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Tech. Report 91-60 
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Abstract 

If a configuration of m triangles in the plane has only n points as 
vertices, then there must be a set of 

max { 
I m/(2n - 5)1 

D(m3 /(n6 log2 n)) 

triangles having a common intersection. As a consequence the number 
of halving planes for a three-dimensional point set is 0( n813 log213 n). 
For all m and n there exist configurations of triangles in which the 
largest common intersection involves 

{ 
I m/(2n - 5)1 

max O(m2 /n3) 

triangles; the upper and lower bounds match form= O(n2). The be~t 
previous bounds were D(m3 /(n 6 log5 n)) for intersecting triangles, and 
O(n813 log513 n) for halving planes. 
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1 Introduction 

Suppose we have a set of triangles which share many of their corners. If 
there are n corners, and more than 2n triangles, then the graph of triangle 
edges must not be planar and so some two triangles must overlap. 

A recent paper of Aranov et al. [1] generalized this observation. Suppose 
some m triangles again share n corners. The result proved in that paper was 
that some set of !1(m3/(n6 log5 n)) triangles have a common intersection. In 
other words, some point in the plane is covered by the interiors of that many 
triangles. As a consequence, the number of k-sets of a three-dimensional 
point set (i.e. the number of ways the point set can be divided by a plane 
into subsets of k and n - k points) can be bounded by 0( n813.1og513 n ). 

There are several shortcomings with this result. First, it d~es not match 
the case m = 2n that we started with: the first overlap is detected when 
m = !1(n2 log513 n). Second, the exponent on the log seems too large to be 
true. And third, there is no indication how tight these bounds might be. 

In this note we attempt to address these shortcomings. We show that 
the number of triangles that must have a common intersection is exactly 
I m/(2n - 5)1 for m = O(n2

), and O(m/n + m 2 /n3
) in general. We also 

slightly improve the general lower bound, to !l(m/n + m3 /(n6 log2 n)). 
Our new lower bound reduces the number oflogarithmic factors for large 

m from five to two, and our upper bound indicates how far this technique 
can go in proving bounds on k-sets. If we could prove an !1(m2 /n3 ) bound 
for intersecting triangles, the number of three-dimensional k-sets would then 
be O(n512), which essentially matches the best known bounds for the two­
dimensional k-set problem [3]. Further improvements could not be based on 
intersecting triangles, and would also improve the planar k-set ·bounds. 

2 Tight bounds for small m 

We first consider m = O(n2), and show tight bounds for the number of 
overlapping triangles in this case. Our first bound holds for all m. 

Theorem 1. For any confl.guiation of m triangles with n corners, there is 
a set of I m/2n l triangles that has a common intersection. 

Proof: The inside angles of a single triangle add up to 1r. Therefore all 
angles add to m7r, so for some corner x the angles add to at least m7r /n. The 
total angle around x is 27r, so the weighted average of the overlap number 
around x is m/2n; the maximum overlap is then at least that average. D 
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Figure 1. Upper bound construction: two of six fans in G4 for n = 27. 

We now give an upper bound on the size of the largest intersection that, 
form= O(n2 ), matches the lower bound above to first order. 

Theorem 2. For any n and m with m < n 2 / 3 - 0 ( n); there is a configura­
tion of m triangles with n corners, in which the largest common intersection 
involves Im/ (2n - 10)1 triangles. 

Proof: Assume for the moment that n is a multiple of 3. We place n/3 
points on each of three rays with a common center point. The rays are 
curved slightly in a "S"-shape. Let the points be labeled Xi, Yi, and Zi, 

where smaller indices denote points closer to the center point, and where 
the names of the rays are chosen so that the points Xi near the center are 
concave towards Zi, and convex towards Yii this is reversed for points near 
the ends of the rays, on the other half of the "S". We then form a sequence 
of planar graphs Gk as follows. Figure 1 depicts part of G4 for n = 27. 

