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EPIGRAPH

In order to understand the world,

one has to turn away from it on occasion.

—Albert Camus
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ABSTRACT OF THE DISSERTATION

Topics in Supersymmetry and Supersymmetry Breaking

by

Matthew C. Sudano

Doctor of Philosophy in Physics

University of California San Diego, 2009

Professor Kenneth Intriligator, Chair

There are two basic topics investigated is this dissertation. The first has to

do with the symmetries of superconformal field theories (SCFTs). A general con-

straint that, in principle, determines the superconformal U(1)R symmetry of 4d

N = 1 SCFTs and 3d N = 2 SCFTs is identified. Among all possibilities, the

superconformal U(1)R is that which minimizes the coefficient, τRR, of its two-

point function. For 4d N = 1 SCFTs, τRR-minimization gives an alternative to

a-maximization. τRR-minimization also applies in 3d, where no condition for de-

termining the superconformal U(1)R had been known.

The second general topic discussed is supersymmetry breaking. Three chapters

are devoted to this topic. In the first, the gauge sector of ordinary gauge mediation

is generalized. The two-loop calculation of sfermion masses is generalized to allow

for an arbitrary gauge group with an arbitrary supersymmetric Higgsing. The

generic effect on the MSSM spectrum from additional Higgsed gauge structure is

to increase the sfermion masses relative to the gaugino masses.

The subsequent chapter deals with “general gauge mediation,” in which the

hidden-sector effects are expressed in terms of current two-point functions. The

previously discussed generalization of the gauge sector to allow for Higgsing is com-

puted in this formalism. The effective potential for squark pseudo-D-flat directions

is also given. This reduces to the sfermion soft masses near the origin, and the full

potential, away from the origin, can be useful for cosmological applications. The
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results are then analyzed in the limit of small supersymmetry breaking.

In the final chapter, pseudomoduli, which determine whether or not supersym-

metry is broken, are studied. Types of pseudomoduli that arise when supersym-

metry is dynamically broken in infrared-free low-energy theories are classified. It is

shown that, even if the pseudomoduli potential is generated at higher loops, there

is a regime where the potential can be determined from one-loop running data. In

this regime, we compute whether the potential for various types of pseudomoduli

is safe, has a dangerous runaway to the UV cutoff, or is incalculable.
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Chapter 1

Introduction

In this chapter, I attempt to provide context for the work contained in the

following chapters and background material for the lay-reader. Those who already

know basic particle physics should skip to Section 1.2. Specialists should skip this

introduction altogether.

1.1 The Basics

We do not fully understand how the universe works, and it is entirely possible

that we never will. I find it encouraging, however, to think of the extraordinary

range of phenomena that are described by a simple set of ideas. Before we discuss

some of the mysteries that remain, and how the work in this dissertation fits in

with the attempts to resolve them, it’s worth taking stock of our successes.

A convenient way to summarize our current understanding is in terms of a

set of basic building blocks (particles) and a set of rules for how they interact

(forces). Depending on how you count, we know of about ten types of fundamental

particles and four fundamental forces. That’s it! Not surprisingly, gravity was the

first force given a mathematical formulation. It’s easy to take for granted, but

of all the humans who have walked the Earth, only a tiny fraction have known

that a common impetus is at work in the falling of objects, the ocean tides, and

the relative motion of all celestial bodies. With Einstein’s improvements upon

the original theory of Newton, every gravitational experiment has been found to

1
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agree with the theoretical predictions. Despite its successes, gravity remains the

most mysterious of the forces. It is not known how gravity works when quantum

mechanics is taken into account. The good news is that gravity is so weak that

we’ve never needed to know how it works beyond the classical level. The bad news

is that gravity is so weak that it’s so far been impossible to probe beyond the

classical level. Gravity doesn’t play a central role in this dissertation, so I won’t

discuss it further here.

The next most familiar force is electromagnetism. Of course, it is not remotely

obvious that there is a common origin for static cling and the affinity between a

magnet and your refrigerator. That was a major breakthrough, which I’ll touch on

later. Perhaps more surprising is that light is also an electromagnetic phenomenon.

And light gets us more than you might think because it looks quite different de-

pending on its energy. This is true both literally and figuratively. Our eyes are able

to detect a range of light energies, and it interprets them as colors. More-extreme

energy ranges give us x-rays, microwaves, radiowaves, infrared radiation, and much

more. Almost all technology can be given a precise mathematical formulation that

is derived from the classical theory of electromagnetism and more basic physics.

Armed with our theory of gravity and the quantum theory of electromagnetism,

there are very few things that you or I will ever experience that can’t be addressed.

This is because quantum mechanics and electromagnetism are all we need to have

an excellent quantitative understanding of atoms and how they interact. So, for

example, we can explain how atoms stick together to form molecules, which stick

together to form things like the chair I’m sitting in as I write this. Remarkably,

we don’t need anything new to explain all sorts of seemingly unrelated and exotic

chemical reactions.

I want to conclude by listing a few things that we do not get from gravity and

electromagnetism. One major piece of our world due to novel phenomena is the

nucleus of the atom. For most practical applications, the details of the nucleus are

completely irrelevant. It’s only upon peering deep into the atom, that one finds

a fascinating substructure that requires an explanation. It proves to be a new

force and new fundamental particles at work. This nuclear force, known as the
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strong force, is our third. The effects of the fourth force, known as the weak force,

were first seen in a particular form of radioactivity. We will discuss some physics

associated with weak interactions in more detail shortly. But there are still a few

basic ingredients that have been neglected.

I mentioned quantum mechanics as a necessary element in describing atoms

without explaining what quantum mechanics is. It stands out from the discussion

so far as the only principle that I have named. Unlike forces, which act differ-

ently between different particles, quantum mechanics is a set of rules that apply

universally1. The conservation of energy and momentum are more-familiar princi-

ples. The fact that the total energy and momentum of any isolated system doesn’t

change are integral in understanding a plethora of both macroscopic and micro-

scopic phenomena. What’s exciting about the conservation principles is that their

origin is understood in terms of something more basic: symmetry. In fact, as we

will discuss in the next subsection, the forces and particles also arise naturally

from symmetries.

1.1.1 Introduction to Symmetries

Within the force paradigm, the particles can be organized into a bunch of

“matter” particles, and a few special particles that “mediate” the force between

them. There’s a nice analogy for how this works. Imagine floating in space2 with a

fellow astronaut; let’s call her Jane. You and Jane are both stationary, only a few

yards apart. You might think that you could swim toward or away from her, but

without any air molecules to push off of, there’s no hope. What you can do is take

the wrench off of your tool belt and throw it to your comrade. When you release it,

you sail backwards (think of the recoil from a gun), and when Jane catches it, she

gets pushed away from you. By exchanging this wrench, you and your friend have

been repelled from one another. Similarly people talk about the repulsive force

1As I mentioned before, we still have the embarrassing issue of gravity, which we do not yet
know how to reconcile with quantum mechanics.

2Older versions of this analogy tend to involve skidding on ice, but you need more qualifying
statements to make that work. I typically instruct students to, “Assume everything necessary
for this to make sense,” but that doesn’t seem appropriate here, so I’m going to ask the reader
to imagine being in space, where things are simpler.
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between electrons as arising though an exchange of photons (particles of light).

There are several problems with this analogy. One obvious shortcoming is that

it doesn’t seem to have anything to say about attractive forces. If you’re clever,

you can patch up some of the issues. For example, you can put the astronauts in a

non-trivial space so that you can throw the wrench away from Jane, have it wrap

abound the universe, and hit her in the back. To get at the more fundamental

question of what particles and forces really are, however, a new paradigm is needed.

This brings us to symmetries. In the analogy, the important piece of physics that

we implicitly used was the conservation of momentum. So why is momentum

conserved? Surprisingly, this turns out to be a consequence of the obvious fact

that none of our conclusions would have changed if we had placed our astronauts

a couple of parsecs to the left or right. Symmetry under translations implies the

conservation of momentum.

Symmetry is the cornerstone of modern theoretical physics. Though we don’t

know exactly why we have the symmetries that we have, we know that we can

basically get all of physics by proclaiming them to be true; what we see in nature

is then everything that is allowed by the symmetries. In fact, you need some rules

besides “what is is what can be”, and there are still some things that aren’t fixed by

the rules and symmetries that we know about, but it seems to be a pretty powerful

concept, so it’s worth spending some time to understand more about symmetry.

Intuitively we have some sense of what a symmetry is, but it’s useful to start with

a simple example to give a sense for how physicists deal with symmetries.

Consider a reflection symmetry. Lots of things are approximately symmetric

under reflection. Most people, for example, don’t look very different from their

mirror images. When considering symmetries, it’s useful to identify the transfor-

mations associated with them and the objects on which these transformations act.

In our example, we say that the object (a person) is reflection symmetric if it

looks the same after applying the reflection transformation (exchanging left and

right). We can also understand the math associated with this example. Given a

function of x, we can say that it is invariant under reflection if it doesn’t change

when we make the transformation, x → −x. An example of such a function is
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x

y = -x2
+x4

Figure 1.1: This function has the property that it is invariant under reflection
through the vertical axis.

y = −x2 + x4 = −(−x)2 + (−x)4, see Figure 1.1. This is a physically relevant

example that I’ll discuss more later, but this sort of symmetry is among the least

interesting.

There are two types of symmetries that are more interesting and important.

The first is a gauge symmetry. The gauge symmetry determines the form of the

interactions among particles – basically the gauge symmetry defines the force.

There’s much more that I could write, but it’s the other sort of symmetry, one

of space-time, that is central to what follows, so I’ll leave it at that for now.

The basic space-time symmetries are associated with transformations of where

something is, how it’s moving, or how it’s oriented. I mentioned earlier that you

get conservation of momentum when it doesn’t matter where you are. Similarly, if

it doesn’t matter when something happens (symmetry under time translations) you

get conservation of energy. The equivalence of electric and magnetic phenomena

is also a consequence of a space-time symmetry.

Space-time symmetries also tell us what sorts of particles we can have. It turns

out that we can make sense of five types of particles3, which are described as having

spin 0, 1/2, 1, 3/2, or 2. The reasons for calling it “spin” and for the choice of

numbering scheme aren’t important. What’s important is that these particles have

very different properties. In fact, the particles with integer spin (0, 1, . . . ) and

3Earlier I referred to ten types of particles. There I was grouping them by how they transform
under gauge transformations. Here I’m grouping them by how they transform under Lorentz
(space-time) transformations.
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those with non-integer spin (1/2, 3/2, . . . ) are so different from each other that

these two groups have special names; the former are called bosons and the latter

are called fermions. So far, the particles that we have detected and believe to be

fundamental all have either spin 1/2 (the matter particles from above) or spin 1

(the force mediators)4.

1.1.2 Introduction to Supersymmetry

Supersymmetry is a peculiar form of space-time symmetry. A convenient way to

think of it is in terms of an expansion of space-time to include a set of “fermionic”

coordinates (θ1, θ2, θ̄1, θ̄2) to go along with the ordinary “bosonic” ones (t, x, y, z).

Mathematically, being fermionic means that there is a sign change when one of

these things is moved passed another, θ1θ2 = −θ2θ1. For ordinary numbers, this is

only true if both sides of this equation are zero. These are not ordinary numbers.

While hard to interpret physically, at the end of the day, the theories that we build

out of them look essentially like ordinary non-supersymmetric theories. The basic

difference is that there are tighter constraints on the parameters in the theory, like

particle masses, and on what particles are present. We shouldn’t be surprised that

the particle types are affected because we already know that space-time symmetries

govern what sorts of particles there can be. In fact, this is manifest if we think

about supersymmetry in another way, which I’ll describe now.

It’s important to understand what the transformation associated with this

symmetry is. I went to the trouble of introducing the terminology, “boson” and

“fermion,” just for this purpose. The remarkable thing about supersymmetry is

that the transformation defining it takes bosons into fermions and vice versa. This

predicts, for example, that in addition to the electron (spin 1/2), there should be

a “selectron” (spin 0) that transforms in the same way under gauge transforma-

tions. We have not observed this partner particle. In fact, we have not observed

the supersymmetric partner of any of the known particles, so we have to ask why

we think this might be a symmetry of the real world.

4The mediator of the gravitational force, the graviton, is a spin 2 particle, but this is not yet
an experimental fact, and I’m not supposed to be discussing gravity, so let’s not worry about
this.
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In fact, if we stick to the paradigm that nature is simply what is allowed, we

should be asking why we can’t have supersymmetry. There’s actually a theorem

[1] that makes some conservative assumptions5 and concludes that the only sorts

of symmetries that we can have are the ones we know about and supersymmetry.

This is enough to warrant careful study of supersymmetric field theories, but it

does not give a reason to expect any sign of supersymmetry at an accessible energy

scale. This is the subject of the next subsection.

1.1.3 Low-energy Physics and Supersymmetry

I doubt we would have made any progress in physics if it weren’t for the simple

fact that we don’t need to know everything to know something. We’ve already

discussed an example of this: the atom. The details of the nucleus aren’t important

for ordinary processes, that is, processes that don’t penetrate deep into the atom6.

This is why we were taught in chemistry just to look at the outermost electrons;

the issue of exactly what the extremely tiny lump of matter at the center of the

atom is, while important and fascinating, can be set aside while you’re trying to

figure out why salt forms pretty crystals. Similarly, it doesn’t matter that billiard

balls are made of atoms if you just want to know how they will bounce off of each

other. It’s good enough just to know the net masses and that the balls are pretty

close to being spherical and rigid.

The Standard Model of particle physics, the most fundamental and successful

physical theory in history, is a lot like this. We have a fantastic description of the

world up to the energies so far accessed in particle colliders, but we know it fails at

some scale. I already told you that it doesn’t do gravity. That’s a serious issue, but

it’s probably not the first one we’ll have to deal with. Keep in mind that the only

reason we feel the effects of gravity is because we’re stuck to a giant rock made up

5The assumptions have to do with large scale scattering properties, the mass spectrum, and
a bit of group theory. It’s healthy to be skeptical of theorems written by physicists. The original
version, which predates supersymmetry, did not include supersymmetry (graded Lie algebras
were not considered). In any case, if there’s still a loophole, it will only expand the possibilities.
Supersymmetry is definitely OK.

6This might be intuitively obvious if the schematic drawing of the atom that we saw in
elementary school had been drawn to scale. It’s understandable why it wasn’t, though; the atom
would be roughly the size of the whole school if the nucleus were the size of the tip of a pencil.
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of something like 1050 atoms all pulling on us; it’s actually an extremely weak force,

so in interactions among small numbers of particles, gravity is negligible. To see its

effects in a particle physics experiment, we would have to be able to differentiate

length scales on the order of about 10−35 meters. To get a sense for what this

means, suppose I were to stretch all of my length scales, so the gravity scale is just

visible, about 1 millimeter. In these rescaled units, our best experiments to date

would be on the order of the diameter of the solar system. We aren’t close, so it

would be surprising if there were nothing interesting in the interval.

One reason to suspect that we need some new degrees of freedom before getting

to very high energy scales (or small length scales) is for the sake of unifying the

(non-gravitational) forces. The “constants” that parameterize the strength of these

forces vary with energy, and our measurements to date indicate that, though they

are quite different at low energies, extrapolating to higher energies shows that

they nearly meet. If we redo the calculation, putting in supersymmetry partner

particles like the selectron, we can do much better. We should make clear that

there isn’t a lot of freedom in how you do this, it could easily have turned out that

supersymmetry makes things worse.

Another unappealing feature of the Standard Model is the so-called “hierarchy

problem”. The basic issue is that we have experimentally detected an important

energy scale and we don’t know what sets it. This is known as the weak scale

because it’s related to the weak force, which I mentioned earlier. We understand

the origin of the nuclear scale, and we have a much higher scale associated with

gravity that is fundamental, but the weak scale seems to be arbitrary. Another

disturbing aspect of this problem is that the input scale seems to be tremendously

different from the physically relevant output scale. It’s as if someone had won

$65,798,970 in the lottery to bring their net worth to $100. It’s easy to explain;

they were $65,798,870 in debt. But it makes you wonder if there’s actually some

sort of conspiracy here. The Standard Model seems to exhibit a coincidence of

this sort. It could be that there really is a cancellation like this, but since it

is unknown small-scale physics that determines the size of the debt (and thus

the jackpot), there is a lot of effort being put into developing extensions of the
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Standard Model that do not have this aesthetic deficiency. Supersymmetry is a

popular component of such attempts because in supersymmetry, you’re born poor

and you die poor. The theory doesn’t produce large corrections to the input value.

The issue of initially setting the scale (why $100?) requires some more effort, but

supersymmetry seems well-suited to address this issue as well.

I’ll conclude this subsection by reminding the reader that experiment has the

last word. The aesthetic issues are annoying and they may be important clues,

but they don’t demand new physics. Until the Standard Model fails to accurately

predict the result of an experiment, it reigns as king. What makes this such

an exciting time to be a physicist is that there appears to be strong evidence of

something new. Astrophysical observations indicate that most of the mass in the

universe belongs to something we call dark matter. For several years, evidence has

been mounting that dark matter is real, it is made up of particles, and it is largely

comprised of stuff not included in the Standard Model. Supersymmetry naturally

contains particles with the strange properties inferred about dark matter.

The goal of this subsection was not to convince you that supersymmetry is real

and is going to solve all of the mysteries of the universe. The goals were to point

out that we don’t yet know everything, to give a sample of some of the problems

that people are worried about, and to provide a taste of why supersymmetry is

so prevalent among models of new physics. In the work to be presented, you will

not find attention paid to any particular model. Nor will you find any detailed

phenomenological analysis. Instead, an effort is made to understand some of the

more general aspects of the dynamics of supersymmetry, supersymmetry breaking,

and how it might affect low-energy physics. In the next section, some more details

of the specific issues relevant to this dissertation are discussed, and the basic results

obtained are summarized.
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1.2 Outline

1.2.1 Exact Results in Superconformal Theories

Chapter 2 has to do with the dynamics of supersymmetric field theories. I men-

tioned previously the curious fact that the coupling constants of a theory vary with

energy scale. You can measure the charge of the electron, for example, by shooting

electrons and positrons together and measuring the properties of the electrons and

positrons that come out. It has been found (see [2], for example, and references

therein) that the result varies – exactly as predicted by the theory – depending on

how fast the beams of particles are going relative to one another when they collide.

In fact, in a general theory, several things vary as the scale is varied. Understanding

this evolution is necessary for extracting accurate predictions from theories, but

it has also consistently played a central role in illuminating important conceptual

issues. The stand-out example is the discovery of the last major theoretical piece

of the Standard Model. A particular model attempting to explain the nature of

the strong force was brought to the forefront with the discovery that its coupling

constant grows large at short distances and weak at large distances [3, 4]. This

model explains the strong force, the tremendously strong force holding the nucleus

together that is utterly negligible far from the nucleus. Supersymmetry has proved

to be a rich and fascinating playground for studying dynamical phenomena like

this.

One of the advantages of studying supersymmetric theories is that they can,

on occasion, provide non-trivial exact results. In the following chapter, we further

specialize our study to superconformal theories; in these theories, all evolution

has ceased. This may seem contrary to the goal of understanding the dynamics

of theories, but much can be learned because a general theory can be viewed as

a perturbed conformal theory, which evolves into a different conformal theory as

we go low energies. The precise problem addressed here is that of determining

the exact superconformal R-symmetry. This symmetry is particularly interesting

because it gives exact formulas for some of the most basic and useful data of a

theory, the dimensions of operators.
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You might wonder how it is that a symmetry could hide. The problem arises

when there are additional symmetries with which the R-symmetry can mix. An-

other bad analogy is in order. Imagine a croquet ball. In case you aren’t familiar

with croquet balls, I’ll describe the features vital to the analogy. First, they are

spherical. Less well-known but equally important for us is the fact that they tend

to be striped so that there is exactly one axis of rotational symmetry. If we ignore

the stripes, we can rotate about any axis through the origin of the ball without

changing things. If we choose a set of three independent axes without looking at

the stripes, odds are we won’t have chosen the magical axis but it will be given by

a linear combination of our axes. Until recently, it was only known that the stripes

existed; a method for determining where they are on the ball was not known.

In the next chapter, a new constraint that determines this symmetry will be

presented. This new constraint has the advantages that it is not restricted to

four dimensions, as the original method [5] is, and it gives a dual description of

a method developed in a supergravity theory [6]. Unfortunately, it would take us

too far afield to give a proper discussion of this duality (see [7] for a review). In a

sentence, it has been found that certain manifestations of string theory in a certain

limit are exactly equivalent to certain manifestations of ordinary field theory in a

certain limit. It is highly nontrivial that you can calculate quantities in a theory

involving gravity and get the same answer that you get from a calculation in a

theory in fewer dimensions that does not include gravity. It is in the context of

this duality that this new method comes into its own. In practice, the method of

[5] is usually the more powerful alternative because it yields the exact result with

a minimal effort. The new method that will be presented here generally only gives

an approximation.

1.2.2 Exploring Gauge Mediation

The second part of the thesis has to do with broken supersymmetry. Super-

symmetry is known not to be a symmetry of the vacuum in which we live. If it

were, there would be a selectron, for example, with the same mass as the electron,

which we surely would have detected by now. This does not mean, however, that
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our universe does not descend from a supersymmetric theory. The idea is simple.

Take another look at Figure 1.1. Viewed in a mirror, it would look the same; it is

symmetric under reflection. Now imagine placing a ball on the peak in the center.

It’s intuitively clear that this is an unstable configuration; it’s still reflection sym-

metric, but it’s unstable. The ball is going to roll down to one of the valleys, and

once it does, the symmetry is going to be broken; left is now distinct from right.

This is an example of spontaneous symmetry breaking, and it is known to occur

in nature in a variety of contexts. It is believed that the state of our universe was

determined by essentially the same mechanism that determined the location of the

ball in our analogy.

Non-supersymmetric vacua arise naturally in supersymmetric theories. Unfor-

tunately, no one has ever found a very compelling supersymmetric model that leads

to the observed low-energy physics. It’s not difficult to write down a supersymmet-

ric extension of the Standard Model, but it’s very difficult to come up with one that

doesn’t have significant aesthetic deficiencies, which, in the absence of data, has

been the guiding principle. With or without aesthetic deficiencies, understanding

how such models would appear in data is an important problem to study. This is

the general topic of chapters 3 and 4. In particular, we’ll consider a broad class

of models characterized by how supersymmetry breaking is communicated to the

experimentally accessible particles, dubbed “the visible sector”.

