UC San Diego UC San Diego Electronic Theses and Dissertations

Title

Hydrosilylation of Imines Using a Ni(0) Catalyst

Permalink

https://escholarship.org/uc/item/3rk405ww

Author Spence, Daniel Patrick

Publication Date 2016

Peer reviewed|Thesis/dissertation

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Hydrosilylation of Imines Using a Ni(0) Catalyst

A Thesis submitted in partial satisfaction of the requirements for the degree Masters of Science

in

Chemistry

by

Daniel Patrick Spence

Committee in charge:

Professor Joshua Figueroa, Chair Professor Joseph O'Connor Professor Charles Perrin

The Thesis of Daniel Patrick Spence is approved, and it is acceptable in quality and form for publication on microfilm and electronically:

Chair

University of California, San Diego

2016

DEDICATION

Dedicated to my son Liam Jaxon Spence.

TABLE OF CONTENTS

Signature page iii
Dedication iv
Table of Contentsv
List of Figures vi
List of Schemes vii
Acknowledgments viii
Abstract of the Thesisix
Introduction1
Groundwork2
Initial Studies4
Mechanism9
Dehydrocoupling13
Hexysilane19
Active Ni Catalyst
Ni(II) species
Supporting Data
References

LIST OF FIGURES

Figure 1. Proton NMR progression of hydrosilylation over one week	6
Figure 2. Crystal structure of 1,1-disilylation product Ni(Ph ₂ SiH) ₂ (DMP) ₂	17
Figure 3. Conversion times for varying para-X groups	20
Figure 4. Structures of imines	21
Figure 5. Crystal structure Ni(II) insertion complex NiCOECI(DMP) ₂	24
Figure 6. Crystal structure of Ni(SiCl3)2(DMP)3	29

LIST OF SCHEMES

Scheme 1. Preliminary hydrosilylation experiment	. 5
Scheme 2. Reaction scheme for synthesis of NiCOD(DMP)2	. 7
Scheme 3. Secondary hydrosilylation experiment.	. 8
Scheme 4. Dihydrogen insertion into NiCOD(DMP)2.	. 5
Scheme 5. Silylmetalation mechanism.	. 5
Scheme 6. Hydrometalation mechanism	. 5
Scheme 7. Dehydrocoupling reaction	14
Scheme 8. Proposed diphenylsilane reaction with NiCOD(DMP)2	15
Scheme 9. 1,1-disilylationproposed mechanism.	18
Scheme 10. Scope reaction scheme	14
Scheme 11. Proposed mechanism leading to active catalyst	26
Scheme 12. Proposed mechanism revised for insertion	27
Scheme 13. Reaction scheme of Ni(SiCl ₃) ₂ (DMP) ₃	25
Scheme 14. Reaction scheme of Ni(GeCl ₃) ₂ (DMP) ₃ 2	25

ACKNOWLEDGMENTS

There are many people to thank along my journey as a graduate student. First and foremost, I would like to thank my wife who has been very supportive of my endeavors to become a better scientist through this program. With the birth of my first child shortly after beginning my graduate studies, it truly was difficult. My wife made the sacrifice by taking care of our household on nights I was working late and never lost support of me the entire way. Thank you again. This could have never been possible without someone like you.

I would like to thank my advisor Joshua Figueroa, who understood my situation of being a full time employee/part-time student and was very accommodating within his research group to include me. Our meetings and talks have truly been enlightening and have directed me in a path to becoming a better scientist. Thank you for your thought provoking insight and ideas you continually bring to the table.

Last but not least, the members of my group have been instrumental in my learning success as a graduate student. I would especially like to thank Charles Mokhtarzadeh for his patience in teaching me the complexities of solving crystal structures and showing me the ropes in synthesizing isocyanide ligand. He has always found the time out of his busy schedule to help me and others within our group, and I truly thank you for that. I would also like to thank Kyle Mandla who I first spoke with during a poster session and whose research was a key factor in me wanting to join the Figueroa group. Thanks to all others in my group who are such brilliant people and will (or already have) made an impact in chemistry.

viii

ABSTRACT OF THE THESIS

Hydrosilylation of Imines Using a Ni(0) Catalyst

By

Daniel Patrick Spence

Masters of Science in Chemistry

University of California, San Diego, 2016

Professor Joshua S. Figueroa, Chair

The following herein introduces a Ni(0) catalyst that effectively does hydrosilylation of imines to form the corresponding aminosilanes which are of interest in the electronics industry. Preliminary studies of bis-1,5-cyclooctadienyl nickel(0), Ni(COD)₂, showed it to be an effective catalyst with relatively good conversion at room temperature and low catalyst loadings (~3%). However, selectively for the aminosilane was limited since there was a significant amount of conversion to the corresponding amine. To circumvent amine production, a combination of using a reengineered Ni(0) catalyst and a new silane was used. Ni(COD)₂ was reacted with two equivalents of the sterically encumbering *m*-terphenyl isocyanide CNAr^{Mes2} (Ar^{Mes2} = 2,6-(2,4,6-Me₃C₆H₂)₂C₆H₃) to form Ni(COD)(CNAr^{Mes2})₂. In turn, it was used in the catalyst studies showing less propensity to dehydrocouple and a better selectively for the desired aminosilane. Using hexylsilane in place of phenylsilane led to further improvement, showing complete selectivity for the aminosilane. A scope of imines was explored and showed rather consistent reaction rates (t = 2hr) at room temperature at low catalyst loading (3-2.5%). Studies were carried out to try and isolate an intermediate in the catalytic cycle where oxidative addition occurs of Ni(COD)(CNAr^{Mes2})₂ with the silane. Insight is given into the possible mechanism.

Introduction

Aminosilanes are important as precursors in the production of microelectronics. Their delivery via ALD or CVD processes makes it necessary that they have a relatively high vapor pressure as well as thermal stability. They can be delivered to provide a number of different films spanning silicon oxide, silicon carbide, silicon nitride and mixtures of the three in order to provide electrical and mechanical properties needed for the film.

Of particular value is an aminosilane's ability to anchor via their amino group on a surface thus liberating amine that can be easily removed under reduced pressure. Due to the cost of amines and the laborious work needed in synthesizing aminosilanes via amination of a chlorosilane, it is of particular interest if one could gain access to aminosilanes using imines via hydrosilylation. Imines are relatively straight forward to synthesize via condensation of a ketone with a primary amine. Of added importance is the use of catalysts composed of abundant metals such as iron, cobalt, and nickel rather than more expensive rare metals such as ruthenium, palladium, or platinum. Literature exists of hydrosilylation of imines spanning a range of metal catalysts such as Zn¹, Fe^{2, 3}, Ru⁴⁻⁷, Rh^{8, 9}, Ir¹⁰⁻¹², and Pd¹³. Herein is described the hydrosilylation of a variety of imines to aminosilanes using Ni(0) catalysts.

Groundwork

The goal of this project was to find a novel metal-ligand system that does hydrosilylation of imines. The first step required synthesis and purification of an imine that would be used in screening potential catalysts in the presence of phenylsilane. The synthesis of 4-methyl-N-(1phenylethylidene)-benzenamine (**imine-1**) was successfully done and was characterized by GC-MS and [H¹]NMR. Efforts were then focused on screening group 8, 9, and 10 metal complexes at 2-5 mol% loading. Some complexes (e.g. [RhCODCI]₂, [IrCODCI]₂, and Wilkison's catalyst) gave interesting results in that they did a degree of hydrogenation of the imine to form the corresponding amine. Reactions were monitored first on a weekly time scale, then on a 24-hour time scale by GC-MS. Of all the group 8, 9, and 10 complexes screened, Ni(COD)₂ formed evidence of the desired monoaminosilane. Due to this observation, we wanted to focus our efforts in reproducing this result by repeating the reaction. The catalysis of Ni(COD)₂ at 3-4 mol% loading showed reproducibility.

The next step involved optimizing the formation of the desired aminosilane with $Ni(COD)_2$ by changing the amount of reactants used, order in which each reactant was delivered, as well as the reaction temperature. It was found that increasing the catalyst loading mol%, increasing the amount of phenylsilane, and increasing the temperature (70°C) all contributed modestly in the formation of the desired aminosilane. The order in which the reactants were delivered did not make a difference. We then wanted to better understand the hydrosilylation reaction mechanism involved with Ni(COD)₂ to gain insight into optimizing the formation of the desired aminosilane. In order to do this, a stoichiometric amount of Ni[COD]₂ was reacted with phenylsilane to see what intermediate complex might be formed *in situ* during catalysis. It was proposed that a η -6 Ni-Ph or a μ -3 agostic Ni-H-Si interaction may exist. In another respect,

2

in situ formation of Ni(0) complexes from Ni[COD]₂ and the substitution of phosphines (e.g triphenylphosphine and tricyclohexylphosphine) did not provide any advantage over the Ni[COD]₂ system. Understanding the mechanism associated with hydrosilylation was important, so understanding the interaction of all components through analytical tools as well as isolation and characterization of intermediates was essential.

Initial Studies

A sound understanding of prior art was essential in achieving a novel metal-ligand system in the hydrosilylation of imines. Alexander H. Vetter and Albrecht Berkessel report a catalyst formed by the 1:1 addition of [Ni(OAc)2] and O,N,S pincer type ligands that does hydrosilation of imines¹⁴. Bheeter *et al* report a Ni(II) NHC pre-catalyst that in the presence of NaHBEt₃ forms the active Ni-H species which can catalyze the reduction of a large scope of aldimines and ketamines using Ph₂SiH₂. They also report a cationic analogue which does the same¹⁵.

With respect to the following prior art, hydrosilylation of imines using a nickel catalyst is rare. Furthermore, there seems to be no prior literature for a Ni(0) catalyst that does hydrosilylation of imines. The goal of the previous literature was to hydrosilylate via the aminosilane intermediate, then isolate the desired amine by cleaving under acidic conditions. In contrast, the goal of our study was to isolate the aminosilane which is of interest in the electronics industry as precursors for ALD/CVD^{16, 17}.

The following structural template for imines was used for the hydrosilylation studies:

The following catalysts were used:

To a solution of **1** (3% molar loading) in deuteriated benzene was added **imine-1**, followed by two equivalents of phenylsilane (Scheme 1). Over the course of a week at room temperature, [H¹]NMR showed a molar ratio of the corresponding aminosilane to amine of 3:2. The aminosilane can be distinguished from the amine by a quartet at 4.76ppm. The amine splits as a quintet at 4.23ppm due to the adjacent methyl and splitting of the additional N-H. A similar reaction was performed by altering the R₂ from phenyl to a methyl group in 4-methyl-N-(1methylethylidene)-benzenamine (**imine-2**) and after two hours, [H¹]NMR showed a molar ratio of the corresponding aminosilane to amine of 1:2. The aminosilane can be distinguished from the amine by a septet at 3.67ppm. The amine splits as an octet at 3.34ppm due to the two adjacent methyl and the splitting of the additional N-H. Although the rate of reaction was enhanced with **imine-2**, selectivity for the aminosilane suffered.

Scheme 1. Preliminary hydrosilylation experiment.

Although the Ni(COD)₂ system did well with respect to catalyst loadings and rates, the cons seem to outweigh the pros. First and foremost, Ni(COD)₂ is unstable at room temperature and decomposes to nickel metal and 1,5-cyclooctadiene. Secondly, after catalysis, a significant amount of amine is formed.

Next, it was of interest to determine the order of aminosilane/amine evolution. A [H¹]NMR study was performed of the **imine-1**/phenylsilane system and monitored in one hour increments. The evolution of aminosilane was witnessed first, followed by evolution of amine after 16 hours (Figure 1). It was proposed that the evolution of H₂ may enter the catalytic cycle and likewise produce the amine via a reductive elimination step.

Figure 1. Proton NMR progression of hydrosilylation over one week.

The possibility also exists that once the aminosilane is generated, the active catalyst could be participating in a separate catalytic cycle and cleaving the Si-N bond to form free amine. To put this later theory to practice, a control was set up using a purified primary aminosilane ((iPr)₂NSiH₃) in the presence of **2**. Over the course of **1**6 hours monitored by GC-MS,

there seemed to be no further evolution of amine than that already contained in the sample. It is still unclear why amine is generated, even in a moisture free environment.

