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Inferring cell state transition dynamics from lineage trees and 
endpoint single-cell measurements
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Shraiman3,†, and Michael B. Elowitz1,2,†,^

1Division of Biology and Biological Engineering, California Institute of Technology, Pasadena CA 
91125

2Howard Hughes Medical Institute, University of California, Santa Barbara, CA 93106

3Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106

Summary

As they proliferate, living cells undergo transitions between specific molecularly and 

developmentally distinct states. Despite the functional centrality of these transitions in 

multicellular organisms, it has remained challenging to determine which transitions occur and at 

what rates without perturbations and cell engineering. Here, we introduce Kin Correlation 

Analysis (KCA) and show that quantitative cell state transition dynamics can be inferred without 

direct, molecular-level observation from the clustering of cell states on pedigrees (lineage trees). 

Combining KCA with pedigrees obtained from time-lapse imaging and end-point single-molecule 

RNA-FISH measurements of gene expression, we determined the cell state transition network of 

mouse embryonic stem (ES) cells. This analysis revealed that mouse ES cells exhibit stochastic 

and reversible transitions along a linear chain of states ranging from 2C-like to epiblast-like. Our 

approach is broadly applicable and may be applied to systems with irreversible transitions and 

non-stationary dynamics, such as in cancer and development.

Introduction

In many multicellular contexts, cells switch among molecularly and phenotypically distinct 

states as they proliferate through repeated divisions (Figure 1A). Key biological functions 

often depend critically on the dynamics of these cell state transitions: on which transitions 

are forbidden or permitted, at what rates they occur, and whether they are stochastic or 

deterministic. For example, regulation of fat tissue depends on adipocyte differentiation and 

de-differentiation rates (Ahrends et al., 2014; Poloni et al., 2012); maintenance of intestinal 

crypts and the epidermis are governed by the relative rates of symmetric and asymmetric 
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stem cell divisions (Simons and Clevers, 2011); development of the full repertoire of 

immune cell types is regulated by stochastic cell state transitions (Suda et al., 1984a; 1983; 

1984b); and lineage commitment in embryonic development and later in trans- or de-

differentiation depend critically on dynamic transitions (Dietrich and Hiiragi, 2007; Ohnishi 

et al., 2014; Slack and Tosh, 2001; Talchai et al., 2012; Tata et al., 2013; Yamanaka et al., 

2010). Cell state transition dynamics are also important in disease, as their dysregulation can 

lead to type 2 diabetes (Talchai et al., 2012) and obesity (Ahrends et al., 2014; Ristow et al., 

1998). Similarly, in cancer, the rates of transition between distinct cell states within a tumor 

impinges on the effectiveness of treatments (Gupta et al., 2011; Leder et al., 2014), and the 

likelihood of metastasis (Wagenblast et al., 2015).

The notion of cell state can vary significantly depending on the particular biological system 

and the context of the study. Here, we consider cell states that satisfy certain criteria: first, a 

cell state must be heritable, such that after a cell division, the daughter cells by default 

remain in the same state as the parent cell unless a transition has occurred. This criterion 

excludes transient gene expression fluctuations. Second, different states should exhibit 

significant differences in the expression of multiple genes. Thus, although a single marker 

gene can be used to identify a particular cell state, the changes in the expression level of the 

marker gene must be correlated with that of other genes. Lastly, cell states should ideally 

possess distinguishing phenotypic properties such as morphological features (Thiery et al., 

2009), chromatin structure (Kagey et al., 2010), developmental potential (Wu and Belmonte, 

2015), or functional attributes (Duffy et al., 2012; Lu et al., 2015), although these may not 

always be readily apparent.

Mouse embryonic stem cells provide an important model system in which to study cell state 

transition dynamics. Multiple molecularly and phenotypically distinct ES cell states co-exist 

and stochastically interconvert in standard culture conditions (containing serum and 

leukemia inhibitory factor, LIF). In previous studies, these states were shown to be heritable 

and differ in gene expression, developmental potential, global epigenetic profiles, and other 

characteristics (Canham et al., 2010; Chambers et al., 2007; Falco et al., 2007; Hayashi et 

al., 2008; Macfarlan et al., 2012; Niwa et al., 2009; Singer et al., 2014; Singh et al., 2007; 

Yamaji et al., 2013; Yamanaka et al., 2010; Zalzman et al., 2010). Understanding the 

transitions among these cell states is important for applications seeking to control 

differentiation of these or other pluripotent cells for regenerative medicine applications. 

Recent improvements in single-cell profiling have enabled genome-wide analysis of ES cell 

states (Klein et al., 2015; Kumar et al., 2014). However, because these techniques do not 

track individual cells over time, they can’t provide information on transition dynamics. 

Other elegant studies have estimated transition dynamics of ES cells using either direct time-

lapse microscopy, sorting of subpopulations, or by characterizing in static images the intra- 

and inter-colony gene expression heterogeneity (Canham et al., 2010; Chambers et al., 2007; 

Furusawa et al., 2004; Kalmar et al., 2009; Kumar et al., 2014; Rugg-Gunn et al., 2012; 

Singh et al., 2007; Suda et al., 1983; Toyooka et al., 2008; Zalzman et al., 2010).

Here, we describe a new approach to infer quantitative cell state transition dynamics in 

which cells transition stochastically and independently from one heritable gene expression 

state to another. This approach does not require sorting, perturbations or fluorescent 

Hormoz et al. Page 2

Cell Syst. Author manuscript; available in PMC 2017 November 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



reporters of gene expression. Rather than attempt to follow transitions directly in each 

individual cell over time, e.g. from the green to blue states in Figure 1Bi, we instead take 

advantage of cell division to infer dynamic information indirectly. Because sister cells start 

out in the same state, they generally provide independent realizations of transition dynamics 

starting from the same initial condition. Knowing the states of a cell’s sisters, cousins, and 

other relatives provides information about the likely history of that cell’s past transitions, as 

illustrated schematically in Figure 1Bii. Under some conditions, combining the lineage 

relationships, or pedigree, for a set of individual cells with their end-point states, can enable 

inference of cell state transition rates (Figure 1C). This approach is informative as long as 

cell states typically persist for durations longer than a cell cycle, but cannot access dynamics 

within a single cell cycle. This basic idea was recently described in Hormoz et al, 2015 for a 

special case, but is generalized and applied to embryonic stem cells here.

Using this approach to measure transition rates among multiple states can provide 

information about a cell’s overall state transition network, defined as the set of transitions 

between cell states that can occur in a given context. In principle, many different kinds of 

transition networks are possible, including all-to-all, chain-like, cyclical, or tree-like (Figure 

1D). Some of these can produce stationary dynamics that maintain a constant distribution of 

states over time (Figure 1D, i–iii), and a further subset of these exhibit reversible transitions 

(Figure 1D, i–ii) (see Box 1 for definitions). Other networks, including binary fate trees, 

may include irreversible transitions (Figure 1D, iii–iv). Moreover, for any given network 

topology, the quantitative rates of each transition control the dynamic behavior of cells. 

These examples are idealized and natural systems can be more complex. For example, 

transition rates could depend on position in the tissue, e.g. through morphogen gradients, or 

on time. But for the embryonic stem cell system considered here, we show that this approach 

is sufficient to identify the cell state transition network and quantify its rates in a non-

perturbative fashion.

Box 1

Kin-Correlation Analysis: Dynamics can be inferred from correlation 
functions of cellular states on pedigrees

In this Box, we explain the KCA framework, which enables inference of cell state 

transition rates from the degree of clustering of cell states on pedigrees. We rely on the 

following definitions:

Lineage distance, u

The number of generations back to the common ancestor of two cells. u = 1 for sisters, 

u= 2 for first cousins, etc.

Transition matrix, T

A square N×N matrix, where N denotes the number of cell states, whose I,Jth element is 

the probability per cell cycle of a cell transitioning from state J to state I, T(I|J). Each 

column of this matrix sums to 1.

Reversible dynamics

Hormoz et al. Page 3

Cell Syst. Author manuscript; available in PMC 2017 November 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The dynamics described by a transition matrix is reversible if for any pair of states A and 

B, the number of cells transitioning from A to B per unit time is equal to the number 

transitioning from B to A.

Two-cell correlation functions, C(u)

An N×N matrix, for each value of u, whose I,Jth element denotes the frequency of 

observing a pair of cells at lineage distance u in states I and J.

Three-cell correlation functions, C(u,v)

An N×N×N matrix that is a function of the two lineage distances u and v, which describe 

the degree of relatedness of three cells. u is the number of generations to the common 

ancestor of the two more closely related cells, while v specifies the number of 

generations to the common ancestor of all three cells. CIJK(u, v) denotes the frequency of 

observing the more distant relative in state I and the two more closely related cells in 

states J and K. Note that CIJK = CIKJ.

Here, our goal is to show how the transition matrix T can be inferred from the 

experimentally observable cell state correlation functions, C(u) or C(u, v). We first derive 

the equations for the case where all cell states are equally likely and the dynamics is 

reversible (or equivalently when T is symmetric), and then treat the more general case 

briefly here and in more detail in STAR Methods.

First, we compute the expected two-cell correlation function for a given transition matrix. 

Two cells at lineage distance u, shared a common ancestor in an unknown state M, u 

generations back. Subsequently, they each experienced u divisions and, potentially, zero 

or more state transitions independently of one another. Given the transition matrix for one 

generation, T, we can compute the resulting transition matrix for u generations by taking 

T to the uth power: Tu(I|M). It follows that the joint-probability of observing the two cells 

in states I an J is given by:

where the summation is over all possible states M of the ancestor. Here, by assumption, 

each state occurs with probability 1/N. The simplification in the last step follows because 

T is symmetric.