Recall that when supersymmetry is unbroken, every particle has a partner with

the exact same mass. When supersymmetry is broken, the masses of some particles

change and this ceases to be true. These particles whose masses change are called

messengers because by interacting with other particles, they change the masses of

those particles, leading to further adulteration of these partnerships. The nature

of this process by which supersymmetry breaking is communicated to the visible

sector is a useful way of categorizing different classes of models. The class that we

will discuss is known as “gauge mediation”. In gauge mediation, the messengers

interact with the observable sector only through gauge interactions.

Much of the appeal of gauge mediation is due to the fact that experimental

constraints are rather easily evaded in this scenario. For example, there are certain
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meson mixing experiments that have given extremely precise results. A meson is

not a fundamental particle; it’s made out of quarks, which are the same things that

make up nuclei. The experiments of interest involve mesons with a certain quark

composition going in and mesons with a very different quark composition coming

out. These are known as “flavor changing” processes.7 In the standard model,

the probability of some of these rare events is found to be roughly proportional

to a difference of masses of two flavors of quarks divided by the weak scale; this

gives a small number. The problem that can arise in supersymmetric theories is

that in an analogous calculation with squarks, the partner particles of the quarks,

the weak scale in the denominator is no longer large compared to the masses in

the numerator. In other words, the squarks are much heavier than the quarks, so

the probability of these processes can be large, which would directly conflict with

experiment. In gauge mediation, we have a way out because the squarks get their

masses through gauge interactions; the ones that differ only by flavor have very

nearly equal masses. Since the probability of flavor changing processes depends

crucially on a difference of flavor masses, we don’t expect these new particles to

significantly change the (experimentally confirmed!) Standard Model prediction.

This isn’t to say that gauge mediation is without its shortcomings. One has

to invent a reason for the messengers not to communicate directly with the ob-

servable sector, for example. And there are mass scales in the theory that are not

automatically what we would want them to be. A different sort of problem – the

one that is the focus of some of the work in this dissertation – is the lack of a

full parameterization of its potential low-energy effects. An important step toward

filling in the gaps was made in “General Gauge Mediation” [8]. It was pointed

out that, with a few assumptions, the low-energy physics could be expressed in

terms of a few pieces of data from the supersymmetry-breaking “hidden sector” of

the theory. Some of the work in this dissertation is devoted to whittling down the

set of assumptions. In Chapter 3, the masses of visible-sector particles, like the

squarks, are explicitly computed for a large class of hidden-sector models and with

7One of the great mysteries is why we have three copies of all of the observed matter particles,
including quarks. These different “flavors” have different masses, but otherwise have the same
basic properties.
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a generalized set of allowed gauge interactions. In Chapter 4, this generalization

of the gauge sector is applied within the formalism of General Gauge Mediation.

Note that there is a trade-off here in that the hidden sector is allowed to be general,

but we have less-explicit predictions; the result now has more free parameters. We

will see how a more constrained result emerges for a typical form of supersymmetry

breaking.

Finally, in Chapter 5, we will study the other side of the problem of super-

symmetry breaking. In Chapters 3 and 4, we take advantage of the fact that

nature permits simple effective descriptions of complicated phenomena to study

the potential impact of supersymmetry on low-energy physics without concerning

ourselves with the details of the high-energy supersymmetric theory or how it is

broken. In the final chapter, the issue of supersymmetry breaking takes center

stage. A set of tools is developed to address a practical obstacle encountered in

studying models of supersymmetry breaking. The basic problem arises in trying

to demonstrate the existence of a stable non-supersymmetric vacuum. In our ex-

ample of spontaneous symmetry breaking (see Figure 1.1), the symmetric point in

the center was unstable, but in each valley, where the symmetry is broken, we have

stability. In general, the analogous function is not so simple. First of all, we know

longer have just one variable to worry about. If we think again of the geometric

analogy with the ball, in that case the ball was either going to go left or right.

If we go up a dimension, it now has the options of going into the page or out of

the page. In practice, one has several directions to worry about, which is not a

problem on its own. The problem is that in some of these directions, the surface

is flat in the first approximation. To see if they curve up like you want them to,

you need to do a harder calculation. Sometimes the shape of the surface still isn’t

reveal in the next easiest calculation or the one after that. One doesn’t need to

look far to find examples in which the required calculation is entirely impractical

to perform. Our methods reveal the fate of these nearly flat directions in a region

of this space. No tedious calculations are required, and the result, though not

applicable everywhere, is often sufficient to answer the question at hand.



Chapter 2

The Exact Superconformal

R-symmetry Minimizes τRR

2.1 Introduction

Our interest here will be in the coefficients τIJ of two-point functions of globally

conserved currents Jµ
I (I labels the various currents) in d-dimensional CFTs:

〈Jµ
I (x)Jν

J (y)〉 =
τIJ

(2π)d
(∂2δµν − ∂µ∂ν)

1

(x− y)2(d−2)
. (2.1)

The general form (2.1) of the correlator is completely fixed by conformal invari-

ance, with the specific dynamics of the theory entering only in the coefficients τIJ .

Unitarity restricts τIJ to be a positive matrix (positive eigenvalues). For 4d CFTs,

τIJ give [9, 10] the violation of scale invariance, 〈T µ
µ 〉 = 1

4
τIJ(F I)µν(F

J)µν , when

the global currents are coupled to background gauge fields.

We’ll here consider field theories with four supercharges: N = 1 in 4d, and

N = 2 in 3d (one could also consider N = (2, 2) in 2d), and their renormalization

group fixed point SCFTs (where there are an additional four superconformal super-

charges). The stress tensor of these theories lives in a supermultiplet Tαβ̇(x, θ, θ)

(in 4d Lorentz spinor notation; for d < 4 the dot on β̇ is unnecessary), which

also contains a U(1)R current – this is “the superconformal U(1)R symmetry”.

Supersymmetry relates this current and its divergence to the dilitation current

and its divergence. The scaling dimension of chiral operators are related to their

15
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superconformal U(1)R charge by

∆ =
d− 1

2
R. (2.2)

For a chiral superfield, writing ∆ = 1
2
d− 1 + 1

2
γ, with γ the anomalous dimension,

(2.2) yields

R =
d− 2

d− 1
+

1

d− 1
γ. (2.3)

There are often additional non-R flavor currents, whose charges we’ll write as

Fi, with i labeling the flavor symmetries. In superspace, these currents reside in

a different kind of supermultiplet, which we’ll write as Ji(x, θ, θ). When there are

such additional flavor symmetries, the superconformal U(1)R of RG fixed point

SCFTs can not be determined by the symmetries alone, as the R-symmetry can

mix with the flavor symmetries. Some additional dynamical information is then

needed to determine precisely which, among all possible R-symmetries, is the su-

perconformal one, in the Tαβ̇ supermultiplet.

We will here present a new condition that, in principle, completely determines

which is the superconformal U(1)R. We write the most general possible trial R-

symmetry as

Rt = R0 +
∑

i

siFi, (2.4)

where R0 is any initial R-symmetry, and Fi are the non-R flavor symmetries. The

subscript “t” is for “trial”, with the si arbitrary real parameters. The supercon-

formal R-symmetry, which we’ll write as R without the subscript, corresponds

to some special values s∗i of the coefficients in (2.4), that we’d like to determine,

R = Rt|sj=s∗j
.

As we’ll discuss, the fact that the superconformal R-symmetry and the non-R

flavor symmetries reside in different kinds of supermultiplets, implies that their

current-current two-point function necessarily vanishes, 〈Jµ
R(x)Jν

Fi
(y)〉 = 0, i.e.

τRi = 0 for all non-R symmetries Fi. (2.5)

This condition uniquely characterizes the superconformal R-symmetry among all

possibilities (2.4). To see this, use (2.4) to write (2.5) as

0 = τRi = τRti|sj=s∗j
= τR0i +

∑

j

s∗jτij for all i. (2.6)
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Here τR0i is the coefficient of the 〈Jµ
R0

(x)Jν
Fi

(y)〉 current-current two-point function

of the currents for R0 and Fi, and τij is the coefficient of the 〈Jµ
Fi

(x)Jν
Fj

(y)〉 of

the current-current two-point function for the non-R flavor symmetries Fi and Fj .

The conditions (2.6) is a set of linear equations which uniquely determines the s∗j ,

if the coefficients τR0i and τij are known. Unitarity implies that the matrix τij

is necessarily positive, with non-zero eigenvalues, so it can be inverted, and the

solution of (2.6) is

s∗j = −
∑

i

(τ−1)ijτR0i. (2.7)

The conditions (2.6) can be phrased as a minimization principle: the exact

superconformal R-symmetry is that which minimizes the coefficient τRtRt of its

two-point function among all trial possibilities (2.4). Using (2.4), the coefficient of

the trial R-current Rt two-point function is a quadratic function of the parameters

sj:

τRtRt(s) = τR0R0 + 2
∑

i

siτR0i +
∑

ij

sisjτij . (2.8)

Our result (2.5) implies that the exact superconformal R-symmetry extremizes this

function,
∂

∂si

τRtRt(s)|sj=s∗j
= 2τRi = 0. (2.9)

The unique solution of (2.9) is a global minimum of the function (2.8) since

∂2

∂si∂sj
τ(s) = 2τij > 0, (2.10)

with the last inequality following from unitarity.

The value of τRtRt at its unique minimum is the coefficient τRR of the super-

conformal R-current two-point function. As is well known, supersymmetry relates

this to the coefficient, “c”, of the stress tensor two-point function, τRR ∝ c; as we’ll

discuss, the proportionality factor is

τRR =
(2π)d

d(d2 − 1)(d− 2)
CT or, for d = 4, τRR =

16

3
c. (2.11)

τRR minimization immediately implies some expected results. For non-Abelian

flavor symmetry, (2.5) is automatically satisfied for all flavor currents with traceless

generators, if the superconformal R-symmetry is taken to commute with these
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generators. This shows, as expected, that the superconformal R-symmetry does

not mix with such non-Abelian flavor symmetries. Similarly, (2.5) is automatically

satisfied by any baryonic flavor currents which are odd under a charge conjugation

symmetry, taking the superconformal U(1)R to be even under charge conjugation.

So, as expected, the superconformal U(1)R does not mix with baryonic symmetries

which are odd under a charge conjugation symmetry.

As a simple example of τRR minimization, consider a single, free, chiral su-

perfield Φ in d spacetime dimensions. The R-symmetry can mix with a non-R

U(1)F flavor current, under which Φ has charge 1 (the “Konishi current”). Write

the general trial R-charges for the scalar and fermion components as R(φ) = Rt,

R(ψ) = Rt − 1. As we’ll review, the free field two-point function of this R-current

is

τRtRt =
Γ(d

2
)22d−2

(d− 1)(d− 2)

(
1

d− 2
R2

t + (Rt − 1)2

)
(2.12)

with the two terms the scalar and fermion contributions. Taking the derivative

w.r.t. Rt,

τRtF =
1

2

d

dRt
τRtRt =

Γ(d
2
)22d−2

(d− 1)(d− 2)

(
Rt

d− 2
+Rt − 1

)
. (2.13)

Requiring τRF = 0 then gives the correct result (2.3), with anomalous dimension

γ = 0, for a free chiral superfield in d spacetime dimensions.

The above considerations all apply independent of space-time dimension; they

are equally applicable for 4d N = 1 SCFTs as with 3d N = 2 SCFTs. For 4d N = 1

SCFTs, there is already a known method for determining the superconformal R-

symmetry: a-maximization [5]. It was shown in [5] that the s∗i can be determined

by a-maximization, maximizing w.r.t. the si in (2.4) the combination of ’t Hooft

anomalies

atrial(Rt) =
3

32
(3TrR3

t − TrRt), (2.14)

(where we decided here to include the conventional normalization prefactor). For

example, for a free 4d chiral superfield we locally maximize the function

atrial(Rt) =
3

32
(3(Rt − 1)3 − (Rt − 1)). (2.15)
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The local maximum of (2.15) is at R = 2/3, which indeed coincides with the global

minimum of (2.12), but it’s illustrative to see how the functions themselves differ.

a-maximization in 4d is much more powerful than τRtRt minimization, because

one can use the power of ’t Hooft anomaly matching to exactly compute atrial(Rt)

(2.14), whereas the current two-point functions τR0i and τij needed for τRtRt min-

imization receive quantum corrections. Actually, once the exact superconformal

R-symmetry is known, there is a nice way to evaluate τij in terms of ’t Hooft

anomalies [11]:

τij = −3TrRFiFj , (2.16)

as we’ll review in what follows. (The result (2.16) generally can not be turned

around, and used as a way to determine the superconformal U(1)R, because plug-

ging (2.4) in (2.16) can not always be inverted to solve for the s∗.)

In the context of the AdS/CFT correspondence, the criterion (2.6) for determin-

ing the superconformal R-symmetry becomes more useful and tractable, because

the AdS duality gives a weakly coupled dual description of τR0i and τij : these

quantities become the coefficients of gauge field kinetic terms in the AdS bulk [12].

As discussed in a separate paper [13], these coefficients are computable by reducing

SUGRA on the corresponding Sasaki-Einstein space. It is shown in [13] that the

conditions (2.6) are in fact equivalent to the “geometric dual of a-maximization”

of Martelli, Sparks, and Yau [6].

There is no known analog of a-maximization for 3d N = 1 SCFTs, and in 3d

there is no useful analog of ’t Hooft anomalies and matching (aside from a Z2 parity

anomaly matching [14]). τRtRt minimization gives an alternative to a-maximization

in 4d, which applies equally well to 3d N = 2 SCFTs.

a-maximization in 4d ties the problem of finding the superconformal U(1)R

together with Cardy’s conjecture [15], that the conformal anomaly a counts the

degrees of freedom of a quantum field theory, with aUV > aIR and aCFT > 0.

The result that a is maximized over its possibilities implies that relevant defor-

mations decrease a [5], in agreement with Cardy’s conjecture. Unfortunately, we

have not gained any new insights here into general RG inequalities from our τRR

minimization result. Indeed, τRR is related to the conformal anomaly c in 4d,
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which is known to not have any general behavior, neither generally increasing nor

generally decreasing, in RG flows to the IR. And there is no analogous argument

to that of [5], to conclude that τRR generally increases in RG flows in the IR, from

the fact that τRR is minimized among all possibilities: the quantum corrections to

τRR, coming from the relevant interactions, can generally have either sign. (The

difference is that the argument of [5] was based on ’t Hooft anomalies, which do

not get any quantum corrections for conserved currents).

Our τRR minimization result applies for SCFTs at their RG fixed point. It

would be interesting to extend τRR minimization to study RG flows away from the

RG fixed point. Perhaps this can be done by using Lagrange multipliers, as in [16],

to impose the constraint that one minimize only over currents that are conserved

by the relevant interactions.

2.2 Current two point functions; free fields and

normalization conventions

Two point functions of currents and stress tensors for free bosons and fermions

in d-spacetime dimensions were worked out, e.g. in [17]. To compare with [17],

rewrite (2.1) as

〈Jµ
I (x)Jν

J (y)〉 = τIJ
2(d− 1)(d− 2)

(2π)d

Iµν(x− y)

(x− y)2(d−1)
, (2.17)

with Iµν(x) ≡ δµν − 2xµxν(x
2)−1. The normalization conventions of [17] is

〈Jµ(x)Jν(0)〉 =
CV

x2(d−1)
Iµν(x), 〈Tµν(x)Tρσ(0)〉 =

CT

x2d
Iµν,σρ(x), (2.18)

with Iµν,σρ(x) = 1
2
(Iµσ(x)Iνρ(x) + Iµρ(x)Iνσ(x)) − d−1δµνδσρ. Thus CV = 2τ(d −

1)(d − 2)/(2π)d. With these normalizations, the coefficients (2.18) for a single

complex scalar are

CV =
2

d− 2

1

S2
d

, CT =
2d

d− 1

1

S2
d

, (2.19)

where Sd ≡ 2π
1
2
d/Γ(1

2
d) and the current was normalized to give φ and φ∗ charges

±1. The coefficients for a free fermion having the same number of components as a
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4d complex chiral fermion (half the components of a Dirac fermion) the coefficients

are

CV = 2
1

S2
d

, CT = d
1

S2
d

(2.20)

(we don’t have the factors of 2d/2 of [17], because we’re here considering a fermion

with the same number of components as the dimensional reduction of a 4d chiral

fermion for all d).

More generally, let current JI(x) give charges qI,b to the complex bosons and

charges qI,f to the chiral fermions. Using (2.19) and (2.20), we have

τ free field
IJ =

Γ(d
2
)22d−2

(d− 1)(d− 2)



 1

d− 2

∑

bosons b

qI,bqJ,b +
∑

fermions f

qI,fqJ,f



 .

(2.21)

In particular, for a U(1)R symmetry, this gives (2.12). For d = 4, Γ(d/2)22d−2/(d−
1)(d − 2) = 2/3, so e.g. a 4d U(1)F non-R symmetry which assigns charge q to a

single chiral superfield has τ freefield
FF = q2.

2.3 Supersymmetric field theories

Supersymmetry relates the superconformal R-symmetry to the stress tensor:

both reside in the supercurrent supermultiplet

Tαα̇(x, θ, θ) ∼ JR,αα̇(x) + Sαα̇β(x)θβ + Sαα̇β̇(x)θ
β̇

+ Tαα̇ββ̇(x)θβθβ̇ + . . . , (2.22)

whose first component is the superconforal U(1)R current and whose θθ compo-

nent is the stress energy tensor (we’re omitting numerical coefficients here). Our

notation is for the 4d case; similar results hold for 3d N = 2 theories, with θ
α̇

replaced with a second flavor of θα. For superconformal theories, the stress tensor

is traceless, and the superconformal R-current is conserved. As discussed in [18],

the supercurrent two-point function is then of a completely determined form, with

the only dependence on the theory contained in a single overall coefficient C:

〈Tαα̇(z1)Tββ̇(z2)〉 = C
(x12)αβ̇(x21)βα̇

(x2
21
x2

12
)d/2

; (2.23)
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see [18] for an explanation of the superspace notation in (2.23).

Expanding out (2.23) in superspace, the LHS includes both the R-current two-

point function and the stress-tensor two-point function. So (2.23) shows that the

coefficient C ∝ τRR, and also C ∝ CT , and so it follows that τRR ∝ CT . We

could determine the precise coefficients in these relations by being careful with

the coefficients in (2.22) and in expanding both sides of (2.23); instead we will

fix these universal proportionality factors by considering the particular example of

a free chiral superfield. Using (2.19) and (2.20) to get CT , and comparing with

the free-field value of τRR computed from (2.21), gives the general proportionality

factor that we quoted in (2.11); e.g. for d = 3 it’s τRR = π3CT/3. In 4d, CT ∝ c,

one of the conformal anomaly coefficients, and the proportionality can again be

fixed by considering the case of a free 4d N = 1 chiral superfield, for which c = 1/24

and (2.21) gives τRR = 2/9 (or a free 4d N = 1 vector superfield, for which c = 1/8

and (2.21) gives τRR = 2/3); this gives the relation quoted in (2.11).

The non-R global flavor currents Jµ
i (x) are the θαθ

α̇
components of superfields

Ji(x, θ, θ), whose first component is a scalar. We can write their two-point func-

tions in superspace [18], with the coefficients given by that of the flavor current

correlators, τij :

〈Ji(z1)Jj(z2)〉 =
τij

(2π)d

1

(x2
21
x2

12
)(d−2)/2

. (2.24)

In general d dimensional CFTs, two-point functions of primary operators vanish

unless the operators have conjugate Lorentz spin and the same operator dimen-

sion. Noting that the first component of the supermultiplet (2.22) has dimen-

sion ∆(Tαβ̇) = d − 1, and the first component of the current Ji has dimension

∆(Ji) = d − 2 (since the θαθ
α̇

component is the current, with dimension d − 1),

the two-point function of the first components of these two different supermulti-

plets must vanish. Because there is no non-trivial nilpotent invariant for two-point

functions [18], this implies that two-point function of the entire supermultiplets

must vanish:

〈Tαα̇(z1)Ji(z2)〉 = 0. (2.25)

I.e. the two-point function of any operator in the Tαα̇ supermultiplet and any

operator in the Ji supermultiplet vanishes; in particular, this implies that the two-
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point function of the superconformal U(1)R current and all non-R flavor currents

necessarily vanish, τRFi
= 0. We thus have the general result (2.5), and this same

argument applies equally for d = 4 N = 1 as well as lower dimensional SCFTs

with the same number of supersymmetries.

The superspace version of an anomaly in the dilatation current is

∇α̇
Tαα̇ = ∇αLT , (2.26)

with LT the trace anomaly, which is the variation of the effective action with

respect to the chiral compensator chiral superfield [19].

On a curved spacetime, there is the conformal anomaly

〈T µ
µ 〉 =

1

120

1

(4π)2

(
c(Weyl)2 − a

4
(Euler)

)
, (2.27)

(there can also be an a′∂2R term, whose coefficient a′ is ambiguous, which was

discussed in detail in [20]). The coefficient “c” is that of the stress tensor two-

point function in flat space, whereas the coefficient “a” can be related to a stress

tensor 3-point function in flat space. The superspace version of this anomaly,

including also background gauge fields coupled to the superconformal R-current,

is as in (2.26), with LT = (cW2 − aΞc)/24π2 [11]. Taking components of this

superspace anomaly equation relates the conformal anomaly coefficients a and c

to the ’t Hooft anomalies of the superconformal U(1)R symmetry [11]:

a =
3

32
(3TrR3 − TrR) c =

1

32
(9TrR3 − 5TrR). (2.28)

2.3.1 4d N = 1 SCFTs: relating current correlators to ’t

Hooft anomalies

An alternate derivation [18] of these relations follows from the fact that, in flat

space, the 3-point function 〈Tαα̇(z1)Tββ̇(z2)Tγγ̇(z3)〉 is of a form that’s completely

determined by the symmetries and Ward identities, up to two overall normalization

coefficients, with one linear combination of these coefficients proportional to the

coefficient (2.23) of the Tαβ two-point function. In components, this relates the

stress tensor three-point functions, and hence a and c, and to the R-current 3-point
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functions, and hence the TrU(1)R and TrU(1)3
R ’t Hooft anomalies, to these two

coefficients. It follows that a and c can be expressed as linear combinations of

TrU(1)R and TrU(1)3
R, and the coefficients in (2.28) can easily be determined by

considering the special cases of free chiral and vector superfields.

Combining (2.11) and (2.28), we have

τRR =
3

2
TrR3 − 5

6
TrR. (2.29)

It was also argued in [11] that the two-point functions τij of non-R flavor

currents are related to ’t Hooft anomalies, as

τij = −3TrRFiFj . (2.30)

Again, this can be argued for either by turning on background fields, or by consid-

ering correlation functions in flat space. In the former method, one uses the fact

that coupling background field strengths to the non-R currents leads to ∆LT =

CijWαiW
α
j , in (2.26), for some coefficients Cij. In components, (2.26) then gives

δ〈T µ
µ 〉 ∼ CijFµν,iF

µν
j and δ〈∂µJ

µ
R〉 ∼ CijFµνiF̃

µν
j . The former gives Cij ∼ τij and

the latter gives Cij ∼ TrRFiFj , so τij ∝ TrRFiFj. The coefficient in (2.30) is again

easily determined by considering the special case of free field theory.

