
A22 is row-stochastic.

Proof: Thanks to the Perron-Frobenius Theorem [41], [44],
ρ(A) = 1 is an eigenvalue of A, corresponding to a non-negative
eigenvector v ∈ Rn (here, n stands for the dimension of A).
Without loss of generality, assume that maxi vi = 1. Then we
either have vi = 1n and hence A is row-stochastic (so the claim
is obvious), or there exists a non-empty set J � 1 : n of such
indices i that vi = 1. We are going to show that J is stochastic.
Since vi = 1 for i ∈ Jc = 1 : n \ J , one has

1 =
∑

j∈J c

aij vj +
∑

j∈J

aij ≤ 1∀i ∈ J.

Since vj < 1 as j ∈ Jc , the equality holds only if aij = 0∀i ∈
J, j �∈ J and

∑
j∈J aij = 1, i.e., J is a stochastic set. This proves

the first claim of Lemma 2.
Given a stochastic subset J , it is obvious that aij = 0 when

i ∈ J and j �∈ J , since otherwise one would have
∑

j∈1:n
aij > 1.

This implies that given two stochastic subsets J1 , J2 and choos-
ing i ∈ J1 , one has

∑

j∈J1 ∪J2

aij =
∑

j∈J1

aij +
∑

j∈J2 ∩J c
1

aij = 1.

The same holds for i ∈ J2 , which proves stochasticity of the
set J1 ∪ J2 . This proves the second claim of Lemma 2 and the
existence of the maximal stochastic subset J∗, which, after a
permutation of indices, becomes as follows: J∗ = (n′ + 1) : n.
Recalling that aij = 0∀i ∈ J∗, j ∈ Jc

∗ , one shows that the ma-
trix is decomposed as (39), where A22 is row-stochastic. It
remains to show that ρ(A11) < 1. Assume, on the contrary, that
ρ(A11) = 1. Applying the first claim of Lemma 2 to A11 , one
proves the existence of another stochastic subset J ′ ⊆ 1 : n′,
which contradicts the maximality of J∗. This contradiction
shows that A11 is Schur stable. �

Returning to the FJ model (1), it is easily shown now that the
maximal stochastic subset of indices of the matrix ΛW consists
of indices of oblivious agents.

Lemma 3: Given a FJ model (1) with the matrix Λ diagonal
(where 0 ≤ λii ≤ 1) and the matrix W row-stochastic, the max-
imal stochastic set of indices J∗ for the matrix ΛW is constituted
by the indices of oblivious agents. In other words, j ∈ J∗ if and
only if the jth agent is oblivious.

Proof: Notice, first, that the set J∗ consists of oblivious
agents. Indeed, 1 =

∑
j∈J∗ λiiwij ≤ λii ≤ 1 for any i ∈ J∗, and

hence none of agents from J∗ is stubborn. Since aij = 0∀i ∈
J∗, j ∈ Jc

∗ (see the proof of Lemma 2), the agents from J∗ are
also unaffected by stubborn agents, being thus oblivious. Con-
sider the set J of all oblivious agents, which, as has been just
proved, comprises J∗: J ⊇ J∗. By definition, λjj = 1∀j ∈ J .
Furthermore, no walk in the graph from J to Jc exists, and
hence wij = 0 as i ∈ J, j �∈ Jc , so that

∑
j∈J wij = 1∀i ∈ J .

Therefore, indices of oblivious agents constitute a stochastic
set J , and hence J ⊆ J∗. Therefore, J = J∗, which finishes the
proof. �

We are now ready to prove Theorem 1.
Proof of Theorem 1: Applying Lemma 2 to the matrix A =

ΛW , we prove that agents can be re-indexed in a way that A
is decomposed as (39), where A11 = Λ11W 11 is Schur stable
and A22 is row-stochastic (if A is Schur stable, then A = A11

and A22 and A12 are absent). Lemma 3 shows that indices
1 : n′ correspond to stubborn agents and agents they influence,
whereas indices (n′ + 1) : n denumerate oblivious agents that
are, in particular, not stubborn and hence λjj = 1 as j > n′

so that A22 = W 22 . This proves the first claim of Theorem 1,
concerning the Schur stability of Λ11W 11 .

By noticing that x2(k) = (W 22)kx2(0), one shows that con-
vergence of the FJ model is possible only when W 22 is regular,
i.e. (W 22)k → W 22

∗ and hence x2(k) → W 22
∗ u2 . If this holds,

one immediately obtains (6) since

x1(k + 1) = Λ11W 11x1(k) + Λ11W 12x2(k) + (I − Λ11)u1

and Λ11W 11 is Schur stable. �
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The proof of Theorem 2 follows from the well-known prop-
erty of the Kronecker product.