Gk will have 3-way rotational symmetry, so we only describe the edges 
connecting points Xi· Let k' = ( n/3)- k + 1; we assume k s; k'. All points Xi 

are connected to Xi-l and Xi+l · Point x k is connected to all {Xi, i < k} and 
all {Yi,i::; k'}. Point Xk' is connected to all {xi,i > k'} and all {zi,i ~ k}. 
In other words we form two fans, emanating from points Xk and Xk'· 
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Each Gk is planar, and has 2n - 6 triangular faces, none of which occur 
in any other graph G j. If we choose some value x, and take the set of 
triangles in all Gk for k ~ x, the maximum intersection size will be x. The 
number of triangles is (2n - 6)x. So form triangles, we achieve intersection 
size r m/(2n - 6)1. If n was not a multiple of 3, we ignore at most two 
points, giving a bound of I m/(2n - 10)l This construction works as long 
as x ~ n/6, i.e. m ~ n2 /3 - O(n). D 

Both bounds can be made to match exactly. In the lower bound, at least 
three corners are on the convex hull. If only three such vertices exist, they 
form a triangle, and can only meet other triangles within a total angle less 
than 7r. If four or more such vertices exist, the situation is even better. So 
the total bound is I m/(2n - 5)1. In the Upper bound, We first merge X1, 

y1 , and z1 into a common center point, saving two points but losing three 
triangles. If n -/= 1 mod 3, we simply add a point to one or two of the rays; 
this does not cause any difficulty in triangulation and only changes the 0 ( n) 
term in the restriction m < n 2 /3 - 0( n ). Again the bound is I m/(2n - 5)l 

The techniques used in Theorem 1 also lead to a novel proof of the Euler 
characteristic formula V + F - E = 2, for planar straight line graphs. By 
the Fary embedding theorem (e.g. see [4]) this can be extended to arbitrary 
planar graphs, matching the generality of the usual proof of Euler's formula. 

3 Upper bounds for large m 

In the previous section we proved an upper bound of 0( m/ n) on the inter­
section size, but our construction only worked for m = O(n2). We extend 
this to a bound for all values of m, by giving a different construction with 
intersection size O(m2 /n3 ) when m = D(n2 ). Therefore the intersection size 
is always O(m/n + m 2 /n3

). 

As a consequence, 0( n512 ) is the best bound on the number of 3-dimen­
sional k-sets that could possibly be proved using the intersecting triangle 
method. Such a bound would essentially match the best known bound on 
the number of planar k-sets [3]. 

Our proof is based on the following: 

Lemma 1 (Aronov et al. [1]). For any n and m = f!(n), there exists a 
set of m intervals on the real line, sharing n endpoints, such that at most 
O(m2/n2 ) intervals have a common intersection. 

Proof: Choose those intervals containing fewer than O(m/n) points. D 
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This result is tight: Aronov et al. prove that for any such set of intervals, 
there is a subset of f!(m 2/n2) having a point of common intersection. 

Theorem 3. For any n points in the plane, and any m = f!(n 2), there 
exist sets of m triangles having the points as corners, such that at most 
O(m2 /n3 ) triangles have a common intersection. 

Proof: Partition the points into two sets A and B of n/2 points each. For 
each point x in A, we consider the points of B in sorted order around x, 
and form 2m / n triangles by connecting x with pairs of points in B corre­
sponding to the intervals in Lemma 1. These triangles have largest common 
intersection size 0((2m/ri)2 /(n/2)2

) = O(m2/n4
). Therefore the union of 

the n/2 sets of triangles has largest common intersection 0( m2 / n3 ). D 

4 Lower bounds for large m 

We finally modify the bound of Aronov et al. [1 J to have fewer logarithmic 
factors. We first outline the method of Aronov et al., as our bound is a 
simple modification of theirs. The method is best expressed as an algorithm 
performing the following steps: 

1. For each triangle, let the long edge be the one with longest projection 
onto a horizontal line. For each possible edge e, count the number of 
triangles for which e is the long edge. 

2. Find a subset T of the triangles and a number y, such that each long 
edges is the long edge for 8(y) triangles. If there are x long edges, 
there are then xy = Em triangles in T. In (1), this step is done by 
dividing the long edges into O(log n) buckets according to the number 
of triangles they touch; some bucket must have m / 0 (log n) triangles, 
so here E = 1/ O(log n). 