The alternate derivation would be to consider the flat space 3-point function

of the stress tensor and two flavor currents, 〈Tαα̇(z1)Ji(z2)Jj(z3)〉. It was shown in

[9] that such 3-point functions are completely determined by the symmetries and

Ward identities, up to two overall coefficients, and that one linear combination of

these coefficients is proportional to the current-current two point functions, and

hence τij . In our supersymmetric context, that same linear combination should be

related by supersymmetry to 〈∂µJ
µ
R(x1)J

ρ
Fi

(x2)J
σ
Fj

(x3)〉, and hence to the TrRFiFj

’t Hooft anomaly.

The a-maximization [5] constraint on the superconformal R-symmetry follows

from the fact that supersymmetry relates the TrR2Fi and TrFi ’t Hooft anomalies:

9TrR2Fi − TrFi = 0, (2.31)

which again can be argued for either by considering again an anomaly with back-

ground fields, or by considering current correlation functions in flat space [5]. In
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the former method, one considers the anomaly of the flavor current coming from

a curved background metric and background gauge field coupled to the supercon-

formal R-current, ∇2
J ∝ W2. With the latter method, one uses the result of

[18] that the flat space 3-point function 〈Tαα̇(z1)Tββ̇(z2)Ji(z3)〉 is completely de-

termined by the symmetries and superconformal Ward identities, up to a single

overall normalization constant.

We note that supersymmetry does not relate τRi to the ’t Hooft anomaly

TrR2Fi. Naively, one might have expected some such relation, in analogy with

the above arguments, for example by trying to use (2.26) to relate a term δ〈T µ
µ 〉 ∼

τRiFR,µνF
µν
i to a term δ〈∂µJ

µ
R〉 ∼ (TrR2Fi)FR,µνF̃

µν
i , when background fields are

coupled to both U(1)R and U(1)Fi
currents. But there is actually no way to write

such combined contributions of the U(1)R and U(1)Fi
background fields to (2.26),

because the former resides in the spin 3/2 chiral super field strength Wαβγ , and

the latter resides in the spin 1/2 chiral super field strength Wαi, and there is no

way to combine the two of them into the spin zero chiral object LT . Likewise, in

flat space, a relation between τRi and TrR2Fi would occur if the 3-point function

〈Tαα̇(z1)Tββ̇(z2)Ji(z3)〉, which includes a term proportional to TrR2Fi, were related

to the two-point function 〈Tββ̇(z2)Ji(z3)〉, which is proportional to τRi (and, as we

have argued above, vanishes). It sometimes happens that 3-point functions with

a stress tensor are simply proportional to the 2-point function without the stress

tensor, e.g. this is the case when the other two operators are chiral and anti-chiral

primary [18]. But the the 〈Tαα̇(z1)Tββ̇(z2)Ji(z3)〉 3-point function in [18] is not

related to the 〈Tββ̇(z2)Ji(z3)〉 two-point function. Indeed, the free field example

discussed in the introduction illustrates that TrR2Fi and τRi are not related by

supersymmetry, as TrR2Fi 6= 0 for this example but, as always, τRi = 0.
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2.3.2 Using τRi = 0 to determine the superconformal R-

symmetry

As discussed in the introduction, using (2.4), we have for a general trial R-

symmetry

τRti = τR0i +
∑

j

sjτij . (2.32)

Imposing τRii = 0 gives a set of linear equations, which determines the particular

values s∗j of the parameters for which the trial R-symmetry is the superconformal R-

symmetry. As discussed in the introduction, this can equivalently be expressed as

“the exact superconformal R-symmetry minimizes its two-point function coefficient

τRtRt(s), which is given by (2.8), and which we can re-write using τRi = 0 for the

superconformal R-symmetry as

τRtRt(s) = τRR +
∑

ij

(si − s∗i )(sj − s∗j)τij , (2.33)

making it manifest that τRtRt has a unique global minimum, when the sj are set to

the particular value s∗j . At sj = s∗j , the general R-symmetry Rt in (2.4) becomes

the superconformal R-symmetry, in the supermultiplet stress tensor Tαα̇.

The function τRtRt(s) to minimize and the function atrial(s) to locally maximize

in 4d are different. Let us compare the values of them and their derivatives at the

extremal point si = s∗i . For (2.32), we have:

τRtRt|s∗ = τRR =
16

3
c =

3

2
TrR3 − 5

6
TrR,

∂

∂si

τRtRt|s∗ = 0,

∂2

∂si∂sj
τRtRt = 2τij , (2.34)

whereas for 16
3
atrial(Rt) ≡ 1

2
(3TrR3

t − TrRt) we have:

16

3
atrial(Rt)|s∗ =

16

3
a =

3

2
TrR3 − 1

2
TrR,

∂

∂si

16

3
atrial(Rt)|s∗ =

9

2
TrR2Fi −

1

2
TrFi = 0,

∂2

∂si∂sj

16

3
atrial(Rt)|s∗ = 9TrRFiFj = −3τij . (2.35)
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The derivatives of both functions of s vanish at the same values s∗. The values

of the two functions in (2.34) and (2.35) differ, except for SCFTs with a = c,

i.e. TrR = 0, as is the case for SCFTs with AdS duals 1 The second derivatives

of the functions in (2.34) and (2.35) are proportional, though with opposite sign,

reflecting the fact that the exact superconformal R-symmetry minimizes τRtRt and

maximizes atrial(Rt).

For the sake of comparison, let’s also consider the function 16
3
ctrial(Rt) ≡ 3

2
R3

t −
5
6
Rt; the value of this function and its first two derivatives at Rt = R, i.e. si = s∗i ,

are

16

3
ctrial(Rt)|s∗ =

16

3
c =

3

2
TrR3 − 5

6
TrR,

∂

∂si

16

3
ctrial(Rt)|s∗ =

9

2
TrR2Fi −

5

6
TrFi = −1

3
TrFi,

∂2

∂si∂sj

16

3
ctrial(Rt)|s∗ = 9TrRFiFj = −3τij . (2.36)

The value of τRtRt and ctrial(Rt) coincide at Rt = R. The value of their first

derivatives differ for any flavor symmetries with TrFi 6= 0. General SCFTs can have

flavor symmetries with TrFi = 0, but SCFTs with AdS duals always have TrFi = 0,

and TrFi = 0 for general superconformal quivers with only bifundamental matter

[21, 22]. The second derivatives in (2.36) differ from those of (2.34) by a factor of

−3/2, coinciding with those of (2.35).

As a further comparison of a-maximization in 4d with τRR minimization, let’s

consider the equations for the case where the superconformal U(1)R can mix with

a single non-R flavor symmetry, Rt = R0 + sF . a-maximization gives the value s∗

for the superconformal U(1)R as a solution of the quadratic equation

s2TrF 3 + 2sTrR0F
2 + TrR2

0F − 1

9
TrF = 0. (2.37)

τRR minimization gives s∗ as (2.7)

s∗ = −τR0F/τFF . (2.38)

1Quite generally, quiver gauge theories with only bi-fundamental matter have TrR = 0, and
hence a = c [21, 22].
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If TrF 3 is non-zero, s∗ can also be obtained from (2.16), which here gives

s∗ = −
[
TrR0F

2 +
1

3
τFF

]
/TrF 3. (2.39)

For any given choice of R0 and F , the value of s∗ obtained in these three dif-

ferent ways must agree. It would be nice to have a direct proof of the rela-

tions that this implies. E.g. comparing (2.39) with (2.38) gives the identity

τR0F TrF 3 = τFF

(
1
3
τFF + TrR0F

2
)

which, evidently, must hold for any choice of

the R-symmetry R0 (taking R0 to equal the superconformal U(1)R, both sides

vanish).

2.4 SQCD Example

4d N = 1 SCQD, with gauge group SU(Nc) and Nf fundamental and anti-

fundmantal flavors, Q and Q̃, has been argued to flow to a SCFT in the IR for

the flavor range 3
2
Nc < Nc < 3Nc [23]. Taking the superconformal U(1)R to be

the anomaly free R-symmetry, the superconformal R-charges are R(Q) = R(Q̃) =

1 − (Nc/Nf). Let’s also consider the baryonic U(1)B symmetry, with B(Q) =

−B(Q̃) = 1/Nc. Using the ’t Hooft anomaly relations,

τRR =
3

2
TrR3 − 5

6
TrR =

3

2

[
N2

c − 1 − 2
N4

c

N2
f

]
+

5

6

[
N2

c + 1
]
, (2.40)

τBB = −3TrRBB = 6. (2.41)

For Nf ≈ 3Nc, where the RG fixed point is at weak coupling as in [24, 25], these

expressions reduce to the free field values.

There is a unique, anomaly free U(1)R symmetry that commutes with charge

conjugation and the SU(Nf ) global symmetries. Our τRtRt minimization condition

immediately leads to the same conclusion. τRtRt is minimized by having τRB = 0

and τRFi
= 0 for the U(1)B and SU(Nf ) global symmetries. Taking the U(1)R to

be even under charge conjugation ensures that τRB = 0, because the U(1)B current

is odd, so charge conjugation symmetry gives τRB = −τRB . Likewise τRFi
= 0 for

the SU(Nf ) flavor currents, simply by the tracelessness of the generators, if U(1)R

is taken to commute with SU(Nf ).
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2.5 Perturbative analysis

Consider a general 4d N = 1 SCFT with gauge group G and matter chiral su-

perfields Qf in representations rf (of dimension |rf |) of G, with no superpotential,

W = 0. If the theory is just barely asymptotically free, there can be a RG fixed

point at weak gauge coupling, where perturbative results can be valid. We will

verify that the leading order pertubative expression for the anomalous dimension

for fields,

γf(g) = − g2

4π2
C(rf) + O(g4), i.e Rf =

2

3
− g2

12π2
C(rf ) +O(g4). (2.42)

agrees with τRR minimization. As standard, we define group theory factors as

Trrf
(TATB) = T (rf)δ

AB,

|G|∑

A=1

TA
rf
TA

rf
= C(rf)1|rf |×|rf |, so C(rf) =

|G|T (rf)

|rf |
.

(2.43)

The RG fixed point value g∗ of the coupling is determined by the constraint that

the R-symmetry be anomaly free, T (G) +
∑

f T (rf)(Rf − 1) = 0.

For the free UV theory, we minimize τRR over all possible R charges Rf of the

matter chiral superfields, which are unconstrained for g = 0. As we discussed in

the introduction, this gives the free-field term R
(0)
f = 2/3. For g 6= 0, we write

Rf = R
(0)
f + R

(1)
f + . . . , with R

(1)
f the O(g2) term that we’d like to find via τRR

minimization. For g 6= 0, τRR should be minimized subject to the constraint that

the symmetries be anomaly free, i.e. we impose τRi = 0 over all anomaly free

U(1)R and U(1)Fi
symmetries, with R charges Rf , and flavor Fi charges qi(rf)

constrained to satisfy

T (G) +
∑

f

T (rf)(Rf − 1) = 0, and
∑

f

T (rf)qi(rf) = 0. (2.44)

The U(1)R current assigns charges Rf to the squark and Rf − 1 to the quarks

components of Qf . The U(1)Fi
non-R current assigns charges qi(rf) to both the

quark and squark components of Qf . To compute τRFi
, we consider the diagrams

for the two point function 〈Jµ
R(x1)J

ν
Fi

(x2)〉. Because we take the currents to be

conserved, they have vanishing anomalous dimension, so we anticipate that the
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various diagrams sum such that all apparent divergences cancel, and we’re left

with only finite contributions to τRFi
. The O(g2) contributions can be written as

τ
(1)
Ri =

∑

f

qi(rf)

[
(
1

3
R

(1)
f +

2

3
R

(1)
f )|rf | +R

(0)
f (A

(1)
f + C

(1)
f ) + (R

(0)
f − 1)(B

(1)
f + C

(1)
f )

]

(2.45)

The first two terms come from the leading diagrams, without interactions, exactly

as in the free-field result (2.13), but weighted by the O(g2) R-charges R
(1)
f . The

first term is from connecting the currents at x1 and x2, with squark φf propa-

gators, and the second from connecting them with quark ψf propagators. The

remaining contributions in (2.45) are O(g2) because they involve O(g2) interac-

tion diagrams, and the R-charge weighting is thus taken as R(0) = 2/3. Here

A
(1)
f is the contribution of all O(g2) 1PI diagrams connecting squark φf , at x1,

to squark φf at x2. B
(1)
f is similarly the contribution from all O(g2) diagrams

connecting quark ψf at x1 to quark ψf at x2. C
(1)
f is the contributions of dia-

grams connecting squark φf at x1 to quark ψf at x2 (or vice-versa). We note

that the group theory factors in all of these diagrams with O(g2) interactions is

the same: Trrf

∑|G|
A=1 T

A
rf
TA

rf
= |rf |C(rf) = |G|T (rf), i.e. A

(1)
f = |G|T (rf)A

(1),

B
(1)
f = |G|T (rf)B

(1), and C
(1)
f = |G|T (rf)C

(1), where A(1), B(1), and C(1) are in-

dependent of the gauge group and representation, e.g. they could be computed in

U(1) SQED.

Using the second constraint in (2.44),
∑

f T (rf)qi(rf) = 0, it immediately fol-

lows, without even having to compute A(1), B(1), and C(1), that their contributions

to τ
(1)
Ri in (2.45) all vanish, for all anomaly free flavor symmetries Fi. The only

contributions remaining in (2.45) are the R
(1)
f ones, τ

(1)
Ri =

∑
f qi(rf)R

(1)
f |rf |. Our

τRR minimization result implies that this must vanish, for any qi(rf) satisfying

the anomaly free constraint in (2.44). This implies that R
(1)
f = αC(rf) for some

constant α that’s independent of the rep. rf .

We have thus used τRtRt minimization to re-derive the group theory dependence

of the O(g2) term in the anomalous dimension (2.42). The coefficient is also fixed

to agree with (2.42), at the fixed point g∗, by using the condition in (2.44) that

the R-symmetry be anomaly free to solve for α (which is appropriately small when

the matter content is such that the theory is barely asymptotically free). This
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reproduces the O(g2) contribution to the R-charges in (2.42) at the RG fixed

point.

In principle, one could extend this analysis, and use τRR minimization to com-

pute the anomalous dimensions to all orders. Using a-maximization [5] (assuming

that the RG fixed point has no accidental symmetries), the general result can be

written as [16]

Rf =
2

3
(1 +

1

2
γf(g∗)) = 1 − 1

3

√
1 +

λ∗T (rf)

|rf |
= 1 − 1

3

√
1 +

λ∗C(rf)

|G| , (2.46)

where λ∗ is a Lagrange multiplier [16], which is determined by the constraint that

the R-symmetry be anomaly free, T (G)+
∑

f T (rf)(Rf −1) = 0. The result (2.46)

was successfully compared [26, 27] with the results for the anomalous dimensions

to 3-loops of [28, 29]. But, because current two-point functions get quantum cor-

rections, τRR minimization does not seem to be a very efficient way to compute

anomalous dimensions. Indeed, the higher order quantum corrections to τRi in-

clude diagrams where the currents at x1 and x2 are connected by renormalized

propagators, with all quantum corrections from the interactions, and computing

such τRi contributions is already tantamount to directly computing the anomalous

dimensions γf(g).

This chapter is a reprint of the material as it appears in “The Exact Super-

conformal R-symmetry Minimizes τRR,” E. Barnes, E. Gorbatov, K. Intriligator,

M. Sudano, J. Wright, Nucl. Phys. B 730, 210 (2005), arXiv:hep-th/0507137, of

which I was a co-author.



Chapter 3

Sparticle Masses in Higgsed

Gauge Mediation

3.1 Introduction

There are countless ways in which the standard model could fit into a super-

symmetric framework. For the sake of phenomenology, a useful categorization is

in terms of how supersymmetry breaking is communicated to the observable parti-

cles. Gauge-mediated supersymmetry breaking (GMSB) [30, 31, 32, 33, 34, 35, 36,

37, 38, 39, 40, 41] assumes that SUSY breaking is communicated via the standard

model gauge group. This mechanism has several attractive features. In particular,

it makes calculable predictions for the soft parameters of the MSSM in terms of a

few parameters while naturally evading the tight constraints from flavor physics.

It also accommodates radiative electroweak symmetry breaking [42] and offers a

solution to the CP problem [43].

It is important to remember, however, that this is not a complete theory. It is

only meant to apply below the scale of SUSY-breaking. The hope is that it provides

a successful parameterization of our ignorance of physics at the higher scale, but

this has recently been called into question. In [44], for example, it was pointed

out that the standard approach omits a set of renormalizable interactions that

are allowed by the symmetries, are consistent with experiment, and lead to novel

32
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phenomenology. In this note, we explore another generalization of ordinary gauge

mediation that has previously been ignored. Specifically, we consider a general,

supersymmetric Higgsing of the mediating gauge group.

In a sense, this is not new at all because it is generally assumed that there is

a supersymmetric Higgsing of the mediating gauge group, both at the GUT scale

and at the weak scale. For a messenger scale much larger than the weak scale, the

masses of the SU(2)W gauge fields can be neglected. And the gauge fields with

GUT-scale masses can be ignored if the messenger scale is sufficiently small, but

for models with a messenger scale near the GUT scale, as in [45], they can be very

important. Of course, gauge symmetry breaking may also occur at an intermediate

scale. For example, additional U(1)’s [46, 47, 48, 49, 50, 51], which arise naturally

in SUSY-GUTs with large gauge groups and in string theory.

In what follows, we will briefly review the standard treatment of GMSB and

the associated sparticle spectrum. We will then discuss how one can approximate

these results for much of parameter space, and we will show that these techniques

fail to capture the effects of interest here. Finally, we will present the leading-order

sparticle spectrum in standard GMSB for an arbitrary, supersymmetric Higgsing of

the gauge group, and comment on the results. The messier details of the calculation

are left for Appendix A.

3.2 Standard Gauge Mediation

In the basic scenario (see [41] for a review), a set of chiral superfields, Φi and

Φ̃i, are added to a GUT-extended MSSM. They can all be taken to be 5 and 5̄ of

SU(5), for example. Note that this choice preserves gauge-coupling unification, is

anomaly-free, and allows for the superpotential term,

∆W =
∑

i

λiXΦ̃iΦi, (3.1)

where X = M + Fθ2 is a gauge-singlet background field. The index, i, is a flavor

index. Gauge indices are supressed. The non-zero F-component of the “spurion”,

X, results in a non-supersymmetric mass spectrum for our chiral superfields, which
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Figure 3.1: The sole one-loop diagram contributing to gaugino masses
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Figure 3.2: f(0, 0) = 1 = g(0), but g(1)/f(1, 0)1/2 ≈ 5/3

then act as messengers, splitting masses of MSSM superfields through loops. Their

contributions to MSSM gaugino and scalar masses have been computed for the

scenario described above and for some generalizations [52, 53, 54]1. The gauginos

get masses, from the diagram in Figure 3.1,

∆ma
1/2 =

αa

2π

F

M

∑

i

na(ri)g(xi), xi =
∣∣∣
F

λiM2

∣∣∣, (3.2)

and the first eight diagrams of Figure 3.5 give the scalar masses,

∆m2
0 =

∣∣∣
F

M

∣∣∣
2∑

a

(αa

2π

)2

Ca(rQ)
∑

i

na(ri)f(xi, 0). (3.3)

Much of the notation is the same as that of [53]. The index, a = 1, 2, 3, labels

the gauge group, αa = g2
a/4π, Ca(rQ) is the quadratic Casimir of the scalar field

that is getting mass, and na(ri) is the Dynkin index of the messenger representa-

tion. The extra argument in the function, f(xi, 0), will be explained shortly. Note

that (3.2) is a mass, and (3.3) is a mass squared, so in the ratio of a gaugino and a

1In principle, the two-loop effective potential of [55] contains these scalar masses and those
presented later in this paper. In practice, however, extracting such results is difficult with basic
computational resources in anything but the simplest theories.



35

scalar mass, the factors of F/M cancel. And as one can see in Figure 3.2, the func-

tions, g(x) and f(x, 0)1/2, deviate little from one over most of parameter space.2

This means that ma
1/2/m0 primarily depends on the “effective messenger number”,

Na ≡ 2
∑

i na(ri). With the conventional normalization of the generators, na = 1/2

for fundamentals, so in the simple case of SU(5) with fundamental messengers, the

effective messenger number is the number of messengers. This is one way in which

measuring only a couple of soft parameters of the MSSM could reveal something

about the messenger sector. We will see, however, that this simple picture can be

modified when the mediating gauge group is Higgsed.

3.3 Analytic Continuation to Superspace

In the limit of small supersymmetry breaking, the results of the previous section

can be obtained in an entirely different way [56, 57, 58]. Consider a massless chiral

superfield, Q, that only couples to the messengers through gauge fields. The

Lagrangian will have a term,

L ⊃
∫
d4θZQ(µ)Q†Q, (3.4)

where ZQ(µ) is the wave-function renormalization of Q at the scale µ. If this

scale is below the messenger scale, then ZQ(µ) = ZQ(µ,M †,M). Now comes the

interesting part. The idea is to replace M with the superfield, X = M+Fθ2. This

new object, call it Z̃Q(µ), has an expansion in powers of θ, which yields a mass for

the scalars,

∆m2
0(µ) = −

∣∣∣∣
F

M

∣∣∣∣
2
∂2 ln Z̃Q(µ)

∂ lnX∂ lnX†

∣∣∣∣
X=M

. (3.5)

Performing the derivatives, one finds agreement with (3.3) to O(x2) for x =

F/M2 ≪ 1.

What we are interested in is the spectrum when we have chiral messengers and

2Note that xi cannot exceed one. This would give a tachyonic messenger, and there is nothing
to stabilize the field. In general, however, the UV completion can accommodate x > 1. The
negative mass-squared simply indicates that the true vacuum is elsewhere, and in that vacuum,
there is a massive gauge field.
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a supersymmetric Higgsing. If we take ΛUV > M > mW > µ, then we have

ZQ(µ) = ZQ(ΛUV )
(α(ΛUV )

α(M)

)2C(rQ)/b( α(M)

α(mW )

)2C(rQ)/b′(α(mW )

α(µ)

)2C′(rQ)/b′′

α−1(M) = α−1(ΛUV ) +
b

4π
ln
M †M

Λ2
UV

,

α−1(mW ) = α−1(M) +
b′

4π
ln

m2
W

M †M

α−1(µ) = α−1(mW ) +
b′′

4π
ln

µ2

m2
W

. (3.6)

Making the substitution, M → X, and plugging into (3.5) gives a mass that

depends on mW , but only trivially. It only acts to give the correct running of the

coupling to the scale, µ. This should not be surprising since the method takes the

gauge fields to be massless above mW and infinitely massive below. In a sense,

what we are interested in is a threshold effect. The gauge messenger case, in which

the spurion breaks the gauge group, is different because the scale, mW = M ,

enters in the Grassman-parameter expansion. Perhaps there is a clever way of

approximating a non-trivial effect of a supersymmetric Higgsing, but we will not

pursue this further here. Instead, we perform the Feynman-diagram calculation.