Lemma 4. [40, Theorem 13.12]: The spectrum of the ma-
trix A ⊗ B consists of all products λiμj , where λ1 , . . . , λn are
eigenvalues of A and μ1 , . . . , μm are those of B.

Proof of Theorem 2: Lemma 4 entails that ρ(ΛW ⊗ C) =
ρ(ΛW )ρ(C), hence the system (22) is stable if and only if
ρ(ΛW )ρ(C) < 1. In particular, if ρ(C) = 1 then the system
(22) is stable if and only if ρ(ΛW ) < 1. �

The proof of Theorem 3 is similar to that of Theorem 1. After
renumbering the agents, one can assume that oblivious agents
are indexed n′ + 1 through n and consider the corresponding
submatrices W 11 ,W 12 ,W 22 ,Λ11 , used in Theorem 1. Then the
matrix ΛW ⊗ C can also be decomposed

ΛW ⊗ C =

(
Λ11W 11 ⊗ C Λ11W 12 ⊗ C

0 W 22 ⊗ C

)

, (40)

where the matrices Λ11W 11 ⊗ C has dimensions mn′ ×
mn′ and m(n − n′) × m(n − n′) respectively. We con-
sider the corresponding subdivision of the vectors x(k) =
[x1(k)�, x2(k)�]� and û = [(û1)�, (û2)�]�.

Proof of Theorem 3: Since the opinion dynamics of
oblivious agents is given by x2(k + 1) = W 22 ⊗ Cx2(k), the
convergence implies regularity of the matrix W 22 ⊗ C. The reg-
ularity of W 22 ⊗ C entails that C is regular. Indeed, consider
a left eigenvector z of W 22 at 1 (that is, zW = z) and de-
note v = z ⊗ Im . Since vT (W 22 ⊗ C)k = z ⊗ Ck has a limit
as k → ∞ and z �= 0, C is regular and, in particular, ρ(C) ≤ 1.
Obviously, the limit C∗ = limk→∞ Ck is zero if and only if
C is Schur stable, i.e. ρ(C) < 1. If ρ(C) = 1 then λ = 1 the
only possible eigenvalue on the unit circle {λ : |λ| = 1}. Con-
sider a right eigenvector z of C (possibly, complex), corre-
sponding to this eigenvalue. Denoting v = In ⊗ z, the matrix
(W 22 ⊗ C)k v = (W 22)k ⊗ v has a limit as k → ∞, and thus
W 22 is regular. The necessity part is proved. To prove suf-
ficiency, notice that x2(k) → W 22

∗ ⊗ C∗u2 as k → ∞ (where
we put W∗ = 0 when C∗ = 0, and thus (24) follows from the
equation

x1(k + 1) = [Λ11W 11 ⊗ C]x1(k) + [Λ11W 12 ⊗ C]x2(k)

+ [I − Λ11] ⊗ Im u1

where Λ11W 11 ⊗ C is Schur stable. �
To proceed with the proof of Theorem 4, we need some extra

notation. As for the scalar opinion case in [21], [22] the gossip-
based protocol (28), (26) shapes into

x(k + 1) = P (k)x(k) + B(k)u (41)

where P (k), B(k) are independent identically distributed (i.i.d.)
random matrices. If arc (i, j) is sampled, then P (k) = A(i,j ) and
B(k) = B(i,j ) , where by definition

P (i,j ) =
(
Imn − (γ1

ij + γ2
ij )eie

�
i ⊗ Im + γ1

ij eie
�
j ⊗ C

)
,

B(i,j ) = γ2
ij eie

�
i ⊗ Im .

Denoting α := |E|−1 ∈ (0, 1] and noticing that EP (k) =
α
∑

(i,j )∈E P (i,j ) and EB(k) = α
∑

(i,j )∈E B(i,j ) , the follow-
ing equalities are easily obtained:

EP (k) = Imn − α [Imn − ΛW ⊗ C]

EB(k) = α(In − Λ) ⊗ Im . (42)

Proof of Theorem 4: As implied by (41) and (42), the opin-
ion dynamics obeys the equation

x(k + 1) = P (k)x(k) + v(k), (43)

where the matrices P (k) and vectors v(k) are i.i.d. and their
finite first moments are given by the following

EP (k) = (1 − α)I + αΛW ⊗ C, Ev(k) = α(In − Λ) ⊗ Im u

where α ∈ (0; 1]. Since P (k) are non-negative, Theorem 1 from
[22] is applicable to (43), entailing that the process x(k) is
almost sure ergodic and Ex(k) → x∗ as k → ∞, where

x∗ = [I − ΛW ⊗ C]−1 [(In − Λ) ⊗ Im ]u = x′
C .