To infer the dynamics, we work backwards to recover matrix T by computing Tinferred(u) 

= C(u)1/(2u). For reversible dynamics, the transition matrix can be fully recovered by 

simply considering the two-cell correlation functions.

If the occurrence probability of the states is not a constant, we need to modify the 

equation for Tinferred(u). Assume that a given state I is observed in the population with 

frequency pI. The condition of reversibility requires that for any given pair of states, the 

forward and reverse fluxes must be equal: T(I|M)pM = T(M|I)pI. The two-cell correlation 

matrix is now given by,
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To infer T, above equation can be rearranged to express the transition matrix in terms of 

the correlation matrix, by first defining a rescaled correlation matrix, . 

It then follows that, as in the simpler case, the transition matrix can be recovered by 

taking the appropriate root of the matrix C̃, Tinferred(u) = C̃(u)1/(2u).

Finally, for irreversible dynamics, T cannot be recovered from C directly because the 

assumption that T (I|M)pM= T (M|I)pI, no longer holds. Intuitively, the two-cell 

correlations are not sufficient, because they do not provide information about the 

directionality of state transitions. However, with a triplet of cells, the state of the ancestor 

of a cell pair is reflected in the state of its more distant relative. As a result, three-cell 

correlations do permit inference of directionality. The expected three-cell correlation 

functions can also be computed from the transition matrix T:

where S is summed over all possible states of the common ancestor of the two more 

closely related cells, and M is summed over all possible states of the common ancestor of 

all three cells. In the STAR Methods, we describe the full procedure for using three-cell 

correlations to infer T for irreversible dynamics.

Here, we describe an experimental platform which combines time-lapse movies to determine 

lineage relationships with single-molecule RNA-FISH (smFISH) of multiple genes to 

determine end-point gene expression states (Figure 1E). (For other elegant examples of 

combining time-lapse imaging with endpoint readout see (Filipczyk et al., 2015; Lee et al., 

2014; Purvis et al., 2012)). Using this approach, we discovered that ES cells exhibit a 

distinct cell state transition network based on reversible stochastic transitions along a linear 

chain of states. We also generalize the previous theoretical framework to enable analysis of 

networks containing irreversible and non-stationary dynamics. Finally, because this is an 

inference approach, we provide a set of self-consistency checks to evaluate whether the 

assumptions of the underlying model are indeed valid. Thus, we believe the combined 

theoretical-experimental approach developed here should be applicable to other biological 

systems in which cells transition among multiple states.

RESULTS

Cell state transition networks can be inferred from clustering of states on pedigrees

To motivate the inference method, we first consider a simple minimal transition network 

(Figure 1C). In this example, cells stochastically transition between the two states at equal 

rates as they proliferate, such that the average population fraction of each state does not 

change over time. When transition rates per cell cycle are high, the states of sister cells 

rapidly become uncorrelated with one another, leading to no apparent clustering of states on 
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the pedigree. By contrast, when transition rates per cell cycle are low and cells remain in the 

same state for multiple generations, closely related cells are more likely to be observed in 

the same state. As a result, different transition rates produce different degrees of clustering 

on the pedigree. Conversely, measurements of clustering between states of related cells can 

be used to infer transition rates. More specifically, clustering of cell states can be quantified 

by measuring how frequently related cells are observed to be in a given set of states, as a 

function of how long ago they shared a common ancestor. These correlations, computed 

between all pairs or, more generally, all triplets of cells over many pedigrees enable 

quantitative inference of the transition dynamics through an approach we term Kin 

Correlation Analysis (KCA), which is described briefly in Box 1 and in more detail in the 

STAR Methods. As derived in Box 1, dynamics of reversible transition networks can be 

inferred from the observed correlations between pairs of related cells (two-cell correlations), 

whereas inference of networks with irreversible transitions requires knowledge of the 

correlations between triplets of cells (three-cell correlations). To demonstrate that KCA can 

be used to infer the dynamics of the full range of transition networks depicted in Figure 1D, 

we simulated the transition dynamics of proliferating cells under different networks for 

physiologically relevant transition rates (STAR Methods), including reversible, irreversible, 

and non-stationary dynamics (Figure S1). Taken together, these results demonstrate that, at 

least under the idealized conditions of these models, KCA enables quantitative inference of 

diverse cell state transition networks. Limitations and self-consistency checks on the method 

are discussed more below.

To experimentally implement KCA, we developed a platform that combines two types of 

measurements: first, using time-lapse microscopy and custom software (STAR Methods), we 

track individual cells over multiple generations, as they grow from a single cell into a 

microcolony, and use this data to construct the pedigrees representing the lineage 

relationships among cells, with no gene expression measurements (Figure 1E,i). Second, at 

the end of the movie, we used single-molecule RNA-FISH (smFISH) (Femino et al., 1998; 

Raj et al., 2008; 2006) to measure the expression levels of multiple genes simultaneously, 

thereby determining each cell’s end-point state (Figure 1E,ii–v).

Kin Correlation Analysis (KCA) validation by comparing inferred two-state switching 
dynamics with direct time-lapse analysis

To experimentally apply KCA, we proceed in two stages. First, we validate the method by 

analyzing switching between two distinct states of Esrrb expression in mouse ES cells. 

Second, we broaden the analysis to determine the transition dynamics of a larger set of ES 

cell states.

Esrrb is a transcription factor central to maintaining the naïve pluripotent state, and it plays a 

critical role in the core pluripotency network (Festuccia et al., 2012; Martello et al., 2012; 

Singer et al., 2014; van den Berg et al., 2008). Esrrb up-regulation has also been shown to 

facilitate fibroblast reprogramming to the induced pluripotent state (Feng et al., 2009). Most 

importantly here, Esrrb expression in LIF+Serum culture conditions is bimodal, with cells 

switching between high and low expression states (Singer et al., 2014).
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We constructed a knock-in fluorescent reporter for Esrrb expression (Figure 2A), and 

validated the reporter using smFISH (S2A–B). We acquired time-lapse movies (Fig 2B,i), 

using custom software to track individual cells over time and establish the pedigrees (lineage 

trees) of individual colonies (see STAR Methods). At the end of movie (~48 hours), we fixed 

the cells and acquired smFISH measurements of Esrrb expression (Figure 2B,ii–iiii). Finally, 

we combined the measurements, assigning smFISH Esrrb expression levels at the final time-

point to the corresponding leaves of the tree (Fig 2D,i). Altogether, we analyzed 14 trees 

(299 cells) for this analysis.

Consistent with previous results, Esrrb exhibited a bimodal distribution of mRNA copy 

number by smFISH (Fig. 2C) (Kumar et al., 2014; Singer et al., 2014). To understand this 

distribution, we first note that a single state is expected to generate a distribution of mRNA 

copy numbers in individual cells, due to the stochastic, “bursty” nature of transcription and 

mRNA degradation, as shown previously (Elowitz et al., 2002; Friedman et al., 2006; 

Ozbudak et al., 2002; Peccoud and Ycart, 1995; Suter et al., 2011). For many genes and cell 

types, the distribution of mRNA copy number is well-fit by a negative binomial distribution 

(Friedman et al., 2006; Raj et al., 2006). This distribution is generated when there is a 

constant probability per unit time of initiating a transcriptional burst, and the number of 

mRNAs produced per burst follows an exponential distribution. For a gene with two 

expression states, we expect each state to generate a negative binomial distribution of mRNA 

with different burst rate and burst size parameters. These two distributions will, in general, 

overlap. Thus, the bimodal distribution can be explained as a linear combination of two 

negative binomial distributions, one for each expression state.

We fit the observed Esrrb distribution to a linear combination of two negative binomial 

distributions. Using this fit, we assigned each cell a probability of being in either the high or 

low Esrrb expression state given its observed transcript count (see STAR Methods). Thus we 

obtained a probabilistic endpoint state assignment for each cell on each pedigree (Figure 

2D,i). Because of the overlap between the transcript count distributions of the two Esrrb 
states, many cells have approximately equal probability of being in either state. The KCA 

framework is compatible with these probabilistic state assignments. When computing the 

correlation matrix (Box 1), we account for probabilistic state assignments by summing over 

all possible pairs of states, for each pair of cells, weighting each state pair by its relative 

probability. When the state assignments are more ambiguous, a larger number of 

observations (pedigrees) is required to ensure accurate inference of transition rates (see 

STAR Methods for details).

To infer the rates at which cells switch between Esrrb states, we analyzed these trees with 

KCA. We first computed pair correlation matrices for lineage distances u, ranging from 1 to 

4 (Fig. 2D,ii). As expected, the frequency of observing two cells in the same Esrrb state 

decreased with increasing lineage distance. Next, using KCA we computed the switching 

rates that would give rise to the observed correlation matrices. For stationary Markovian 

dynamics, these rates should not depend on the lineage distance from which the correlation 

matrix is computed (Box 1). The inferred rate of switching from the Esrrb low state to the 

Esrrb high state was 0.09±0.03 per cell cycle (errors are the standard deviation as estimated 

by bootstrap, see STAR Methods). The reverse rate was 0.08±0.02, per cell cycle. These 
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rates remained constant across lineage distances of u = 1 to 4, consistent with stationary 

Markovian dynamics (Fig 2D,iii–iv). We note that the constant inferred rates imply an 

exponential waiting time between state transitions, a property of Markovian dynamics.