3.4 Higgsed Gauge Mediation

We are interested in the effects of modifying the gauge sector of gauge media-

tion. In particular, we allow for massive gauge fields coupled to both messengers

and MSSM fields, but do not study the gauge messenger scenario in which a gauge

superfield has split masses.

3.4.1 Case 1 – G× U(1)′, A Toy Model

Starting with the simplest extension, consider the set of messenger fields, Φi

and Φ̃i, as in the introduction. Now let them be charged under an additional U(1)′

gauge symmetry that is spontaneously broken. The desired spectrum is obtained

if we add fields, Ψ and Ψ̃, that are only charged under this U(1)′, and take the
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Figure 3.3: f(x, y) is plotted for small (a.) and large (b.) values of y.

superpotential to be

∆W =
∑

i

λiXΦ̃iΦi + hT (Ψ̃Ψ − v2), X = M + Fθ2, (3.7)

where the field, T , is a singlet dynamical field, which, for our purposes, plays no role

except to give vevs to the added superfields. Suppressing all indices, this produces

a massive vector multiplet, (A, C, λ, χ), with supersymmetric mass mW = 2gv,

where A is a gauge boson, C is a real scalar field, λ is a gaugino, and χ is another

Weyl fermion.

Turning to the radiative spectrum, the gauginos of the unbroken gauge group

get the standard one-loop masses (3.2) computed in [53], which we reproduce here:

∆ma
1/2 =

αa

2π

F

M

∑

i

na(ri)g(xi), (3.8)

where

g(x) =
1

x2
(1 + x) ln(1 + x) + (x→ −x). (3.9)

The notation is discussed after (3.3). To leading order, the effect of the U(1)′ on

the gaugino spectrum is simply to add a gaugino of mass mW . The generalization

to more interesting gauge structure is trivial and will not be discussed further.

Now if we couple some set of chiral superfields, Q, that transform under the given

gauge symmetry, their scalar components will acquire radiative masses at two-loop
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order. The contribution from G is as before [52, 53],

∆m2
0 =

∣∣∣
F

M

∣∣∣
2∑

a

(αa

2π

)2

Ca(rQ)
∑

i

na(ri)f(xi, 0), (3.10)

where

f(x, 0) =
1 + x

x2

[
ln(1 + x) − 2Li2

(
x

1 + x

)
+

1

2
Li2

(
2x

1 + x

)]
+ (x→ −x). (3.11)

With a Higgsed mediating gauge group, there are ten relevant diagrams, which are

shown in Figure 3.5. For our toy model, the contribution from the U(1)′ vector

multiplet is

∆m2
0 =

∣∣∣
F

M

∣∣∣
2( α

2π

)2

C(rQ)
∑

i

n(ri)f(xi, y), y =
∣∣∣
mW

M

∣∣∣
2

, (3.12)

and C(rQ) and n(ri) are respectively the squared charges of Q and Φi under the

U(1)′. The function, f(x, y), is given in Appendix A along with more details of

the computation. In Figure 3.3, this function is plotted in the limits of large and

small y. At small y, it is seen to agree with the known result of Figure 3.2. At

large y, the kinematic suppression of the amplitude is evident. More explicitly, we

find

f(x, y ≪ 1) = f(x, 0) +
(1

3
+
x2

30
+ O(x4)

)
y ln y + O(y)

f(x, y ≫ 1) =
2

y
ln y + O

(1

y

)
(3.13)

3.4.2 Case 2 – Products of Simple Groups with Degeneracy

When each factor of the mediating gauge group is simple and has a single

supersymmetric mass for all of its gauge superfields, the result is a simple extension

of what was done in the previous subsection. In fact, it is simply (3.10) with the

substitution,

f(xi, 0) → f(xi, ya). (3.14)

3.4.3 Case 3 – Products of Simple Groups without Degen-

eracy

In generalizing to an arbitrary supersymmetric Higgsing, the most obvious

obstacle is that the gauge field associated with a given generator need not be a
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mass eigenstate. This is familiar from the standard model, in which the U(1)Y

generator mixes with the diagonal generator of SU(2)W to form the massive Z

and the massless photon. It is typically most convenient to calculate in the mass

eigenbasis, working with “effective generators” that are linear combinations of the

original generators. With this strategy, one can quickly work out the result for a

general Higgsing of a product of simple Lie groups,

∆m2
0 =

∣∣∣
F

M

∣∣∣
2∑

a

(αa

2π

)2∑

j

T j
a,QT j

a,Q

∑

i

na(ri)f(xi, ya,j), ya,j =
∣∣∣
Mjj

a

M

∣∣∣
2

.

(3.15)

The effective generators of each group are given by T j = OjkT k, where O is the

orthogonal matrix that diagonalizes the mass matrix of the gauge fields. In matrix

notation,

1

2
W TMW =

1

2
W TOTOMOTOW =

1

2
(OW )TM(OW ) ≡ 1

2
WTMW, (3.16)

where M is diagonal, and W is the vector of mass eigenstates. The effective

generators emerge when the covariant derivative is written in this basis. Note that

in the case of full degeneracy, Mjk = mW δ
jk, summing over j in (3.15) reproduces

the familiar quadratic Casimir, OjkT kOjlT l = T kT lδkl = C(rq).

3.4.4 Case 4 – Allowing for U(1)’s

If the gauge group includes a U(1), the potential for a new complication

emerges. Fortunately, the problem and its solution are found in the simple case

of a product of two U(1)’s. The result for an arbitrary Higgsing of an arbitrary

gauge group is easily obtained from this case; though we will not attempt to write

a formula for the general case.

Letting the gauge superfields have masses mW and m̃W and couplings g and g̃,

one expects in general to have a contribution proportional to g2g̃2. The presence

of different gauge fields within a diagram stems from the fact that the effective

generators need not be traceless, so the trace that usually produces the Dynkin

index no longer has to vanish for generators of different groups. The sum of

diagrams proportional to g2g̃2 yields a new function, h(x, y, ỹ), where x = F/M2,
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Figure 3.4: From top to bottom, f(x, 0), f(x, .1), f(x, 1), f(x, 10), and f(x, 100)

y = m2
W/M

2, z = m̃2
W/M

2, and h(x, y, y) = f(x, y). This function is given in

Appendix A. The full result for the case of two U(1)’s is

∆m2
0 =

∣∣∣
F

M

∣∣∣
2∑

i

[( α
2π

)2

q2
i q

2
Qf(xi, y) +

( α̃
2π

)2

q̃2
i q̃

2
Qf(xi, ỹ)

+ 2
αα̃

(2π)2
qiq̃iqQq̃Qh(xi, y, ỹ)

]
, (3.17)

where the q’s are the various charges of the fields in what is hopefully an obvious

notation. In general, one simply needs to transform to the mass eigenbasis and

identify all of the U(1)′s that result. Each pair will have a contribution of this

form.

3.5 Implications

The mass spectrum provides some of the key predictions for the potential dis-

covery of GMSB. The masses calculated here (renormalized to the scale of MSSM

sparticle masses [59]) predict relationships among particle masses given by simple

group theory factors and known functions of scales. Our results reproduce those

of standard gauge mediation [41] in the appropriate limit, but provide a new set of

predictions if the mediating group is Higgsed. For example, if the messenger scale

were low enough to make the mass of the SU(2)W fields non-negligible, one would

find sfermions with lower than expected masses. Additional mediating gauge fields,

however, lead to higher masses.
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In ordinary gauge mediation the ratios of gaugino and sfermion masses depend

primarily on the matter content of the messenger sector, but they are also highly

sensitive to the gauge structure. The modification of the spectrum can be partic-

ularly interesting if the messenger scale is near a Higgsing scale. In that case, the

massive gauge fields give significant contributions and cannot be approximated as

massless (see frefxsec1). In this scenario, the ratio of gaugino and scalar masses

would not readily yield the effective messenger number. Assuming ordinary gauge

mediation, one would find that it is not an integer.

Of course, a proximity of scales need not be an accident. In [60], for example,

the breaking-scale of a gauged Peccei-Quinn symmetry and the supersymmetry-

breaking scale coincide. And in the ISS model [61], all scales are set by a single

dimensionful parameter. Recall that our analysis applies to the spectrum and

interactions that result from (3.7). The ISS model is of this form. It has messengers

with masses, m2
± = |hµ|2±|hµ|2 and a supersymmetric Higgsing of the gauge group

with mW = gµ. This gives y = g/h, which is naturally of order one. The model

also has x = 1, so a small-x approximation cannot be trusted.

This chapter is a reprint of material as it appears in “Sparticle Masses in

Higgsed Gauge Mediation,” E. Gorbatov, M. Sudano, JHEP 0810, 066 (2008),

arXiv:0802.0555, of which I was a co-author.
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Figure 3.5: The two-loop diagrams contributing to MSSM scalar masses



Chapter 4

Comments on General Gauge

Mediation

4.1 Introduction

A standard framework for building potentially realistic supersymmetric models

is based on theories of the form

L = L1 + L2 + Lint, (4.1)

where L1 is the MSSM or some extension, L2 is the hidden sector with bro-

ken supersymmetry, and the Lint interactions couple them. In gauge mediation

[30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41], the gauge interactions are the most im-

portant part of Lint. This scenario has been extensively studied for simple, weakly

coupled, hidden sectors L2. It is potentially interesting to extend such results to

more complicated hidden sectors, including those which are not necessarily weakly

coupled, see e.g. [35, 62, 63, 64, 65]. A general framework that can accommodate

this scenario was considered in [8], where it was shown that the soft masses of

MSSM gauginos and sfermions, to leading order in the Lint gauge interactions, can

be expressed in terms of the L2 current correlation functions. Related following

works include [66, 67, 68, 69, 70, 71].

In this short note, we extend the results of [8] to compute the full effective

potential for the sfermion fields. Expanding the effective potential around the

43
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origin gives the sfermion masses. The form of the effective potential far from

the origin can be of interest for cosmological models, as in [72]. When the susy-

breaking/messenger sector L2 is weakly coupled and expanded for small susy-

breaking F-terms, our general effective potential reduces to that obtained in [72].

We also express the full effective potential, generalized to allow for the possibility

that the messenger gauge group is Higgsed. Expanding around the origin, this gives

the gaugino and sfermion masses for general Higgsed gauge mediation. When the

susy-breaking sector L2 is weakly coupled, these results reduce to those recently

obtained in [73] for Higgsed gauge mediation. Finally, we discuss a relation between

these current-correlator results and the discussion in [58] of the 1PI effective action

and RG running. We discuss the results of [8] in terms of superspace and show

how a spurion analysis reproduces the results obtained by analytic continuation in

superspace [57, 58] in the limit of small supersymmetry breaking.

The organization of this paper is as follows. In Section 4.2, we give a brief

review of General Gauge Mediation [8]. In Section 4.3, the full effective potential

is presented in this formalism, and the generalization to Higgsed gauge groups

is discussed. In Section 4.4, superspace techniques [57, 58] are used to extract

results for small F-term breaking. The main observations of Section 4.4 were

independently obtained in the recent work [71].

4.2 Review of General Gauge Mediation

In supersymmetric gauge theories, the gauge supermultiplet V couples to the

current supermultiplet, J , which is a real linear superfield satisfying D2J =

D̄2J = 0. In components,

J = J + iθj − iθ̄j̄ − θσµθ̄jµ +
1

2
θθθ̄σ̄µ∂µj −

1

2
θ̄θ̄θσµ∂µj̄ −

1

4
θθθ̄θ̄⊓⊔J, (4.2)

with ∂µjµ = 0 and the other components unconstrained. The gauge interactions

couple to J as

Lint ⊃ 2g

∫
d4θJV + · · · = g(JD − λj − λ̄j̄ − jµVµ) + . . . , (4.3)
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where the component expansion is in Wess-Zumino gauge. As shown in [8], the

diagrams of Figure 4.1, which give the soft supersymmetry breaking masses of

the visible sector, can be expressed in terms of the hidden-sector current-current

two-point functions. Lorentz invariance and current conservation fix the form of

the Euclidean momentum-space two-point functions of these fields as (dropping a

(2π)4δ(4)(0)):

〈J(p)J(−p)〉 = C̃0(p
2/M2) (4.4)

〈jα(p)j̄α̇(−p)〉 = −σµ
αα̇pµC̃1/2(p

2/M2) (4.5)

〈jµ(p)jν(−p)〉 = −(p2ηµν − pµpν)C̃1(p
2/M2) (4.6)

〈jα(p)jβ(−p)〉 = ǫαβMB̃1/2(p
2/M2) (4.7)

for some functions, C̃0, C̃1/2, C̃1, and B̃1/2. If supersymmetry were unbroken,

C̃0 = C̃1/2 = C̃1, and B̃1/2 = 0. Here M is a mass scale in the problem. We are

interested in these two-point functions in the hidden sector, where supersymmetry

is broken. The C̃j=0,1/2,1 also depend on a UV cutoff, which is needed to regulate

the Fourier transform from position space to momentum space, as

C̃j(p
2/M2) = 2π2c log(Λ/M) + C̃finite

j (p2/M2) (4.8)

where only the finite terms C̃finite
j depend on j when supersymmetry is sponta-

neously broken. Also, in this case, B̃1/2 is independent of Λ [8].

To O(g2), the hidden sector then contributes to the effective action for the

gauge supermultiplet fields as [8]

δLeff =
1

2
g2C̃0(0)D2 − g2C̃1/2(0)iλσµ∂µλ̄− 1

4
g2C̃1(0)FµνF

µν

−1

2
g2(MB̃1/2(0)λλ+ c.c.) + . . . . (4.9)

The divergent part of (4.8) is the hidden-sector contribution to the gauge beta

function:

δ
dg

d lnµ
=

g3

16π2
(2π)4c, (4.10)

with c > 0.
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D1

D2 D3

D4 D5

Figure 4.1: Diagram D1 gives mass to gauginos and is expressible in terms of the
function B̃1/2. Diagrams D2-D5 contribute to the masses of sfermions and involve

the functions C̃0, C̃1/2, and C̃1, respectively.

The diagrams of Figure 4.1, which give masses to the visible sector gauginos

and sfermions were evaluated in [8] in terms of the current correlator functions as

Ma = g2
aMB̃

(a)
1/2(0), m2

ef
= g2

1Yfξ +
∑

a

g4
ac2(af )Aa

Aa ≡ −
∫

d4p

(2π)4

1

p2

(
3C̃

(a)
1 (p2/M2) − 4C̃

(a)
1/2(p

2/M2) + C̃
(a)
0 (p2/M2)

)
.(4.11)

The index a runs over the gauge groups, f runs over the sfermions, Y is the

hypercharge, and ξ is an FI parameter. Note that the integrand of Aa has the

form of a super-trace1 and, without additional information or constraints, it looks

like it can have either sign.

1A related expression appears in [72] for the messenger m2
mess, in the context of models

with a separate messenger sector (where it was argued that perturbative estimates based on
naive dimensional analysis should be essentially reliable even for strongly coupled susy-breaking
sectors).
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D6 D7 D8

Figure 4.2: Diagrams D6, D7, and D8 give contributions to the effective potential
involving the functions C̃0, C̃1/2, and C̃1, respectively.

4.3 The effective potential and Higgsed gauge

mediation

The sfermions of the visible sector generally have tree-level D-flat directions.

With supersymmetry breaking, these directions are lifted first by the two-loop

effective potential. Near the origin, this effective potential reduces to the sfermion

mass terms. Far from the origin, the effects of susy breaking shut off, and the

effective potential becomes very flat. The full effective potential can be of interest

for cosmological models and was computed in [72], to leading order in small F-

terms, for the case of a weakly coupled messenger sector. Here we give a simple

expression for the full effective potential, for arbitrary F-terms, in general gauge

mediation.

The effective potential is computed from the diagrams of Figure 4.2. For sim-

plicity, we quote the result for a single U(1) gauge group – the more general case

is similar. We find that the effective potential is simply

Veff(m
2
W ) =

g2

2

∫
d4p

(2π)4

p2

p2 +m2
W

(
3C̃1(p

2/M2) − 4C̃1/2(p
2/M2) + C̃0(p

2/M2)
)
.

(4.12)

Here mW = 2g|〈Q〉| is the mass of the vector multiplet, where 〈Q〉 is along a

direction which would have been D-flat if not for the supersymmetry breaking.

The terms in (4.12) simply come from contracting the massive vector multiplet

propagators with the appropriate current-current correlator, e.g. from diagram
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D8 we have (in Euclidean space)

gµν

p2 +m2
W

(p2ηµν − pµpν)C̃1(p
2/M2) =

p2

p2 +m2
W

3C̃1(p
2/M2). (4.13)

Diagram D7 is similar, with the massive gaugino propagator contracted with (4.5).

Diagram D6, with the auxiliary field D, requires a bit more attention because it

mixes with a real scalar, C, of the massive gauge multiplet:

∆CD =

(
1 mW

mW −p2

)−1

=
1

p2 +m2
W

(
p2 mW

mW −1

)
, (4.14)

so the D-field propagator is p2/(p2 +m2
W ), which then yields the C̃0 contribution

to (4.12).

Let us now verify that our general effective potential (4.12) reduces to the

sfermion m2
ef

in (4.11), when expanded around the origin. Consider

m2
ef

=
∂Veff

∂|〈Q〉|2 (4.15)

= −2g4

∫
d4p

(2π)4

p2

(p2 +m2
W )2

(
3C̃1(p

2/M2) − 4C̃1/2(p
2/M2) + C̃0(p

2/M2)
)
.

Evaluating this for m2
W = 0 indeed reduces to the expression of [8].

One can also verify that the general result (4.12) reduces to the effective po-

tential obtained in [72], for the special case of weakly coupled hidden sector (using

the expressions for C̃j in the appendix of [8]), when evaluated to leading order in

small F-terms. The case of weakly coupled L2 sector, for general (not necessarily

small) F-terms, can also be compared and verified with the result obtained using

the formulae of [55].

With no additional work, we can extend our result to allow for the possibility

of Higgsed gauge mediation. We simply replace m2
W → m2

W + 4g2|δQ|2 in (4.12),

and keep the mW 6= 0. Expanding to O(|δQ|2), the result (4.15), with mW 6= 0,

gives the sfermion m2
ef
in general Higgsed gauge mediation. For the case of weakly

coupled messengers, it can be verified that the result (4.15) indeed reduces to the

results obtained in [73] for Higgsed gauge mediation.
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4.4 Superspace techniques and analytic continu-

ation in superspace

In the context of weakly coupled gauge mediation, there are nice methods

[57, 58] which allow multi-loop quantities, including sfermion masses, to be reduced

to one-loop quantities at leading order in small supersymmetry breaking F-terms.

Fields ϕ and ϕ̃ of the susy-breaking sector get susy-split masses via W = Xϕϕ̃,

where X is a spurion (background) chiral superfield X = M + θ2F . The results

follow from imposing the constraints of holomorphy in X on the effective action.

The results are limited to leading order in small F , because terms higher order in F

arise from higher super-derivative terms in superspace, which are not considered.

Taking x ≡ |F/M2| ≪ 1, the methods determine the soft masses to O(x).

The methods of [57, 58] extend immediately to general gauge mediation. The

gaugino masses come from the holomorphic gauge coupling τ = θ/2π + 4πi/g2,

which is a holomorphic function τ(X) below the scale X thanks to the thresh-

old matching and the contribution (4.10) of the hidden sector to the beta func-

tion there. The sfermion masses come from the one-loop O(g2) contribution to

ZQ(X, X̄), which depends of X again via the gauge coupling. This gives β
(1)
ga , and

m2
ef
∼ γ

(1)

f̃
∆β

(1)
ga , in terms of the beta-function coefficient c in (4.10) and (4.8):

Ma ≈ g2
a

16π2
(2π)4ca

F

M
, m2

ef
≈
∑

a

2c2(af)
g4

a

(16π2)2
(2π)4ca

∣∣∣
F

M

∣∣∣
2

. (4.16)

In this small F limit, the masses m2
ef

are manifestly positive.

The simple expressions (4.16) motivate a parallel spurion analysis of the current

correlation functions, to connect with the results of [8], quoted above in (4.11),

when expanded in small F . In the small-F limit, we have C̃j ≈ C̃susy, independent

of j = 0, 1/2, 1. To leading order in small F , we find that the susy-breaking

quantities appearing in the soft masses (4.11) can be expressed, for all p2/M2, as

−MB̃1/2(p
2/M2) = F

∂

∂M
C̃susy(p

2/M2) + O(F |F |2/M6), (4.17)
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and

3C̃1(p
2/M2)−4C̃1/2(p

2/M2)+C̃0(p
2/M2) = 2

|F |2
p2

∂2

|∂M |2 C̃susy(p
2/M2)+O

( |F |4
M8

)
,

(4.18)

It is easily verified that these identities are indeed satisfied for the particular case of

weakly coupled messengers, by expanding for small F/M the explicit expressions

for C̃j and B̃1/2 in the appendix of [8]. The identities (4.17) and (4.18) were

independently derived, with the same motivation, in a recent paper of Distler and

Robbins [71].

One approach is to prove (4.17) and (4.18) directly in terms of the current

correlation functions, first enforcing the supersymmetric and current conserva-

tion Ward identities, and introducing the supersymmetry breaking spurion via

M → X = M + θ2F . The first step is simplified by writing the current supercor-

relators in superspace. In particular, the current 2-point functions for unbroken

supersymmetry are given by an immediate generalization of the conformal result

in [18] to the nonconformal case:

〈J (z1)J (z2)〉 =
C(M4x2

21
x2

12
)

x2
21
x2

12

, xµ

12
= xµ

1 − xµ
2 − iθ1σ

µθ̄1 − iθ2σ
µθ̄2 + 2iθ2σ

µθ̄1.

(4.19)

Instead of introducing the spurions in (4.19), we will now do it in terms of the

1PI effective action, since that is anyway more directly relevant for extracting the

implications for gauge mediation.

Consider first the 1PI effective action to O(F 0), neglecting supersymmetry

breaking effects. Following the discussion and notation of [58], there is the term

involving the gauge fields

Γ1PI ⊃
∫
d4p

∫
d4θ γ(p2)W α D2

−8p2
Wα + h.c.

