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Abstract—A new data-driven method is proposed to detect
events in the data streams from distribution-level phasor mea-
surement units, a.k.a., micro-PMUs. The proposed method is
developed by constructing unsupervised deep learning anomaly
detection models; thus, providing event detection algorithms
that require no or minimal human knowledge. First, we develop
the core components of our approach based on a Generative
Adversarial Network (GAN) model. We refer to this method as
the basic method. It uses the same features that are often used
in the literature to detect events in micro-PMU data. Next, we
propose a second method, which we refer to as the enhanced
method, which is enforced with additional feature analysis.
Both methods can detect point signatures on single features and
also group signatures on multiple features. This capability can
address the unbalanced nature of power distribution circuits.
The proposed methods are evaluated using real-world micro-PMU
data. We show that both methods highly outperform a state-of-
the-art statistical method in terms of the event detection accuracy.
The enhanced method also outperforms the basic method.

Keywords: Micro-PMU data, power distribution, event detection,
deep learning, generative adversarial network, feature analysis.

I. INTRODUCTION

The voltage and current measurements that are reported
by distribution-level phasor measurement units, a.k.a, micro-
PMUs, have high-resolution and high-precision. They signifi-
cantly enhance our visibility into the distribution grid, [1], [2].
Applications of micro-PMU data include topology and phase
identification [3], load modeling, [4], state estimation [5], asset
monitoring [6], and distribution system cyber-security [7].

An important and emerging class of studies when it comes
to micro-PMU data is to investigate the events in distribution
systems. Here, an event is defined rather broadly and may refer
to load switching, capacitor bank switching, connection or
disconnection of distributed energy resources (DERs), inverter
malfunction, a minor fault, a signature for an incipient fault,
etc. [8]–[10]. Undoubtedly, the very first step to investigate
the events in micro-PMU data is to detect them from the large
volume of data that is being collected. Note that, each micro-
PMU reports over one hundred million data points every day.

The literature on event detection in micro-PMU data can
be divided into two broad classes; namely statistical methods,
such as in [11]–[13], and machine learning methods, such as
in [14], [15]. The statistical method in [10] uses the absolute
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deviation around median, combined with dynamic window
sizes. In [13], the analysis of the inverse power flow problem
is combined with the turning point test method to detect
events. In [11], the physical equations of the power distribution
circuits are combined with techniques from statistical quality
control in order to develop a hierarchical anomaly detection
architecture that uses data from optimally placed micro-PMUs.

While we use the state-of-the-art statistical method in [10]
as a benchmark for performance comparison in this paper,
our approach here is rather based on machine learning. In
[14], a machine learning method, called ensembles of bun-
dle classifiers, is used to train multiple classifiers based on
multiple instances of the same predetermined event, so that
the patterns of that event are learned in order to detect more
instances of that event in the micro-PMU data. In [15], a
hidden structure semi-supervised machine learning model is
established to combine micro-PMU data for both labeled and
unlabeled events. A parametric dual optimization procedure is
used to tackle the non-convex learning objective function.

The event detection method in [14] is based on supervised
machine learning. Also, the method in [15] is based on semi-
supervised machine learning. In both cases, full or partial
expert knowledge is needed in order to establish the event
detection tool. In contrast, in this paper, we develop an
unsupervised method to detect events in micro-PMU data.
This eliminates the need for human labor; which makes our
proposed approach suitable for implementation in practice
when we work with large volumes of micro-PMU data. It is
worth adding that unsupervised learning is previously used in
the analysis of micro-PMU data, but as a feature extraction
tool for event classification [16]. Therefore, it has not been
used for event detection, which is the focus of this paper.

The event detection methods that are proposed in this paper,
work by constructing deep learning Generative Adversarial
Network (GAN) models. The contributions are as follows:

• To the best of our knowledge, this is the first paper to de-
velop event detection methods for micro-PMU data based
on GAN models. Two such methods are proposed. The
first one, called the basic method, trains a single GAN
model. The second one, called the enhanced method,
involves additional analysis of the features of the micro-
PMU data; which leads to training two GAN models.

• Both methods are unsupervised deep learning methods,
which require no or minimal human knowledge; which



makes them suitable for automated and scalable opera-
tion. Furthermore, they can detect both point-signatures
and group-signatures in micro-PMU data. This is an
important capability because of the unbalanced nature of
power distribution circuits; where many events may affect
only a subset of the features on only one or two phases.