To independently validate these inferred Esrrb switching dynamics, we next analyzed data 

from the Esrrb knock-in fluorescent reporter. We extracted the total fluorescence from each 

cell over the duration of the movies. Because the H2B-mCitrine is stable, its abundance 

diminishes only through dilution during cellular division events. These dilution events 

correspond to approximately halving of the fluorescent readout from each cell across cell 

divisions, as evident in the saw-tooth pattern of the traces shown in Fig. 2Eii–iii. We 

therefore focused on the “promoter activity”, or the rate of accumulation of total 

fluorescence (slope of the fluorescence traces shown in Fig. 2Eii–iii), which should be 

proportional to the abundance of mRNA in the cell at any given time (Singer et al., 2014). 

Indeed, the Esrrb production rate in the final cell cycle of the movie was strongly correlated 

with Esrrb transcript counts measured at the end of the movie, but not with that of β-actin, a 

homogenously expressed housekeeping gene (Fig S2B), providing an internal validation of 

both readouts.

To classify Esrrb promoter activity as either high or low, we implemented a threshold on 

production rate at each time-point throughout the cells’ lineage history (Fig. 2E,i). Cell state 

transitions were defined as a change in the promoter activity across the threshold that 

persisted for at least one cell cycle (see STAR Methods). Examples of transitions can be 

observed in plots of total fluorescence trajectories, as shown in Fig 2E,ii–iii. Transitions 

from Esrrb low to high states, or high to low states, occurred with rates of 0.10±0.01 and 

0.08±0.01 per cell cycle, respectively (Fig 2E,iv), consistent with the values inferred by 

KCA above (errors are the uncertainty in the observed frequencies due to finite number of 

observations). Finally, although this has no bearing on using KCA for inferring the transition 

rates, we also checked whether state transitions were more likely to occur at one particular 

point of the cell cycle. However, analysis revealed no strong cell cycle dependence in these 

data (Fig 2F). Together, these results suggest that the KCA method can correctly infer the 

reversible state switching dynamics of Esrrb, which appear to be consistent with a constant 

switching rate per unit time.

Transition rates cannot be explained by local intercellular signaling

One potential effect neglected in this cell-autonomous analysis is that neighboring cells 

could interact through a variety of signaling pathways, potentially impacting cell state 

changes in a non-cell-autonomous fashion. To test whether such effects play a significant 

role in the observed Esrrb transition rates, we computed the correlation of the Esrrb state for 

pairs of cells as a function of their spatial separation distance in the colony (Fig 2Gi). This is 

possible because in situ single-molecule RNA FISH measurements of cell state do not 

disrupt the spatial context of individual cells. We observed little cell-state correlations in 

space, mainly because the ES cells migrated frequently from one part of the colony to 

another (Fig 2Gii), as evident in our time-lapse movies (Movie S1). Nevertheless, because 

closely related cells are more likely to be located closer to each other in space and also share 

the same state as their common ancestor, we expect some degree of cell-state correlation in 
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space from shared lineage history alone. To quantify this effect, we calculated the expected 

correlation of Esrrb state as a function of spatial separation distance from the inferred 

switching rates of Esrrb and the observed pedigrees (STAR Methods). This correlation fully 

explained the observed spatial correlations (Fig 2Gi), suggesting that, while local signaling 

interactions can and likely do occur, they are not required to explain the observed cell state 

transition dynamics in these conditions.

Characterization of ES cell states

Having established the inference framework and demonstrated its application 

experimentally, we set out to identify other ES cell states whose transitions could also be 

analyzed. In accordance with previous work (Falco et al., 2007; Ivanova et al., 2006; Lu et 

al., 2011; Macfarlan et al., 2012; Niwa et al., 2009; Singer et al., 2014; Singh et al., 2007; 

Toyooka et al., 2008; Weidgang et al., 2013; Zalzman et al., 2010), we selected Esrrb, Tbx3, 
and, Zscan4 as potential cell state markers (also see STAR Methods). To better characterize 

their expression distributions, we simultaneously measured the mRNA copy number of 

Esrrb, Tbx3, and, Zscan4, in single ES cells using 3-color smFISH. While RNA-seq enables 

classification of states by high dimensional transcriptional profiles, smFISH yields a higher 

resolution of quantitative, amplification-free measurements albeit with lower dimensionality, 

enabling estimation of in situ state assignments from fewer genes. The mRNA copy number 

distributions of Tbx3 and Zscan4 were long-tailed (Fig 3A) consistent with (Kumar et al., 

2014; Zalzman et al., 2010). For these genes, we identified a threshold that optimally 

separated the mRNA distribution into high and low expression states, and ensured that 

subsequent results were robust to the choice of threshold (see STAR Methods and Figure 

S3). By contrast, Esrrb transcript counts exhibited a bimodal distribution, with overlapping 

modes (Figure 2C). While binary classification of three genes could in principle produce 

23=8 possible states, three of these states were rare (<1% of the population) or did not occur, 

and were not considered further (Figure 3B).

Additional experiments supported the notion that these genes marked heritable cell states. 

First, many or all cells within individual colonies could be observed simultaneously 

expressing large numbers of transcripts for these genes, suggesting that their expression 

states are inherited across cell divisions. Conversely, whole colonies could also be observed 

expressing little to none of these transcripts (Fig. 3C). Second, gene expression analysis of 

sorted sub-populations exhibited broad differences in gene expression profiles. Using a 

double knock-in reporter for Esrrb and Tbx3 (Fig S2C), and a separate line with a PiggyBac 

promoter fragment reporter for Zscan4 (see STAR Methods), we sorted out Esrrb/Tbx3 

negative (E−T−), Esrrb-positive/Tbx3-negative (E+T−), and Esrrb/Tbx3 positive (E+T+) 

cells, as well as Zscan4-positive (Z+) and –negative (Z−) cells, and performed RNA-seq on 

each sample. We observed hundreds of genes that were differentially expressed between 

these states (Fig. 3D), indicating that variations in marker gene expression do not simply 

reflect intrinsic noise, or fluctuations in the expression of individual genes, but rather 

indicate broad transcriptional changes. In particular, we observed decreasing expression 

levels of differentiation makers and signaling factors when going from E−T−, to E+T−, and 

finally to E+T+ cells, suggesting that Tbx3 could mark a more pluripotent state. 

Accordingly, Zscan4-positive cells displayed a unique nuclear morphology by DAPI-stain 
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compared with Zscan4-negative cells: while Zscan4-negative cells appeared to have a larger 

number of distinct puncta, Zscan4-positive cells exhibited fewer but larger puncta (Fig 3E–

F), potentially suggesting aggregation of presumed heterochromatin. This result further 

supports the notion that Zscan4-positive cells represent a distinct phenotypic state. Taken 

together, these results show that these three markers define heritable cell states with distinct 

gene expression profiles across multiple genes.

Cell state transitions are restricted

We set out to determine the transition dynamics of these states using KCA. We acquired ~48 

hour movies, after which cells were fixed and stained for Esrrb, Tbx3, and Zscan4 mRNA in 

the same cells (Fig 4A–B) (see STAR Methods). Based on expression, we assigned each cell 

to one of the five states described above (Fig 3C). Altogether, we analyzed 41 pedigrees with 

a depth of 4.0±0.5 generations (mean ± s.d.) (see Fig 4D for examples, Figure S4 for all 

trees).

Inspection of these trees revealed cell state clustering, with closely related cells (e.g. sisters, 

first cousins) predominantly observed in the same state, implying that most states persist 

over multiple generations. In particular, Tbx3 and especially Zscan4 were expressed 

infrequently (population fractions of 31% and 8% respectively), but, once expressed, were 

typically observed to be ‘on’ in clades of 2 to 8 cells, consistent with extended (multi-

generational) periods of expression. (For this reason, their long-tail mRNA distributions do 

not appear to represent brief stochastic bursts, as was previously hypothesized (Singer et al., 

2014)). At the same time, most colonies contained cells in different states, demonstrating 

state-switching typically occurs multiple times in each colony during the movies. Notably, 

certain state combinations were more likely to be found together in the same pedigree. For 

example, the E−T−Z+ state was frequently found in the same pedigree with the E+T+Z− 

state but almost never with the E+T−Z− state (Figure S4). Together, these results indicate 

that the 48-hour timescale studied here can capture many transition events in ES cells, 

making the system amenable to analysis by KCA.

Mouse embryonic stem cells exhibit a chain-like state transition network

To extract the quantitative transition rates, we first computed the two-cell correlation 

matrices, which are plotted for sister cell pairs in Figure 4Ei and for more distantly related 

cell pairs in Figure S5A. From these correlations, we inferred the full set of transition rates 

between the five states using KCA (Fig 4Eii). These rates had two notable features: first, 

most states were stable over timescales of multiple cell cycles; all but one of the states 

showed an inferred half-life of ~6 generations. The exception was E−T+Z−, whose expected 

half-life is only ~1.7 generations. Second, many potential transitions occur at negligible 

rates (within the statistical error), suggesting they are either disallowed or extremely 

infrequent (Figure 4Eii). (Some of the negligible, but non-zero, rates could reflect 

ambiguities in state assignment when cell transitions from E−T+Z− to E−T−Z+ state are 

captured after deactivating Tbx3 but before activating Zscan4, or vice versa).