3. For each long edge, form y2 quadrilaterals by pairing up each triangle. 
O(xy2 ) quadrilaterals are formed. 

4. Project onto a horizontal line the intervals formed by the middle two 
vertices of each quadrilateral (some intervals will be formed by more 
than one quadrilateral). Using weighted interval selection (see [1]) find 
a subset of intervals all containing some common point v. As shown 
in [1], this can be done so that, if z denotes the number of intervals and 
w denotes the number of interval endpoints, z/w = n(xy2/(nlogn)). 
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5. Reverse the projection, turning v into a vertical line cutting between 
the middle points of z quadrilaterals. For each cut quadrilateral, define 
an interval on v, defined by the lines connecting the two middle points 
with the two opposite outside points. There are z intervals, having a 
total of 0 ( wn) endpoints. 

6. Using unweighted interval selection [1] find a point pin fl(z2/(wn) 2) 

intervals, and hence that many quadrilaterals. 

7. Each triangle contributes to at most y quadrilaterals. So the number 
of triangles containing pis 

fl(z 2 
/(( wn) 2y) n ((z/w)2/(n2y)) 

n ((xy 2/(nlogn)) 2 /(n2y)) 

n ((xy) 3 /(xn4 log2 n)) 

n ((cm)3 /(xn4 log2 n)) 

For the choices described in step 2, x = 0( n2
), E = 1/0(log n ), and 

the total bound is fl(m3 /n6 log5 n). 

As hinted above, we improve the bound by modifying the selection of 
long edges touching many triangles performed in step 2. 

Theorem 4. For any confi.guration of m triangles with n corners, there is 
a set offl(m3/n6 log2 n) triangles that has a common intersection. 

Proof: We find a set of x long edges, touching E>(y) triangles each, so that 
if xy =Em, then x/E3 = O(n2). This can be done as follows. 

We divide the long edges into 0 (log n) buckets as before. Bucket 0 
contains the edges touching between 1 and 4 triangles. Bucket 1 contains 
the edges touching between 4 and 16 triangles. And in general bucket i 
contains the edges touching between 4i and 4i+l triangles. 

Then if there are at least m/2 triangles in bucket O, we choose that 
bucket. If there are at least m/4 triangles in bucket 1, we choose that 
bucket. In general, we choose bucket i if there are at least m/2i+1 triangles 
having long edges in that bucket. The sum of all these bounds is simply m, 
so some bucket must have the desired number of points. 

Therefore we can find a bucket containing long edges touching between 4i 
and 4i+l triangles each, with at least m/2i+i triangles total. So E = l/2i+1 , 

and x = mE/y = O(m/8i), from which it follows that x/E3 = O(n2). D 
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5 Conclusions 

We have demonstrated bounds on the common intersections of m triangles 
sharing n corners, ofO(m/n+m2 /n3

) and fl(m/n+m3 /(n6 log2 n)). This is 
tight form= O(n2), but leaves open the question of finding a tight bound for 
m = fl(n 2 ). Logical candidates for such a bound are 8(m/n + m2 /n3 ) and 
8(m/n + m3 /n6 ). The former seems more likely, for the following reason. 
For small m the true bound is I m/(2n - 5)1, because we can cover the point 
set with a collection of maximal planar graphs, no two graphs using the 
same triangle. But this only works for m = 0( n 2), because we run out of 
triangles touching any given convex hull edge and can no longer find a new 
maximal planar graph. So something happens at m = 8(n2). If the bound 
were 8(m/n+ m3 /n6 ), there would be another breakpoint at m = 0(n512

). 

So the former hypothesis involves fewer breakpoints than the latter. 
We note that the proof of Theorem 4 works for a slightly more general 

situation in which the triangles may have curved sides that are portions of an 
arrangement of pseudo-lines (curves intersecting at most once per pair). In 
this case horizontal and vertical are defined relative to a topological sweep of 
the pseudo-line arrangement [2]. However Theorem 1 is proved using angles, 
which do not behave as well for pseudo-lines as they do for lines. Can we 
extend Theorem 1 to pseudo-lines? Or is this an example of a fundamental 
difference between lines and pseudo-lines? 
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