=

∫
d4p

∫
d2θ

1

2
γ(p2)W αWα + h.c. (4.20)

There are also terms involving the visible sector matter, e.g.

Γ1PI ⊃
∫
d4p

∫
d4θζ(p2)

(
Q†eVQ+ Q̃†e−V Q̃

)
. (4.21)
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Classically, γ(p2) = 1/g2, and one can define the quantum running couplings and

Z-factors as γ(p2)|p2=−µ2 = 1/g2(µ2), and ζf(p
2)|p2=−µ2 = Zf (µ

2). To O(g2), the

hidden sector current-current two-point functions contribute

δγ(p2/M2) = g2C̃susy(p
2/M2). (4.22)

The leading term in the low-momentum expansion of (4.20) then gives the terms

(4.9) in the effective Lagrangian (in the susy limit). We are here interested in the

relation (4.22) for general p2.

We now introduce the supersymmetry breaking spurion viaM → X = M+θ2F .

To O(|F |2), the relation (4.22) is simply preserved, and both sides pick up θ

components. The 1PI action then includes

Γ1PI ⊃ 1

2

∫
d4p

∫
d2θ

(
γ(p2)|0 + θ2γ(p2)|θ2

)
W αWα + h.c.

+

∫
d4p γ(p2)|θ2θ̄2

λσµpµλ

−p2
(4.23)

where, according to (4.22) with the spurions, we have

γ(p2)|θ2 = g2F
∂

∂X
C̃susy(p

2/|X|2)
∣∣∣∣
X=M

,

γ(p2)θ4 = g2|F |2 ∂2

|∂X|2 C̃susy(p
2/|X|2)

∣∣∣∣
X=M

. (4.24)

The γ(p2)|θ2 term in (4.22) corresponds to the non-supersymmetric analog of (4.22),

generated in the effective action by the non-supersymmetric current two-point

functions:

γ(p2)|θ2 = −g2MB̃1/2(p
2/M2) −O(F |F |2), (4.25)

where on the RHS we keep only the O(F ) term, and the factor of −M is as in

(4.9). Comparing (4.24) and (4.25) gives the relation (4.17).

Likewise, the γ(p2)|θ4 term in (4.23) is generated by the non-supersymmetric

analog of (4.22), from supersymmetry breaking contributions of the current-current

two-point functions to the effective action. Indeed, it is easily seen, as in (4.9),

that a supersymmetry breaking shift of C̃1/2(p
2/M2) will generate the γ(p2)|θ4 term

in (4.23). Since this supersymmetry breaking term comes from such a C̃1/2 shift
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relative to C̃0 and C̃1, it is generated only by the supertrace:

1

p2
γ(p2)|θ4 =

g2

2

(
C̃0(p

2/M2) − 4C̃1/2(p
2/M2) + 3C̃1(p

2/M2)
)
−O(|F |4)), (4.26)

where only terms to O(|F |2) are kept on the RHS. This relation essentially appears

already in [58] (in terms of the gauge field effective propagators), where it was noted

to follow from considering all the possible contributing terms involving the spurion

and supercovariant derivatives acting on it. Comparing (4.26) with (4.24) yields

the relation (4.18).

It is evident that the θ2 term in (4.23) yields the gaugino mass, and (4.25)

agrees with the result of [8], quoted above in (4.11). This result for Ma indeed

agrees with (4.16), as seen from (4.17) and the contribution of the log Λ term in

(4.8) to C̃susy. The expression for m2
f̃

quoted above in (4.16) follows from (4.18)

and the result (4.11).

This chapter is a reprint of the material as it appears in “Comments on Gen-

eral Gauge Mediation,” K. Intriligator, M. Sudano, JHEP 0811, 008 (2008),

arXiv:0807.3942, of which I was a co-author.



Chapter 5

Surveying Pseudomoduli: the

Good, the Bad and the

Incalculable

5.1 Introduction

5.1.1 Motivation

Dynamical supersymmetry breaking (DSB) is a promising scenario [74] for ex-

plaining the huge hierarchy between the weak scale and the Planck scale. Only

very special examples seem to exhibit complete DSB at weak electric coupling (see

e.g. [35] and references cited therein). Another framework for DSB, which leads to

many new classes of examples, is via theories with IR-free magnetic duals1, with

SUSY broken at tree-level in the dual. Accepting long-lived metastable vacua fur-

ther expands the classes of theories with DSB, among them massive SQCD, which

suggests that metastable DSB can be common, even generic, in field theory and

string theory [61]. See [76] for a recent review and references.

In analyzing such theories, one must always pay attention to the tree-level flat

directions in the potential. Such “pseudomoduli” fields – which we will collectively

denote throughout by Φ – are always present in the low-energy F-term SUSY

1The IR phase must be under control, as seen in the original, still inconclusive, example [75].

53
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breaking models.2 One is the superpartner of the Goldstino, and typically there

are many others, corresponding to (at least some of) the moduli of the IR-free

theory before turning on the supersymmetry-breaking perturbation. To definitively

determine whether or not supersymmetry is broken requires determining what

happens to all of the pseudomoduli in the quantum theory. In the context of

DSB in IR-free duals, as we will discuss, pseudomoduli are either “good,” “bad,”

or “incalculable,” depending on their quantum effective potential and how it is

generated.

We will distinguish calculable DSB models, where the demonstration of DSB

is under full control, from models where incalculable quantum effects could be

important. In the original models of DSB [35], calculability required that the

fields of the electric theory be far from the origin, i.e. |Qelec| ≫ |Λ|, where Λ is the

strong-coupling scale. On the other hand, calculable DSB in a low-energy IR-free

dual requires the dual fields to be close to the origin, |qmag| ≪ |Λ|, in order for

unknown higher-dimension operators, which are suppressed by powers of |Λ|, to

be unimportant.

The condition |qmag| ≪ |Λ| can be non-trivial to check for the pseudomoduli

fields Φ as it entails computing their quantum effective potential. A model has

calculable DSB only if Veff(Φ) stabilizes all pseudomoduli below the cutoff scale,

|Φ| ≪ |Λ|. All bets are off if any pseudomodulus has a potential with a runaway3

to the cutoff of the low energy theory, 〈Φ〉 ∼ Λ. In the context of metastable DSB,

one must also ensure that no pseudomodulus gives a sliding direction down to the

SUSY vacuum. Because the low-energy theory is IR free, the lowest non-trivial

loop order of Veff(Φ) suffices. In the SQCD example, all pseudomoduli are safely

stabilized at one loop in the low-energy theory [61]. But in many other potentially

interesting generalizations, e.g. [78, 79, 80, 81, 82], some pseudomoduli are unlifted

at one loop, so a higher-loop analysis is then required to determine if they have

dangerous runaways to 〈Φ〉 ∼ Λ.

2This was proven in [77] for renormalizable Käher potentials. Additional non-renormalizable
Käher potential terms, which are present (with unknown coefficients) in the IR-free low-energy
duals, contribute to lifting the pseudomoduli. As we will discuss further in what follows, such
contributions are negligible in “calculable” models of DSB.

3For calculable electric DSB [35], one instead checks that Vtree prevents Qelec → ∞ runaways.
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We will here consider general aspects of pseudomoduli, and their dynamical

lifting by Veff(Φ). This will serve to determine whether pseudomoduli are “good,”

“bad,” or “incalculable.” Briefly put, we refer to pseudomoduli as “good” if their

quantum effective potential is calculable and robust, stabilizing them within the

regime of validity of the IR-free low-energy theory. The “bad” pseudomoduli, on

the other hand, have a calculable, robust potential, but with a runaway to the cutoff

of the low-energy theory. Finally, the “incalculable” pseudomoduli are inconclu-

sive, because their quantum effective potential is not robust against incalculable

effects from modes outside of the low-energy theory.

We should note that the “bad” and “incalculable” cases can be salvaged by a

simple fix, which has already been implemented in models in the literature: one

can modify the ultraviolet theory under consideration to give any dangerous pseu-

domoduli Φd a supersymmetric mass “by hand.” This can be done by introducing

additional gauge singlets Σ, coupled to pseudomoduli Φd via Wtree ⊃ mΣΦd, as

was implemented for the examples in [78, 79]. (This generally introduces addi-

tional pseudomoduli, which need to be examined.) Alternatively, one can add the

term Wtree ⊃ mΦ2
d, as in [81, 82]. (This can introduce new supersymmetric vacua,

so the lifetime of any DSB vacua must be re-checked.) From the perspective of

the original UV theory, these are modifications of Wtree by some particular higher-

dimension operators. In fact, the recent work [82] illustrates, in the context of a

particular example, how such a modification can turn “bad” pseudomoduli into

a model-building virtue, providing a meta-stable vacuum where R-symmetry is

broken spontaneously.

5.1.2 Methods and connection to gauge mediation

In our general analysis, we will find it useful to adapt the language of gauge

mediation in order to characterize the coupling of the pseudomoduli to the SUSY-

breaking sector. Recall the idea of gauge mediation (see e.g. [41] for a review

and references): to communicate “hidden” sector SUSY-breaking to the “visible”

sector (the MSSM or some extension) via loops of “messenger” fields which couple

directly to the SUSY-breaking fields and which are charged under the SM gauge
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groups. In a wide class of gauge mediated models, the details of the SUSY-breaking

sector are irrelevant and the dynamics can be described in terms of a spurion field

X that breaks supersymmetry spontaneously through its F-component expectation

value, 〈X〉 = M + θ2f .4 The spurion then couples to messengers ϕ, ϕ̃ via

W ⊃ hXXϕϕ̃, (5.2)

which gives the messenger scalars SUSY-split masses at tree-level (and the MSSM

sfermions soft masses at two loops [36, 38, 39, 40]).

As we will see, the key point is that in order for the pseudomoduli potential

to be calculable, the theory necessarily has some “messenger” fields ϕ with SUSY-

split tree-level masses. Then the pseudomoduli are analogous to the sfermions of

the visible sector, and they will feel the effects of SUSY-breaking through weakly-

coupled “messengers.” Using this language of messengers, we will apply and extend

various results and techniques developed for gauge mediation to this new context.

Each calculable pseudomodulus Φ is lifted at the loop order given by the number

of relevant interactions needed to couple it to the messengers ϕ. (As we will discuss,

the pseudomodulus is “incalculable” if any of these interactions are power-law

irrelevant.) For some classes of models we will consider, the pseudomoduli are

first lifted at three or more loops. Since it would be difficult (to say the least) to

directly compute the needed multi-loop effective potential for such cases, we will

instead develop here a simpler method, which is related to those of [56, 57, 58], and

which allows us to determine multi-loop effective potentials in terms of one-loop

4We consider F -term breaking, where ϕ is a chiral multiplet. As a concrete example, the
SUSY-breaking sector can be a generalized O’Raifeartaigh model, e.g. one like

Wlow ⊃ Xϕ2 + φϕ2 + fX, (5.1)

where φ and ϕ contain multiple fields, in representations of a group. This wide class of super-
symmetry breaking models, with only cubic and linear terms (called O’R2 in [83]), includes the
original inverse hierarchy model of [84], and also the rank-condition supersymmetry breaking of
[61]. Accounting for 〈ϕ〉 6= 0 in these models, they are of type 1 in the classification of [44]. If
φ and ϕ are charged under a sufficiently strong (but still perturbative) gauge group, some pseu-
domoduli can have a minimum away from the origin, spontaneously breaking the (accidental)
U(1)R symmetry of this O’Raifeartaigh sector; see e.g. [84, 85, 83]. These examples are given
only for illustrative purposes.
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RG running data. Our method will apply in the regime

m0 ≪ |Φ| ≪ |Λ|, (5.3)

where the pseudomodulus is relatively far from the origin, but still below the cutoff

of the low-energy theory. Using our method, one can easily determine whether

calculable pseudomoduli are “good” or “bad” in this regime. Examples suggest

that the behavior of the potential in the range (5.3) is indeed a reliable indicator

of whether the pseudomodulus is good or bad.

The analogy between our analysis of pseudomoduli and the standard analysis

of gauge mediation is only an analogy, and it is important to stress some differences

between the two scenarios:

1. The most obvious difference is that in actual gauge mediation the sfermions

only acquire their soft masses through loops involving SM gauge fields, but

here the messenger couplings to pseudomoduli are not restricted by flavor

considerations. So as we will see in various examples, the pseudomoduli

potential can involve both Yukawa and gauge interactions, and it can start

at any loop order.

2. The messengers ϕ can have large SUSY-breaking mass splittings (as in [61]

where some messengers have x ≡ |FX/M
2| = 1). Then the beautiful methods

[56, 57, 58] which have been developed for x ≪ 1, to extract multi-loop effects

from one-loop data, are not directly applicable. Nevertheless, we will here

discuss a different limit, where similar methods can be employed.

3. Something that generally does not happen in gauge mediation, but which

can easily happen here, is that some messengers can have 〈ϕ〉 6= 0 (again, as

is the case in [61]), and this can partly or fully Higgs a hidden-sector gauge

group. (See [73] for additional discussion of mediation by Higgsed gauge

groups.)

4. Because the low energy theory is assumed to be IR free, all interactions

between pseudomoduli Φ and messengers ϕ are either marginally irrelevant

– Yukawa couplings or IR free gauge couplings – or power-law irrelevant.
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5. Being SUSY-breaking mediation in an effective theory, there are unknown

higher dimension operators, suppressed by powers of 1/|Λ|, which could be

potentially dangerous; in the “good” cases, such operators are unimportant.

5.1.3 Summary of the survey of pseudomoduli

Let us now survey various types of pseudomoduli, and their dynamical lifting.

While some of the pseudomoduli may seem rather contrived, all of the ones in

this list occur “naturally” in the effective magnetic description of some strongly-

coupled gauge theory. We will study these theories in more detail in Section 5.5,

and with examples in Section 5.6.

• Gauge singlet pseudomoduli, with cubic direct couplings to mes-

sengers.

Wlow ⊃ Φ1ϕ
2 + Φ̃1ϕχ, (5.4)

where Φ1 and Φ̃1 are gauge-singlet pseudomoduli, ϕ have SUSY-split tree-

level masses, whereas χ do not. For light messengers ϕ, the Φ1, Φ̃1 fields

enter into the one-loop Coleman-Weinberg [86] potential V
(1)
eff , which safely

stabilizes such pseudomoduli near the origin. Such pseudomoduli are “good,”

as they have a calculable potential which prevents their vev from sliding to

the cutoff.

• Gauge singlet pseudomoduli, with cubic indirect couplings to mes-

sengers. Add to (5.4) the term

Wlow ⊃ Φ2χ
2. (5.5)

Pseudomoduli like Φ2 are first lifted at two loops, since they couple to the

messengers via Φ2 ↔ χ ↔ ϕ, where each ↔ costs a loop via a Yukawa

interaction. An example realizing such pseudomoduli is SQCD with both

massive and massless flavors [78]; the full two-loop effective potential for the

analogue of Φ2 in this example was recently explicitly computed in [87], and

was shown to have monotonically decreasing runaway behavior. We will here
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use a simpler analytic method to determine the potential, using only one-

loop data, in the regime of relatively large 〈Φ2〉. The potential in this regime

reveals that such pseudomoduli are “bad,” as they have a calculable runaway

potential pushing their vev to the cutoff of the low-energy theory.

• Higgsing pseudomoduli, gauge-coupled to messengers. Charged mat-

ter fields can lead to pseudomoduli Φq, corresponding to their D-flat expec-

tation values5. For lack of a better name, we call these “Higgsing” pseudo-

moduli. If the messengers ϕ are charged under the same gauge group as the

matter Φq, the coupling Φq ↔ gauge ↔ ϕ, leads to a two-loop effective po-

tential (again, each ↔ coupling costs a loop). In this sense, this type of pseu-

domodulus is most directly analogous to that of sfermions in ordinary gauge

mediation. The generalization to determine the sfermion soft mass-squared

in the here-relevant case of Higgsed gauge groups was recently considered in

[73]. As we discuss, these pseudomoduli are safely stabilized: their two-loop

effective potential pushes them to the origin. All pseudomoduli from gauge

non-singlets have this good, two-loop, stabilizing effect.

• Saxion-type pseudomoduli. These are gauge-singlet fields Φ3 that couple

to the messengers ϕ only via superpotential interactions

Wlow ⊃ Φ3 p
2, (5.6)

to charged matter fields p, which in turn couple to the ϕ via gauge inter-

actions. Since Φ3 pseudomoduli couple to the messengers ϕ via Φ3 ↔ p ↔
gauge ↔ ϕ, they are lifted first by a three-loop effective potential. Φ3 is re-

ferred to as “saxion-type” because of how it enters into the low-energy theory

when it gets a large expectation value. We will here argue that such saxion

pseudomoduli are bad, with a destabilized runaway to the cutoff. This is

qualitatively similar (though differing in the details) to the behavior found

in [58] for the saxions in the context of the usual, heavy-messenger scenario

of gauge mediation of supersymmetry breaking.

5If there are non-zero D-term expectation values, such fields can be lifted by tree level or
one-loop supersymmetry breaking effects, and thus not be pseudomoduli after all. We thank N.
Seiberg for this comment.
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• Gauge messengers. In the previous examples, we have assumed implicitly

that the SUSY-breaking spurion X in (5.2) is a gauge singlet. If instead it is

charged under some gauge group, then the massive gauge fields themselves

become messengers. A classic example is the theory of [84], where gauge

messengers arise from the F-term of an adjoint of SU(5)GUT . See also [57]

for a discussion of some general aspects of gauge messengers. In such cases,

the Higgsing and saxion pseudomoduli couple more directly to the messengers

and their potentials are generated at one lower loop order. As we will discuss,

the sign of the pseudo-moduli effective potential is reversed in both these

cases, meaning that the Higgsing pseudomoduli are destabilized while the

saxion pseudomoduli are stabilized by the gauge messengers.

• Irrelevantly coupled pseudomoduli: are gauge-singlet pseudomoduli which

couple to the SUSY-breaking sector only via power-law irrelevant interac-

tions. For example, pseudomoduli Φ4 with direct coupling to messengers

and some other fields,

Wlow ⊃ 1

Λn+m−2
Φ4ϕ

npm, (5.7)

for n + m ≥ 3. (As we discuss, some of these interactions can become rele-

vant, if m < 3 and 〈ϕ〉 6= 0.) Such pseudomoduli are not reliably lifted by

quantum effects in the low energy theory: the calculable effective potential

in the low energy theory is not parametrically larger than incalculable effects

of the unknown irrelevant terms in the effective Kahler potential. All such

models are thus inconclusive: whether or not their pseudomoduli are dynam-

ically stabilized depends on the sign of terms which cannot, in principle, be

calculated with currently known methods.

5.1.4 Outline

The outline of this paper is as follows. The next section discusses general as-

pects of DSB in IR-free duals. In Section 5.3, we note that models with power-law

irrelevantly coupled pseudomoduli are always inconclusive. In Section 5.4, we note

that there is a limit where even multi-loop pseudomoduli effective potentials can
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be easily computed from one-loop quantities: this is the limit where the pseudo-

modulus is far from the origin, as compared with the tree-level mass scale, but still

below the cutoff. In Section 5.5, we use these results to survey which of the above

pseudomoduli types are safe, and which have a dangerous runaway to the cutoff.

In Section 5.6, we apply these results to comment on a number of examples.

5.2 Generalities of DSB in IR free duals

The low-energy theory is assumed to be an IR-free effective theory with a cutoff

scale given by Λ. The low-energy theory will in general have a variety of mass

scales, including the SUSY-breaking scale set by the parameter f in Wlow ⊃ fX.

This mass scale must be well below the cutoff of the low-energy theory, so we define

a small parameter ǫ, given by

ǫ ≡ f

Λ2
∼
(m0

Λ

)2

with |ǫ| ≪ 1. (5.8)

Calculable IR-free DSB requires such a small parameter ǫ.6 The mass m0 in

(5.8) sets the scale of the tree-level masses in the low-energy theory, as well

as the supersymmetry-breaking scale. The IR-free low-energy theory has un-

known corrections from higher dimension operators, in particular, Kähler poten-

tial corrections, suppressed by powers of 1/|Λ|. Such incalculable terms contribute

to the pseudomoduli potentials – for example Kincalc ⊃ cXX̄ΦΦ̄/|Λ|2 leads to

Vincalc ⊃ −c|m0|4|Φ|2/|Λ|2 with unknown O(1) coefficient c. In general, there are

incalculable contributions to pseudomoduli potentials of the form

Vincalc ∼ |m0|4fincalc

( |Φ|2
Λ2

)
∼ |ǫ|2Λ4fincalc

(
|ǫ| |Φ|

2

m2
0

)
(5.9)

where the real analytic function fincalc has a regular Taylor expansion around the

origin. On the other hand, the calculable effective potential in the low-energy

theory can depend only on m0 and not on Λ, so

Vcalc ∼ |m0|4fcalc

( |Φ|2
m2

0

)
∼ |ǫ|2Λ4fcalc

( |Φ|2
m2

0

)
(5.10)

6The parameter ǫ is related to a superpotential coupling λ of a dual, UV description by
ǫ = λΛ∆UV −3, where ∆UV > 1 is the UV dimension of the composite operator X (and ∆IR = 1).
Thus ǫ ≪ 1 is natural if ∆UV ≥ 3, so the UV coupling is irrelevant or marginally irrelevant. If
∆UV < 3, the small parameter ǫ could still be naturalized by additional dynamics [88].
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for some real function fcalc. The calculable potential is robust against the unknown

effects provided that |ǫ| ≪ 1 and |Φ| ≪ |Λ|.
The IR-free low-energy theory can have marginally irrelevant coupling con-

stants, like the Yukawa coupling hX in Wlow ⊃ hXXϕ
2, or the gauge coupling g of

an IR-free gauge group. Such couplings take some fixed, but unknown O(1) values

at the UV cutoff |Λ| of the low-energy theory, g(|Λ|) ∼ h(|Λ|) ∼ O(1), and then

run down to smaller values in the IR. The running is over a large energy range,

from |Λ| down to the much lower scale m0 of the tree-level masses, below which

the running essentially stops. The couplings thus run down to small IR values.

However, it is important that they are not too small:

g2

16π2
∼ h2

16π2
& (− ln |ǫ|)−1 so |ǫ| ≪ |g|2

16π2
,

|h|2
16π2

≪ 1. (5.11)

This ensures that perturbation theory in the low-energy theory is reliable, with

higher-order perturbative effects suppressed as compared with leading-order ef-

fects. A calculable ℓ-loop mass-term contribution coming from gauge or Yukawa

interactions generally has m2
calc,ℓ ∼ |ǫΛ2h2ℓ+1|, so pseudomoduli are parametrically

lighter, by appropriate powers of the loop-factor (5.11), than the fields which get

tree-level masses. Nevertheless, for any ℓ, it follows from (5.11) that their calcula-

ble mass and potential can be robust, m2
calc,ℓ ≫ m2

incalc.