Sterically encumbering m-terphenyl isocyanide ligands have been shown to stabilize coordinatively unsaturated metal complexes¹⁸⁻²². More specifically, 2'-isocyano-2,2",4,4",6,6"hexamethyl-1,1':3',1"-terphenyl, or DMP, coordinates to nickel to provide some complexes of interest¹⁸. Ligands that stabilize the metal center via a synergy of σ -bonding/ Π -back-bonding such as isocyanides can be utilized to provide a stable Ni(0) structure that can have potential as a hydrosilylation catalyst. Two equivalents of the isocyanide (DMP) were added to **1** in diethyl ether at room temperature to form **2** in 73% yield as a vibrant orange complex was used in the same catalyst studies as Ni(COD)₂ (Scheme 2).

Scheme 2. Reaction scheme for synthesis of NiCOD(DMP)2.

To a solution of **2** (3% molar loading) in deuterated benzene was added **imine-1** followed by two equivalents of phenylsilane (Scheme 3).

Scheme 3. Secondary hydrosilylation experiment.

Over the course of a week at room temperature, [H¹]NMR showed insignificant conversion. A similar reaction was performed by altering R₂ to a methyl group in **imine-2** and after two hours, [H¹]NMR showed a molar ratio of the corresponding aminosilane to amine of 2:1, an improvement over the Ni(COD)₂ system. Although the results of the bulkier imine showed no improvement, possibly due to sterics, the smaller imine showed improved selectivity for the desired aminosilane. Altering R₂ to an ethyl group in 4-methyl-N-(1-methylpropylidene)-benzenamine (**imine-3**) proceeds in four hours and showed exclusively aminosilane. Due to these interesting results, it was of interest to focus our efforts in understanding the NiCOD(DMP)₂ hydrosilylation system.

Mechanism

In order to probe the mechanistic behavior of our catalytic system, it was necessary to react the Ni-catalyst **2** with stoichiometric amounts of reactants. To reiterate, in regards to time increments captured with [H¹]NMR, it was observed that the aminosilane is formed first, followed by evolution of amine. A study was performed in which **2** dissolved in deuterated benzene was subjected to an excess of H₂. It was proposed that oxidative addition of H₂ may occur²³ followed by insertion of the isocyanide ligand ²⁴ as shown (Scheme 4). [H¹]NMR after H₂ exposure, however, indicated no reaction had taken place and **2** remained unperturbed.

Scheme 4. Proposed dihydrogen insertion into NiCOD(DMP)2.

Another control experiment was carried out using **2** and a stoichiometric amount of the **imine-2**. No reaction was observed after weeks by [H¹]NMR. A separate mixture of catalyst and a stoichiometric amount of imine in deuterated benzene was subjected to excess H₂. It was proposed that amine should be formed, however, all components remained unreacted. Based upon this observation, it was clear that the silane is the key component in the catalytic system and that any H₂ generated *in situ* did not contribute to hydrogenation of the imine to amine in the presence of catalyst.

Although no interaction was witnessed between the nickel catalyst and imine by $[H^1]NMR$, it has been shown that it could weakly coordinate η -2 to the C-N, more so if R_1 is more electron-withdrawing²⁵. The first step of the proposed catalytic cycle may involve a weak coordination of the imine to the Ni-catalyst. When the silane is introduced, oxidative addition of the silane by Ni(0) most likely takes place. Complexes have been previously characterized of this nature²⁶⁻³⁰. It was of interest to try and isolate the oxidative addition intermediate by reacting a stoichiometric amount of primary silane with the Ni-catalyst. However, many attempts at isolating such an intermediate proved fruitless, yet led into understanding an important proponent of the catalytic system being dehydrocoupling.

Once oxidative addition occurs of the silane, the next step most likely follows a Chalk-Harrod hydrosilylation mechanism³¹ where the weakly coordinated imine will insert into the Ni-H bond via hydrometalation. This insertion is proposed to occur rather than silylmetalation, (Scheme 5), in which the imine inserts into the Ni-Si bond. After insertion, reductive elimination gives the desired aminosilane completing the cycle and regenerating the active Ni(0) catalyst (Scheme 6).

Scheme 5. Silylmetalation mechanism.

Scheme 6. Hydrometalation mechanism.

Dehydrocoupling

Of interest is the formation of polysilanes through the use of primary or secondary silanes using catalysts³². Catalysis through transition metals, specifically nickel, is efficient and Smith *et al.* report a bis(phospino)ethane nickel dimer with bridging hydrides that efficiently dehyrocouples via a proposed σ -bond metathesis mechanism ³³. In another report, Tanabe *et al.* report a bis(phospino)ethane nickel complex that efficiently dehydrocouples primary silanes to form polysilanes³⁴, and Schmidt *et al.* report a nickel NHC complex that does the same³⁵. It was advantageous for us to carry out some dehydrocoupling studies of our own.

The first reaction done was the addition of phenylsilane to a stoichiometric moiety of **1** in deuterated benzene (Scheme 7) in which hydrogen evolution and change in color of the reaction mixture from yellow to a dark red-brown were observed. Analysis by [H¹]NMR was in agreement with literature for the formation of cyclic and linear polysilane chains in the range of 4.96-5.86ppm and 4.28-4.90ppm respectively³⁵. It was found that some phenylsilane remained unreacted due to the catalyst being exhausted. **1** does exhibit instability at room temperature which shows why others may have used ligands such as phosphines or NHCs to increase the catalyst life-span. In this respect, we wanted to explore the extent of which **2** could perform dehydrocoupling. To a stoichiometric moiety of **2** in deuterated benzene was added phenylsilane and the reaction was analyzed by [H¹]NMR. Interestingly, the extent of dehydrocoupling that was observed for the Ni(COD)₂ system was not observed for the NiCOD(DMP)₂ system. Instead, diphenylsilane, as the redistribution product (Si-H observed at 5.08ppm), and diphenyldisilane (Si-H observed at 4.48ppm), as the dehydrocoupling product, were identified as the major products. The catalyst was exhausted after one hour.

Scheme 7. Dehydrocoupling reaction.

It was of interest to then explore the dehydrocoupling of another primary silane. To a stoichiometric moiety of **1** in deuterated benzene was added hexylsilane. After four hours, the dehydrocoupling product dihexyldisilane (Si-H observed at 3.88ppm) was observed as the major product by [H¹]NMR. In similar fashion, to a stoichiometric moiety of **2** in deuterated benzene was added hexylsilane. [H¹]NMR showed the disappearance of catalyst after four hours along with unidentifiable products appearing to be of non-dehydrocoupling in character. In another experiment, to a stoichiometric moiety of **2** in anhydrous diethyl ether was added hexylsilane and the reaction was immediately chilled to -30°C. Over the course of a day, crystals were harvested yet determined by [H¹]NMR to be starting material. When the reaction mixture was warmed to room temperature, its characteristic vibrant orange turned to a dark red-brown. Analysis by GC-MS showed no evidence of starting material and products were unidentifiable, however, this study showed that the reaction did not proceed at colder temperatures.

Here we realized that the use of either phenylsilane or hexylsilane did make a significant difference in the outcome of the dehydrocoupling experiments for the two catalysts owing in part to possibly sterics or electronics, or a combination of both. It would be of value to do future testing of cyclohexylsilane in the same manner for a comparison of its degree of dehydrocoupling. Nonetheless, it was advantageous for us to mitigate the degree of dehydrocoupling in hopes that the presiding degree of hydrosilylation would favor the formation of the desired aminosilane.

In another study, to a stoichiometric moiety of **2** in deuterated benzene was added diphenylsilane. It was proposed that diphenylsilane in the presence of **2** could undergo homocoupling to form diphenylpolysilanes with the liberation of dihydrogen, or oxidative addition and form either one of two complexes being Ni(II) and Ni(I) (Scheme 8). The Ni(II) and Ni(I) complexes are analogous to those reported by Schimdt *et al*³⁵.

Scheme 8. Proposed diphenylsilane reaction with NiCOD(DMP)2.

Indeed, analysis by [H¹]NMR after a few days showed peaks shifted up field from -0.397 to -4.085ppm. In another experiment, to a stoichiometric moiety of **2** in anhydrous diethyl ether was added diphenylsilane and the reaction was immediately chilled to -30°C. Over the course of a day, crystals were harvested yet determined to be starting material showing that the reaction proceeds slow at chilled temperatures. Darker crystals were harvested after a few weeks and determined to be the result of **1**,**1**-disilylation of one of the isocyanide ligands. The opposing isocyanide ligand bonds normally, yet, one of the mesityl rings bonds η-2 to the nickel to result in a 16e⁻, Ni(0) complex (Figure 2). The bond length of C00W-N007 = **1**.390(3) and vibrational stretch lies at 1428 cm⁻¹ putting it somewhere between a double bond and a single bond (note: a squeeze was used in refinement to eliminate disorder of diethyl ether in the structure). [H¹]NMR of a mixture of dark crystals and **2** shows an up field shift at -0.387ppm that could not be assigned. The Si-H peak is evident at 5.09ppm. Future studies will be carried out to determine if this **1**,**1**-disilylation complex demonstrates any catalytic behavior.

Figure 2. Crystal structure of 1,1-disilylation product Ni(Ph₂SiH)₂(DMP)₂.

The proposed mechanism for 1,1-disilylation complex is shown (Scheme 9).

Scheme 9. 1,1-disilylation proposed mechanism.

Hexysilane

With a grasp on how to mitigate the extent of dehydrocoupling of the Ni(0) catalyst system using hexylsilane as opposed to phenylsilane, we now wanted to explore our hydrosilylation system of interest. To a solution of 2.5% molar loading of **2**, dissolved in deuterated benzene was added **imine-2**, followed by drop-wise addition of a solution of hexylsilane (Gelest brand) in deuterated benzene. The reaction was monitored by [H¹]NMR after 30 minutes and showed complete conversion of **imine-2** and remarkably complete selectivity for the desired aminosilane.

Having gained selectivity for the desired aminosilane, it was necessary to expand the scope of the NiCOD(DMP)₂/hexysilane system. Imines of 4-**X**-N-(1-methylethylidene)benzenamine structure were explored by altering the para-X group (Scheme 10) with different functional groups and reaction times are specified (Table 1).

Scheme 10. Scope reaction scheme.

Para-X group	conversion [≠]	Time (hr)
H*	complete	2
Me*	complete	0.5
OMe*	complete	3
Cl	complete	2
F#	complete	2
NMe ₂	complete	2

Figure 3. Conversion times for varying para-X groups.

≠conversion determined by [H¹]NMR

*imines isolated in 50% purity (impurity is corresponding para-functionalized aniline)

#imine isolated in 66% purity

Figure 4. Structures of imines.

As concluded from the scope study, there was no difference in reaction rates for electron-donating versus electron-withdrawing groups (i.e. X=NMe₂ versus X=F). Both were complete in two hours and selective for the aminosilane. The para-methyl system was the fastest with conversion complete after 30 minutes as oppose to three hours for the paramethoxy. As a control in determining if the selectivity of the aminosilane is gained primarily by the use of hexylsilane, a reaction was set up using **1** as the catalyst in the presence of **imine-2**. Selectivity for the aminosilane was lost, and the reaction did not proceed to completion when compared to **2** after two hours. **Imine 3**, 4-methyl-N-(1-methylpropylidene)-benzenamine, showed a slower conversion time (although complete conversion) than its 4-methyl-N-(1methylethylidene)- benzenamine, **imine-2**, counterpart due in most part to sterics. 4-chloro-N-(1-methylpropylidene)-benzenamine, **imine-10** and 4-fluoro-N-(1-methylpropylidene)benzenamine, **imine-11** both proceed similar to **imine-3**. The sterically encumbered 2,4-methyl substituted imine (**imine-12**) indeed showed diminished reactivity.

In separate experiments, when R₁ of the imine is an alkyl group (e.g. isopropyl, tert-butyl or sec-butyl) the conversions were very slow. When R₁ was changed to n-propyl, remarkably full conversion to the aminosilane was obtained in two hours. In another interesting respect, imines that contained their analogous unreacted aniline starting material seemed to be unperturbed, as hydrosilylation readily proceeds, a testament to the selective character of catalyst **2** participating in hydrosilylation, and not in dehydrocoupling.