• Real-world micro-PMU data is used to evaluate the
proposed event detection methods. In order to create a
reference, first, more than 1000 events of different kinds
are extracted manually from the micro-PMU data within
a given period of time. It is observed that both the basic
and the enhanced methods highly outperform a prevalent
statistical method. The advantage is particularly major for
the events that cause small changes in magnitude. Also,
the enhanced method outperforms the basic method; thus
confirming the importance of the revised model.

II. METHODOLOGY

A. Basic Method
In its core, the proposed basic event detection method uses

a GAN model which has two components, a generator and
a discriminator. The generator is a deep neural network that
tends to produce data samples that follow the distribution of
the historical training data. The discriminator is a deep neural
network that tends to distinguish between the data samples
generated by the generator and the true historical data. By
training the generator and the discriminator subsequently and
iteratively, the GAN model can achieve an equilibrium, at
which the discriminator can no longer distinguish between the
distribution of the generated samples and the historical data,
which means the training of the GAN model is complete.

1) Features: As in [10], [11], we use the following time-
series as the features to train the GAN model in our basic
method: 1) magnitude of voltage, i.e., V ; 2) magnitude of
current, i.e., I; 3) active power, i.e., P ; and 4) reactive power,
i.e., Q. All these features are defined separately for each three
phases. Therefore, in total, the GAN model is trained with 12
time-series. Note that, while micro-PMUs measure V and I
directly, P and Q are obtained rather indirectly by combining
V and I with the measurements on voltage phase angle and
current phase angle, which are both provided by micro-PMUs.

2) Generator: It takes a noise vector z from a distribution
function pz(z), such as z ∼ N (µz, σ

2
z ), and tries to produce

samples similar to the ones from the true sample distribution.
We seek to train a neural network G(z, θg) to generate samples
which follow the distribution of the historical data. Here, θg
denotes weights of the generator network. Mathematically, we
seek to minimize the following objective function [17]:

1

N

N∑
i=1

[
log(1−D(G(zi)))

]
, (1)

where N is the number of samples in each training batch,
D is the discriminator function, G is the generator function,
and zi is the random vector for ith generated sample. In order
to train the generator, after forward propagation, we need to
update the generator parameters by calculating gradient and
using a proper optimizer, such as Adam optimizer [18].

Algorithm 1 Event Detection - Basic Method

Input: Training data and test data: V , I , P and Q.
Output: Event Detection Flag F .
// Learning Phase
Train the GAN model.
Use the Discriminator as scoring function D∗(·).
Calculate the scores for the training data.
Fit a Normal PDF N (µ, σ2) to the obtained scores.
// Detection Phase
For each new micro-PMU test data Do

Calculate the score s using D∗(·).
If s /∈ (µ− zpδ, µ+ zpδ) Then
F = 1 // Event

Else
F = 0 // No Event

End
End

3) Discriminator: It is meant to distinguish between the
fake data samples generated by the generator and the real
measurements. Our goal is to train a neural network D(x, θd),
which creates a single scalar value as its output. Here, x is the
vector of the actual measurement data and θd is the weights
of the discriminator network. The primary objective of the
discriminator is to maximize the probability of distinguishing
between the true measurement data and the data generated by
the generator. Therefore, we seek to minimize:

1

N

N∑
i=1

[
log(D(xi)) + log(1−D(G(zi)))

]
, (2)

where xi is the ith real sample and the second term is the
same as the term in (1).

Together, the generator and the discriminator play a min-
max game with the following value function:

V (G,D) = Ex ∼ pdata(x)[log(D(x))] +

Ex ∼ pz(z)[log(1−D(G(z)))].
(3)

4) Training: Both the generator and discriminator are
formed with Long Short-Term Memory (LSTM) modules,
which are connected back-to-back to capture the relationship
between different features and their time dependencies. The
micro-PMU data is normalized and segregated into sequences
of training blocks. At the beginning, the samples generated by
the generator are very different from the measurement data;
thus, the discriminator can reject them with high confidence.
As time goes by, the value of V (G,D) can attain its global
optimum by satisfying the following two conditions:

• C1: For any fixed G, the optimal discriminator D∗ is:

D∗
G(x) =

pdata(x)

pdata(x) + pg(x)
. (4)

• C2: There exists a global solution such that:

min(max
D

(V (G,D)))⇐⇒ pg(x) = pdata(x). (5)

If these conditions are not satisfied at the equilibrium, then
the training is repeated with new random initial points. More
details on the training mechanism can be found in [17].



Fig. 1: The importance of using two GAN models in the enhanced method:
while the scores from the GANI,P,Q model can detect most events; there
are events that are detected only if the scores from the GANV model are
also considered. Blue dots denote normal data while red dots denote events.