Finally, let us remark that non-perturbative effects are insignificant as long as

pseudomoduli are not too far from the origin. Non-perturbative effects can only

become significant if the low-energy theory is driven interacting by a sufficiently

large pseudomodulus expectation value, |Φ| > |Φn.p.|. Since the low-energy theory

is IR free, the scale Φn.p. where non-pertubative effects could become important

is generally above the mass scale of the light fields, |Φn.p.| ≫ m0. For example,

non-perturbative effects are irrelevant for the metastable DSB vacua of [61], but

the Wn.p. eventually becomes important, and leads to the SUSY vacua, at the

scale Φn.p. ∼ Λlow ∼ ǫ(Nf−Nc)/NcΛ. In the regime where pseudomoduli are not too

far from the origin, |Φ| ≪ |Φn.p.|, perturbative effects are the most important, and

non-pertubative effects are negligible. For example, even if non-perturbative effects

happen to generate a runaway for a pseudomodulus, the pseudomodulus could still

be safely stabilized in the regime |Φ| ≪ |Φn.p.| by the larger perturbative effects
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there (see [89] for an example of this).

5.3 Irrelevantly coupled pseudomoduli are always

inconclusive

In this section, we discuss power-law irrelevantly coupled pseudomoduli, like

Φ4 in (5.7). Consider the least irrelevant example,

Wlow ⊃ 1

Λ
Φ4Φ̃4ϕ

2. (5.12)

This term can potentially become relevant, if the DSB vacuum has 〈ϕ〉 6= 0. For

example, we could have 〈ϕ2〉 ∼ ǫΛ2/h as in [61], where we have included an IR-

free coupling constant h (5.11). (We will illustrate this with a concrete example

in Subsection 5.6.5.) In this case, (some components of) Φ4 are not pseudomoduli

after all – they get a tree-level supersymmetric mass mcalc ∼ 〈ϕ2〉/Λ ∼ ǫΛ/h.

Comparing this mcalc with the unknown mass contribution (5.9), m2
incalc ∼ |ǫΛ|2,

we see that the calculable tree-level masses are here just barely larger, and thus

just barely robust, thanks to the h−2 ∼ − ln |ǫ| enhancement of m2
calc.

When some fields like Φ4 in (5.12) are pseudomoduli, however, their m2
calc

comes with additional loop factors of the IR-free couplings, so m2
calc ∼ |hℓ−1ǫΛ|2,

which for any loop order ℓ ≥ 1 is not robust against the incalculable contributions

(5.9). Pseudomoduli Φ4 with couplings which are more irrelevant than (5.12) have

even smaller m2
calc. The conclusion is that the effective potentials for power-law

irrelevantly coupled pseudomoduli can never be reliably computed in the low-

energy effective field theory. It is impossible to determine whether or not such

pseudomoduli are safely stabilized at a vacuum within the regime of validity of the

low-energy theory, with expectation values properly below its cutoff Λ. Even if the

low-energy theory appears to break supersymmetry at tree-level, supersymmetry

might not be broken after all, if there is no static DSB vacuum within the regime

of validity of the low-energy theory. We refer to such pseudomoduli and theories

as incalculable.

This point afflicts and renders as inconclusive many potential examples of (per-
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haps metastable) DSB via IR-free duality dynamics; for example, all of the duality

examples of [90, 91, 92], and the many other similar generalizations. All such

examples have incalculable pseudomoduli. Thus none of these examples can have

reliably calculable metastable DSB – they are all inconclusive. As discussed in the

introduction, one can still modify the UV theory by hand to give tree-level masses

to the incalculable pseudomoduli, as in [79, 81], for example.

5.4 A regime where the pseudomodulus’ poten-

tial follows simply from running

The effective potential for pseudomoduli which are lifted at one loop is easily

computed from the expression for V
(1)
eff of [86]. For pseudomoduli which are first

lifted at two loops, one can, in principle, use the expression for V
(2)
eff in [55], though

in practice this can be quite technically involved – see [87] for an example and

some methods. And pseudomoduli like the saxion, which is lifted first at three

loops, would require extensive work in order to evaluate V
(3)
eff .

Here we note that there is a useful regime where all of the general higher-

loop effective potentials can be easily determined by one-loop quantities, through

a generalization of the wavefunction renormalization methods of [57, 58]. The

regime of interest is where the pseudomodulus Φ is relatively far from the origin

but still within the validity of the low-energy effective theory, i.e.7

m0 ≪ |Φ| ≪ |Λ|, (5.13)

where m0 is the typical mass scale of the light fields in the low-energy theory,

or equivalently the scale at which SUSY is broken. (We also assume that |Φ| ≪
|Φn.p.|, so non-perturbative effects are negligible.) It can be useful to know the

potential in this regime, since if it increases with |Φ|, then we can be sure that

the pseudomodulus must be stabilized somewhere along its flat direction. On the

other hand, if the potential decreases in the range (5.13), then this is evidence for

7We ignore any factors of coupling constants which could be multiplying Φ in this section,
since they will be irrelevant to the discussion.
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runaway behavior – although, from this computation alone, one cannot rule out

the possibility that there is a local minimum of the effective potential near the

origin.

To compute the effective potential in the regime (5.13), we use the fact that the

pseudomoduli only couple to the other fields in the theory linearly. Thus at large Φ,

all that happens is some fields of the low-energy theory get masses ∼ Φ. Moreover,

since |Φ| ≫ m0, these massive fields are approximately supersymmetric. So to a

good approximation, integrating them out yields an approximately supersymmetric

effective theory below the Φ scale, where the only dependence on Φ comes from

threshold effects in the effective Kähler potential. If we assume for simplicity that

a single field X has nonzero F-term vev, FX = f 6= 0, then the Wilsonian effective

action below the scale Φ takes the form

Keff = ZX(Q; |Φ|)X†X + . . . , Weff = fX + . . . (5.14)

where Q is the RG scale and ZX is X’s wavefunction renormalization. In the

regime (5.13), the leading-log-enhanced dependence of ZX on Φ is determined

using only one-loop supersymmetric RGEs. Then using this in computing the

tree-level vacuum energy in the effective theory gives the leading approximation to

the effective potential for Φ:

Veff(Φ) ≈ |f |2ZX(m0; |Φ|)−1 (5.15)

in the regime (5.13).

We will find it convenient to introduce the notation ΩX = −1
2
logZX so that

the anomalous dimension of X is given by

γX =
dΩX

dt
(5.16)

where t = log Q
m0

is the RG time. Then (5.15) becomes

Veff(Φ) ≈ |f |2e2ΩX(m0;|Φ|) (5.17)

The details of the calculation of ΩX are contained in Appendix B. The upshot is

that the lowest-order leading-log contribution to ΩX is given by

ΩX(m0; |Φ|) = const.− 1

n!
∆Ω

(n)
X (−tΦ)n + O(κn+1) (5.18)
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where tΦ ≡ log |Φ|
m0

and const. refers to the |Φ| independent part of the wavefunction;

κ is the loop-counting parameter (like κh = h2/16π2 or κg = g2/16π2); and ∆Ω
(n)
X

is short for

∆Ω
(n)
X ≡ dnΩX

dtn

∣∣∣
t+Φ

t−Φ

(5.19)

i.e. the discontinuity at t = tΦ in the nth derivative of ΩX with respect to RG

time. Each derivative of ΩX with respect to RG time brings down a factor of the

loop-counting parameter, so ∆Ω
(n)
X ∼ O(κn) if one uses the one-loop anomalous

dimension in (5.16). Higher-loop corrections to the anomalous dimension add

additional factors of κ and do not contribute at lowest leading-log order, so in the

following all anomalous dimensions and beta functions will implicitly be one-loop

quantities in order to simplify the notation.

Explicitly, we have for the first few values of n:

∆Ω
(1)
X = ∆γX , ∆Ω

(2)
X =

∑

I

∂γX

∂gI
∆βI , ∆Ω

(3)
X =

∑

I,J

∂γX

∂gI

∂βI

∂gJ
∆βJ , (5.20)

where βI = dgI/dt and ∆ refers to the discontinuity across the Φ threshold as in

(5.19). Note that these formulas for ∆Ω
(n)
X assume that the lower order ∆Ω

(m<n)
X

vanish. This is why, for example, we have not written a contribution to ∆Ω
(3)
X from

∂2γX

∂gI∂gJ β
I∆βJ , since if such a term were non-zero it would’ve already contributed

to ∆Ω
(2)
X as well.

In any event, substituting (5.18) into (5.17), we obtain at the lowest leading-log

order:

Veff(Φ) ≈ const.− 2

n!
V0∆Ω

(n)
X

(
− log

|Φ|
m0

)n

(5.21)

where V0 = |f |2 is the tree-level vacuum energy. In this way, the n-loop leading-

log potential is completely determined by one-loop quantities.8 The sign of the

coefficient of the leading-log term then determines whether the pseudomodulus Φ

8As will be clear in the examples, the order n of the leading-log effective potential approxi-
mation (5.21) indeed agrees with the expected loop order, given by the number of interactions
needed to couple the pseudomodulus Φ to some messengers with SUSY-split masses. Thus we can
be confident that the approximations used to obtain (5.21) are indeed capturing the dominant
term in the effective potential (in the regime (5.13)).
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is “good” or “bad” – in short, Φ is

“good” if (−1)n+1∆Ω
(n)
X > 0 (5.22)

“bad” if (−1)n+1∆Ω
(n)
X < 0, (5.23)

where the loop order n is the lowest number for which ∆Ω
(n)
X 6= 0.

It is trivial to generalize to the case where multiple fields Xi have non-zero

F-terms. Then the leading effective potential for a pseudomodulius Φ in the range

(5.13) is given by:

Veff ≈
∑

i

|FXi
|2(ZXi

(m0; Φ))−1 ≡
∑

i

|FXi
|2e2ΩXi

(m0;|Φ|) , (5.24)

and each term in the sum can be approximated as in (5.21),

|FXi
|2(ZXi

(m0; Φ))−1 ≈ const.− 2

ni!
|FXi

|2∆Ω
(ni)
Xi

(
− log

|Φ|
m0

)ni

, (5.25)

where ∆Ω
(ni)
Xi

is defined as in (5.19). Then the potential (5.24) is approximated by

keeping only those terms i with the lowest loop order, i.e. the smallest value of ni.

In the next section, we will apply (5.21) and (5.25) to the cases of interest.

Finally, let us make a few comments on the various corrections to (5.15).

1. Finite effects cannot be captured by the one-loop RGEs, but they are clearly

subleading compared to the large logarithms.

2. Loop effects in the effective theory below the scale Φ only depend on Φ

through the wavefunctions, so they are clearly subleading as well.

3. In order for (5.21) to be the dominant term in the effective potential at large

Φ, all of the one-loop anomalous dimensions and beta functions must be

nonzero. In all the examples we study, this will indeed be the case. If this

condition is not satisfied, and some anomalous dimensions or beta functions

vanish, then subleading logarithms or even finite effects at a lower loop order

could be larger than the effect shown in (5.21).

4. The mistake we are making in assuming that the theory is a supersymmetric

effective theory described by (5.14) comes in the form of terms that are higher
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order in f/|Φ|2. In the regime (5.13) these are clearly negligible compared

to the log-enhanced effects.

5.5 Surveying the pseudomoduli

We here discuss each of the pseudomoduli types mentioned in the introduction.

In each case, we will apply our general result (5.21) for the leading-log effective

potential in the regime (5.13).

5.5.1 Gauge singlet pseudomoduli, with Yukawa coupling

to messengers

Let us rewrite (5.4) and (5.5) with Yukawa couplings reintroduced,

Wlow ⊃ h(Φ1ϕ
2 + Φ̃1ϕχ+ Φ2χ

2) (5.26)

Here the ϕ have SUSY-split tree-level masses, whereas χ do not. We take all

the Yukawa couplings equal just for simplicity, so the loop-counting parameter is

uniformly given by

κh =
h2

16π2
. (5.27)

The ϕ couple to fields X (which can differ from the Φ1 fields) with FX 6= 0 and,

as in (5.2), we distinguish that Yukawa coupling as hX . When Φ = Φ1 or Φ = Φ̃1

is large, the anomalous dimension of X is discontinuous at the scale |hΦ| since the

number of messengers is reduced below this scale:

γX = nϕκhX
, so ∆γX = ∆nϕκhX

, (5.28)

where ∆nϕ = nϕ − n′
ϕ > 0 is the discontinuity in the number of messenger fields

above and below |hΦ|. Thus the effective potential can be determined from the

n = 1 case of (5.21), leading to the well-known result

Veff ≈ 2V0∆γX ln
|hΦ|
m0

. (5.29)

Since V0 > 0 and ∆γX > 0, such pseudomoduli are safely stabilized below the

cutoff of the IR-free dual by the one-loop effective potential. (Depending on the
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specifics of the model, they could be stabilized either at the origin or away from

it. For instance, the second term in (5.26) is analogous to the messenger-matter

mixing considered in [40]; as shown there, it can lead to a negative mass-squared

for Φ̃1 at the origin, so the minimum is elsewhere.)

On the other hand, pseudomoduli like Φ2 in (5.26) require two loops to couple

to the messengers, via Φ2 ↔ χ ↔ ϕ. In principle, the two-loop effective potential

for Φ2 can be obtained from the general expressions in [55]; this was recently carried

out in the context of SQCD with massive and massless flavors in [87]. Here we

simply consider the potential for Φ = Φ2 in the range (5.13). The χ fields in (5.26)

then get a large mass ∼ |Φ2|, and can be integrated out at lower scales. This does

not cause a discontinuity in γX but it does affect its first derivative with respect

to RG time. In more detail, we have

∆Ω
(2)
X = ∆

(
dγX

dt

)
=
∂γX

∂hX
∆βhX

= 4nϕκhX
∆γϕ, (5.30)

where in the last equality we have used γX = nϕκhX
and βhX

= hX(γX + 2γϕ).

Finally, taking ∆γϕ = nχκh with nχ being the number of χ fields which got a mass

from Φ2, this becomes

∆Ω
(2)
X = 4nϕnχκhX

κh (5.31)

Substituting into (5.21), we obtain

Veff(Φ2) ≈ −V0κhκhX
nϕnχ

(
ln

|hΦ2|2
m2

0

)2

, (5.32)

Therefore, the two-loop potential for Φ2 reveals a destabilized runaway.

5.5.2 Higgsing pseudomoduli

As described in the introduction, these pseudomoduli come from expectation

values of matter fields Φq charged under a gauge group in which the messengers

ϕ also transform. The physics is quite different depending on whether the field(s)

X with FX 6= 0 are neutral or charged under the gauge group. For charged FX ,

the gauge fields are “gauge messengers” and can lift Higgsing pseudomoduli at one

loop. We will discuss this case more in Subsection 5.5.4 and present an example of
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it in Subsection 5.6.3. In this subsection we will focus on the case of neutral FX ,

where Higgsing pseudomoduli are instead lifted at two loops.

We consider the limit of large Φ = Φq, in the range (5.13). Suppose the

messengers ϕ decompose into fields ϕi transforming in irreducible representations

rϕi
of G. Above the scale Φq, the gauge coupling contribution to the one-loop

anomalous dimension of the messengers is given by

γϕi
⊃ −2c(rϕi

)κg (5.33)

with κg = g2/16π2 being the loop-counting parameter for gauge coupling g and

c(rϕi
) being the quadratic Casimir invariant. (In general c(r) = T (r)|G|/|r|; so

c(fund) = N2−1
2N

and c(adj) = N for SU(N).)

The gauge group is (partially or fully) Higgsed down to G′ ⊂ G at the mass

scale |Φq|, and that affects the anomalous dimensions of the messengers. Below

the Higgsing scale we can decompose the messengers into fields ϕ′
i transforming as

G′ irreps rϕ′

i
. Each field ϕ′

i then has an anomalous dimension given by (5.33) with

ϕi → ϕ′
i.

As in the previous subsection, (5.30) gives the leading contribution to the ef-

fective potential, but instead of (5.31) we have

∆Ω
(2)
X = 4κhX

∆

(
∑

i

|rϕi
|γϕi

)
= −8κhX

κg∆

(
∑

i

|rϕi
|c(rϕi

)

)
(5.34)

Since |rϕi
|c(rϕi

) = T (rϕi
)|G| and the index T is additive, (5.34) becomes simply

∆Ω
(2)
X = −8κhX

κgT (rϕ)(|G| − |G|′) (5.35)

Finally, substituting into (5.21), we have

Veff (Φq) ≈ 2V0κhX
κgT (rϕ)(|G| − |G|′)

(
ln

|Φq|2
m2

0

)2

. (5.36)

which implies (since |G|′ < |G|) that the potential always has a stabilizing effect

on the pseudomodulus field. This is analogous to the two-loop potentials for D-flat

directions found in [72, 58]9.

9Indeed the general gauge mediation [8] effective potential for Higgsing pseudomoduli is [93]

Veff (m2
W ) =

g2

2

∫
d4p

(2π)4
Tr

(
p2

p2 + m2
W

)
(3C̃1 − 4C̃1/2 + C̃0), (5.37)
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5.5.3 Saxion-type pseudomoduli

Consider gauge singlet “saxion” pseudomoduli Φ3, coupling to charged matter

p via

Wlow ⊃ hΦ3p
2, (5.38)

The Φ3 potential is first generated at three loops, since they couple to the messen-

gers only via Φ3 ↔ p ↔ gauge ↔ ϕ. In the range (5.13) of large Φ3, the saxion

effective potential can be determined using (5.21) with n = 3:

∆Ω
(3)
X = ∆

(
d2γX

dt2

)
=
∂γX

∂hX

∂βhX

∂g
∆βg. (5.39)

This is nonzero, since the p fields are massive and can be integrated out at the

scale hΦ3, which affects the beta function of the gauge coupling below the hΦ3

threshold:

∆βg = − g3

16π2
(b− b′) = −gκg(b− b′), (5.40)

where e.g. b = 3N −Nf for an SU(N) gauge theory with Nf flavors. Substituting

this into (5.39) and using γX = nϕκhX
, βhX

= hX(γX + 2γϕ) and γϕ ⊃ −2c(rϕ)κg,

this becomes

∆Ω
(3)
X = 16κhX

κ2
gnϕc(rϕ)(b− b′) (5.41)

Then it follows from (5.21) that

Veff(Φ3) ≈
2

3
V0κhX

κ2
gnϕc(rϕ)(b− b′)

(
ln

|hΦ3|2
m2

0

)3

. (5.42)

Because giving mass to some matter makes the IR group more strongly interact-

ing, we here have b − b′ = −T2(rp) < 0. With this sign in (5.42), we conclude

that saxion-type pseudomoduli Φ3 always have a destabilizing runaway potential,

generated at three loops, at least in the range (5.13).

where Tr sums over vector bosons, with mass matrix m2
W . For sfermions qf in reps rqf

we

have (m2
W )AB =

∑
f Tr(T

(A
rqf

q†fT
B)
rqf

qf ). We are here interested in the case of weakly coupled

messengers ϕ, so Ca(p2/M2) is T (rϕ) times the expressions quoted in [8]. Expanding (5.37)
for qf near the origin gives the sfermion soft masses m2

qf
∼ m2

0g
4 > 0, including the group

theory factor c(rqf
). As was recently analyzed in [73], there can be some numerical differences

in the coefficient of m2
qf

, as compared with the usual gauge mediation scenario, because the

messengers can have 〈ϕ〉 ∼ m0 6= 0, Higgsing the gauge group (as in the SQCD example of [61]).
Approximating (5.37) for some Qf ∼ Φq far from the origin also indeed yields (5.36).
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Let us make two comments on this result. First, note that the change in the

beta function (5.40) is accounted for by an added term in the low-energy theory,

Wlow ⊃ − 1

64π2
(b− b′)

∫
d2θ ln(Φ3)W

2
α, (5.43)

which is the only way that Φ3 enters into the low-energy theory in this limit. This

is the reason for calling such pseudomoduli saxions: the phase of Φ3 enters the

low-energy theory like an axion, and ln |Φ3| is its saxion superpartner.

Second, in the standard gauge-mediation setup, it can be shown [58] that sax-

ion pseudomoduli Φ3 also have destabilizing, tachyonic m2
3 < 0 near the origin,

in analogy with how the top Yukawa and m2
t = O(α2

s) can lead to electroweak

breaking m2
H < 0. This argument, however, relies on the large separation of scales

of a high messenger scale mϕ: one starts at the high scale mϕ with the two-loop

supersymmetry breaking m2
p|µ=mϕ > 0, and m2

3|µ=mϕ ≈ 0. Then m2
3|µ≪mϕ < 0

follows from RG running the one-loop h2
3 Yukawa contribution to the running m2

3

and m2
p. But in our examples of interest, there are light messengers, no such large

range of running, and the finite terms in the effective potential cannot be neglected

in computing the three-loop potential for Φ3 near the origin. So here a full-fledged

explicit calculation of the three-loop effective potential for Φ3 would generally be

required to determine if there is any (metastable) local minimum near the origin.

In any case, we have argued for the destabilized runaway farther from the origin.

5.5.4 Modifications when there are gauge messengers

Finally, let us discuss models with gauge messengers, i.e. models where the

gauge multiplets have tree-level, SUSY-split masses. Gauge messengers occur if

any charged matter field has a non-zero, tree-level F-term. The methods discussed

in Section 5.4 can be applied, with only trivial modification, to determine the ef-

fective potential for pseudomoduli when there are gauge messengers. Though the

methods are the same, the physics with gauge messengers is quite different. Higgs-

ing and saxion-type pseudomoduli are lifted at one fewer loop order by gauge mes-

sengers. Correspondingly, the sign of the leading-log effective potential for these

pseudomoduli can be opposite from cases without gauge messengers. So Higgsing
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pseudomoduli can become destabilized at one loop, and saxion pseudomoduli can

become stabilized at two loops.

Let us first consider Higgsing-type pseudomoduli. With gauge messengers,

Higgsing pseudomoduli Φq are lifted at 1-loop. This can be seen simply from (5.24)

and (5.25) (we are allowing for the possibility that there are multiple fields Xi with

F-terms, transforming in different representations of the gauge group). That is,

charged fields Xi have a discontinunity in their 1-loop anomalous dimensions when

the gauge group is Higgsed at the scale |gΦq|,

∆Ω
(1)
Xi

= ∆γXi
= −2κg∆c(rXi

). (5.44)

Here ∆c(rXi
) = c(rXi

)|GG′, where G denotes the group above the Higgsing scale,

and G′ denotes that below, and in general ∆c(rXi
) > 0. As in (5.29), the potential

in the large |Φ| regime is then approximated by

Veff(Φ) ≈ −2
∑

i

|FXi
|2κg∆c(rXi

) ln
|gΦ|
m0

. (5.45)

Because ∆c(rXi
) > 0, we see that Higgsing pseudomoduli are generally unstable at

1-loop in theories with gauge messengers. (One exception is if the pseudomodulus

Φ is itself one of the fields Xi with non-zero F-term, which also couples to matter

messengers ϕ; in this case, there can be also a positive contribution to ∆γXi
as in

[84].)