The scope of imines was repeated to gain insight as to the extent of conversion of hydrosilylation by using a premeasured reference to compare with aminosilane generated. As done previously, the conversion was presumed to be complete by the complete disappearance of imine. To a catalytic amount of **2** was added 1mL of a stock solution of 0.062M hexylmethylbenzene in deuterated benzene. Next, the desired imine was added directly followed by drop-wise addition of a solution of hexylsilane in 1mL of deuterated benzene. Upon addition of silane, the formation of bubbles was observed and the reaction was agitated with a magnetic stir bar for the extent of 2 hours. After the allotted time, an aliquot (0.10mL) was taken and diluted with approximately 0.40mL of deuterated benzene. [H¹]NMR was taken and the extent of hydrosilylation was determined with regard to the hexylmethylbenzene reference. Surprisingly, conversions were not as high as first anticipated showing between 70-30%.

Some factors that may contribute to inaccurate conversion percentages may be inaccurate purity of the imines. Imine purity was determined by [H¹]NMR, however, GC may be a better means of determining purity of the imines. It is evident that in the repeated scope experiments, the imine was observed to be completely exhausted after 2 hours by [H¹]NMR.

The limitation of accurately determining conversion by GC-MS was the observation that the Si-N bond was cleaved when subject to the GC column and only the amine was observed. Terminal –OH groups in the column could participate in alcoholysis of the aminosilane, generating the more stable Si-O species with liberation of the free amine. In another regard, upon removing volatiles from the reaction mixture in the presence of catalyst, the aminosilane was also cleaved to form the amine. The catalyst may still be active at this point and methods are being undertaken to selectively deactivate the catalyst without affecting the aminosilane generated in the reaction mixture. A process for isolation of pure aminosilane is still in development.

Active Ni Catalyst

It was essential at this point to explore why the Ni(0)L₂ system has an advantage over the Ni(0) system and in doing so, it was necessary to understand the possible interaction the imine/silane might have with the m-terphenyl isocyanides of the catalyst. HCl (1M in diethyl ether) was used as a surrogate for silane and added in a stoichiometric amount to **2** dissolved in diethyl ether at room temperature and showed immediate evolution of a precipitate. Although efforts to recrystalize the precipitate from THF were unsuccessful, filtration of the reaction mixture and recrystalization at -30°C produced single crystals that were solved by x-ray diffraction as the following (Figure 4):

Figure 5. Crystal structure Ni(II) insertion complex NiCOECI(DMP)₂.

The following structure revealed some known behavior of isocyanide insertion into the Ni-H bond³⁶. Similar insertion of the isocyanide may lead to an active catalyst after oxidative addition of the silane to form the respective Ni(II). In order to give validity to such a claim, our next objective was to obtain the Ni-Si-iminoacyl or the Ni-H-iminoacyl, whether the proton or silane is reductively substituted to COD to form the cyclooctene or silaoctene respectively. A reaction was run of hexylsilane and a stoichiometric amount of **2** in deuterated benzene and run GC-MS. There was, however, no evidence that the hexylsilaoctene had formed.

It is proposed that oxidative addition of the silane will form the Ni(II) species first, followed by insertion of the cyclooctadienyl ligand into the Ni-H bond to form the corresponding Ni(II) silane. This is followed by insertion of the isocyanide into the Ni-C bond of the inserted cyclooctadienyl ligand. The resulting iminoacyl complex could undergo reductive elimination to yield the disubstituted imine and Ni(0)L. This short lived complex could be the active catalyst (Scheme 11).

Scheme 11. Proposed mechanism leading to active catalyst.

The active catalyst could then interact with imine and undergo oxidative addition with silane. The imine would then insert into the Ni-H bond generating a Ni-amine. Reductive elimination would generate the desired aminosilane and regenerate the active Ni(0)L catalyst (Scheme 12).

Scheme 12. Proposed mechanism revised for insertion.

Attempts were made to observe a Ni-silyl complex by reacting **2** with a stoichiometric amount of the tertiary silane, triethylsilane. However, the triethylsilane/NiCOD(DMP)₂ reaction was stagnant at -30°C for many weeks. In similar fashion, a structure was sought regarding the reaction of hexylsilane with a stoichiometric amount of **2** at -30°C, however, only crystals of starting material were obtained. After a few weeks, the mother liquor darkened, however, no crystals were harvested.

Ni(II) species

Interestingly, in an attempt to oxidatively add a chlorosilane in similar manner to Smith *et al*³³, the addition of HSiCl₃ to a stoichiometric amount of **2** generated colorless crystals determined by x-ray diffraction to be the following species (Figure 5). The Ni-H species was not characterized, however, cyclooctene as the reduced species, was characterized by GC-MS (Scheme 13):

Scheme 13. Reaction scheme of Ni(SiCl₃)₂(DMP)₃

Figure 6. Crystal structure of $Ni(SiCl_3)_2(DMP)_3$ (note: one equivalent of diethyl ether was left out for clarity).

Similarly, HGeCl₃ can be added in much the same manner to generate the analogous

species. Again, the Ni-H species was not characterized, however, cyclooctadiene was

characterized by GC-MS giving credence that H₂ is liberated (Scheme 14):

Scheme 14. Reaction scheme of Ni(GeCl₃)₂(DMP)₃.

Analogous bonding motif structures are reported³⁷

Supporting Data

Aminosilane 1

¹H NMR (400 MHz, C₆D₆, 298K): δ 7.59-7.57 (m, 2H), 7.27 (d, 2H, *J* = 7.6Hz), 7.18-7.02 (m, 6H), 6.96 (d, 2H, *J* = 8.4Hz), 6.83 (d, 2H, *J* = 8.8Hz), 5.35 (s, 2H), 4.76 (q, 1H, *J* = 7.2Hz), 2.04 (s, 3H), 1.55 (d, 3H, *J* = 7.2Hz).

Aminosilane 2

¹H NMR (400 MHz, C₆D₆, 298K): δ 6.99 (s, 4H), 4.86 (t, 2H, *J* = 3.2Hz), 3.59 (sept, 1H, *J* = 6.8Hz), 2.15 (s, 3H), 1.17 (d, 6H, *J* = 6.4Hz), 1.29-1.20 (m, 8H), 0.86 (t, 3H, *J* = 7.2Hz), 0.78 (m, 2H).

¹H NMR (400 MHz, C₆D₆, 298K): δ 6.99 (s, 4H), 4.86 (m, 2H, *J* = 9.6Hz), 3.28 (sextet, 1H, *J* = 6.8Hz), 2.14 (s, 3H), 1.70-1.61 (m, 2H), 1.33-1.18 (m, 8H), 1.19 (d, 3H, *J* = 6.8Hz), 0.89 (t, 3H, *J* = 7.2Hz), 0.86 (t, 3H, *J* = 6.8Hz), 0.79 (m, 2H).

Aminosilane 4

¹H NMR (400 MHz, C₆D₆, 298K): δ 7.50 (d, 2H, *J* = 7.6Hz), 7.16-7.11 (m, 3H), 6.86 (d, 2H, *J* = 8.0Hz), 6.56 (d, 2H, *J* = 8.0Hz), 5.34 (s, 2H), 3.67 (sept, 1H, *J* = 6.8Hz), 2.09 (s, 3H), 1.16 (d, 6H, *J* = 6.8Hz).

¹H NMR (400 MHz, C₆D₆, 298K): δ 6.99(d, 2H, *J* = 8.8Hz), 6.76 (d, 2H, *J* = 8.8Hz), 4.87 (t, 2H, *J* = 3.2Hz), 3.52 (sept, 1H, *J* = 6.8Hz), 3.33 (s, 3H), 1.15 (d, 6H, *J* = 6.8Hz), 1.30-1.18 (m, 8H), 0.76 (m, 2H).

(note: could not locate the (t, 3H) of the terminal methyl of the hexyl substituent due to overlap with residual hexylsilane)

Aminosilane 6

¹H NMR (400 MHz, C₆D₆, 298K): δ 7.10 (d, 2H, *J* = 8.8Hz), 6.70 (d, 2H, *J* = 8.8Hz), 4.70 (t, 2H, *J* = 3.2Hz), 3.40 (sept, 1H, *J* = 6.8Hz), 1.38-1.10 (m, 8H), 1.06 (d, 6H, *J* = 6.4Hz), 0.87 (t, 3H, *J* = 6.8Hz), 0.66 (m, 2H).

¹H NMR (400 MHz, C₆D₆, 298K): δ 7.09 (d, 2H, *J* = 8.4Hz), 6.60 (d, 2H, *J* = 8.8Hz), 4.94 (t, 2H, *J* = 3.2Hz), 3.58 (sept, 1H, *J* = 6.8Hz), 1.38-1.13 (m, 8H), 1.20 (d, 6H, *J* = 6.4Hz), 0.87 (t, 3H, *J* = 6.8Hz), 0.79 (m, 2H).

Aminosilane 8

¹H NMR (400 MHz, C₆D₆, 298K): δ 6.78 (d, 2H, *J* = 7.6Hz), 6.77 (d, 2H, *J* = 5.2Hz), 4.75 (t, 2H, *J* = 3.2Hz), 3.41 (sept, 1H, *J* = 6.8Hz), 1.35-1.14 (m, 8H), 1.07 (d, 6H, *J* = 6.8Hz), 0.87 (t, 3H, *J* = 6.8Hz), 0.69 (m, 2H).

¹H NMR (400 MHz, C₆D₆, 298K): δ 7.16 (t, 2H, *J* = 7.2Hz), 7.00 (d, 2H, *J* = 7.6Hz), 6.89 (t, 1H, *J* = 7.2Hz), 4.82 (t, 2H, *J* = 3.2Hz), 3.59 (sept, 1H, *J* = 6.8Hz), 1.35-1.14 (m, 8H), 1.16 (d, 6H, *J* = 6.8Hz), 0.87 (t, 3H, *J* = 6.8Hz), 0.77 (m, 2H).

Aminosilane 10

¹H NMR (400 MHz, C₆D₆, 298K): δ 7.10 (d, 2H, *J* = 8.8Hz), 6.73 (d, 2H, *J* = 8.8Hz), 4.71 (m, 2H, *J* = 12.0Hz), 3.28 (sextet, 1H, *J* = 6.8Hz), 1.61-1.50 (m, 2H), 1.33-1.18 (m, 8H), 1.09 (d, 3H, *J* = 6.8Hz), 0.87 (t, 3H, *J* = 6.8Hz), 0.79 (t, 3H, *J* = 7.2Hz), 0.70 (m, 2H).

¹H NMR (400 MHz, C₆D₆, 298K): δ 6.80 (d, 2H, *J* = 6.8Hz), 4.76 (m, 2H), 3.11 (sextet, 1H, *J* = 6.8Hz), 1.60-1.49 (m, 2H), 1.33-1.18 (m, 8H), 1.09 (d, 3H, *J* = 6.8Hz), 0.87 (t, 3H, *J* = 6.8Hz), 0.84 (t, 3H, *J* = 7.2Hz), 0.70 (m, 2H).

Aminosilane 12

¹H NMR (400 MHz, C₆D₆, 298K): δ 4.68 (t, 2H, *J* = 3.2Hz), 2.98 (sept, 1H, *J* = 6.8Hz), 2.69 (t, 2H), 1.33-1.19 (m, 8H), 1.08 (d, 6H, *J* = 6.8Hz), 0.99 (sextet, 2H), 0.90 (t, 3H), 0.82 (t, 3H, *J* = 7.2Hz), 0.74 (m, 2H).

Crystal data and structure refinement for Ni(Ph₂SiH)₂(DMP)₂.

Identification code	P21c_sq - Copy
Empirical formula	$C_{74}H_{72}N_2NiSi_2$
Formula weight	1104.22
Temperature/K	100.0
Crystal system	monoclinic
Space group	P2 ₁ /n
a/Å	28.289(2)
b/Å	12.5062(10)
c/Å	40.006(3)
α/°	90
β/°	94.4080(10)
γ/°	90
Volume/Å ³	14111.7(19)
Z	8
$\rho_{calc}g/cm^3$	1.039
µ/mm⁻¹	0.347
F(000)	4688.0
Crystal size/mm ³	? × ? × ?
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/	° 2.888 to 50.054
Index ranges	$-33 \le h \le 30, -13 \le k \le 14, -46 \le l \le 47$
Reflections collected	99750
Independent reflections	24914 [$R_{int} = 0.0641$, $R_{sigma} = 0.0662$]
Data/restraints/parameters	24914/0/1447
Goodness-of-fit on F ²	1.039
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0523$, $wR_2 = 0.1265$
Final R indexes [all data]	$R_1 = 0.0900$, $wR_2 = 0.1437$
Largest diff. peak/hole / e Å ⁻³	0.52/-0.40

Bond Lengths for P21c_sq - Copy.