5) Event Scoring: After training the basic model, the blocks
of micro-PMU data stream are passed to the discriminator and
the output is a scalar number which is defined as score. We
pass the whole training set to the discriminator and calculate
the scores. A normal probability distribution function (pdf) is
fitted to the obtained scores, i.e., scores ∼ N (µ, σ2), due to
the fact that these scores must be very close to the global
optimum, see (4) and (5). This is because of the infrequent
nature of the events in power distribution systems.

6) Algorithm: The proposed basic event detection method
is summarized in Algorithm 1. It works based on the fact
that events in micro-PMU data are infrequent. In fact, our
analysis of the real-world micro-PMU data shows that events
occur at about 0.04% of the times. Thus, the default for the
trained model must be the normal operation of the power
distribution system. Accordingly, the generator is trained how
to generate data that follow the distribution of measurements
during normal operation, i.e., in the absence of any event. As
a result, the discriminator is essentially trained to distinguish
between the absence and the presence of the events, which
is exactly what is needed in order to detect the events. It
should be noted that, a common choice for parameter zp in
the threshold µ±zpσ is 3, known as the three-sigma rule [19].

B. Enhanced Method

The basic method in Section II.A requires training a single
GAN model, where the features are V , I , P , and Q. However,
given the characteristics of the micro-PMU data, in this
section, we propose to develop and train two separate GAN
models, one for the voltage measurements V , and another
one for the rest of the measurements, i.e., I , P , and Q. This
results in developing a new event detection method that has a
significantly better accuracy. Next, we explain the underlying
reasons for the proposed changes and also new algorithm.

1) Feature Analysis: After applying the basic method to
real-world micro-PMU data, we observed that Algorithm 1
sometimes fails to detect events that demonstrate signatures
only in voltage magnitude. Such event cannot trigger the score
to exceed the threshold. Further investigation revealed that
this is because, in power distribution systems, voltage mea-
surements are much less volatile than current measurements.

Algorithm 2 Event Detection - Enhanced Method

Input: Training data and test data: V , I , P and Q.
Output: Event Detection Flag F .
// Learning Phase
Train the GANI,P,Q model.
Use the Discriminator as scoring function D∗

I,P,Q(·).
Calculate the scores for the training data.
Fit a Normal PDF N (µ, σ2) to the obtained scores.
Train the GANV model.
Use the Discriminator as scoring function D∗

V (·).
Calculate the scores for the training data.
Fit a Normal PDF N (φ, ϕ2) to the obtained scores.
// Detection Phase
For each new micro-PMU test data Do

Calculate the score s1 using D∗
I,P,Q(·).

Calculate the score s2 using D∗
V (·).

If s1 /∈ (µ− zpδ, µ+ zpδ) or
s2 /∈ (φ− zpϕ, φ+ zpϕ) Then
F = 1 // Event

Else
F = 0 // No Event

End
End

Therefore, the GAN model sometimes cannot properly extract
the characteristics of the voltage measurements.

2) Training Multiple GAN Models: To remedy the above
issue, we propose to construct two separate GAN models
that are trained in parallel. One GAN model, denoted by
GANV , has 3 features as its input, which are the voltage
magnitude measurements across the three phases. The other
GAN model, denoted by GANI,P,Q, has 9 features as its input,
which are current magnitude, active power, and reactive power
measurements across the three phases. Importantly, we should
not have more than two GAN models. In fact, it is observed
that I has high correlations with P and even Q, which makes
it desirable to combine I , P , and Q into one GAN model; as
opposed to having four GAN models for V , I , P , and Q.

3) Event Scoring: Once each of the two GAN models is
trained, the resulting Discriminator function is used to generate
its own scores. An example for the scores that are generated
by the two GAN models are shown in Fig. 1. The blue dots
represent normal data. The red dots represent events. We can
see that each of the two GAN models detects only a sub-set of
events. The events that are scattered across x-axis are the ones
that are detected by GANI,P,Q. They include the majority of
the events. The events that are scattered across y-axis are the
ones that are detected by GANV . Thus, both GAN models
are both needed to enhance accuracy of event detection.

4) Algorithm: The proposed enhanced event detection
method is summarized in Algorithm 2. It works by examining
the scores of the two separate GANs; thus having a dedicated
deep learning architecture to detect the events in voltage
magnitude and another deep learning architecture to detect
the events that involve the current, active power, and reactive
power. The rest of the algorithm is similar to Algorithm 1.