From this analysis, the full network of potential transitions effectively reduces to a linear 

chain, in which cells transition stochastically and reversibly only between adjacent states 
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(Fig 4F). Cells traverse this chain by performing a random walk, hopping between adjacent 

states, but on average not moving in any particular direction. In the Discussion, we describe 

some implications of the chain-like cell state transition network in ES cells. For now, we 

note that the chain-like organization of states constrains the dynamic trajectories of ES cells. 

For example, it implies that transitions between 2C-like (Falco et al., 2007; Macfarlan et al., 

2012) and epiblast-like states (Toyooka et al., 2008) pass through a specific set of long-lived 

intermediate states. Thus, to activate Tbx3 starting in the E−T−Z− state, cells must transition 

to the Esrrb high state first (E+T−Z−). Similarly, E−T−Z− cells must transition through the 

E+T+Z− state to reach the Zscan4 high state (E−T−Z+). The chain-like transition network 

also makes the prediction, which we validated directly and independently (see STAR 

Methods), that during the transition from E+T+Z− to E−T−Z+, Esrrb and Tbx3 should turn 

off almost simultaneously, closely followed by Zscan4 activation, over a time-scale 

comparable to the duration of a cell cycle. For validation of the inferred dynamics, see 

STAR Methods.

Self-consistency checks for applying KCA to other systems

Thus far, we have considered systems governed by cell-autonomous, time-independent, 

Markovian dynamics, in which sister cell transitions are independent of one another. 

However, many systems of biological interest may violate one or more of these conditions. 

A useful feature of KCA is the redundancy of different correlation measurements, which can 

be used to self-consistently check that these necessary conditions are satisfied in any 

particular system. Here, we consider several different potential violations and how they 

could be detected.

Some systems may exhibit non-Markovian dynamics, either because of “hidden” states, or 

because of “timed” transitions, in which cells spend a fixed amount of time or number of 

generations in a given state rather than exiting the state at a fixed stochastic rate (Norman et 

al., 2013). One way to detect such effects is to consider the effective transition rates, 

. Without hidden states, these rates are independent of the lineage distance, u, 

but with hidden states, they depend on u, as shown in Fig. 5A. Comparing effective 

transition rates determined at different lineage distances can thus be used to identify the 

existence of one or more hidden states or timers.

Some systems, such as somatic stem cells in cycling tissues (Clayton et al., 2007; Snippert et 

al., 2010), exhibit correlated fate decisions in sister cells. Such correlations produce a 

deviation of the effective transition rates from a constant, particularly at lower values of u, 

where the correlations between the fates of sisters exhibit the largest effects (Fig. 5B). If it is 

already known that decisions are controlled through a specific class of models, as in (Klein 

and Simons, 2011; Lopez-Garcia et al., 2010), then this information may still be sufficient to 

infer the joint probability of sister fates conditional on the state of their parent (assuming 

other requirements of the method are met) (Hormoz et al., 2015). At the very least, this 

deviation can reveal that some assumption of the method is not satisfied.

Another potential issue is the possibility of time-dependent transition rates. This would lead 

to the inference of different effective transition rates from the two cell-correlation functions 
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at different lineage distances, u. In principle, it is possible to infer time-dependent transition 

rates through measurement of two-cell correlations at all values of u. Finally, we note that 

three other potential deviations from simple Markovian dynamics were previously discussed 

above: irreversible transitions (Fig. S1C), non-stationary dynamics (Fig. S1D), and effects of 

local cell signaling (Fig. 2G).

To summarize, the KCA framework relies on measurement of the two-cell, three-cell, and 

potentially higher-order correlation functions at various lineage distances. Because the 

inference approach under-fits the measured correlation functions, the redundancy can be 

used to validate the assumptions of the model used for the inference through self-

consistency checks. If this validation fails, the model can be extended to include additional 

factors, such as spatial signaling or correlated sister fates, and the process can be repeated.

Discussion

Although cell state transitions are central to biology, methods to measure their rates without 

cell line engineering, perturbations, or sorting have been lacking. The KCA approach 

implemented here with time-lapse movies and endpoint smFISH provides such a method.

Applying KCA to ES cells, we discovered a transition network consisting of a set of 

reversible transitions along a linear chain of metastable states (Figure 4F). These states are 

ordered in a sequence from 2C-like (totipotency) to the more differentiated epiblast-like 

state. Cells traverse this chain through stochastic reversible transitions, and pluripotency is 

therefore gained and lost by ES cells in a step-wise incremental way rather than 

continuously or all at once. The highly structured chain-like transition network dynamics 

discovered here contrasts with one prevailing view of ES cell heterogeneity as a noisy 

process consisting of random transitions among all states, as well as views in which it 

reflects independent noise in various genes. It also contrasts with the canonical binary 

unidirectional trees observed in many classic developmental systems. Moreover, because all 

transitions are reversible, this system can be accurately represented by a 1-dimensional 

energy landscape, in which each state can be characterized as a local minimum, and 

transitions can be thought of as stochastic hops to neighboring states along a reaction 

coordinate (Waddington, 1940); (Sokolik et al., 2015). The chain-like transition network 

could ensure that the ES cell culture is comprised primarily of cells whose recent ancestors 

were in the E−T−Z+ state, where telomere length may be extended (Zalzman et al., 2010), 

potentially enhancing the viability of the culture (see STAR Methods and Fig. S7).

The transition dynamics of ES cells appear consistent with a ‘memory-less’ Markov process, 

where transition rates depend only on the current state. Knowledge of these transition rates 

allows us to estimate the timescales required for colonies to reach an equilibrium 

distribution of cell states. Based on the measured rates, it should take about 25 generations 

for a single starting ES cell to yield an approximately equilibrium distribution of cell states. 

For smaller colonies, however, inter-colony variation is expected to dominate intra-colony 

variation. These considerations could help explain incomplete penetrance in directed 

differentiation protocols (Ieda et al., 2010; Suzuki et al., 2013; Vo and Daley, 2015), and 

reprogramming (Buganim et al., 2012; Hanna et al., 2009; Smith et al., 2010).
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While powerful, KCA also has limitations. First, and most fundamentally, it applies only to 

transitions that occur at rates comparable to or slower than the cell cycle, since transitions 

that occur more rapidly leave no signature in the clustering of states on pedigrees. It is thus 

well-adapted to developmental and immunological processes but not well suited to analyze 

more rapid or transient physiological responses. Second, as with phylogenetic 

reconstruction, we can estimate the likelihood of a particular series of switching events on a 

given tree, but we cannot determine the exact histories of specific cells. Third, the technique 

requires previous identification of a set of distinct states, and corresponding marker genes. In 

the case of ES cells, inclusion of additional genes could reveal other states that might have 

been missed here (Klein et al., 2015; Kumar et al., 2014; Sasagawa et al., 2013). In this 

regard, emerging in situ single-cell transcriptomic techniques (Chen et al., 2015; Crosetto et 

al., 2015; Lubeck and Cai, 2012; Lubeck et al., 2014) are exciting, as they dramatically 

expand the number of genes that can be analyzed in the endpoint FISH-based measurement, 

enabling high-dimensional gene expression information with reduced a priori selection of 

genes. While we used thresholds on single genes for discrete state assignment here, such 

higher dimensional data could be used with the KCA framework to infer transition dynamics 

among a more continuous range of states, given a sufficient number of observations. 

Looking forward, the ability to quantify cell state transition networks should enable analysis 

of the effects of genetic perturbations on particular transition rates. Finally, we note that 

KCA can also work with alternative methods for obtaining lineage information (Behjati et 

al., 2014; Evrony et al., 2015; Jiang et al., 2013; Navin et al., 2011; Zong et al., 2012). Thus, 

we anticipate that the KCA framework will become more capable and broadly applicable in 

the future.

STAR Methods

CONTACT FOR REAGENT AND RESOURCE SHARING

The Lead Contact MBE is willing to distribute all materials (including constructs and 

engineered cell lines), datasets, software and analysis tools, and protocols used in the 

manuscript. Requests should be made directly to Michael B. Elowitz at 

melowitz@caltech.edu or by mail at California Institute of Technology. 1200 E. California 

Blvd., MC 114-96. Pasadena, CA 91125.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell Line Construction and Tissue Culture—E14 cells (E14Tg2a.4) obtained from 

Mutant Mouse Regional Resource Centers were used as the base line for all cell line 

construction. Knock-In reporters were generated using CRISPR/Cas9 with guides targeting 

the C-terminus of the genes of interest (Supplementary Table 2), using donor vectors 

harboring ±300bp homology to the target locus flanking a T2A-H2B-XFP-P2A-PuroR. 

Single clones were first grown in 2i and isolated based on puromycin resistance and 

characterized for correct targeting using qPCR for genomic copy number, and then by a co-

localization test of the endogenous targeted gene and XFP by smFISH (Figs. S2A and S2C). 

For the Zscan4 reporter, the 2570 base pairs upstream of the Zscan4c start codon were used 

as a promoter fragment reporter (as described in Zalzman, et al, 2010), to drive expression of 

H2B-mTurquoise2 on a PiggyBac integrated vector, which also contained a separate 
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Blasticidin resistance cassette under an SV40 promtoer. Cells were maintained at 37°C and 

5% CO2 in GMEM, 10% FBS, 2 mM L-glutamine, 100 units/ml penicillin, 100 ug/ml 

streptomycin, 1 mM sodium pyruvate, 1000 units/ml Leukemia Inhibitory Factor (LIF, 

Millipore), 1X Minimum Essential Medium Non- Essential Amino Acids (MEM NEAA, 

Invitrogen) and 50 uM β-Mercaptoethanol. Cell lines were also stably integrated with a 

PiggyBac-pGK-palmitoylated-mTurquoise2/HygroR to enable 3D segmentation of cell 

membranes.