Atom	Atom	Length/Å	Atom Atom	Length/Å
Ni01	N008	1.879(2)	C01N C029	1.379(4)
Ni01	C00H	1.998(3)	C01N C02Z	1.514(4)
Ni01	C012	2.180(3)	C010 C01V	1.393(4)
Ni01	C01A	1.803(3)	C01P C022	1.404(4)
Ni02	N007	1.880(2)	C01P C023	1.400(4)

Ni02	C00F	2.172(3)	C01Q C02F	1.501(4)
Ni02	C00W	2.004(3)	C01Q C03Q	1.384(4)
Ni02	C01G	1.801(3)	CO1R CO2A	1.389(4)
Ni02	C02A	2.500(3)	C01R C02N	1.391(4)
Si03	С00Н	1.892(3)	C01S C02U	1.389(4)
Si03	C00M	1.890(3)	C01T C030	1.377(4)
Si03	C01I	1.875(3)	C01U C032	1.380(5)
Si04	COOE	1.871(3)	C01V C03J	1.501(4)
Si04	C00H	1.891(3)	C01W C01Z	1.379(4)
Si04	C00Q	1.875(3)	C01W C022	1.396(4)
Si05	COOP	1.878(3)	C01X C024	1.385(4)
Si05	C00U	1.871(3)	C01Y C02X	1.384(4)
Si05	C00W	1.895(3)	C01Z C021	1.380(4)
Si06	C00W	1.888(3)	C020 C02G	1.385(4)
Si06	C01L	1.881(3)	C021 C023	1.385(4)
Si06	C01P	1.889(3)	C025 C038	1.383(4)
N007	C00G	1.412(3)	C026 C031	1.381(4)
N007	C00W	1.390(3)	C027 C02N	1.377(4)
N008	C00H	1.388(3)	C028 C02A	1.509(4)
N008	COOX	1.415(3)	C02B C02W	1.389(4)
N009	C01A	1.175(3)	C02C C032	1.374(4)
N009	C01B	1.403(3)	CO2F CO2K	1.395(4)
NOOB	C01G	1.172(3)	C02F C02V	1.397(4)
NOOB	C03H	1.395(4)	C02G C03A	1.373(5)
C00C	C00G	1.411(4)	C02H C02Q	1.372(4)
C00C	C00N	1.504(4)	C02I C02L	1.377(4)
C00C	COOS	1.399(4)	CO2J CO2P	1.389(4)
C00D	C00I	1.415(4)	C02K C033	1.392(4)
C00D	C00O	1.394(4)	C02K C04A	1.515(5)
C00D	C014	1.504(4)	C02L C030	1.401(4)
C00E	COOL	1.391(4)	CO2L CO3P	1.516(4)
C00E	C01F	1.398(4)	C02M C02W	1.378(5)
C00F	С00Т	1.429(4)	C02M C031	1.384(5)
C00F	COOY	1.507(4)	CO2N CO3T	1.520(4)
C00F	C02A	1.423(4)	C02O C03E	1.406(5)
C00G	COOY	1.416(4)	C02O C03M	1.398(5)
C001	COOJ	1.504(4)	C02O C03O	1.507(5)
C001	C018	1.399(4)	C02P C035	1.380(5)
C00J	C00X	1.417(4)	C02Q C02X	1.381(4)
C00J	C016	1.395(4)	C02R C036	1.501(4)
С00К	COON	1.412(4)	CO2R CO3B	1.386(5)
C00K	C00Z	1.502(4)	C02R C03I	1.405(5)

C00K	C010	1.392(4)	C02S C03C	1.389(4)
C00L	C01U	1.385(4)	C02T C038	1.380(5)
C00M	C00V	1.403(4)	C02T C03C	1.383(4)
C00M	C011	1.395(4)	C02U C03A	1.372(5)
C00N	C013	1.406(4)	C02V C03G	1.396(4)
C000	C01N	1.382(4)	C02V C040	1.505(5)
C00P	C025	1.397(4)	C033 C034	1.378(5)
C00P	C02S	1.385(4)	C034 C03G	1.377(5)
C00Q	C01E	1.404(4)	C034 C03S	1.509(4)
C00Q	C01Y	1.395(4)	C035 C03D	1.377(5)
COOR	COOS	1.388(4)	C036 C03U	1.388(4)
COOR	C01K	1.383(4)	C039 C03F	1.395(5)
C00T	C027	1.388(4)	C039 C03Z	1.394(5)
C00T	C02Y	1.510(4)	C039 C049	1.493(5)
C00U	C01C	1.387(4)	C03B C045	1.407(5)
C00U	C02J	1.395(4)	C03B C04C	1.501(5)
C00V	C019	1.394(4)	CO3E CO3L	1.491(5)
C00X	C010	1.411(4)	C03E C042	1.401(5)
C00Y	C01K	1.389(4)	CO3F CO3N	1.485(5)
C010	C012	1.509(4)	CO3F CO3R	1.397(5)
C010	C01J	1.382(4)	C03H C03L	1.406(5)
C011	C024	1.385(4)	C03H C03N	1.405(4)
C012	C015	1.422(4)	C03I C03K	1.390(5)
C012	C01T	1.445(4)	C03I C043	1.498(5)
C013	C01M	1.391(4)	C03K C03W	1.363(6)
C013	C02D	1.517(4)	C03L C04D	1.397(5)
C015	C02E	1.503(4)	C03M C041	1.361(6)
C015	C02I	1.397(4)	C03N C048	1.389(5)
C016	C017	1.396(4)	C03Q C044	1.391(4)
C017	C01J	1.389(4)	CO3R CO4B	1.409(6)
C018	C01H	1.513(4)	CO3R CO4E	1.532(6)
C018	C029	1.401(4)	C03U C044	1.373(5)
C019	C01X	1.379(4)	C03W C045	1.373(6)
C01B	C01Q	1.406(4)	C03W C04M	1.530(6)
C01B	C036	1.401(4)	C03Y C041	1.385(6)
C01C	C03D	1.391(4)	C03Y C042	1.397(5)
C01D	C01T	1.509(4)	C03Z C046	1.362(6)
C01E	C02H	1.386(4)	C041 C04K	1.527(5)
C01F	C02C	1.392(4)	C042 C04I	1.512(6)
C01I	C01S	1.403(4)	C046 C04B	1.385(6)
C01I	C020	1.396(4)	C046 C04F	1.518(6)
C01L	C026	1.390(4)	C048 C04H	1.387(6)

C01L	C02B	1.404(4)	C04D C04H	1.375(5)
C01M	C01V	1.390(4)		

Bond Angles for P21c_sq - Copy.

Atom Atom	Atom	Angle/°	Atom Atom Atom	Angle/°
N008 Ni01	C00H	41.81(10)	C01V C01M C013	122.8(3)
N008 Ni01	C012	84.31(10)	C000 C01N C02Z	120.9(3)
COOH NiO1	C012	120.88(11)	C029 C01N C000	117.4(3)
C01A Ni01	N008	156.87(12)	C029 C01N C02Z	121.7(3)
C01A Ni01	C00H	116.44(12)	C00K C010 C01V	123.0(3)
C01A Ni01	C012	118.74(12)	C022 C01P Si06	119.0(2)
N007 Ni02	C00F	84.59(10)	C023 C01P Si06	124.0(2)
N007 Ni02	C00W	41.77(10)	C023 C01P C022	116.6(3)
N007 Ni02	C02A	87.92(10)	C01B C01Q C02F	122.5(3)
COOF NiO2	C02A	34.56(10)	C03Q C01Q C01B	117.1(3)
C00W Ni02	C00F	121.14(11)	C03Q C01Q C02F	120.4(3)
C00W Ni02	C02A	129.34(10)	CO2A CO1R CO2N	122.4(3)
C01G Ni02	N007	158.41(12)	C02U C01S C01I	121.0(3)
C01G Ni02	C00F	116.76(12)	C012 C01T C01D	120.3(3)
C01G Ni02	C00W	117.55(12)	C030 C01T C012	119.5(3)
C01G Ni02	C02A	111.29(12)	C030 C01T C01D	119.9(3)
COOM SiO3	C00H	119.44(13)	C032 C01U C00L	119.6(3)
C011 Si03	C00H	108.13(13)	C01M C01V C010	116.7(3)
C011 Si03	C00M	107.86(12)	C01M C01V C03J	122.0(3)
COOE SiO4	C00H	109.77(13)	C010 C01V C03J	121.3(3)
COOE SiO4	C00Q	111.90(12)	C01Z C01W C022	120.4(3)
C00Q Si04	C00H	110.13(12)	C019 C01X C024	119.5(3)
COOP Si05	C00W	110.66(13)	CO2X CO1Y COOQ	122.3(3)
C00U Si05	C00P	111.68(12)	C01W C01Z C021	119.7(3)
C00U Si05	C00W	109.46(13)	C02G C020 C01I	120.9(3)
C00W Si06	C01P	119.68(13)	C01Z C021 C023	119.8(3)
C01L Si06	C00W	108.68(13)	C01W C022 C01P	121.1(3)
C01L Si06	C01P	107.31(13)	C021 C023 C01P	122.3(3)
C00G N007	Ni02	112.49(17)	C011 C024 C01X	119.9(3)
C00W N007	Ni02	73.91(14)	C038 C025 C00P	121.5(3)
C00W N007	C00G	126.4(2)	C031 C026 C01L	122.1(3)
C00H N008	Ni01	73.68(14)	C02N C027 C00T	123.1(3)
C00H N008	C00X	126.5(2)	C01N C029 C018	122.4(3)
C00X N008	Ni01	112.71(17)	COOF CO2A NiO2	60.02(15)
C01A N009	C01B	175.4(3)	COOF CO2A CO28	121.3(3)

C01G	NOOB	C03H	172.2(3)	C01R C02A Ni02	106.7(2)
C00G	C00C	C00N	124.1(3)	C01R C02A C00F	119.5(3)
C00S	C00C	C00G	117.2(3)	C01R C02A C028	118.8(3)
C00S	C00C	C00N	118.5(2)	C028 C02A Ni02	108.29(19)
C001	C00D	C014	121.3(3)	CO2W CO2B CO1L	121.1(3)
C000	C00D	C00I	119.2(3)	C032 C02C C01F	119.7(3)
C000	C00D	C014	119.5(2)	C02K C02F C01Q	120.1(3)
C00L	C00E	Si04	120.3(2)	CO2K CO2F CO2V	119.7(3)
C00L	C00E	C01F	117.3(3)	C02V C02F C01Q	120.1(3)
C01F	C00E	Si04	122.0(2)	C03A C02G C020	121.0(3)
C00T	C00F	Ni02	94.85(18)	C02Q C02H C01E	120.5(3)
C00T	C00F	C00Y	121.7(3)	C02L C02I C015	123.3(3)
C00Y	C00F	Ni02	99.21(18)	CO2P CO2J COOU	121.1(3)
C02A	C00F	Ni02	85.41(18)	C02F C02K C04A	122.1(3)
C02A	C00F	C00T	118.1(3)	C033 C02K C02F	119.4(3)
C02A	C00F	C00Y	119.2(2)	C033 C02K C04A	118.5(3)
N007	C00G	C00Y	114.5(2)	C02I C02L C030	117.0(3)
C00C	C00G	N007	124.6(3)	CO2I CO2L CO3P	122.1(3)
C00C	C00G	C00Y	120.3(3)	C030 C02L C03P	120.9(3)
Si03	C00H	Ni01	118.27(13)	C02W C02M C031	120.3(3)
Si04	C00H	Ni01	102.10(13)	C01R C02N C03T	120.9(3)
Si04	C00H	Si03	118.00(16)	C027 C02N C01R	117.6(3)
N008	C00H	Ni01	64.51(14)	C027 C02N C03T	121.4(3)
N008	C00H	Si03	125.5(2)	C03E C02O C03O	121.2(3)
N008	C00H	Si04	113.43(18)	C03M C02O C03E	118.7(4)
C00D	C00I	C00J	118.9(2)	C03M C02O C03O	120.1(3)
C018	C00I	C00D	118.5(3)	C035 C02P C02J	120.2(3)
C018	C00I	C00J	122.2(2)	C02H C02Q C02X	120.1(3)
C00X	C00J	C00I	124.1(3)	C03B C02R C036	119.1(3)
C016	C00J	C00I	118.2(2)	CO3B CO2R CO3I	120.5(3)
C016	C00J	C00X	117.5(3)	C03I C02R C036	120.4(3)
C00N	C00K	C00Z	121.5(3)	COOP CO2S CO3C	122.0(3)
C010	C00K	C00N	119.1(3)	C038 C02T C03C	119.3(3)
C010	C00K	C00Z	119.3(3)	C03A C02U C01S	120.6(3)
C01U	C00L	C00E	121.7(3)	C02F C02V C03G	118.7(3)
C00V	C00M	Si03	119.1(2)	C02F C02V C040	122.1(3)
C011	C00M	Si03	124.0(2)	C03G C02V C040	119.1(3)
C011	C00M	C00V	116.5(3)	C02M C02W C02B	119.8(3)
С00К	C00N	C00C	118.8(3)	CO2Q CO2X CO1Y	119.4(3)
C013	C00N	C00C	121.9(2)	C01T C030 C02L	123.0(3)
C013	C00N	СООК	119.0(3)	C026 C031 C02M	119.4(3)
C01N	C000	C00D	122.7(3)	C02C C032 C01U	120.4(3)