TABLE I: Event Detection Accuracy

Benchmark [10] Basic Method Enhanced Method
Accuracy 0.3640 0.6943 0.8805
F1-score 0.3614 0.7676 0.9023

III. EXPERIMENTAL RESULTS

The proposed event detection methods are applied to the
real-world data from a distribution feeder in Riverside, CA
[10]. The resolution of the data is 120 readings per second.
In total, 1.8 billion measurement points are analyzed. In
particular, two weeks of data are used to train the GAN
models. One day of data is used to test the event detection
methods. Event detection is applied on windows of size 40
data points. Each window has an overlap of size 20 data points
with the next window in order to assure not missing any event.

A. Performance Comparison

The performance comparison in this paper is done not
only between the basic and the advanced methods; but also
with respect to the prevalent statistical event detection method
in [10]. The effectiveness of the event detection methods is
investigated over 1000 reference events in micro-PMU data,
that are visually extracted within a specific period of time.

The summary of the results are shown in Table I. We can see
that the basic method significantly outperforms the benchmark
statistical event detection method in [10]. Furthermore, the
enhanced method considerably outperforms the basic method.
Next, we explain the underlying causes for these differences by
going through several examples of the events that are detected.

B. Assessment of the Basic Method

Figs. 2 to 6 show five examples of the events that are
detected by the basic method. Importantly, the prevalent statis-
tical method in [10] detected only the first two of such events.
Regarding the events in Figs. 4 and 5, they are not detected by
the method in [10] because the changes in the magnitudes are
relatively small and do not significantly affect the statistical
measures, such as the absolute deviation around median. As
for the event in Fig. 6, all the pieces of this long event are
detected by the basic method at several subsequent windows
of the data. However, the statistical method in [10] only
captures the step change the beginning of this event; because
the statistical characteristics remain the same afterwards.
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Fig. 2: Inrush current with impact on all features. This event is detected by
all the three methods: statistical, basic, and enhanced.
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Fig. 3: Capacitor bank switching with impact on all features. This event is
detected by all the three methods: statistical, basic, and enhanced.
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Fig. 4: An event with major impact only on current and active power. This
event is detected by the basic method, but not by the statistical method.

0 100 200 300 400 500 600

7260

7265

7270

7275

7280

V (Volts)

A
B
C

0 100 200 300 400 500 600

98

100

102

104

106

108

110

I (Amps)

0 100 200 300 400 500 600
Timeslots

640

660

680

700

720

P (kW)

0 100 200 300 400 500 600
Timeslots

300

320

340

360

380

400
Q (kVAR)

Fig. 5: An event involving oscillations. This event is detected by the basic
method, but it is not detected by the statistical method.
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Fig. 6: A rare and long event with 20 seconds of transient signature. All
pieces of this long event are detected and captured by the basic method. The
statistical method only detects a step change at the beginning of this event.

C. Assessment of the Enhanced Method

Figures 7 and 8 show two events that are detected by the
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Fig. 7: An event with impact mainly on voltage. It is detected by the enhanced
method. But it is not detected by the basic method or the statistical method.

Fig. 8: An event with momentary and damping oscillations in voltage, shown
on one phase only. This event is detected by the enhanced method. But it is
not detected by the basic method or the statistical method.

enhanced method. But they are not detected by either the
prevalent statistical method in [10] or even the basic method.
The basic method fails to detect these two events because the
main signatures are in voltage and they are relatively small in
magnitude. Therefore, only the additional GAN model in the
enhanced method can capture these events. This demonstrates
the importance of the change in the model that was proposed
in the enhanced method. Regarding the event in Fig. 8, it
demonstrates momentary oscillations that started only after
some sort of actions, possibly a tap changing event, where the
oscillations damped after a short period of time. Events like
this are important, for example, for asset monitoring. However,
only the enhanced method was able to detect such event.

IV. CONCLUSIONS

Two novel unsupervised deep learning methods are pro-
posed to detect events in micro-PMU data streams. They
work by constructing Generative Adversarial Network (GAN)
models. They are capable of extracting the characteristics of
a wide verity of events in large volumes of micro-PMU data.
The basic method involves a single GAN model. The enhanced
method is equipped with additional analysis of features. It
involves training two parallel GAN models. Both methods are
capable of detecting events with point-signatures and group-
signatures. They are particularly well-suited to detect the
events in distribution systems where the event may impact only
a subset of the features and only or two phases; in addition
to the cases that all three phases are affected. Real-world
data from micro-PMU field installation is used to evaluate

the performance of the proposed event detection methods. It
is observed that the basic method significantly outperforms a
prevalent statistical event detection method in the literature.
Furthermore, the enhanced method considerably improves the
performance over the basic method. Several examples of the
events that detected by different methods are shown and
discussed in order to understand the characteristics of the
proposed unsupervised event detection methods.
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