METHOD DETAILS

Time Lapse Microscopy and single-molecule Fluorescence in situ 
Hybridization (smFISH) Imaging—For movies, cells were plated on Laminin-511 

(BioLamina) in 24-well glass bottom plates (MatTek) six hours prior to the start of the 

movie at a density of 2000/well. Snapshots were taken at 12 minute intervals for ~48 hours, 

and tracked and segmented using home-grown Matlab scripts. Immediately following the 

end of the movie, cells were fixed in 4% Formaldehyde for five minutes at room 

temperature, and permeabilized in RNAse-free 70% ethanol and stored at −20°C overnight. 

The following day, cells were hybridized for smFISH overnight at 30°C, where genes of 

interest were simultaneously targeted with up to 48 20mer DNA oligos, with each gene’s 

probeset coupled to Alexa 555, 594, or 647 (Lifetech). Each 20mer oligo was used at ~3nM 

final concentration. The hybridization buffer was composed of 20% Formamide, 2X SSC, 

0.1g/ml Dextran Sulfate, 1mg/ml E.coli tRNA, and 2mM Vanadyl ribonucleoside complex, 

in nuclease free water. After overnight incubation in hybridization buffer and probes, cells 

were washed once in 20% Formamide and 2X SSC at 30°C for 30min, twice in 2X SSC at 

room temperature, stained with DAPI, and finally imaged in 2X SSC.

smFISH imaging was performed on a Nikon Ti-E with Perfect Focus, Semrock FISH 

filtersets, Lumencor Sola illumination, 60x 1.4NA oil objective, and an Andor Zyla 4.2 

sCMOS camera. Z-slices of DAPI, membrane-mTurquoise2 and smFISH were taken every 

400nm through the sample. Segmentation of cellular boundaries was performed using the 

membrane targeted palmitoylated-mTurquoise2 with a 3D watershed algorithm. Dots were 

detected by thresholding on the distribution of local maxima of Laplacian-of-Gaussian 

kernel responses performed on each z-slice, with local-maxima defined around a 26-

connected-pixel 3D region. Automatic image registration was performed in Matlab between 

the fluorescent protein in the final frame of the movie and DAPI stained image collected 

during smFISH imaging.

RNA-seq—On two separate days for biological replicates, ~500,000 were sorted of each 

subpopulation. Only the top 2% of reporters cells were collected in the positive gate for 

Zscan4c, while the lowest 50% were collected for the negative gate. For the Esrrb/Tbx3 

double reporter (described above), 4% of the population made up the sorted double-negative 

population, 14% made up the sorted double positive population, and 63% made up the sorted 

Esrrb only population. The remaining unsorted cells made up buffer regions between 

subpopulations. Consistent with smFISH results, no Esrrb−/Tbx3+ population was observed. 

Differences in population fractions from smFISH-estimated population fractions is due to 

the half-life of the long-lived H2B-fused fluorescent proteins which only dilute by cellular 
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division. Immediately following the sort, RNA was extracted using the Qiagen RNEasy Mini 

kit. 100 base single-end reads were generated on a HiSeq 2500. Galaxy was used to process 

RNAseq reads, using the Cufflinks package with default options. Briefly, reads were mapped 

using default Tophat parameters against the mouse mm10 genome. Cufflinks was used to 

estimate transcript abundance, and Cuffdiff was used to identify differentially expressed 

genes within E−T−, E+T−, and E+T+ sets, and then separately between Z+ and Z− sets.

QUANTIFICATION AND STATISTICAL ANALYSIS

Kin Correlation Analysis (KCA) applied to non-uniform cell state distributions
—In Box 1 of the main text, we derived a formula that related the two-cell correlation 

matrices to the transition matrix, under the assumption that the dynamics was reversible (or 

equivalently that it satisfied the condition of detailed balance) and briefly generalized the 

result to the case where all the states are not equally likely. Here, we will derive in full detail 

a formula for inferring the transition matrix from the observed two-cell correlation matrices 

assuming only that the dynamics is reversible. Then, in section 3 below, we will further relax 

the assumption of reversibility, and derive a more general expression using three-point 

correlation functions to infer transition dynamics.

As in Box 1 of the main text, consider a transition matrix T(I|M) that represents the 

probability of observing a daughter cell in state I given that the parent cell was in state M. 

We assume that a given state I is observed in the population with frequency pI.

With detailed-balance, for any given pair of states, the forward and reverse fluxes must be 

equal:

The simpler condition used in Box 1 that T is a symmetric matrix, T(I|J) = T(J|I) is a special 

case of this expression, valid when pI = pJ. A similar condition must hold going from a 

parent cell in state M to a descendent in state I after two generations:

where s is summed over all possible state of the intermediate cell between the parent cell and 

its grand-daughter. The summation is equivalent to matrix multiplication and can be 

rewritten as,

More generally, for a cell in state M and its descendent u generations later in state I, the 

following condition must be satisfied:
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The joint probability of observing two cells at lineage distance u in states I and J is given by,

Reversibility of the dynamics implies that Tu(J|M)pM = Tu(M|J)pJ. Making this substitution, 

we have,

(1)

To infer, we observe the correlation matrix C(u), and solve for the transition matrix T. 

Equation (1) can be rearranged to express the transition matrix in term of the correlation 

matrix, by first defining a rescaled correlation matrix,

(2)

It then follows that the transition matrix can be recovered by taking the appropriate root of 

the matrix C̃,

(3)

Kin Correlation Analysis (KCA) applied to time-varying transition rates—
Previously, we assumed that transition rates remain constant over time. However, in a 

developmental context they could change systematically with time or generation number. In 

this subsection, we extend the above results to such cases. We still assume that the dynamics 

are stationary and reversible. As shown below, it is possible to fully recover time-varying 

dynamics by using the two-cell correlation functions at all lineage distances.

Consider a time-varying transition matrix, T(u), where u denotes the number of generations 

back from the final time-point. u generations back, the probability of observing a daughter 

cell in state I conditional on the state M of its parent is given by the I, Mth element of T(u). 

For an example of such dynamics, see Figure 5C in the main text.

The two-cell correlation matrix for a pair of cells at lineage distance u takes the form,

where S is an effective transition matrix given by Su = T(1)T(2)···T(u), and pJ denotes the 

endpoint frequency of cells in state J. From a measurement of the two-cell correlation matrix 
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C(u), Su can be inferred using Eqs. 2 and 3, namely, define . It 

follows,

To recover the time-varying transition rates T(u), we start at u = 1 and work our way 

backwards to larger values of u. The transition rates are given by,

Lastly, we note that the above framework can be in principle extended to the case of 

continuous dynamics where the transition matrix is a continuous function of absolute time 

back to the common ancestor, i.e. where transitions have a probability per unit time (rather 

than per generation) of occurring, and where this probability itself changes with absolute 

time. To do so, the effective transition matrix, Su, is computed by taking the product integral 

of the continuous transition rate matrix, T́, from the current time, t = 0, back to the time of 

the common ancestor, t = tc, namely, . This formulation accounts 

for biologically relevant cases in which the durations of cell cycles vary from cell to cell 

and/or over time.

Kin Correlation Analysis (KCA) with probabilistic state assignment—We show 

that the distribution of the Esrrb transcript counts in the low (E−) and high (E+) states 

overlapped significantly (Fig. 2C), such that it was not possible to assign a definite Esrrb 
state (either E− or E+) to a cell given a readout of its Esrrb transcript count. Here, we 

explain how we assigned probabilistic Esrrb states to each cell, and how the KCA 

framework is applied to probabilistic states.

First, we fit a sum of two negative binomial distributions to the distribution of Esrrb 
transcript counts in single cells (black lines in Fig. 2C). Let’s denote the distribution of 

transcript counts of the E− state as D−(x) and that of the E+ state as D+(x), where x is an 

integer denoting the transcript count in a given cell. More specifically, D−(x) is the 

probability that a cell in the E− state will have x Esrrb transcripts. The fit also has a free 

parameter that reflects the population fraction of each state. We will denote the population 

fraction of the E− state as f− and the population fraction of the E+ state as f+. It follows that 

f− + f+ = 1.

The probability that a cell with x Esrrb transcripts is in the E+ state is given by,
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The probability that the cell is in the E− state is simply p− = 1 − p+. For large transcript 

counts, e.g. x = 200, f−D−(x) ≈ 0, which implies, p+ ≈ 1. Alternatively, for some 

intermediate values of transcript counts, e.g. x = 75, f−D−(x) = f+D+(x), which implies p+ ≈ 
0.5, or that the cell is equally likely to be in the E− or the E+ state.

Correlation matrices can be computed using probabilistic states in a similar manner as with 

definite states. However, whereas with definite state assignments, each pair of cells in states 

I and J contributes 1 to the I,Jth element of the correlation matrix and 0 to all the other 

elements, with probabilistic state assignments, each pair of cells contributes PIPJ to element 

CIJ of the correlation matrix.

Lastly, the switching rates can be inferred from the correlation matrices computed using 

probabilistic states in a similar way as outlined in the previous section. However, in cases 

where the overlap between the two distributions is not symmetric, i.e. when it is more likely 

to misclassify a cell in the E− state as E+ than vice-versa, we need to first adjust the 

correlation matrices for incorrect assignment of states.