C025	C00P	Si05	122.4(2)	C034 C03	3 CO2K	121.8(3)
C02S	C00P	Si05	120.6(2)	C033 C03	4 C03S	121.1(3)
C02S	C00P	C025	117.0(3)	C03G C03	4 CO33	118.1(3)
C01E	C00Q	Si04	123.2(2)	C03G C03	4 CO3S	120.7(4)
C01Y	C00Q	Si04	120.1(2)	C03D C03	5 CO2P	119.8(3)
C01Y	C00Q	C01E	116.7(3)	C01B C03	5 CO2R	122.0(3)
C01K	COOR	C00S	119.7(3)	C03U C03	5 CO1B	117.1(3)
COOR	C00S	C00C	122.5(3)	C03U C03	5 CO2R	120.9(3)
C00F	C00T	C02Y	121.5(3)	C02T C03	8 C025	120.4(3)
C027	C00T	C00F	119.1(3)	C03F C03	9 CO49	121.5(4)
C027	C00T	C02Y	119.4(3)	C03Z C03	9 CO3F	119.1(4)
C01C	C00U	Si05	120.3(2)	C03Z C03	9 CO49	119.5(4)
C01C	C00U	C02J	117.4(3)	C02U C03	A C02G	119.3(3)
C02J	C00U	Si05	122.0(2)	C02R C03	B C045	118.4(4)
C019	C00V	C00M	121.6(3)	C02R C03	B C04C	120.8(4)
Si05	C00W	/ Ni02	101.48(13)	C045 C03	B C04C	120.8(4)
Si06	C00W	/ Ni02	118.77(13)	C02T C03	C C02S	119.8(3)
Si06	C00W	' Si05	117.44(15)	C035 C03	D C01C	119.7(3)
N007	C00W	/ Ni02	64.31(14)	C02O C03	E CO3L	119.6(4)
N007	C00W	' Si05	113.71(18)	C042 C03	E C02O	119.4(3)
N007	C00W	' Si06	126.0(2)	C042 C03	E CO3L	120.8(4)
N008	C00X	C00J	124.4(3)	C039 C03	F CO3N	120.6(4)
C010	C00X	N008	114.6(2)	C039 C03	F CO3R	119.8(4)
C010	C00X	C00J	120.3(3)	C03R C03	F CO3N	119.5(4)
C00G	C00Y	C00F	119.1(2)	C034 C03	G C02V	122.2(3)
C01K	C00Y	C00F	120.8(3)	N00B C03	H CO3L	118.7(3)
C01K	C00Y	C00G	120.1(3)	N00B C03	H CO3N	118.9(3)
C00X	C010	C012	119.0(2)	C03N C03	H CO3L	122.4(3)
C01J	C010	C00X	120.0(3)	C02R C03	C043	121.5(3)
C01J	C010	C012	120.9(3)	C03K C03	C02R	117.9(4)
C024	C011	C00M	122.3(3)	C03K C03	C043	120.6(4)
C010	C012	Ni01	99.30(18)	C03W C03	K C03I	123.2(4)
C015	C012	Ni01	93.33(18)	C03H C03	L CO3E	122.4(3)
C015	C012	C010	122.7(3)	C04D C03	L CO3E	120.0(3)
C015	C012	C01T	117.6(3)	C04D C03	L C03H	117.5(3)
C01T	C012	Ni01	87.14(17)	C041 C03	M C02O	122.7(4)
C01T	C012	C010	118.7(2)	C03H C03	N CO3F	121.4(3)
C00N	C013	C02D	123.1(3)	C048 C03	N CO3F	121.4(3)
C01M	C013	COON	119.5(3)	C048 C03	N C03H	117.1(4)
C01M	C013	C02D	117.4(3)	C01Q C03	Q C044	121.0(3)
C012	C015	C02E	121.6(3)	C03F C03	R CO4B	119.0(4)
C021	C015	C012	119.4(3)	C03F C03	R CO4E	120.5(4)

C021	C015	C02E	118.9(3)	CO4B CO3R CO4E	120.4(4)
C00J	C016	C017	122.1(3)	C044 C03U C036	121.4(3)
C01J	C017	C016	119.4(3)	C03K C03W C045	118.0(4)
C001	C018	C01H	123.3(3)	C03K C03W C04M	120.9(5)
C001	C018	C029	119.7(3)	C045 C03W C04M	121.1(5)
C029	C018	C01H	116.9(3)	C041 C03Y C042	121.6(4)
C01X	C019	C00V	120.2(3)	C046 C03Z C039	122.2(4)
N009	C01A	Ni01	177.0(3)	C03M C041 C03Y	118.4(4)
N009	C01B	C01Q	118.9(2)	C03M C041 C04K	121.1(5)
C036	C01B	N009	118.2(3)	C03Y C041 C04K	120.5(5)
C036	C01B	C01Q	122.9(3)	C03E C042 C04I	121.1(4)
C00U	C01C	C03D	121.8(3)	C03Y C042 C03E	119.3(4)
C02H	C01E	C00Q	121.1(3)	C03Y C042 C04I	119.5(4)
C02C	C01F	COOE	121.3(3)	C03U C044 C03Q	120.3(3)
NOOB	C01G	Ni02	178.8(3)	C03W C045 C03B	122.0(4)
C01S	C01I	Si03	120.5(2)	C03Z C046 C04B	119.0(4)
C020	C01I	Si03	122.3(2)	C03Z C046 C04F	121.4(5)
C020	C01I	C01S	117.2(3)	C04B C046 C04F	119.6(5)
C010	C01J	C017	120.5(3)	C04H C048 C03N	121.7(4)
COOR	C01K	COOY	120.0(3)	C046 C04B C03R	120.9(5)
C026	C01L	Si06	122.7(2)	CO4H CO4D CO3L	121.1(4)
C026	C01L	C02B	117.2(3)	C04D C04H C048	120.1(4)
C02B	C01L	Si06	120.1(2)		

Crystal data and structure refinement for NiCOECI(DMP)₂.

Identification code	JFig1342_1_0m_x
Empirical formula	$C_{58}H_{63}CIN_2Ni$
Formula weight	882.28
Temperature/K	100.0
Crystal system	triclinic
Space group	P-1
a/Å	15.8952(12)
b/Å	16.9832(14)
c/Å	18.9473(16)
α/°	104.762(3)
β/°	93.485(2)
γ/°	99.510(2)
Volume/Å ³	4849.6(7)
Z	4
$\rho_{calc}g/cm^3$	2.199
µ/mm⁻¹	5.770

F(000)	3127.0
Crystal size/mm ³	? × ? × ?
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/°	2.524 to 50.802
Index ranges	$-16 \leq h \leq 18, -20 \leq k \leq 13, -22 \leq l \leq 22$
Reflections collected	24254
Independent reflections	16479 [$R_{int} = 0.0401$, $R_{sigma} = 0.1318$]
Data/restraints/parameters	16479/0/1154
Goodness-of-fit on F ²	1.084
Final R indexes [I>=2σ (I)]	$R_1 = 0.0807$, $wR_2 = 0.1845$
Final R indexes [all data]	$R_1 = 0.1544$, $wR_2 = 0.2234$
Largest diff. peak/hole / e Å $^{\text{-}3}$	1.19/-1.38

Bond Lengths for JFig1342_1_0m_x.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Ni01	Cl03	2.2035(18)	C011	C018	1.399(8)
Ni01	N007	1.910(4)	C013	C01A	1.396(8)
Ni01	C00C	1.734(7)	C013	C01K	1.400(8)
Ni01	COOR	1.817(6)	C013	C025	1.495(8)
Ni02	Cl04	2.193(3)	C015	C010	1.393(8)
Ni02	N005	1.940(5)	C015	C028	1.383(8)
Ni02	C01R	1.791(6)	C015	C02W	1.521(8)
Ni02	C1	1.415(7)	C017	C01H	1.393(8)
Ni02	Cl1	2.209(19)	C018	C01X	1.384(8)
Cl04	Cl1	0.84(5)	C018	C02K	1.520(8)
N005	C00A	1.436(7)	C019	C02E	1.405(8)
N005	C01R	1.261(7)	C019	C02O	1.497(9)
N006	C00C	1.202(7)	C01A	C020	1.488(8)
N006	C010	1.403(7)	C01B	C02P	1.526(9)
N007	COOR	1.259(7)	C01B	C02S	1.378(8)
N007	C00U	1.425(7)	C01C	C01F	1.483(8)
N008	C01M	1.411(7)	C01C	C02N	1.390(8)
N008	C1	1.517(9)	C01F	C01Y	1.411(9)
C009	C00A	1.402(7)	C01F	C023	1.400(8)
C009	C000	1.499(7)	C01G	C01K	1.369(9)
C009	C014	1.387(8)	C01G	C01L	1.388(8)
C00A	C00B	1.387(7)	C01G	C031	1.504(8)
C00B	C00I	1.381(8)	C01H	C02Z	1.513(8)
C00B	C011	1.506(7)	C01J	C01M	1.376(8)
C00D	C019	1.385(8)	C01J	C02F	1.393(8)
C00D	C01B	1.398(8)	C01M	C02H	1.392(8)