To prove the Lp -ergodicity, notice that x(k) and x̄(k) remain
bounded due to Remark 1, and hence E‖x̄(k) − x∗‖p → 0
thanks to the Dominated Convergence Theorem [54]. �

Remark 7. (Convergence Rate): For the case of p = 2
(mean-square ergodicity) there is an elegant estimate for the con-
vergence rate [21], [27]: E‖x̄(k) − x∗‖2 ≤ χ/(k + 1), where χ
depends on the spectral radius ρ(ΛW ) and the vector of preju-
dices u. An analogous estimate can be proved for the multidi-
mensional gossip algorithm (28), (26).

Remark 8. (Relaxation of the Stochasticity Condition): As
can be seen from the proof, Theorem 4 retains its validity for
substochastic matrices, since they are non-negative and provide
boundedness of the solutions. Furthermore, the proof of almost
sure ergodicity does not rely on the solutions’ boundedness
and hence is preserved whenever C is non-negative and
ρ(C)ρ(ΛW ) < 1. A closer examination of the proof of [22,
Theorem 1] shows that it can be extended to the case where
P (k) with negative entries. The non-negativity of C can thus
be relaxed, however, this relaxation is beyond the scope of this
paper.

X. CONCLUSION

In this paper, we propose a novel model of opinion dynamics
in a social network with static topology. Our model is a sig-
nificant extension of the classical Friedkin-Johnsen model [15]
to the case where agents’ opinions on two or more interdepen-
dent topics are being influenced. The extension is natural if the
agents are communicating on several “logically” related topics.
In the sociological literature, an interdependent set of attitudes
and beliefs on multiple issues is referred to as an ideological
or belief system [38]. A specification of the interpersonal influ-
ence mechanisms and networks that contribute to the formation
of ideological-belief systems has remained an open problem.

We establish necessary and sufficient conditions for the stabil-
ity of our model and its convergence, which means that opinions
converge to finite limit values for any initial conditions. We also
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address the problem of identification of the multi-issue interde-
pendence structure. Although our model requires the agents to
communicate synchronously, we show that the same final opin-
ions can be reached by use of a decentralized and asynchronous
gossip-based protocol.

Several potential topics of future research are concerned with
experimental validation of our models for large sets of data and
investigation of their system-theoretic properties such as e.g.
robustness and controllability. An important open problem is the
stability of an extension of the model (17), where the agents’
MiDS matrices are heterogeneous. A numerical analysis of a
system with two different MiDS matrices is available in our
recent paper [55], further developing the theory of logically
constrained belief systems formation.

APPENDIX

STOCHASTIC REGULAR MATRICES

We state a spectral criterion for regularity.
Lemma 5. [44, Ch.XIII, Section 7]: A row-stochastic square

matrix A is regular if and only if det(λI − A) �= 0 whenever
λ �= 1 and |λ| = 1; in other words, all eigenvalues of A except
for 1 lie strictly inside the unit circle. A regular matrix is fully
regular if and only if 1 is a simple eigenvalue, i.e. 1d is the only
eigenvector at 1 up to rescaling: Az = z ⇒ z = c1d , c ∈ R.

In the case of irreducible [44] matrix A regularity and full
regularity are both equivalent to the property called primitivity,
i.e. strict positivity of the matrix Am for some m ≥ 0 which
implies that all states of the irreducible Markov chain, gen-
erated by A, are aperiodic [44]. Lemma 5 also gives a geo-
metric interpretation of the matrix A∗. Let the spectrum of A
be λ1 = 1, λ2 , . . . , λd , where |λj | < 1 as j > 1. Then Rd can
be decomposed into a direct sum of invariant root subspaces

Rd =
d⊕

j=1
Lj , corresponding to the eigenvalues λj . Moreover,

the algebraic and geometric multiplicities of λ1 = 1 always
coincide [44, Ch.XIII, Section 6], so L1 consists of eigenvec-
tors. Therefore, the restrictions Aj = A|Lj

of A onto Lj are
Schur stable for j > 1, whereas A1 is the identity operator.
Considering a decomposition of an arbitrary vector v =

∑
j vj ,

where vj ∈ Lj , one has Akv1 = v1 and Akvj → 0 as k → ∞
for any j > 1. Therefore, the operator A∗ : v �→ v1 is simply the
projector onto the subspace L1 .

As a consequence, we now can easily obtain the equal-
ity (12). Indeed, taking a decomposition v = v1 + . . . + vd ,
one easily notices that (I − αA)−1v1 = (1 − α)−1v1 and (I −
αA)−1vi → (I − Ai)−1vi as α → 1 for any i > 1. Hence,
lim
α→1

(I − αA)−1(1 − α)v = v1 = A∗v, which proves (12).
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