On average, the probability that a cell in state J is assigned to state I is given by,

where the integration runs over all possible values of transcript counts, x, and the summation 

K is over all states. Q is effectively a transition matrix satisfying the same properties as T; 

for example, columns of Q sum to 1. However, unlike T, Q does not capture actual cell state 

transitions, but rather effective state transitions caused by measurement errors (for example, 

ambiguous mapping from transcript counts to cell state). Thus, we can imagine the dynamics 

as follows: the state of a cell u generations after its ancestor is given by the appropriate 

power of the transition matrix, namely, Tu. The measurement error, at the endpoint, results in 

one additional mixing of states as given by matrix Q. Put together, the probability of 

observing a given state conditional on the state of the ancestor is given by the matrix QTu.

To infer the actual transition matrix T, we must first remove the contribution of Q. The 

actual population fraction of the states, p̄, can be calculated from the measured population 

fractions, p, as follows,

where Q̂ is the inverse of the matrix Q. Similarly, the actual correlation matrix can be 

calculated from the measured correlation matrix as follows
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where  denotes the inverse of the transpose of matrix Q. The corrected populations 

fractions, p̄, and correlation matrix, C̄, can be used directly in Equations 2 and 3 above 

instead of p and C to infer the actual transition matrix.

Computing the three-cell correlation functions for a general transition matrix 
with irreversible dynamics—Here, we derive the general expression for the three-point 

correlation functions in terms of the transition matrix. As in the previous section, consider a 

transition matrix T(I|M) that represents the probability of observing a daughter cell in state I 
given that the parent cell was in state M. Unlike the previous section, we do not require that 

T(I|M) satisfies the condition of detailed balance, enabling analysis of cell state transition 

networks containing irreversible transitions.

We would like to calculate the joint probability of observing three cells in states I, J, and K. 

The degree of relatedness of three cells is characterized by two lineage distance: u, the 

number of generations back to the common ancestor of the two more closely related pair of 

cells (observed to be in states J and K), and v, the number of generations back to the 

common ancestor of all three cells (see Box 1 for a schematic).

The three-cell correlation function takes the form,

(4)

where the summation over S is over all possible states of the common ancestors of the two 

cells at lineage distance u. The summation over M is over all the possible states of the 

common ancestor of the three cells. pM is the expected probability of observing the common 

ancestor of all three cells in state M.

For non-stationary dynamics, the probability of observing the common ancestor in a given 

state pM changes from generation to generation. However, pM is still related to the transition 

matrix in a self-consistent way. Namely, the probability that a cell u generations back will be 

in state M is given by

(5)

where Tu0−u(M|N) denotes element M, N of the transition matrix taken to the power of u0 − 

u. u0 is the number of generations back to the root of the tree, which is in state N with 

probability pN(u0). Equation (5) captures how the population fraction of each state changes 

over time as a function of the initial distribution of the states and the transition matrix.
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Equations (2) and (3) are general and do not require reversible (detailed balance) or 

stationary dynamics. Although an analytical solution for T in terms of CIJK(u, v) is not 

possible, we can solve the inference problem by considering the elements of the transition 

matrix as fitting parameters. We then calculate the expected three-cell correlation functions 

(Eq. 4) and fit them to the observed three-cell correlation functions (see Methods in the main 

text for the numerical implementation).

Simulating KCA for various types of dynamics—Using KCA, we were able to 

accurately infer the underlying cell state transition network and transition rates in 

simulations by observing 30 cell pedigrees of 5 generations (Figure S1). For reversible 

dynamics like those shown in Figure S1A,B, the transition network was inferred from the 

two-cell correlation functions. For networks with irreversible dynamics, like those shown in 

Figures S1C,D, we used the three-cell correlations for the inference. For example, in Figures 

S1B and S1C, which differ only in the reversibility of their transitions, the two-cell 

correlation functions are identical, but the three-cell correlation functions are different and 

can be used to infer the directionality of the transitions. Furthermore, we analyzed a 

previously published model of a 3-state system containing irreversible transitions among 

cancer cell states (Gupta et al., 2011), and verified that KCA with three-cell correlations 

could indeed infer the previously determined rates (Figure S1E). Finally, we asked whether 

the KCA framework could be applied to non-stationary, branching cell fate determination 

networks, similar to those frequently observed in development and immunology. We 

simulated a 3-level branched cell fate tree with specific transition rates, applied KCA, and 

recovered the correct rates within statistical error (Figure S1D). This indicates that accurate 

inference is possible for branching fate trees with feasible amounts of experimental data.

Here, we describe the details of the simulations used to generate the results shown in Figure 

S1. Simulated pedigrees of 5 generations each were generated using Matlab. For S1A–C, the 

state of the root was selected randomly from the stationary distribution of cell states. In 

Figure S1D, the root was always set to the green state, resulting in a non-stationary 

distribution of cell states over the generations. At each generation, every node gave rise to 

two daughter nodes, whose states were selected randomly and independently from the 

probability distribution set by the state of the parent and the transition matrix. The two-cell 

and three-cell correlations were directly computed from the simulated pedigrees by 

measuring the frequency of occurrence of pairs and triplets of cell states at a given lineage 

distance over all pedigrees. We simulated 30 pedigrees for the plots in Figure S1A to C. For 

Figure S1D, we simulated 100 pedigrees. KCA using two-cell correlation functions was 

conducted on simulated data as outlined above using the framework in Box 1 and 

Supporting Information without any fitting. To infer the rates for irreversible dynamics, we 

used a set of fitting parameters, corresponding to the independent entries of a general 

asymmetric transition matrix. We then fit the three-cell correlation functions predicted from 

this transition matrix (see STAR Methods) to the observed three-cell correlation functions. A 

non-linear least square fitting algorithm was used (implemented in Matlab) to minimize the 

residual.
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Direct measurement of Esrrb switching dynamics—We tracked and segmented 

each cell in time-lapse movies of colony growth using automated software and manual 

corrections, similar to previously described (Singer et al., 2014). By integrating the 

background corrected pixel intensity in the nucleus of each cell, we obtained the 

accumulated level of H2B-mCitrine fluorescence at every point along each cell cycle. The 

rate at which fluorescence accumulated was used to estimate the promoter activity of Esrrb. 

To identify changes in promoter activity that corresponded to state switching, we fit either a 

single line, or two piece-wise linear segments to the fluorescence read-out of each cell using 

a least-squares method, implemented in Matlab. The first and last hour of each cell cycle 

was discarded to ensure reliable fluorescence read-out despite cell division. We used two 

criteria to identify state switching events: 1) the change in the slope across a division or 

between the segments of the two-line fit had to exceed a significance threshold. 2) A 

significant change in the slope (increase or decrease) had to persist into the subsequent cell 

cycle after division. The candidate switching events were identified automatically using a 

script implemented in Matlab and then verified manually.

Computing the predicted spatial correlation functions for Esrrb—We calculated 

the expected correlation of Esrrb state as a function of spatial separation distance from the 

inferred switching rates of Esrrb and the observed pedigrees as follows,

where q(r|u) is the empirically determined probability of observing two cells at lineage 

distance u at spatial separation distance r; q(r|u) is plotted in Fig. 2Gii. p(u) is the probability 

that two randomly chosen cells will be at lineage distance u. This was empirically computed 

using the set of observed pedigrees. The expected and directly observed spatial correlation 

are plotted in Fig 2Gi.

Selecting marker genes for the ES pluripotency states—Previous studies have 

revealed that ES colonies exhibit a heterogeneous set of states potentially related to early 

embryonic cell types. For example, recent evidence identified a subpopulation of cells that 

express Zscan4, potentially corresponding to the totipotent 2 cell (2C)-state (Falco et al., 

2007; Macfarlan et al., 2012). This state is also associated with telomere-elongation, 

essential for long-term culture in vitro (Zalzman et al., 2010) (although Zscan4 has also been 

shown to be activated by DNA damage responses and PI3K signaling (Storm et al., 2014)). 

Furthermore, representing slightly later stages of development, both inner cell mass (ICM)-

like and epiblast-like stages can be identified and distinguished in culture by the high or low 

expression, respectively, of a cluster of correlated genes that includes Rex1, Nanog, and 

Esrrb. The totipotent state, marked by Zscan4 expression, shows low Rex1/Nanog/Esrrb 
expression (Singer et al., 2014), potentially defining a sub-population among Rex1/Nanog/
Esrrb-low cells. Finally, we identified a complementary sub-population within the Rex1/
Nanog/Esrrb-high population, marked by expression of Tbx3. Tbx3 has been shown to 

destabilize pluripotency when lost or over-expressed. It also appears critical for 

mesendoderm specification, and its expression may change the global levels of DNA 
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methylation in mouse ES cells (Dan et al., 2013; Ivanova et al., 2006; Lu et al., 2011; Niwa 

et al., 2009; Weidgang et al., 2013). However, it remains unclear how Tbx3 expression 

emerges dynamically from these states.