Let us now consider saxion-type pseudomoduli, like Φ3 in (5.38). When such

pseudomoduli are in the range (5.3), the change at the scale Φ3 is

∆Ω
(2)
Xi

= ∆

(
d

dt
(−2c(ri)κg)

)
= −4c(ri)κg

g
∆βg = +4κ2

gc(ri)(b− b′). (5.46)

where in the last equation we have used (5.40). Then (5.25) gives

Veff(Φ3) ≈
∑

i

4|FXi
|2κ2

gc(ri)(b
′ − b)

(
log

|Φ|
m0

)2

. (5.47)

Because b′ − b > 0 in this case (as discussed after (5.42)), the 2-loop potential

stabilizes the saxion. This has the opposite sign of (5.42), and appears at one

fewer loop order. So gauge messengers can stabilize saxions.
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5.6 Examples

5.6.1 Warmup: SQCD with massive flavors

To illustrate our method, and set up the notation for following examples, let

us briefly review the metastable DSB theory based on SQCD with massive flavors

[61]. The UV theory is SU(Nc) SQCD, with Nf in the IR free-magnetic range,

Nc < Nf <
3
2
Nc. The Nf flavors have a small mass mQ, which for simplicity we

take to be the same for all flavors, so there is a global SU(Nf ) × U(1)B
∼= U(Nf )

symmetry. The low-energy theory is given by the IR free SU(N = Nf −Nc) dual,

with

W = hTrΦϕϕ̃− hµ2TrΦ. (5.48)

The mass scale is given in terms of UV data as µ2 ≡ (−1)Nc/NfmΛ (see [61, 76]

for discussion of these factors). This theory has metastable SUSY breaking vacua,

given at tree level by

Φ =

(
0 0

0 Φ̂

)
, ϕ =

(
ϕ̂

0

)
, ϕ̃ =

(
˜̂ϕ 0

)
, with ˜̂ϕϕ̂ = µ21N , (5.49)

with Φ̂ an (Nf −N)2 = N2
c matrix of pseudomoduli. SUSY is broken by

FΦ =

(
0 0

0 f1Nf−N

)
, with f † = hµ2 6= 0. (5.50)

The vacuum energy is V0 = (Nf −N)|h2µ4|, and the tree-level mass scale is m0 =

hµ.

The pseudomoduli are all lifted at one loop, as is evident from the fact that

they have direct superpotential coupling to the messengers ϕ. The 1-loop effective

potential for all values of the pseudomoduli was computed in [61], and it was noted

that the metastable DSB vacua are at Φ̂ = 0, ϕ̂ = ˜̂ϕ = µ1N . The gauge and global

symmetry group is broken in these vacua as SU(N)×U(Nf ) → SU(N)D×U(Nf −
N).

When the pseudomoduli Φ̂ in (5.49) are in the range (5.3), we can alternatively

use the result (5.29) to easily determine the form of the effective potential. Taking
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e.g. Φ̂ in (5.49) to have Nf − N independent and large diagonal entries, each of

which has γΦ = Nκh, and then accounting for the flavor structure, immediately

yields

Veff(Φ̂) ≈ |f |2NκhTr ln
Φ̂†Φ̂

|µ|2 . (5.51)

The rising potential (5.51) gives a quick and indeed reliable indication that the

Φ̂ pseudomoduli are good. (As discussed in [61], for sufficiently large Φ the non-

pertubative Wdyn becomes important and the potential eventually slopes down to

the supersymmetric vacua. This happens past the far, but still perturbative regime

of (5.51).)

5.6.2 Example with a two-loop runaway: SQCD with both

massive and massless flavors

We again take the UV theory to be SU(Nc) SQCD with Nf flavors in the free-

magnetic phase. But here we take only Nf1 of the flavors to be massive, leaving

Nf0 massless flavors. For simplicity, we will give the Nf1 flavors equal mass, m.

In the IR, the superpotential is then of the general form (5.4). In particular, for

magnetic fields (we use the notation of [82])

Φ =

(
Φ11 Φ10

Φ01 Φ00

)
, ϕ =

(
ϕ1

ϕ0

)
, ϕ̃ =

(
ϕ̃1 ϕ̃0

)
, (5.52)

we have

W = hTrΦijϕjϕ̃i − hµ2TrΦ11, (5.53)

where Φij is an Nfi ×Nfj matrix and ϕi and ϕ̃T
i are Nfi ×N matrices.

The first two terms in (5.53) lead to rank-condition supersymmetry breaking

when Nf1 − N = Nc − Nf0 > 0, with V0 = (Nc − Nf0)|hµ2|2. All fields other

than Φ00 get masses at tree-level or one-loop level. This was observed in [78],

where it was also shown that Φ00 has a non-perturbative runaway coming from a

dynamically generated superpotential. This is not yet fatal, as there is a range

of the pseudomoduli space where the non-perturbative effects are negligible in

comparison with higher-loop perturbative effects. But it was recently shown in
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[87] that higher-loop perturbative effects also lead to a potential with a runaway

to large Φ00.

Let us now use the formalism developed in the previous two sections to demon-

strate this two-loop runaway behavior in the range (5.3). We identify Φ00 with

the Φ2 pseudomodulus of Subsection 5.5.1. The fields Φ11 have F-terms given by

(5.50), replacing Nf with Nf1, so they play the role of X. The fields ϕ1, ϕ̃1 then

play the role of the messengers ϕ, while the fields ϕ0, ϕ̃0 are analogues of χ in

(5.4).

To simplify the flavor index structure, let us take 〈Φ00〉 ∝ 1a ⊕ 0Nf0−a, for an

integer a between 1 and Nf0. Below the 〈Φ00〉 threshold, the a flavor components of

ϕ0 get a mass and no longer contribute to γϕ, leading to ∆γϕ = ah2/16π2 ≡ aκh.

As in (5.30), we then find ∆Ω
(2)
Φ11

= 4Naκh. Accounting for the SU(Nf0)L ×
SU(Nf0)R flavor symmetry, the effective potential in this regime is found to be

Veff(Φ00) ≈ −V0Nκ
2
hTr

(
ln

|Φ00|2
|µ|2

)2

. (5.54)

The sign indicates that the Φ00 pseudomoduli have a two-loop runaway to the

cutoff of the low-energy theory, and this model thus does not have a calculable

metastable DSB vacuum.

This runaway can be lifted in a variety of ways. As noted in [78], one way is to

add singlets, Σ, to the UV theory with a marginal superpotential coupling to Φ00,

Wtree ⊃ mTrΦ00Σ. In this modified theory, all pseudomoduli are stabilized at the

origin, and there is metastable DSB. Another modification – which is potentially

more suitable for model building – is to deform the theory by Wtree ⊃ mTr Φ2
00

[82]. Since this is a nonrenormalizable interaction in the UV, m is naturally small;

as shown in [82], this makes it possible to balance the two-loop runaway potential

against this tree-level stabilizing potential and obtain a meta-stable vacuum at

Φ00 6= 0 where the R-symmetry is completely broken.
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5.6.3 SQCD with weakly gauged flavor symmetry – an ex-

ample with gauge messengers

We start with the SQCD theory considered in [61], and reviewed in Subsection

5.6.1, where all Nf flavors are give the same mass m = mQ. There is a global

SU(Nf )×U(1)B
∼= U(Nf ) symmetry, and we here consider gauging some subgroup

G ⊆ SU(Nf ) of the flavor symmetry. We will very weakly gauge this subgroup,

g ≪ 1, so that ΛSU(Nc) ≫ ΛG. For energies below ΛSU(Nc), we dualize SU(Nc) →
SU(N = Nf − Nc) and, as in [61], there are metastable SUSY-breaking vacua,

given at tree level by (5.49).

Let us first consider the case that G = SU(Nf ). (In the next subsection we

will analyze the case of proper subgroups.) Some preliminary analysis of this

theory appeared in [61, 80]. The classical vacua are still given by (5.49) for g 6= 0,

though the SU(Nf ) D-terms lift some of the g = 0 pseudomoduli at tree level.

The SUSY-breaking F-terms are still given by (5.50). Our interest here will be in

the theory with k added SU(Nf) flavors, ρi ∈ (1, Nf), ρ̃i ∈ (1, Nf), i = 1, . . . , k,

with k in the range Nf +Nc < k < 3Nf −Nc, so that the SU(Nf ) gauge coupling

is asymptotically free in the UV SU(Nc) × SU(Nf) theory, and IR free in the

SU(N) × SU(Nf) low-energy dual [80]. The dual theory has

W = hTrΦϕϕ̃+mQΛTrΦ +mρρρ̃. (5.55)

We are interested in the case where mρ = 0. The added SU(Nf ) matter fields in

this case lead to additional pseudomoduli, given by the expectation values of ρ and

ρ̃ along the tree-level D-flat directions, Higgsing SU(Nf ) (or U(Nf )). The effective

potential for these pseudomoduli had not yet been computed in the literature.

We here highlight a key point about this theory: because Φ̂ in (5.49) is charged

under SU(Nf ), the non-zero F -term for this charged field implies that the model

has gauge messengers, as discussed in Subsection 5.5.4. Thus the ρ, ρ̃ pseudo-

moduli are lifted at one instead of two loops. Indeed, a direct computation of

the one-loop Coleman-Weinberg potential exhibits the dependence on the ρ and ρ̃

expectation values. Alternatively, we can use apply the discussion in Subsection

5.5.4 to see that the one-loop potential is non-vanishing at large ρ, ρ̃.
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Consider the pseudomodulus direction where ρ and ρ̃ each have a single large

entry, ρ1. This Higgses SU(Nf ) to SU(Nf − 1) at the threshold scale gρ1. Under

SU(Nf − 1), Φ decomposes into an adjoint φA, A = 1, . . . , dim(SU(Nf − 1)); two

singlets φ0′ and φ0; and a fundamental plus anti-fundamental. The latter two do

not participate in the SUSY breaking so we will set them to zero henceforth. The

decomposition of Φ into the remaining fields is:

Φ = φAT
A + φ0′T

0′ + φ0N
−1/2
f 1Nf

(5.56)

where TA are the generators of SU(Nf − 1) (as Nf × Nf matrices), and T 0′ is

proportional to the SU(Nf − 1) (but not the SU(Nf )) identity. These genera-

tors are all normalized to have Tr (TA)2 = Tr (T 0′)2 = 1 so that φA, φ0′ and φ0

are canonically normalized fields. The corresponding F-terms are then given by

decomposing (5.50) as

FΦ = FφA
TA + Fφ′

0
T 0 + Fφ0N

−1/2
f 1Nf

. (5.57)

In general these F-terms will all be non-zero. Then according to (5.45), the effective

potential for ρ1 in the regime (5.13) is

Veff ≈ −2
(
|FφA

|2∆c(φA) + |Fφ0′
|2∆c(φ0′)

)
κg log

|ρ1|
m0

(5.58)

Notice that Fφ0 does not contribute since it is neutral under SU(Nf ) and SU(Nf −
1). The change in the quadratic Casimir invariants is simply

∆c(φA) = c(SU(Nf ) adj) − c(SU(Nf − 1) adj) = 1

∆c(φ0′) = c(SU(Nf ) adj) − c(SU(Nf − 1) sing) = Nf . (5.59)

Substituting back into (5.58), we conclude that Veff is indeed a downward-sloping

function of the pseudomodulus field ρ1, indicating “bad” runaway behavior.

Let us make two comments on this result. First, we have been intentionally

vague about the precise forms of Fφ0 and FφA
, since these will depend on how

the ρ vev is aligned with the SUSY-breaking pattern (5.49), (5.50). However,

we see from this analysis that the conclusion of runaway behavior is robust and

does not depend on the detailed form of the F-term vevs. Second, let us mention
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that the coefficient in (5.58), and in particular its sign, can also be obtained from

the fact that the coefficient of lnm0 is the same as the coefficient of lnMcutoff

in the Coleman-Weinberg potential: ∂V
∂ lnm0

=
∂V

(1)
CW

∂ lnMcutoff
= − 1

32π2 StrM4. Indeed

the result (5.58) is reproduced upon evaluating the leading O(|F |2) contribution

to StrM4 in the large |ρ1| limit, using the appropriate gauge messenger spectrum

(which can be found as in [57]).

5.6.4 SQCD with weakly gauged flavor symmetry – no

gauge messengers

Let us now consider the same model as the previous subsection except that

instead of gauging the entire SU(Nf ) flavor symmetry, we gauge an SU(K) sub-

group which is sufficiently small, and aligned, such that such that FΦ in (5.50) is

gauge neutral. This of course leads to qualitatively different behavior, since now

there are no longer any gauge messengers present to lift the pseudomoduli at one

loop.

There are now two qualitatively different possibilities for how the SU(K)

gauge group is aligned. The expectation values (5.49) break SU(N) × SU(Nf ) →
SU(N)D ×SU(Nf −N), and the two possibilities are that the SU(K) can align in-

side either SU(N)D or inside SU(Nf −N) (assuming that K ≤ N , or K ≤ Nf −N ,

respectively). The qualitative difference is because (5.50) leads to tree-level SUSY-

split masses for only the last Nf − N flavors. So if SU(K) aligns with the first

N entries in (5.50), then the messenger fields are neutral under SU(K), whereas

if the SU(K) aligns with the last Nf − N entries in (5.50) the messengers ϕ are

charged under SU(K). In either case, we are here considering the case where the

F-terms (5.50) are SU(K) gauge singlets, so that there are no gauge messengers.

Let us first consider the case where SU(K) aligns within the SU(Nf − N),

i.e. the last Nf − N flavors in (5.50). Since there are then messengers ϕ with

SUSY-split masses, and charged under SU(K), the ρ pseudomoduli in this case

couple as the Higgsing pseudomoduli of Subsection 5.5.2. As discussed there, such

pseudomoduli are lifted at two loops, and such pseudomoduli are good – their

potential safely stabilizes them. Indeed, consider the range (5.13), where their
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potential can be read off from (5.36). Consider again the pseudo-D-flat direction

where ρ and ρ̃ each have a single large entry, ρ1, Higgsing SU(K) to SU(K − 1).

We then have from (5.35)

∆Ω
(2)
X = −8κhX

κgT (rϕ)(|G| − |G′|) = −4
κh

Nf −N
κgN(2K − 1), (5.60)

where h is as in (5.48) and hX = h/
√
Nf −N comes from writing the F-terms

(5.50) in terms of a canonically normalized SU(Nf − N) singlet field X. As in

(5.36), the potential is then

Veff (ρ1) ≈ |f |2κhκgN(2K − 1) ln2 |gρ1|2
m2

0

, (5.61)

which is an increasing function of |ρ1|; the potential safely stabilizes these pseu-

domoduli. Allowing for several flavors of ρ and ρ̃ with widely separated large

expectation values yields a sum of terms like (5.61), safely lifting all of these Hig-

gsing pseudomoduli.

We now briefly summarize the case where SU(K) instead aligns inside the un-

broken SU(N)D, i.e. within the first N entries in (5.50). The SUSY-split messenger

components of ϕ are now SU(K) neutral, and the SU(K) charged components of

ϕ have SUSY masses. These components interact via the superpotential terms

coming from (5.48), with coupling h. The upshot is that the ρ pseudomoduli in

this case are first lifted at three loops. The three-loop effective potential in the

range (5.13) is approximated by (5.21) with ∆Ω
(3)
X = ∂γX

∂hX

∂βhX

∂h
∆βh < 0, where the

sign comes from the SU(K) gauge contribution to ∆βh. It then follows from (5.22)

that the ρ pseudomoduli in this case are bad.

To summarize, if the gauged flavor group is the entire SU(Nf ), or more gener-

ally an SU(K) subgroup which is not aligned within either the first N entries or

the remaining Nf −N entries in (5.50), then there are gauge messengers, and the

ρ pseudomoduli are lifted at one loop and are bad, with a perturbative runaway.

If the gauged SU(K) flavor subgroup is entirely within the last Nf − N entries

in (5.50), then the ρ pseudomoduli are lifted at two loops and are good. Finally,

if the gauged SU(K) is entirely within the first N entries in (5.50), then the ρ

pseudomoduli are lifted at three loops and are bad.
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5.6.5 Example with a saxion-type pseudomodulus: SU(Nc)

with symmetric tensor and antifundamentals

We now take the UV theory to be an SU(Nc) gauge theory with symmetric

tensor S and Nf = Nc + 4 antifundamentals Q̃i, and we attempt to break super-

symmetry by turning on the tree-level superpotential Wtree = TrλijSQ̃iQ̃j . For

simplicity, we take λij = λδij , preserving an SO(Nf) ⊂ SU(Nf ) flavor symme-

try, along with a U(1)R symmetry with R(S) = −2 + 4
Nc

and R(Q̃) = 2 − 2
Nc

.

This theory was originally considered long ago [35], where it was noted to have

an interesting pseudo-flat direction, labeled by 〈detS〉, along which 〈Q̃〉 = 0 and

〈S〉 = a1Nc . Far from the origin in this direction, 〈detS〉 ≫ ΛNc , there is a

non-perturbative runaway superpotential which pushes detS → ∞ [35]:

Wdyn = c

(
(Λ2N−3)2 detλ

detS

)1/(Nc−2)

(5.62)

(To obtain (5.62), note that 〈S〉 = a1Nc Higgses SU(Nc) to SO(Nc), and gives

the Q̃ mass m eQ = λa. Then (5.62) is generated by gaugino condensation in the

low-energy SO(Nc) Yang-Mills theory.) It was speculated in [35] that there might

be a metastable minimum at smaller values of detS, perhaps either in the 〈S〉 ≫ Λ

regime, or for S nearer the origin.

The theory near the origin can now be analyzed using its known magnetic dual

[94]: an SO(8) gauge theory with Nf matter fields ϕ ∈ 8v, one matter field p ∈ 8s,

1
2
Nf (Nf +1) singlets Φ (with Φ = ΦT ), and one more singlet Z, with superpotential

Wdual = h(TrΦϕϕ− µ2TrΦ + Zp2), (5.63)

where, as before, we take the couplings to be the same for simplicity. In terms

of the UV theory, Φ = Λ−2SQ̃Q̃, Z = Λ1−Nc detS, and f = −hµ2 = λΛ2. The

SO(8) magnetic dual theory is IR free for Nf ≥ 17. The small parameter (5.8) is

ǫ = λ, so we need to take |λ| ≪ 1. The first two terms in (5.63) lead to FΦ 6= 0

via the rank-condition supersymmetry breaking [61], with tree-level vacuum V0 =

(Nf −8)|hµ2|2 ∼ (Nf −8)|λΛ2|2. Indeed, this sector of the theory is the IR dual of

an SO(Nc) gauge theory with Nf = Nc+4 massive fundamentals which, along with

the field Z, is the low-energy electric theory obtained for large Z. Ignoring the Z
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pseudomodulus, this low-energy theory would have metastable DSB vacua at 〈Φ〉 =

0, with 〈ϕ〉 6= 0 (breaking SO(8)gauge × SO(Nf)flavor → SO(8)D × SO(Nf − 8)),

just as in [61].

However, the additional Z pseudomodulus of the low-energy theory (5.63) spoils

the metastable DSB minimum in the other pseudomoduli. The field Z is the same

interesting pseudomodulus, with the non-perturbative runaway for |Z| ≫ |Λ|,
found in [35]. For |Z| ≪ |Λ|, the IR free magnetic dual SO(8) theory reveals

a perturbative runaway, as the field Z is of the “saxion” type, like Φ3 in (5.38).

As we have argued, such pseudomoduli develop a perturbative runaway potential

at three loops, and eventually Z slides to the UV cutoff of the low-energy theory,

Z ∼ Λ, where all bets are off. In the regime (5.13) of |µ| ≪ |X| ≪ |Λ|, the effective

potential is given by (5.42) (where g is the dual SO(8) gauge coupling):

Veff(X) ≈ −56

3
V0κhκ

2
g

(
ln

|Z|2
|µ2|

)3

(5.64)

since b = 17−Nf above the Z threshold, and below p gets a mass, so b′ = 18−Nf .

Because of this perturbative runaway, we expect that this theory does not have

a metastable dynamical supersymmetry breaking near the origin10. All evidence

points toward this theory having everywhere the runaway to 〈S〉 → ∞, starting

with the perturbative magnetic runaway for 〈S〉 ≪ Λ, and ending with the nonper-

turbative electric potential from (5.62) for 〈S〉 ≫ Λ, rather than any metastable

DSB vacuum.