C00D	C01I	1.507(8)	C010 C01T	1.410(8)
C00E	С00К	1.380(8)	C010 C02H	1.493(8)
C00E	C00Y	1.402(7)	C01R C033	1.504(8)
C00F	C000	1.394(8)	C01S C01W	1.384(8)
C00F	C012	1.396(7)	C01T C02A	1.390(9)
C00F	C01P	1.507(7)	C01T C036	1.510(8)
C00G	C00X	1.401(8)	C01U C028	1.384(8)
C00G	C01Z	1.369(8)	C01U C02A	1.379(8)
C00G	C02I	1.514(8)	C01U C02Y	1.499(9)
C00H	C000	1.396(7)	C01V C01X	1.372(8)
C00H	C00V	1.378(8)	C01V C021	1.374(8)
C00H	C01E	1.512(8)	C01V C03B	1.529(8)
C001	C00T	1.377(8)	C01W C01Z	1.379(8)
C00J	C011	1.394(8)	C01W C02V	1.512(8)
C00J	C021	1.402(8)	C01Y C02J	1.385(9)
C00J	C029	1.507(8)	C01Y C03D	1.505(9)
С00К	C017	1.392(8)	C020 C02U	1.399(8)
С00К	C01D	1.505(7)	C022 C033	1.540(8)
C00L	COOR	1.490(8)	C022 C037	1.535(8)
C00L	C02D	1.536(8)	C023 C024	1.508(8)
C00L	C02T	1.547(8)	C023 C02Q	1.381(8)
C00M	C00Y	1.395(8)	C026 C02C	1.390(9)
C00M	C00Z	1.501(7)	C026 C02H	1.397(8)
C00M	C01H	1.399(8)	C027 C02D	1.544(9)
C00N	C00Q	1.393(8)	C027 C030	1.517(9)
C00N	C01I	1.384(8)	C02B C033	1.559(9)
C00P	C00X	1.393(8)	C02B C035	1.475(8)
C00P	C01S	1.391(8)	C02C C02F	1.372(8)
C00P	C02L	1.503(8)	CO2E CO2G	1.378(9)
C00Q	C016	1.383(8)	C02G C02S	1.387(9)
C00S	C01A	1.397(8)	C02G C039	1.523(8)
C00S	C01L	1.398(8)	CO2J CO2X	1.372(9)
C00S	C032	1.519(8)	C02M C02N	1.361(9)
C00T	C014	1.359(8)	C02M C02U	1.395(9)
C00U	C01C	1.396(8)	C02Q C02X	1.378(9)
C00U	C020	1.388(8)	C02R C038	1.493(9)
C00V	C00W	1.381(8)	CO2R CO3C	1.555(9)
C00W	C012	1.388(8)	C02T C03C	1.527(9)
C00W	C01N	1.501(8)	C02X C03F	1.508(9)
C00X	C01J	1.497(8)	C030 C038	1.312(9)
C00Y	C01Q	1.498(8)	C034 C035	1.532(9)
C00Z	C010	1.404(7)	C034 C03E	1.431(11)

C00Z	C016	1.381(8)	C037 C03A	1.486(10)
C010	C01I	1.389(7)	CO3A CO3E	1.355(11)

Bond	Bond Angles for JFig1342_1_0m_x.					
Atom	Atom	Atom	Angle/°	Atom Atom Atom	Angle/°	
N007	Ni01	Cl03	114.16(16)	COOK CO17 CO1H	122.0(5)	
C00C	Ni01	Cl03	96.0(2)	C011 C018 C02K	121.1(5)	
C00C	Ni01	N007	149.8(2)	C01X C018 C011	119.5(6)	
C00C	Ni01	COOR	110.7(3)	C01X C018 C02K	119.3(5)	
COOR	Ni01	Cl03	153.16(19)	C00D C019 C02E	117.9(6)	
COOR	Ni01	N007	39.4(2)	C00D C019 C02O	123.0(5)	
Cl04	Ni02	Cl1	21.9(11)	C02E C019 C02O	119.1(5)	
N005	Ni02	Cl04	111.7(2)	C00S C01A C020	120.0(5)	
N005	Ni02	Cl1	133.6(13)	C013 C01A C00S	120.4(5)	
C01R	Ni02	Cl04	150.7(3)	C013 C01A C020	119.5(6)	
C01R	Ni02	N005	39.3(2)	COOD CO1B CO2P	121.4(6)	
C01R	Ni02	Cl1	172.1(13)	CO2S CO1B COOD	119.4(6)	
C1	Ni02	Cl04	103.1(2)	CO2S CO1B CO2P	119.2(6)	
C1	Ni02	N005	145.0(2)	COOU CO1C CO1F	122.5(5)	
C1	Ni02	C01R	105.8(3)	CO2N CO1C COOU	117.8(6)	
C1	Ni02	Cl1	81.2(13)	CO2N CO1C CO1F	119.7(5)	
Cl1	Cl04	Ni02	80.1(10)	C01Y C01F C01C	119.1(6)	
C00A	N005	Ni02	155.0(4)	C023 C01F C01C	121.5(6)	
C01R	N005	Ni02	64.0(3)	C023 C01F C01Y	119.3(6)	
C01R	N005	C00A	140.7(5)	C01K C01G C01L	117.3(6)	
C00C	N006	C010	161.1(5)	C01K C01G C031	121.9(6)	
COOR	N007	Ni01	66.3(3)	C01L C01G C031	120.8(6)	
COOR	N007	C00U	140.5(5)	COOM CO1H CO2Z	121.9(5)	
C00U	N007	Ni01	153.0(4)	C017 C01H C00M	118.6(6)	
C01M	N008	C1	159.5(5)	C017 C01H C02Z	119.5(5)	
C00A	C009	C000	121.6(5)	COON CO11 COOD	122.3(5)	
C014	C009	C00A	117.7(5)	COON CO11 CO10	117.1(5)	
C014	C009	C000	120.6(5)	C010 C011 C00D	120.6(5)	
C009	C00A	N005	117.5(4)	C01M C01J C00X	122.1(5)	
C00B	C00A	N005	120.8(5)	C01M C01J C02F	116.7(6)	
C00B	C00A	C009	121.6(5)	CO2F CO1J COOX	121.2(6)	
C00A	C00B	C011	123.9(5)	C01G C01K C013	123.9(5)	
C00I	C00B	C00A	117.5(5)	C01G C01L C00S	121.7(6)	
C00I	C00B	C011	118.6(5)	C01J C01M N008	119.7(5)	
N006	C00C	Ni01	174.0(5)	C01J C01M C02H	124.0(5)	

C019	C00D	C01B	120.9(5)	C02H C01M N008	116.4(6)
C019	C00D	C01I	120.8(5)	C015 C010 C01T	120.4(6)
C01B	C00D	C01I	118.2(5)	C015 C010 C02H	119.1(5)
С00К	C00E	COOY	122.2(6)	C01T C01O C02H	120.3(5)
C000	C00F	C012	118.8(5)	N005 C01R Ni02	76.8(4)
C000	C00F	C01P	121.3(5)	N005 C01R C033	141.3(6)
C012	C00F	C01P	119.9(5)	C033 C01R Ni02	142.0(5)
C00X	C00G	C02I	120.4(6)	C01W C01S C00P	121.5(6)
C01Z	C00G	COOX	118.8(5)	C010 C01T C036	120.5(6)
C01Z	C00G	C02I	120.8(5)	C02A C01T C01O	118.0(6)
C000	C00H	C01E	121.0(5)	C02A C01T C036	121.5(6)
C00V	C00H	C00O	118.6(5)	C028 C01U C02Y	122.2(6)
C00V	C00H	C01E	120.5(5)	C02A C01U C028	117.5(6)
C00T	C00I	COOB	122.3(5)	C02A C01U C02Y	120.3(6)
C011	C00J	C021	118.4(5)	C01X C01V C021	118.8(5)
C011	C00J	C029	120.9(5)	C01X C01V C03B	119.9(6)
C021	C00J	C029	120.7(5)	C021 C01V C03B	121.2(6)
C00E	C00K	C017	118.0(5)	C015 C01W C02V	121.0(5)
C00E	C00K	C01D	120.4(6)	C01Z C01W C01S	118.2(6)
C017	C00K	C01D	121.6(5)	C01Z C01W C02V	120.8(5)
COOR	C00L	C02D	107.3(5)	C01V C01X C018	121.4(6)
COOR	C00L	C02T	109.4(5)	C01F C01Y C03D	119.7(6)
C02D	C00L	C02T	114.2(5)	CO2J CO1Y CO1F	118.6(6)
C00Y	C00M	COOZ	120.0(5)	CO2J CO1Y CO3D	121.7(6)
C00Y	C00M	C01H	120.8(5)	COOG CO1Z CO1W	122.5(5)
C01H	C00M	COOZ	119.1(5)	C00U C020 C01A	122.9(5)
C01I	C00N	C00Q	121.2(5)	C00U C020 C02U	116.8(6)
C00F	C000	C009	118.8(5)	C02U C020 C01A	120.3(5)
C00F	C000	С00Н	120.5(5)	C01V C021 C00J	121.8(6)
C00H	C000	C009	120.6(5)	C037 C022 C033	114.4(5)
C00X	C00P	C02L	120.9(6)	C01F C023 C024	121.3(6)
C01S	C00P	COOX	118.9(5)	C02Q C023 C01F	118.9(6)
C01S	C00P	C02L	120.2(6)	C02Q C023 C024	119.8(6)
C016	C00Q	COON	119.5(5)	C02C C026 C02H	120.2(6)
N007	COOR	Ni01	74.3(4)	C030 C027 C02D	114.6(5)
N007	COOR	COOL	139.7(5)	C015 C028 C01U	122.7(6)
C00L	COOR	Ni01	146.0(4)	C01U C02A C01T	122.7(6)
C01A	C00S	C01L	119.1(5)	C035 C02B C033	116.3(5)
C01A	C00S	C032	121.1(6)	C02F C02C C026	120.1(6)
C01L	C00S	C032	119.8(6)	C00L C02D C027	117.4(5)
C014	C00T	C00I	119.0(6)	C02G C02E C019	122.0(6)
C01C	C00U	N007	117.5(5)	C02C C02F C01J	121.7(6)

C020 C00U	N007	119.3(5)	C02E C02G (C02S	118.5(6)
C020 C00U	C01C	123.1(5)	C02E C02G (C039	120.7(6)
C00H C00V	C00W	122.8(5)	C02S C02G 0	C039	120.8(6)
C00V C00W	C012	117.8(5)	C01M C02H 0	C01O	120.4(5)
C00V C00W	'C01N	121.3(5)	C01M C02H 0	C026	117.2(6)
C012 C00W	'C01N	120.9(6)	C026 C02H 0	C01O	122.4(5)
COOG COOX	C01J	120.5(5)	C02X C02J 0	C01Y	122.9(6)
COOP COOX	C00G	120.1(6)	C02N C02M 0	C02U	120.3(6)
COOP COOX	C01J	119.4(5)	C02M C02N 0	C01C	121.0(6)
COOE COOY	C01Q	119.5(5)	C02X C02Q 0	C023	122.8(6)
C00M C00Y	COOE	118.4(5)	C038 C02R 0	C03C	111.6(6)
C00M C00Y	C01Q	122.1(5)	C01B C02S 0	C02G	121.3(6)
C010 C00Z	C00M	122.1(5)	C03C C02T (C00L	114.1(5)
C016 C00Z	C00M	121.3(5)	C02M C02U 0	C020	120.9(6)
C016 C00Z	C010	116.6(5)	C02J C02X 0	C02Q	117.4(6)
N006 C010	COOZ	118.1(5)	C02J C02X 0	C03F	122.0(7)
C011 C010	N006	118.2(5)	C02Q C02X 0	C03F	120.6(7)
C011 C010	COOZ	123.5(5)	C038 C030 (C027	123.3(6)
C00J C011	COOB	120.9(5)	C01R C033 0	C022	108.0(5)
C00J C011	C018	119.8(5)	C01R C033 0	C02B	108.3(5)
C018 C011	COOB	119.2(5)	C022 C033 (C02B	112.9(5)
C00W C012	COOF	121.5(6)	C03E C034 0	C035	112.5(6)
C01A C013	C01K	117.5(6)	C02B C035 0	C034	116.8(5)
C01A C013	C025	121.5(5)	C03A C037 (C022	118.9(6)
C01K C013	C025	121.0(5)	C030 C038 (C02R	123.9(6)
C00T C014	C009	121.9(5)	C03E C03A 0	C037	121.9(8)
C010 C015	C02W	121.3(6)	C02T C03C (C02R	114.0(5)
C028 C015	C010	118.7(6)	C03A C03E (C034	126.8(9)
C028 C015	C02W	120.0(5)	Ni02 C1	N008	172.8(4)
C00Z C016	C00Q	121.8(5)	Cl04 Cl1 M	Ni02	78.0(19)

Crystal data and structure refinement for Ni(SiCl_3)_2(DMP)_3 OEt_2.