As described in the main text, to verify that changes in the expression levels of the marker 

genes corresponded to collective changes in expression levels of multiple genes, we 

performed RNA-seq on subpopulations of cells sorted using fluorescent reporters for the 

three marker genes described above. We sorted out Esrrb/Tbx3 negative (E−T−), Esrrb-

positive/Tbx3-negative (E+T−), and Esrrb/Tbx3 positive (E+T+) cells, as well as Zscan4-

positive (Z+) and –negative (Z−) cells, and observed hundreds of genes that were 

differentially expressed between these states (Fig. 3D), indicating that variations in marker 

gene expression do not simply reflect intrinsic noise, or fluctuations in the expression of 

individual genes, but rather indicate broad transcriptional changes. More specifically, 

compared with E+T− cells, E−T− cells expressed lower levels of pluripotency regulators 

(Fig 3Di), and higher levels of differentiation markers and signaling proteins (Fig 3Dii). In 

contrast, E+T+ cells showed reduced expression levels of signaling proteins and 

differentiation markers and increased levels of pluripotency genes compared to E+T−, 

suggesting that Tbx3 could mark a more pluripotent state. Moreover, we observed increased 

expression levels of 2C-associated genes like Tmem92, Tcstv3, Tdpoz3/4, and Zfp352 in the 

Zscan4-positive cells compared with the Zscan4-negative cells (Fig 3Diii). This result is 

consistent with Zscan4 marking the previously reported 2C-like state (Macfarlan et al., 

2012).

Assigning cells to the pluripotent states—The probabilistic assignment of the Esrrb 
state is presented in Figure 2C and the STAR Methods. T+ state was defined as Tbx3 
transcript counts larger than 15. A threshold was obtained by comparing transcript counts to 

the direct observation of the promoter activity of Tbx3 gene in individual ES cells that had a 

knock-in fluorescent reporter for both endogenous loci of the Tbx3 gene (see Fig S2Ci, 

S2D). Zscan4 expression levels were observed to be largely binary (Figure 3A). We used a 

threshold of 50 transcripts to assign cells to the Z+ state. Cells that were in the Z− and T+ 

states but were also in the E− state with a confidence level of at least 80% were assigned to 

the E−T+Z− state. We discarded any cells that were in the Z+ state but were also in the T+ 

state and/or the E+ state with a confidence level of 80% or higher (composing <1% of 

observed cells). The inference results were not sensitive to changes in the thresholds used in 

defining the pluripotency states (see Figure S3).

Inferring the transition rates—In Figure 4F, we directly inferred the transition rates 

from the two-cell correlation matrices and the population fractions of each state – without 

fitting – using the formalism in Box 1, and its generalization to non-uniform population 

fractions outlined in the STAR Methods. Each transition rate in Figure 4F is the rate that had 

the smallest statistical error of the three rates inferred for the same transition from the two-

cell correlation matrices at distances u=1 to u=3. The statistical error of the inferred 

transition rates was computed by bootstrapping over individual colonies: we randomly 

selected with replacement the same number of colonies as in the original data set, with the 

probability of selecting a given colony proportional to the number of cells that it contained. 
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KCA was performed on the resampled data 1000 times to estimate the variability in the 

inferred rates.

Self-consistency checks on the inferred transition dynamics—In this section, we 

validate the inferred ES cell state dynamics presented in the Results section of the main text 

and Figure 4.

First, the inference assumes that ES cell state dynamics are accurately represented as a 

stationary Markovian process with reversible transitions. If true, transition rates inferred 

from correlations between cells at different lineage distances (e.g. sisters vs. cousins) should 

produce the same result. In fact, this was observed within statistical error (Figure S5B).

Second, it is often of great biological interest to know whether a given transition is reversible 

or irreversible, for example in the context of “de-differentiation” (see main text, 

Introduction). To test whether the system exhibits irreversible transitions we next computed 

the three-cell correlations (Main Text, Box 1). Recall that reversible dynamics can be 

correctly inferred using only the two-cell correlation functions. For such dynamics, the 

three-cell correlations should not contain any additional information about the dynamics 

beyond that found in the two-cell correlations. Therefore, observing the two-cell correlations 

should be sufficient to predict the three-cell correlations. Indeed, the three-cell correlation 

functions measured on the observed trees were consistent with the predicted values, 

validating the reversibility of the transitions (Figure S6).

Third, we tested the specific qualitative prediction that Zscan4-positive cells are generated 

from E+T+Z− cells that inactivate Esrrb and Tbx3 in close succession right before activating 

Zscan4. To test this prediction, we acquired time-lapse movies of Esrrb and Tbx3 using the 

double reporter described above, and then used smFISH to measure the endpoint expression 

levels of Zscan4 in the same cells. In all cells where Zscan4 was high by smFISH at the 

movies’ end (11 trees had at least one Z+ cell), Esrrb and Tbx3 reporters were observed to 

turn off within a single cell cycle of one another, as predicted. Examples are shown in Figure 

S5D.

Fourth, we verified that, where they overlapped, our results agreed with previous work on 

ES cell dynamics. For example, the rates of transition between the high and low metastable 

states of Nanog or Zscan4 matched those observed from measurements of engineered 

reporter lines using re-equilibration following sorting or direct movie-based analysis 

(Chambers et al., 2007; Macfarlan et al., 2012; Miyanari and Torres-Padilla, 2012; Zalzman 

et al., 2010). Taken together, the self-consistency of the method, the direct experimental 

validation, and the agreement with previous work strongly support the notion that the KCA 

approach developed here can correctly infer state transition dynamics.

The two-state model of Esrrb Figure 2 is consistent with the inferred chain-
like model in Figure 4—In the main text, we inferred the transition rates between Esrrb 
low (E−) and high (E+) states and showed that Esrrb switching dynamics is well 

approximated by a two-state Markovian process (Fig. 2). We also analyzed transitions across 

a more general network including 5 states, which is also well-approximated as a Markovian 

Hormoz et al. Page 23

Cell Syst. Author manuscript; available in PMC 2017 November 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



stochastic process (Fig. 4F). How can the same cellular dynamics be compatible with both 

models?

The existence of internal sub-states is not generally consistent with Markovian dynamics 

among the two Esrrb states. A two-state Markovian model implies that during any interval of 

time, there is a constant probability of transitioning from one state to another (for example, 

E− to E+). However, in the presence of sub-states, the probability of exiting the E− or E+ 

state will depend on which sub-state the cell is in. The five-state transition network need not 

be compatible with effective two-state Markovian dynamics for Esrrb. However, we show 

here that for the specific transition rates in this case, the two-state reduction of the five-state 

model is still well-approximated by a two-state Markovian model within the statistical 

limitations of our finite data sets. More specifically, we simulated the five-state model (Fig. 

4F) for 14 trees of 4 generations (same number of trees and generations as the data in Fig. 

2D,E). We then assigned states solely based on the Esrrb state, effectively ignoring the Tbx3 
and Zscan4 expression levels. That is, E−T−Z− and E−T−Z+, and E−T+Z− cells were 

assigned to the E− state, while E+T−Z− and E+T+Z− cells were assigned to the E+ state. 

Note that this is equivalent to the measurements in Fig. 2, where only Esrrb expression level 

is used to designate cell state, with the expression levels of the other genes ignored.

We then used the KCA framework to infer the transition matrix of Esrrb dynamics. The 

simulations were repeated 10,000 times to estimate the statistical uncertainly of the 

inference. Within statistical error, the transition rates inferred from pairs of cells at all 

lineage distances from u=1 to u=4 were equivalent, consistent with a two-state Markovian 

model. In fact, we needed to measure more than 5,000 end-state cells before a statistically 

significant deviation from the two-state Markovian model could be observed. In that case, 

the five-state model fits the data significantly better than the two-state model. The key point 

is that although the five-state model is a more accurate description of Esrrb dynamics, by 

correctly accounting for the internal sub-states within the E− and E+ states, the two-state 

model remains approximately valid within the statistical limitations of our finite data set.

Potential benefits of chain-like state transition networks—The inferred cell state 

transition network in ES cells is a linear chain of 5 states. What implications does this type 

of transition network have for the maintenance of ES cells in culture, and for other systems 

that might utilize similar transition networks?

Previous work has suggested that to maintain a healthy population of ES cells in culture, 

each cell must transition through the E−T−Z+ state at some minimum frequency (Zalzman et 

al., 2010). This requirement was shown to be related to processes of telomere extension via 

telomere sister chromatid exchange (Zalzman et al., 2010) and global epigenetic resetting 

(Akiyama et al., 2015), which occur specifically in the Zscan4-positive state and helps 

maintain genomic stability and normal karyotype, and in turn the cell’s potential to 

proliferate. Based on this, we asked how the different stationary networks shown in Fig. 1D 

compare in the frequency with which cells visit the E−T−Z+ state.

To elucidate the differences between network architectures, we consider a simplified five 

state network where the last state (green color in Fig. S7) plays a role equivalent to that of 
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the E−T−Z+ state. That is, the viability of each cell depends on the number of generations 

that have elapsed since it last occupied this state. The other four states (red color) have no 

bearing on viability. For each of the three networks, we set all inter-state transition rates to 

identical values, ensuring equal population fractions for each state (Fig. S7). Moreover, we 

selected the transition rates to ensure that the flux of the cells into the green state was the 

same for all three networks.

Every time a simulated cell visited the green state, we tabulated the number of generations 

elapsed since its most recent ancestor left that state. This represents the distribution of 

“waiting times” between consecutive visits to the green state. Since we selected the rates to 

ensure equal population fractions and equal fluxes into the green state, the mean waiting 

time for the three networks is identical.

Strikingly, however, the distributions of waiting times are very different for the different 

networks. In particular, the linear chain network results in a long-tailed distribution, where 

most cells return to the green state after a brief number of generations, but a relatively few 

cells spend a much larger amount time between consecutive visits, and therefore exhibit 

waiting times much longer than the average (Fig. S7A). The short waiting time for most 

cells is balanced by the exceptionally long waiting times of a minority. This is also reflected 

in the difference between the mean and median waiting time. By contrast, in the cycle motif 

(Fig. S7B), almost all cells spend approximately the same amount of time between 

consecutive visits to the green state (close to the mean waiting time). Finally, the all-to-all 

network (Fig. S7C) has a long-tailed waiting time distribution similar to that of the chain-

like motif. However, the difference between its median and mean is not as pronounced.