5.6.6 Modifications of the above example, which do have

metastable DSB near the origin

We can still modify the electric SU(Nc) theory to remove the runaway by hand,

and obtain a model of DSB. We add to the electric theory a gauge singlet field Σ,

and take

Wtree = λTrSQ̃Q̃+
c

MNc−2
p

Σ det S, (5.65)

10We have not computed the three-loop V
(3)
eff in the range |X | ∼ |µ|, and in principle there

could be a metastable minimum in this range very close to the origin. Even if that were the case,
such a hypothetical minimum would likely not be sufficiently long-lived to be viable.
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where Mp is the scale of some UV completion or other dynamics (suppose Mp ≫
|Λ|) and c is a dimensionless constant11. In the IR free magnetic dual, the super-

potential is

Wdual = h(TrΦϕϕ− µ2TrΦ + Zp2) +mZΣZ, (5.66)

where mZ = cΛ(Λ/Mp)
Nc−2. As before, we take Nf > 17, so the magnetic theory is

IR free. The first two terms then lead to rank-condition supersymmetry breaking,

with V0 = (Nf − 8)|hµ2|2. The last term gives Z a tree-level supersymmetric mass

mZ , so Z is no longer a pseudomodulus; the runaway direction of the previous

subsection has been eliminated. The new field Σ leads to a new pseudomodulus,

but this one is dynamically stabilized. Indeed, integrating out the massive field Z,

its equation of motion sets Σ ∼ p2, so the new pseudomodulus is of the Higgsing

type; it is a pseudo-D-flat direction along which the spinor 〈p〉 gets an expectation

value, Higgsing SO(8) to SO(7). This pseudo-D-flat direction is lifted at two

loops, with V
(2)
eff minimized at the origin, 〈Σ〉 = 〈p〉 = 0. Near the origin, Veff ⊃

m2
pp

†p ∼ m2
p

√
Σ†Σ, with m2

p > 0. In the range (5.13) of the pseudomodulus

Y ∼ gSO(8)

√
cΛΣ, the effective potential is given by (5.36)

Veff(Σ) ≈ 16V0κhκg∆c(rϕ)

(
ln

|Y |2
|µ|2

)2

, (5.67)

with ∆c(rϕ) = (7
2
− 21

8
). So in this limit too the potential is an increasing function

of |Σ|.
A different modification of the example of the previous subsection is to weakly

gauge the SO(Nf) symmetry, with gauge coupling g′. The Φ of the dual theory

(5.66) decompose into an SO(Nf) adjoint and singlet, Φ = φAT
A + φ0N

−1/2
f 1Nf

,

as does FΦ, which is given as in (5.50) (with N = 8). Since FφA
6= 0, there are

gauge messengers, which lifts the saxion Z at two loops. For Z in the range (5.13),

its potential is given as in (5.47)

Veff(Z) ≈ 32
(Nf − 8)(Nf − 2)

Nf

|f |2κ2
g′

(
log

|Z|
|µ|

)2

, (5.68)

11Replacing the last term in (5.65) with c (detS)2/M2Nc−3
p is qualitatively similar to the case

described above. An alternative is to replace the last term in (5.65) with c detS/MNc−3
p , which

also halts the 〈Z〉 → ∞ runaway. This theory does admit metastable DSB vacua, related to
those of SO(Nc) with Nf = Nc + 4, but the necessary condition (5.8) becomes the requirement
that λ be unnaturally small: λ ≪ (Λ/Mp)

n where n > 0 depends on Nc (n → 2 for large Nc).
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where we used
∑

A |FφA
|2 = 8(Nf − 8)|f |2/Nf . This potential safely stabilizes the

saxion, so the theory of the previous subsection can have viable DSB upon gauging

the SO(Nf) flavor symmetry. (The SO(Nf) can run to strong coupling in the IR,

unless additional SO(Nf) charged matter is added. Such matter can lead to bad

Higgsing pseudomoduli, as in Subsection 5.6.3.)

5.6.7 Examples with incalculable pseudomoduli potentials:

Kutasov-type dualities

As in [90, 91, 92] there are many duality examples based on matter fields in

multiple representations, with an added tree-level superpotential for some of the

representations; see e.g. [95] for additional examples. In all of the duals, some

moduli enter only via power-law irrelevant terms. If supersymmetry is broken,

these become irrelevantly coupled pseudomoduli, of the type Φ4 in (5.7). Thus none

of these examples can have calculable metastable DSB – they are all inconclusive.

Consider, for example, the original example of [90]. The electric theory is

SU(Nc) SQCD, with Nf fundamental flavors and an added adjointX, withWtree =

TrX3 +λTrQXQ̃. The term with coupling λ has been added to try to dynamically

break supersymmetry. The dual theory [90] has gauge group SU(N = 2Nf −Nc),

with adjoint Y , Nf fundamental flavors ϕ and ϕ̃, and gauge singlets Φ0 = QQ̃/Λ

and Φ1 = QXQ̃/Λ2, with

Wdual = hTrΦ1ϕϕ̃+ fTrΦ1 + TrY 3 +
a

Λ
TrΦ0ϕY ϕ̃, (5.69)

where the dimensionless couplings h and a are O(1) at the cutoff and f = λΛ2.

The theory is IR free for Nf < 2Nc/3 and the small parameter ǫ in (5.8) is here

given by ǫ = λ.

The first two terms in (5.69) give the rank-condition supersymmetry breaking

sector [61], with FΦ1 6= 0, and 〈ϕ〉 = 〈ϕ̃〉T 6= 0. The mass spectrum and pseudo-

moduli potential for the components of Φ1 and ϕ are identical to that of the SQCD

example of [61]. The additional fields Y in (5.69), and also N2 components of the

Φ0 fields, get calculable tree-level supersymmetric masses, m2
calc ∼ |aǫΛ/h|2 ∼

|a2ǫ2 ln |ǫ|Λ2| from the ϕ̃ϕ 6= 0. These calculable tree-level masses just barely
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robust against the unknown m2
incalculable ∼ |ǫΛ|2, thanks to the |h|−2 ∼ − ln |ǫ|

enhancement.

But there are remaining pseudomoduli components of Φ0, which can be first

lifted at one loop. Because they enter into the low-energy theory only via the

power-law irrelevant last term in (5.69), it follows from our general discussion

in Section 5.3 that the effective potential for these pseudomoduli is incalculable,

m2
calc ≤ m2

incalculable. For example, the one-loop calculable contribution m2
calc ∼

|aǫΛ|2 is of the same order as the incalculable contributions, from terms like

Keff ⊃ c|Λ|−2Φ†
1Φ1Φ

†
0Φ0. So we cannot determine whether the Φ0 pseudomod-

uli are stabilized in the region |Φ0| < |Λ|, or if they instead develop a dangerous

runaway to larger values of Φ0, where the low-energy analysis is inapplicable. It is

thus inconclusive whether or not this theory dynamically breaks supersymmetry.

One can still modify the UV theory to eliminate, by hand, the dangerous pseu-

domoduli by adding mass terms for them. In the examples at hand, this fix has

already been implemented in the literature, with Φ0 given mass via superpoten-

tial term TrΣQQ̃ → TrΣΦ0 (with added gauge singlets Σ) [79] or alternatively

Tr(QQ̃)2 → TrΦ2
0 [81] .

5.6.8 Analogs of SQCD with Nf = Nc + 1: IR free theories

without gauge fields

While there is no general classification of which supersymmetric gauge theories

have IR free low-energy duals (as opposed to an interacting SCFT), some classes

of theories have been well mapped out. For example, there is a classification of

the “s-confining” N = 1 theories with simple gauge group and Wtree = 0. These

are the theories analogous to SQCD with Nf = Nc + 1 [96]: the low energy IR

free fields have only superpotential, and no (dual) gauge interactions. Another

example is Sp(Nc) with Nf = Nc + 2 flavors [97]. Many analogous theories were

summarized in [98]. The basic fields of the IR free theory are all gauge invariant

composites of the UV matter, ignoring the classical relations, and there is a Wdyn

whose F-term equations give the classical relations. Adding a linear term in one

of the IR free fields can potentially break supersymmetry.
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As shown in [61], the SU(Nc) theory with Nf = Nc+1 has calculable metastable

dynamical supersymmetry breaking, whereas the Sp(Nc) theory with Nf = Nc +2

does not. The difference is that all pseudomoduli of the SU(Nc) theory enter into

cubic terms in Wdyn, whereas pseudomoduli of the Sp theory couple via power-law

irrelevant terms in W , so their effective potential is incalculable. Again, if there are

any incalculable pseudomoduli, one cannot determine whether or not the theory

has DSB – it depends on the sign of the incalculable higher-order Kahler potential

terms.

A scan of the other examples in [98] reveals that the SU(Nc) SQCD is a rather

special example. The other examples more generically have many fields which

appear in Wdyn via terms which are power-law irrelevant, which will become incal-

culable pseudomoduli if a sector of the theory breaks supersymmetry.

As an example, consider SU(Nc) with one flavor of antisymmetric tensor, A and

Ã, and Nf = 3 fundamental flavors, Q and Q̃. The IR free theory is discussed in

[98]. If we add Wtree = mAAÃ+mQTrQQ̃, the mQ term leads to a rank-condition

supersymmetry breaking sector (with Φ1 = QQ̃/Λ and ϕ = Ã(AÃ)
1
2
Nc−1Q2), so

it is possible that this theory has a metastable DSB vacuum near the origin. But

many pseudomoduli, e.g. T1 = AÃ, couple only via superpotential terms of quartic

and higher order. Thus they are not reliably stabilized within the low-energy

effective theory, and the DSB vacuum requires an assumption about the sign of non-

calculable terms in the Kahler potential. Such potentially dangerous pseudomoduli

can still can be stabilized by hand, by modifying the UV theory to give them

masses, to obtain a theory with (metastable) DSB vacua.

The scan of these classes suggest that calculability is perhaps not generic.

This chapter is a reprint of material as it appears in “Surveying Pseudomoduli:

the Good, the Bad, and the Incalculable,” K. Intriligator, D. Shih, M. Sudano,

JHEP 0903, 106 (2009), arXiv:0809.3981, of which I was a co-author.



Appendix A

Two-Loop Calculation of

Sfermion Masses in Higgsed

Gauge Mediation

There are ten diagrams relevant to the computation of the lowest-order scalar

mass correction. They are shown in Figure 3.5. The first eight are the standard

contributions. The final two arise from interactions with the scalar, C, of the

massive vector multiplet. For U(1) × U(1)′, we have

L ⊃ −gmWC(iφ∗
+φ− − iφ+φ

∗
− + |q|2), (A.1)

where φ± has mass-squared M2 ± F , and q is a scalar that will get a radiative

mass. The charge assignments should be clear. Of course, there are many more

diagrams that do not involve the messengers, but their contributions sum to zero.

In fact, Diagram 5 is independent of supersymmetry breaking, but we prefer to

compute with the complete messenger multiplet. This gives a finite result and thus

a check on the calculation. There are no IR divergences. Dimensional reduction

[99] is used to regulate the UV divergences. In this context, dimensional reduction

simply amounts to performing all Lorentz algebra in four dimensions and then

evaluating the resulting scalar integral in 4 − 2ǫ dimensions. In evaluating the

integrals, we expressed each integral as a sum of “master integrals” – integrals with

momentum-independent numerators. This method is discussed in more detail in

87
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[100]. In their notation, the most general two-loop master integral is

〈m11, m12,. . . |m21, m22, . . . |m31, m32, . . . 〉

≡
∏

i,j,k

∫
ddk

(2π)d

ddq

(2π)d

1

(k2 +m2
1i)(q

2 +m2
2j)[(k + q)2 +m2

3k]
. (A.2)

In our calculation, only the following two integrals are needed,

〈m1|m2|m3〉 =

∫
ddk

(2π)d

ddq

(2π)d

1

(k2 +m2
1)(q

2 +m2
2)[(k + q)2 +m2

3]
, (A.3)

〈m1, m1|m2|m3〉 =

∫
ddk

(2π)d

ddq

(2π)d

1

(k2 +m2
1)

2(q2 +m2
2)[(k + q)2 +m2

3]
. (A.4)

Clearly these integrals are not independent; the second is a derivative of the first.

In turns out, however, that the dimensionless integral (A.4) is the easier integral

to evaluate, so it is useful to have the inverse identity,

〈m1|m2|m3〉 =
m2

1〈m1, m1|m2|m3〉 +m2
2〈m2, m2|m3|m1〉 +m2

3〈m3, m3|m1|m2〉
3 − d

.

(A.5)

The single integral that we need is

〈m1, m1|m2|m3〉

=
1

2(4π)4

[
1

ǫ2
+

1 − 2 ln m̄2
1

ǫ
+ 1 +

π2

6
− 2 ln m̄2

1 + 2 ln2 m̄2
1 + 2F

(m2
2

m2
1

,
m2

3

m2
1

)]
,(A.6)

where m̄2 = m2eγ/4π, and the function of the mass ratios is1

F (a, b) (A.7)

= −1

2
ln2 a− Li2

(a− b

a

)

+
(a+ b− 1

2r
− 1

2

)[
Li2

(b− a

x+

)
− Li2

( a− b

1 − x+

)
− Li2

(1 − x+

−x+

)
+ Li2

( −x+

1 − x+

)]

+
(a+ b− 1

2r
+

1

2

)[
Li2

(b− a

x−

)
− Li2

( a− b

1 − x−

)
− Li2

(1 − x−
−x−

)
+ Li2

( −x−
1 − x−

)]
,

having defined the parameters,

r =
√

1 − 2(a+ b) + (a− b)2, x+ =
1

2
(1+b−a+r), x− =

1

2
(1+b−a−r),

1This corrects a typo in [100]. Their simplified form of this function is correct. We prefer the
unsimplified form because it presents fewer numerical complications.
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and having made use of the dilogarithm,

Li2(z) =

∫ 1

0

dt
ln(1 − zt)

t
. (A.8)

Finally, we have all the ingredients we need. For the case a single supersymmetric

vector superfield with mass mW , the decomposition of each diagram into master

integrals is shown at the end of Appendix A. The parameter, ξ, determines the

gauge. The absence of dependence on ξ in the sum of diagrams provides another

check on the computation. The more general case with different vector superfields

with masses mW and m̃W follows. In evaluating this mixed contribution, one finds

that the expressions for individual diagrams can be unwieldy when expressed in

terms of two gauge-fixing parameters. It is worth calculating with the parame-

ters for the sake of checking the calculation, but a lot of work can be saved by

adding diagrams at intermediate stages. This has been done. The gauge-invariant

combinations are shown.

We would like to note that the vanishing of Diagram 6 (see Figure 3.5) is a

rather robust result, though the authors know of no principle requiring it to be

zero. In particular, one can allow each gauge bosons to have arbitrary mass and

to be in an arbitrary gauge. Using four-component spinors, the diagram is found

to be proportional to
∫

ddk

(2π)d

ddq

(2π)d
Tr[kµ∆µν(k)γ

ν∆1/2(k + q)γρ∆1/2(q)∆ρσ(k)kσ∆0(k)] (A.9)

where

∆µν(k) =
−i

k2 −m2
W

[
gµν −

(1 − ξ)kµkν

k2 − ξm2
W

]
, ∆̃µν(k) =

−i
k2 − m̃2

W

[
gµν −

(1 − ξ̃)kµkν

k2 − ξ̃m̃2
W

]
,

∆1/2(k) =
i(/k +mf )

k2 −m2
f

,∆0(k) =
i

k2
. (A.10)

A little algebra shows that (A.9) can be written as
∫

ddk

(2π)d

ddq

(2π)d

Tr[/k(/k + /q +mf )/k(/q +mf)]f(k2)

[(k + q)2 −m2
f ](q

2 −m2
f)

, (A.11)

for a function, f(k2), which contains all of the information about the gauge bosons.

The rest of the integral is simplified with the use of the identity,

Tr[/k(/k+/q+m2
f)/k(/q+m2

f)] = 4(k ·q)[(k+q)2−m2
f ]−4(k ·q)(q2−m2

f )−4k2(q2−m2
f )

(A.12)
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If this is put back into the integral, and the change of variables, q → k+q, is made

in the first term, one finds that the second and third terms are exactly canceled,

and the integral vanishes.

Finally, the sum of unmixed diagrams normalized so that f(0, 0) = 1 gives the

function in (3.3):

f(x, y) (A.13)

=
1

x2

[
F (1, y) + (1 + y)F

(1

y
,
1

y

)
− F (1 + x, y) +

1

2
(1 + x)F

(
1,

y

1 + x

)

−(1 + x)F
( 1

1 + x
,

y

1 + x

)
+

1

2
(1 + x)F

(1 − x

1 + x
,

y

1 + x

)
+ (x− 2y)F

(1 + x

y
,
1

y

)

−(1 + x− 2y)F
(1 + x

y
,
1 + x

y

)
+
y

2
F
(1 + x

y
,
1 − x

y

)]
+ (x→ −x),

and the sum of the mixed diagrams gives,

h(x, y, z) (A.14)

=

{
1

2x2(y − z)

[
2(2 + y)F (1, y) + (2 + y)yF

(1

y
,
1

y

)
+ 2(x− y)F (1 + x, y)

−(1 + x)(4 + 4x− y)F
(
1,

y

1 + x

)
+ 2(1 + x)(x− y)F

( 1

1 + x
,

y

1 + x

)

+(1 + x)yF
(1 − x

1 + x
,

y

1 + x

)
+ 2(x− y)yF

(1 + x

y
,
1

y

)

−(4 + 4x− y)
y

2
F
(1 + x

y
,
1 + x

y

)
+
y2

2
F
(1 + x

y
,
1 − x

y

)]
+ (x→ −x)

}

+(y ↔ z),

This appendix is a reprint of material as it appears in “Sparticle Masses in

Higgsed Gauge Mediation,” E. Gorbatov, M. Sudano, JHEP 0810, 066 (2008),

arXiv:0802.0555, of which I was a co-author.
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Unmixed Diagrams

Diagram 1 = 2ξ2〈m+〉〈mW , mW 〉 + 2ξ2〈m−〉〈mW , mW 〉

Diagram 2 = −2ξ2〈m+〉〈mW , mW 〉 − 2ξ2〈m−〉〈mW , mW 〉

Diagram 3 = −2(3 + ξ2)〈m+〉〈mW , mW 〉 − 2(3 + ξ2)〈m−〉〈mW , mW 〉

Diagram 4 = 2(1 + ξ2)〈m+〉〈mW , mW 〉 + 2(1 + ξ2)〈m−〉〈mW , mW 〉

−〈m+|m+|mW 〉 − 〈m−|m−|mW 〉

−(4m2
+ −m2

W )〈m+|m+|mW , mW 〉 − (4m2
− −m2

W )〈m−|m−|mW , mW 〉

Diagram 5 = 8〈mf〉〈mW , mW 〉−4〈mf |mf |mW 〉+(8m2
f +4m2

W )〈mf |mf |mW , mW 〉

Diagram 6 = 0

Diagram 7 = −2〈m+|m−|0〉

Diagram 8 = −8〈mf〉〈mW , mW 〉 + 4〈m+〉〈mW , mW 〉 + 4〈m−〉〈mW , mW 〉

+4〈m+|mf |mW 〉 + 4〈m−|mf |mW 〉

+(4m2
+−4m2

f −4m2
W )〈m+|mf |mW , mW 〉+(4m2

−−4m2
f −4m2

W )〈m−|mf |mW , mW 〉

Diagram 9 = 4〈m+|m−|0〉 − 4〈m+|m−|mW 〉

Diagram 10 = −2〈m+|m−|0〉 + 2〈m+|m−|mW 〉 + 2m2
W 〈m+|m−|mW , mW 〉
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Mixed Diagrams

Diagram 1 + Diagram 3 = −6〈m+〉〈mW , m̃W 〉 − 6〈m−〉〈mW , m̃W 〉

Diagram 2 + Diagram 4 = 2〈m+〉〈mW , m̃W 〉 + 2〈m−〉〈mW , m̃W 〉

−1

2
〈m+|m+|mW 〉 − 1

2
〈m+|m+|m̃W 〉 − 1

2
〈m−|m−|mW 〉 − 1

2
〈m−|m−|m̃W 〉

−
(
4m2

+ − 1

2
m2

W − 1

2
m̃2

W

)
〈m+|m+|mW , m̃W 〉

−
(
4m2

− − 1

2
m2

W − 1

2
m̃2

W

)
〈m−|m−|mW , m̃W 〉

Diagram 5 = 8〈mf〉〈mW , m̃W 〉 − 2〈mf |mf |mW 〉 − 2〈mf |mf |m̃W 〉

+
(
8m2

f + 2m2
W + 2m̃2

W

)
〈mf |mf |mW , m̃W 〉

Diagram 6 = 0

Diagram 7 = −2〈m+|m−|0〉

Diagram 8 = −8〈mf〉〈mW , m̃W 〉 + 4〈m+〉〈mW , m̃W 〉 + 4〈m−〉〈mW , m̃W 〉

+2〈m+|mf |mW 〉 + 2〈m+|mf |m̃W 〉 + 2〈m−|mf |mW 〉 + 2〈m−|mf |m̃W 〉

+(4m2
+ − 4m2

f − 2m2
W − 2m̃2

W )〈m+|mf |mW , m̃W 〉

+(4m2
− − 4m2

f − 2m2
W − 2m̃2

W )〈m−|mf |mW , m̃W 〉

Diagram 9 = 4〈m+|m−|0〉 − 2〈m+|m−|mW 〉 − 2〈m+|m−|m̃W 〉

Diagram 10 = −2〈m+|m−|0〉 + 〈m+|m−|mW 〉 + 〈m+|m−|m̃W 〉

+m2
W 〈m+|m−|mW , m̃W 〉 + m̃2

W 〈m+|m−|mW , m̃W 〉



Appendix B

Deriving the Leading-Log

Effective Potential

In this appendix, we derive the formula (5.21) for the leading-log effective

potential in the large field regime (5.13).

The statement that we can approximate ΩX with leading logs is the statement

that we have a good power-series expansion of the form

ΩX(t) ≈ C0 + C1κ(t− tΛ) +
1

2!
C2(κ(t− tΛ))2 + . . . (B.1)

with κ≪ κ(t−tΛ) ≪ 1 and t = logQ/m0. Note that we are expanding ΩX around

the UV scale Λ but we are defining the RG time with respect to the IR scale m0;

the reasons for this will be apparent in a moment. Because the effect we are after

is, in fact, a leading log effect, we drop terms of O(κn(t − tΛ)m) with m < n and

(since there are not terms with m > n) we only keep the terms with n = m.

Now suppose that at t = tΦ, the nth derivative of ΩX is discontinuous with

all lower-order derivatives still continuous. Then for t < tΦ, the expansion (B.1)

becomes

ΩX(t) = C ′
0 + C ′

1κ(t− tΛ) +
1

2!
C ′

2(κ(t− tΛ))2 + . . . (t < tΦ) (B.2)

with the new coefficients C ′
i satisfying

∞∑

k=i

1(k − i)!Ck(κ(tΦ − tΛ))k−i =
∞∑

k=i

1

(k − i)!
C ′

k(κ(tΦ − tΛ))k−i, i = 0, . . . , n− 1.

(B.3)
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The Taylor expansion coefficients Ci of ΩX around the UV scale are independent

of tΦ. Then (B.3) yields a system of equations which determine the tΦ dependence

of the IR Taylor coefficients C ′
0, . . . , C

′
n−1. It is straightforward to check that (B.3)

are solved by

C ′
i = Ci −

1

(n− i)!
(Cn − C ′

n)(−κ(tΦ − tΛ))n−i + . . . (i = 0, . . . , n− 1) (B.4)

where . . . denote terms that are higher order in κ. Plugging this into (B.2), we

see that

ΩX(0) = const.−
n∑

i=0

1

i!(n− i)!
κn(−1)n(Cn − C ′

n)(tΦ − tΛ)n−itiΛ + . . .

= const.− 1

n!
(Cn − C ′

n)(−κtΦ)n + . . . . (B.5)

This reproduces (5.18) after we identify ∆Ω
(n)
X ≡ dnΩX

dtn

∣∣t+Φ
t−Φ

= κn(Cn − C ′
n).

This appendix is a reprint of material as it appears in “Surveying Pseudomod-

uli: the Good, the Bad, and the Incalculable,” K. Intriligator, D. Shih, M. Sudano,

JHEP 0903, 106 (2009), arXiv:0809.3981, of which I was a co-author.
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