Identification code	JFig1350
Empirical formula	$C_{79}H_{85}Cl_6N_3ONiS_{i2}$
Formula weight	1420.12
Temperature/K	100.0
Crystal system	monoclinic
Space group	P2 ₁ /n
a/Å	13.006(14)
b/Å	31.12(3)
c/Å	18.843(19)

α/°	90
β/°	99.520(10)
γ/°	90
Volume/ų	7521(14)
Z	4
$\rho_{calc}g/cm^3$	1.178
µ/mm⁻¹	0.546
F(000)	2644.0
Crystal size/mm ³	?×?×?
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/	2.552 to 50.79
Index ranges	$-6 \le h \le 15, -34 \le k \le 24, -22 \le l \le 13$
Reflections collected	15490
Independent reflections	11293 [$R_{int} = 0.0431$, $R_{sigma} = 0.0888$]
Data/restraints/parameters	11293/0/829
Goodness-of-fit on F ²	1.265
Final R indexes [I>=2σ (I)]	$R_1 = 0.0760$, $wR_2 = 0.2032$
Final R indexes [all data]	$R_1 = 0.1153$, $wR_2 = 0.2296$
Largest diff. peak/hole / e Å $^{\text{-}3}$	0.65/-0.74

Bond Lengths for JFig1350.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Ni01	Si06	2.221(2)	C00V	C01S	1.412(9)
Ni01	Si09	2.231(2)	C00W	C01X	1.426(9)
Ni01	C00D	1.808(6)	C00W	C01Y	1.517(10)
Ni01	C00F	1.852(7)	COOX	C01E	1.420(9)
Ni01	C00J	1.853(7)	COOX	C01L	1.507(10)
Cl02	Si06	2.061(3)	C00Y	C01Q	1.403(11)
Cl03	Si06	2.071(3)	C00Z	C013	1.397(9)
Cl04	Si06	2.061(3)	C00Z	C01N	1.386(9)
Cl05	Si09	2.062(3)	C00Z	C02E	1.530(10)
Cl07	Si09	2.076(3)	C010	C01G	1.389(9)
Cl08	Si09	2.050(3)	C012	C014	1.391(9)
N00A	C00F	1.159(7)	C013	C014	1.393(9)
N00A	C00I	1.409(7)	C013	C01K	1.475(9)
NOOB	C00D	1.172(7)	C014	C021	1.529(9)
NOOB	C00E	1.407(7)	C015	C017	1.392(9)
N00C	C00J	1.164(8)	C015	C018	1.388(10)
N00C	C016	1.409(8)	C015	C020	1.543(9)
C00E	C00H	1.394(8)	C016	C01K	1.384(10)
C00E	C00L	1.387(8)	C016	C01M	1.409(9)

C00G C00H	1.501(8)	C019 C01J	1.405(9)
C00G C000	1.394(9)	C019 C025	1.488(11)
COOG COOX	1.395(9)	C01B C01M	1.471(10)
COOH COOR	1.416(8)	C01B C01U	1.409(10)
C001 C00N	1.404(9)	C01B C01V	1.390(10)
C001 C00V	1.389(9)	CO1C CO1J	1.408(11)
COOK COOL	1.498(8)	CO1C CO1X	1.374(11)
C00K C00W	1.384(9)	C01C C01Z	1.529(9)
C00K C019	1.399(9)	C01D C01F	1.375(10)
COOL CO1G	1.401(8)	C01D C01I	1.382(9)
C00M C00N	1.475(10)	C01E C01Q	1.386(11)
C00M C00U	1.414(9)	C01F C024	1.545(9)
C00M C01F	1.429(9)	C01H C01I	1.412(9)
C00N C010	1.401(9)	C011 C022	1.511(10)
C000 C00Y	1.400(9)	C01K C02C	1.409(10)
C000 C01P	1.509(10)	C01M C02D	1.415(10)
C00P C011	1.398(9)	C010 C01R	1.379(11)
C00P C017	1.396(9)	C01Q C02A	1.557(10)
COOP CO1T	1.528(9)	CO1R CO1S	1.420(10)
C00Q C011	1.398(8)	C01U C023	1.382(11)
C00Q C018	1.389(9)	C01U C028	1.495(10)
C00Q C01W	1.523(9)	C01V C026	1.379(11)
COOR C010	1.412(9)	C01V C02B	1.527(11)
C00S C012	1.396(9)	C023 C029	1.411(11)
COOS CO1N	1.387(10)	C026 C029	1.419(12)
C00S C027	1.520(10)	C029 C02G	1.498(12)
O00T C02H	1.423(11)	C02C C02F	1.400(11)
OOOT CO2J	1.412(13)	C02D C02F	1.389(13)
C00U C01A	1.518(9)	C02H C02I	1.500(17)
C00U C01H	1.388(9)	C02J C02K	1.610(15)
C00V C011	1.484(9)		

Bond Angles for JFig1350.

Atom	Atom	Atom	Angle/°	Atom Atom A	tom An	gle/°
Si06	Ni01	Si09	173.78(7)	COOG COOX CO	01L	122.3(6)
C00D	Ni01	Si06	87.7(2)	CO1E COOX CO	01L	119.0(6)
C00D	Ni01	Si09	87.2(2)	C000 C00Y C	01Q	119.8(7)
C00D	Ni01	C00F	124.3(3)	C013 C00Z C	02E	120.0(6)
C00D	Ni01	C00J	121.6(3)	C01N C00Z C	013	119.6(6)
C00F	Ni01	Si06	92.2(2)	CO1N COOZ CO	02E	120.4(6)

C00F	Ni01	Si09	93.6(2)	C01G C010 C00R	121.0(5)
C00F	Ni01	C00J	114.1(2)	C00P C011 C00Q	119.6(6)
C00J	Ni01	Si06	90.3(2)	C00P C011 C00V	119.3(5)
C00J	Ni01	Si09	89.4(2)	C00Q C011 C00V	121.0(6)
Cl02	Si06	Ni01	114.84(11)	C014 C012 C00S	120.3(7)
Cl02	Si06	Cl03	103.45(10)	C00Z C013 C01K	119.0(6)
Cl03	Si06	Ni01	114.72(10)	C014 C013 C00Z	120.3(6)
Cl04	Si06	Ni01	115.07(10)	C014 C013 C01K	120.6(6)
Cl04	Si06	Cl02	103.87(10)	C012 C014 C013	119.5(6)
Cl04	Si06	Cl03	103.37(12)	C012 C014 C021	120.8(6)
Cl05	Si09	Ni01	112.37(11)	C013 C014 C021	119.6(6)
Cl05	Si09	Cl07	102.89(10)	C017 C015 C020	118.7(7)
Cl07	Si09	Ni01	116.92(11)	C018 C015 C017	119.2(6)
Cl08	Si09	Ni01	115.81(10)	C018 C015 C020	122.1(6)
Cl08	Si09	Cl05	104.08(10)	N00C C016 C01M	116.9(6)
Cl08	Si09	Cl07	103.13(11)	C01K C016 N00C	119.6(6)
C00F	N00A	C00I	176.7(6)	C01K C016 C01M	123.5(6)
C00D	NOOB	C00E	177.8(6)	C015 C017 C00P	120.5(7)
C00J	N00C	C016	177.4(6)	C015 C018 C00Q	121.0(6)
NOOB	C00D	Ni01	178.8(5)	COOK CO19 CO1J	118.6(7)
C00H	C00E	NOOB	117.2(5)	СООК СО19 СО25	121.1(6)
C00L	C00E	NOOB	119.0(5)	C01J C019 C025	120.3(7)
C00L	C00E	C00H	123.8(5)	C01U C01B C01M	118.7(7)
N00A	C00F	Ni01	178.1(5)	C01V C01B C01M	119.8(7)
C000	C00G	C00H	119.6(6)	C01V C01B C01U	121.3(7)
C000	C00G	C00X	121.2(6)	C01J C01C C01Z	119.4(7)
C00X	C00G	C00H	119.2(6)	C01X C01C C01J	120.4(6)
C00E	C00H	C00G	124.8(5)	C01X C01C C01Z	120.1(7)
C00E	C00H	COOR	117.6(5)	C01F C01D C01I	121.2(7)
COOR	C00H	C00G	117.5(5)	C01Q C01E C00X	120.2(7)
C00N	C00I	N00A	118.2(6)	C00M C01F C024	119.5(7)
C00V	C00I	N00A	118.6(5)	C01D C01F C00M	120.0(6)
C00V	C00I	C00N	123.2(6)	C01D C01F C024	120.5(6)
N00C	C00J	Ni01	179.4(6)	C010 C01G C00L	120.3(6)
C00W	C00K	COOL	118.9(6)	C00U C01H C01I	120.3(6)
C00W	C00K	C019	121.4(6)	C01D C01I C01H	119.7(7)
C019	C00K	COOL	119.7(6)	C01D C01I C022	120.1(7)
C00E	C00L	COOK	123.3(5)	C01H C01I C022	120.2(7)
C00E	C00L	C01G	118.0(5)	C019 C01J C01C	120.3(7)
C01G	C00L	СООК	118.7(5)	C016 C01K C013	124.0(6)
C00U	C00M	COON	120.4(6)	C016 C01K C02C	118.5(7)
C00U	C00M	C01F	118.8(7)	C02C C01K C013	117.5(7)

C00M	C00N	120.7(6)	C016 C0	01M C01B	124.7(6)
C00N	C00M	124.0(6)	C016 C0	01M C02D	117.4(8)
C00N	C00I	117.1(7)	C02D C0	01M C01B	117.9(6)
C00N	C00M	118.9(6)	C00Z C0	01N C00S	120.5(6)
C000	C00Y	119.7(7)	CO1R CO	010 C00N	121.7(7)
C000	C01P	121.3(6)	COOY CO	01Q C02A	120.3(8)
C000	C01P	119.0(6)	C01E C0	01Q C00Y	120.4(6)
COOP	C01T	122.6(6)	C01E C0	01Q C02A	119.3(8)
COOP	C011	119.9(6)	C010 C0	01R C01S	120.2(6)
COOP	C01T	117.5(6)	C00V C0	01S C01R	119.2(7)
C00Q	C01W	120.7(6)	C01B C0	01U C028	121.5(7)
C00Q	C011	119.8(6)	C023 C0	01U C01B	119.2(7)
C00Q	C01W	119.5(6)	C023 C0	01U C028	119.3(7)
COOR	С00Н	119.3(6)	C01B C0	01V C02B	121.5(8)
C00S	C027	120.0(7)	C026 C0	01V C01B	119.3(7)
COOS	C012	119.7(6)	C026 C0	01V C02B	119.2(8)
COOS	C027	120.2(6)	C01C C0	01X C00W	119.6(7)
000T	C02H	113.2(10)	C01U C0	023 C029	120.6(8)
1 C00U	C01A	119.9(6)	C01V C0	026 C029	120.9(8)
C00U	C00M	119.9(6)	C023 C0	029 C026	118.7(8)
C00U	C01A	120.2(6)	C023 C0	029 C02G	122.1(8)
C00V	C011	124.1(5)	C026 C0	029 C02G	119.2(8)
C00V	C01S	118.4(6)	C02F C0	02C C01K	118.7(9)
C00V	C011	117.5(6)	C02F C0	02D C01M	119.3(7)
C00W	C01X	119.5(7)	C02D C0	02F C02C	122.6(8)
C00W	C01Y	121.7(6)	OOOT CO	02H C02I	107.2(10)
C00W	C01Y	118.8(7)	OOOT CO	02J C02K	104.3(10)
C00X	C01E	118.7(6)			
	C00M C00N C00N C00O C00O C00P C00P C00P C00Q C00Q C00Q C00Q C00Q	C00M C00N C00N C00I C00N C00W C00O C00Y C00O C01P C00O C01P C00P C01T C00P C01T C00P C01T C00Q C01W C00Q C01W C00Q C011 C00Q C01W C00Q C011 C00Q C01W C00R C00H C00S C027 C00S C027 C00S C027 C00S C027 C00S C027 C00S C027 C00S C027 C00S C027 C00S C027 C00V C012 C00U C01A C00U C01A C00U C01A C00U C01A C00U C01A C00V C011 C00V C011 C00W C01X C00W C01Y C00W C01Y C00W C01Y	COOM COON120.7(6)COON COOM124.0(6)COON COON117.1(7)COON COOM118.9(6)COOO COOY119.7(7)COOO CO1P121.3(6)COOD CO1P119.0(6)COOP CO1T122.6(6)COOP CO1T119.9(6)COOP CO1T117.5(6)COOQ CO1W120.7(6)COOQ CO1W119.3(6)COOQ CO1W119.3(6)COOQ CO1W119.3(6)COOS CO27120.0(7)COOS CO27120.2(6)OOOT CO2H113.2(10)COOU CO1A119.9(6)COOU CO1A120.2(6)COOV CO11124.1(5)COOV CO15118.4(6)COOV CO11117.5(6)COOW CO1X119.5(7)COOW CO1Y118.8(7)COOW CO1Y118.7(6)	COOM COON 120.7(6) CO16 C COON COOM 124.0(6) CO16 C COON COOM 117.1(7) CO2D C COON COOM 118.9(6) COOZ C COOO COOY 119.7(7) CO1R C COOO CO1P 121.3(6) COOY C COOO CO1P 119.0(6) CO1E C COOP CO1T 122.6(6) CO1E C COOP CO1T 119.9(6) CO1O C COOQ CO1W 120.7(6) CO1B C COOQ CO1W 120.7(6) CO1B C COOQ CO1W 120.7(6) CO1B C COOQ CO1W 119.8(6) CO23 C COOQ CO1W 119.3(6) CO1B C COOS CO27 120.0(7) CO26 C COOS CO27 120.2(6) CO1C C COOU CO1A 119.9(6) CO1V C COOU CO	C00M C00N 120.7(6) C016 C01M C01B C00N C00M 124.0(6) C016 C01M C02D C00N C00I 117.1(7) C02D C01M C01B C00N C00M 118.9(6) C00Z C01N C00S C00O C00Y 119.7(7) C01R C01O C00N C00O C01P 121.3(6) C00Y C01Q C02A C00O C01P 119.0(6) C01E C01Q C02A C00P C01T 122.6(6) C01E C01Q C02A C00P C01T 119.9(6) C010 C01R C01S C00P C01T 117.5(6) C00V C01S C01R C00Q C01W 120.7(6) C01B C01U C028 C00Q C01U 119.8(6) C023 C01U C028 C00Q C01W 119.5(6) C023 C01U C028 C00S C027 120.0(7) C026 C01V C028 C00S C027 120.2(6) C01C C01X C00W C00S

References

1. Kumar, K. A.; Sreelekha, T. S.; Shivakumara, K. N.; Prakasha, K. C.; Gowda, D. C., Zinccatalyzed reduction of imines by triethylsilane. *Synth. Commun.* **2009**, *39* (8), 1332-1341.

2. Bhunia, M.; Hota, P. K.; Vijaykumar, G.; Adhikari, D.; Mandal, S. K., A Highly Efficient Base-Metal Catalyst: Chemoselective Reduction of Imines to Amines Using An Abnormal-NHC-Fe(0) Complex. *Organometallics* **2016**, Ahead of Print.

3. Castro, L. C. M.; Sortais, J.-B.; Darcel, C., NHC-carbene cyclopentadienyl iron based catalyst for a general and efficient hydrosilylation of imines. *Chem Commun (Camb)* **2012**, *48* (1), 151-3.

4. Li, B.; Bheeter, C. B.; Darcel, C.; Dixneuf, P. H., Sequential catalysis for the production of sterically hindered amines: Ru(II)-catalyzed C-H bond activation and hydrosilylation of imines. *ACS Catalysis* **2011**, *1* (10), 1221-1224.

5. Li, B.; Sortais, J.-B.; Darcel, C.; Dixneuf, P. H., Amine Synthesis through Mild Catalytic Hydrosilylation of Imines using Polymethylhydroxysiloxane and [RuCl2(arene)]2 Catalysts. *ChemSusChem* **2012**, *5* (2), 396-399.

6. Li, B.; Bheeter, C. B.; Darcel, C.; Dixneuf, P. H., Sequential Ruthenium(II)-Acetate Catalyzed C-H Bond Diarylation in NMP or Water and Hydrosilylation of Imines. *Topics in Catalysis* **2014**, *57* (10-13), 833-842.

7. Nishibayashi, Y.; Takei, I.; Uemura, S.; Hidai, M., Ruthenium-Catalyzed Asymmetric Hydrosilylation of Ketones and Imine. *Organometallics* **1998**, *17* (16), 3420-3422.

8. Zhorov, E. Y.; Pavlov, V. A.; Fedotova, O. A.; Shvedov, V. I.; Mistryukov, E. A.; Platonov, D. N.; Gorshkova, L. S.; Klabunovskii, E. I., Enantioselective metal-complex catalysis. 7. Asymmetric hydrosilylation of imines and oximes on the rhodium [Rh(COD)Cl]2/(S)-Phephos catalyst. *Izv. Akad. Nauk SSSR, Ser. Khim.* **1991**, (4), 865-8.

9. Langlois, N.; Dang, T. P.; Kagan, H. B., Asymmetric synthesis of amines by hydrosilylation of imines catalyzed by a chiral complex of rhodium. *Tetrahedron Lett.* **1973**, (49), 4865-8.

10. Corre, Y.; Iali, W.; Hamdaoui, M.; Trivelli, X.; Djukic, J. P.; Agbossou-Niedercorn, F.; Michon, C., Efficient hydrosilylation of imines using catalysts based on iridium(iii) metallacycles. *Catalysis Science & amp; Technology* **2015**.

11. Takei, I.; Nishibayashi, Y.; Arikawa, Y.; Uemura, S.; Hidai, M., Iridium-Catalyzed Asymmetric Hydrosilylation of Imines Using Chiral Oxazolinyl-Phosphine Ligands. *Organometallics* **1999**, *18* (11), 2271-2274.

12. Field, L. D.; Messerle, B. A.; Rumble, S. L., Iridium(I)-catalyzed tandem hydrosilylation-protodesilylation of imines. *Eur. J. Org. Chem.* **2005**, (14), 2881-2883.

13. Mirza-Aghayan, M.; Boukherroub, R.; Rahimifard, M., Palladium(II) acetate-catalyzed reduction of imines to the corresponding amines by triethylsilane. *Appl. Organomet. Chem.* **2013**, *27* (3), 174-176.

14. Vetter, A. H.; Berkessel, A., Nickel complex catalyzed reduction of imines. *Synthesis* **1995**, (4), 419-22.

15. Bheeter, L. P.; Henrion, M.; Chetcuti, M. J.; Darcel, C.; Ritleng, V.; Sortais, J.-B., Cyclopentadienyl N-heterocyclic carbene-nickel complexes as efficient pre-catalysts for the hydrosilylation of imines. *Catal. Sci. Technol.* **2013**, *3* (12), 3111-3116.

16. Xiao, M.; Hochberg, A. K. Synthesis of aminosilane precursors for CVD silicon carbonitride dielectric films. US20060258173A1, 2006.

17. Xiao, M.; MacDonald, M. R.; Ho, R.; Lei, X. Organoaminosilanes and methods for making same. EP2913334A1, 2015.

18. Fox, B. J.; Millard, M. D.; DiPasquale, A. G.; Rheingold, A. L.; Figueroa, J. S., Thallium(I) as a Coordination Site Protection Agent: Preparation of an Isolable Zero-Valent Nickel Tris-Isocyanide. *Angew. Chem., Int. Ed.* **2009**, *48* (19), 3473-3477, S3473/1-S3473/19.

19. Labios, L. A.; Millard, M. D.; Rheingold, A. L.; Figueroa, J. S., Bond Activation, Substrate Addition and Catalysis by an Isolable Two-Coordinate Pd(0) Bis-Isocyanide Monomer. *Journal of the American Chemical Society* **2009**, *131* (32), 11318-11319.

20. Carpenter, A. E.; Wen, I.; Moore, C. E.; Rheingold, A. L.; Figueroa, J. S., [1,1-Co2(CO)6(CNAr Mes 2)2]: A Structural Mimic of the Elusive D2d Isomer of [Co2(CO)8]. *Chemistry* – *A European Journal* **2013**, *19* (32), 10452-10457.

21. Mokhtarzadeh, C. C.; Margulieux, G. W.; Carpenter, A. E.; Weidemann, N.; Moore, C. E.; Rheingold, A. L.; Figueroa, J. S., Synthesis and Protonation of an Encumbered Iron Tetraisocyanide Dianion. *Inorganic Chemistry* **2015**, *54* (11), 5579-5587.

22. Margulieux, G. W.; Weidemann, N.; Lacy, D. C.; Moore, C. E.; Rheingold, A. L.; Figueroa, J. S., Isocyano Analogues of [Co(CO)4]n: A Tetraisocyanide of Cobalt Isolated in Three States of Charge. *Journal of the American Chemical Society* **2010**, *132* (14), 5033-5035.

23. Jonas, K.; Wilke, G., Hydrogen bonds in a Ni-Ni system. *Angew. Chem., Int. Ed. Engl.* **1970**, *9* (4), 312-13.

24. Carpenter, A. E.; Rheingold, A. L.; Figueroa, J. S., A Well-Defined Isocyano Analogue of HCo(CO)4. 1: Synthesis, Decomposition, and Catalytic 1,1-Hydrogenation of Isocyanides. *Organometallics* **2016**, *35* (14), 2309-2318.

25. Ogoshi, S.; Ikeda, H.; Kurosawa, H., Nickel-catalyzed [2+2+2] cycloaddition of two alkynes and an imine. *Pure Appl. Chem.* **2008**, *80* (5), 1115-1125.

26. Iluc, V. M.; Hillhouse, G. L., Arrested 1,2-Hydrogen Migration from Silicon to Nickel upon Oxidation of a Three-Coordinate Ni(I) Silyl Complex. *J. Am. Chem. Soc.* **2010**, *132* (34), 11890-11892.

27. Beck, R.; Johnson, S. A., Structural Similarities in Dinuclear, Tetranuclear, and Pentanuclear Nickel Silyl and Silylene Complexes Obtained via Si-H and Si-C Activation. *Organometallics* **2012**, *31* (9), 3599-3609.

28. Corey, J. Y., Reactions of Hydrosilanes with Transition Metal Complexes. *Chem. Rev.* (Washington, DC, U. S.) **2016**, *116* (19), 11291-11435.

29. Zell, T.; Schaub, T.; Radacki, K.; Radius, U., Si-H Activation of hydrosilanes leading to hydrido silyl and bis(silyl) nickel complexes. *Dalton Trans.* **2011**, *40* (9), 1852-1854.

30. MacMillan, S. N.; Hill Harman, W.; Peters, J. C., Facile Si-H bond activation and hydrosilylation catalysis mediated by a nickel-borane complex. *Chem. Sci.* **2014**, *5* (2), 590-597.

31. Chalk, A. J.; Harrod, J. F., Homogeneous catalysis. II. The mechanism of the hydrosilation of olefins catalyzed by Group VIII metal complexes. *J. Am. Chem. Soc.* **1965**, *87* (1), 16-21.

32. Aitken, C.; Harrod, J. F.; Samuel, E., Polymerization of primary silanes to linear polysilanes catalyzed by titanocene derivatives. *J. Organomet. Chem.* **1985**, *279* (1-2), C11-C13.

33. Smith, E. E.; Du, G.-D.; Fanwick, P. E.; Abu-Omar, M. M., Dehydrocoupling of Organosilanes with a Dinuclear Nickel Hydride Catalyst and Isolation of a Nickel Silyl Complex. *Organometallics* **2010**, *29* (23), 6527-6533.

34. Tanabe, M.; Takahashi, A.; Fukuta, T.; Osakada, K., Nickel-Catalyzed Cyclopolymerization of Hexyl- and Phenylsilanes. *Organometallics* **2013**, *32* (4), 1037-1043.

35. Schmidt, D.; Zell, T.; Schaub, T.; Radius, U., Si-H bond activation at {(NHC)2Ni0} leading to hydrido silyl and bis(silyl) complexes: a versatile tool for catalytic Si-H/D exchange, acceptorless dehydrogenative coupling of hydrosilanes, and hydrogenation of disilanes to hydrosilanes. *Dalton Trans* **2014**, *43* (28), 10816-27.

36. Emerich, B. M.; Moore, C. E.; Fox, B. J.; Rheingold, A. L.; Figueroa, J. S., Protecting-Group-Free Access to a Three-Coordinate Nickel(0) Tris-isocyanide. *Organometallics* **2011**, *30* (9), 2598-2608.

37. Yempally, V.; Zhu, L.; Isrow, D.; Captain, B., Synthesis and characterization of bimetallic nickel and cobalt carbonyl complexes containing stannyl groups. *J. Cluster Sci.* **2010**, *21* (3), 417-426.