What are the implications of these differences in waiting time distributions? In the chain, the 

relatively large discrepancy between the median and the mean implies that most cells would 

have relatively recently visited the Zscan4-positive state, increasing their viability. This is 

achieved at the expense of a relatively small fraction cells that experience significantly 

longer waiting times, and therefore presumably would show reduced viability. In this way, 

the chain-like network could be advantageous in the cell culture context. Similar effects 

could also make this type of network advantageous in other contexts where a system may 

need to optimize for the largest fraction of cells entering into a critical state over time.

DATA AND SOFTWARE AVAILABILITY

All the analysis software, including those used for movie tracking, FISH dot detection/

counting, and KCA analysis is available upon request (see CONTACT FOR REAGENT 

AND RESOURCE SHARING). The data visualization package is also hosted on the 

Elowitz lab website: http://www.elowitz.caltech.edu/.

The data discussed in this publication have been deposited in NCBI’s Gene Expression 

Omnibus and are accessible through GEO Series accession number GSE86417.

ADDITIONAL RESOURCES

The complete end-point FISH data and the associated lineage relationships is available on 

the Elowitz lab website (http://www.elowitz.caltech.edu/) for interactive viewing using a 

Hormoz et al. Page 25

Cell Syst. Author manuscript; available in PMC 2017 November 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.elowitz.caltech.edu/
http://www.elowitz.caltech.edu/


novel visualization tool, CellLines, developed by the Elowitz Lab in collaboration with the 

Caltech Data Visualization Program.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Cell state transition networks and the experimental platform for inferring transition 
rates
(A) Trajectory of a proliferating colony of cells in gene expression space (schematic). At 

each time-point, a cell can independently and stochastically change its cell state (color) and 

corresponding gene expression profile. Following a division, both daughter cells inherit the 

state of the parent but then follow independent stochastic dynamic trajectories. (B) (i) 
Dynamics can be determined by directly observing state transitions in a single cell over 

time, neglecting cell proliferation. (ii) Proliferating colonies provide an indirect record of the 

history of cell state transitions. Here the cell of interest (top row) is in the blue state but is 

related to a sister and cousins that are in the green state, indicating a likely green to blue 

transition in its recent past. (C) Different dynamics give rise to different degrees of 

clustering on a pedigree (schematic). Frequent or infrequent switching between red and blue 

states leads to weak or strong clustering of cell states, respectively. The distribution of states 

is independent of the switching rates in this simple example (bar plots). (D) Cell state 

transition networks can be classified based on whether the population fraction of each state 

is constant (stationary) or changing over time (non-stationary). A subset of stationary 

networks also exhibit reversible dynamics. (E) Experimental approach: i) Live cells are 

tracked as they grow and divide using time-lapse microscopy. ii) After the movie, the cells 

are fixed and stained for smFISH. iii) Individual molecules of mRNA are detected and 
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counted in each cell. iv) The pedigree reconstructed from (i) is combined with the smFISH 

measurements, and each cell is assigned an expression state. v) Using KCA, cell state 

transition dynamics are inferred across many of these state-associated pedigrees (see Box 1).
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Figure 2. Inference and direct validation of Esrrb dynamics
(A) The Esrrb-H2B-mCitrine knock-in reporter (top), and PiggyBac integration construct for 

a palmitoylated-mTurquoise2 (bottom). (Bi) An example time-lapse movie showing H2B-

mCitrine fluorescence in a proliferating colony of ES cells. Arrow indicates root cell in E. 

Scale bar, 10 μm (Bii) A composite image of the membrane-mTurquoise2 (white), DAPI 

(red), and Esrrb transcripts by smFISH (yellow dots). (Biii) Heat map showing Esrrb 
transcript counts for each cell in this colony. (C) The distribution of Esrrb transcript counts 

can be fit by a linear combination of two negative binomial distributions (solid lines), with 

indicated population fractions (percentages). (Di) Lineage tree (pedigree) from example 
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movie shown in B. State assignments on leaves indicate the probability that the cells are in 

the E+ state (see STAR Methods). (Dii) The probability of observing a pair of cells both in 

the E+ state (red), both in the E− state (blue), and as a mixed E+E− pair (green), as a 

function of degree of relatedness of the two cells, u. Cell state transition rates were 

computed from the observed correlation functions for each value of u. (Diii–iv) The 

probability per cell cycle of transitioning from E− to E+ (blue) and from E+ to E− (red). 

Error bars were obtained by bootstrap (see STAR Methods). Inferred rates are (within 

statistical error) independent of u, consistent with stationary Markovian dynamics. (Ei–iii) 
The same pedigree as in D with branches displaying accumulation of mCitrine fluorescence 

in each cell cycle. Arrows indicate a significant, heritable change in the rate of fluorescence 

accumulation, corresponding to switches between Esrrb states. (Eiv) Essrb cell state 

transition rates measured from switching events in the time-lapse movies are consistent with 

inferred rates (cf. Div). (F) Histogram of the time of occurrence of state transitions (on-

events, top panel; off-events, bottom panel) along the cell cycle in units of hours since the 

last cell division. (Gi) Empirically determined frequency of finding a pair of cells both Esrrb 
high (red points) or Esrrb low (blue points) as a function of their physical separation 

distance, d, in the colony (in units of average cell diameters). Error bars are s.d. determined 

by bootstrap (299 cells, 14 colonies). Dashed lines indicate expected cell state correlation as 

function of spatial separation distance. The observed spatial correlations are consistent with 

the correlations expected from shared lineage alone. (Gii) Spatial separation distance 

correlates weakly with lineage distance u. The distribution for each value of u is 

independently normalized to peak at 1.
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Figure 3. Characterizing a set of mouse embryonic stem cell states
(A) Distribution of the transcript counts of Esrrb, Tbx3, and Zscan4 in single cells as 

determined by smFISH. (B) Scatter plot of transcript counts by smFISH in 446 cells 

(individual dots). Color coding indicates assignment of each cell to one of five states. Blue-

red gradations indicate probabilistic assignment of Esrrb expression states. (C) Example 

colonies showing groups of related cells in the same expression state for each of the three 

marker genes (for either the low or high state), consistent with cell states that persist over 

multiple generations. Yellow circles indicate transcripts detected by smFISH; red indicates 

DAPI stained nuclei; white is palmitoylated-mTurqoise2 demarcating cell membranes. (D) 
Sub-populations sorted on indicated marker genes (below columns) exhibit distinct RNA-seq 

profiles and broad differences in gene expression. FACS was performed based on 

distinguishable fluorescent reporter genes integrated at Esrrb and Tbx3 loci in the same cell 

(Fig. S2C), or, separately, based on a Zscan4 reporter integrated by PiggyBac transposition 

(right). Only genes showing statistically significant differential expression for the same cell 

line between sorted subpopulations are shown. (E) Zscan4+ cells exhibit a distinctive 

nuclear morphology compared to Zscan4− cells. DAPI stained nuclei (white, left); Zscan4 
smFISH dots (yellow, right); membrane boundaries (red). (F) Nuclear morphology 

correlates with Zscan4 expression level (Pearson correlation coefficient = −0.15; p value= 

0.002). The number of nuclear puncta detected in each cell plotted against the number of 
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Zscan4 transcripts in the same cell. The color of each dot indicates the time since that cell’s 

last division, as determined by time-lapse microscopy.
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Figure 4. State-switching dynamics within a pluripotency network
(A) (Left) Time-lapse movie used only for tracking cells to determine pedigrees. (Right) In 

the same cells, smFISH for Esrrb (cyan dots), Tbx3 (green dots), and Zscan4 (blue dots), as 

well as membrane-mTurquoise2 (white) and DAPI (red). (B) Segmented cells are color-

coded by transcript count for each gene analyzed. (C) Pedigree reconstructed from cells 

tracked in A are plotted as a dendrogram, with state assignments and transcript counts for 

each of the three genes at the leaves. (D) Examples of other pedigrees and state assignments 

(see Fig. S4 for complete set). (Ei) Frequency of observation of each pair of states in sister 

cells (two-cell correlations). See Figure S5A for other lineage distances. (Eii) Using KCA, 

the transition rate matrix was computed from correlation matrices (see Box 1). (F) Inferred 

cell state transition network shows chain-like dynamics.
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Figure 5. Detecting deviations from simple dynamics using self-consistency checks
(A) ‘Hidden,’ states can produce apparent non-Markovian dynamics. In this example, the 

blue state is actually composed of multiple distinct states (labeled 1–4), which are not 

separately identifiable. The blue state is thus a counter that persists for exactly four 

generations. KCA applied to the apparent 2-state system generates inferred persistence rates 

which change systematically with lineage distance, u, especially near u = 4, causing the 

inferred transition rates (right) to depend on lineage distance. Transition rates are indicated 

on arrows. (B) Deviation from simple dynamics resulting from correlated transitions. In this 

example, distinct division patterns are indicated with corresponding probabilities, p. Values 

were chosen such that the joint probability of observing a pair of sister cells in a pair of 

states conditional on the state of their parent is not equal to the product of their marginal 

probabilities. In this case, inferred transition rates depend on lineage distance (right). (C) 
When transition rates vary with time (left), the inferred transition rates vary with lineage 
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distance (right). In this example, this effect can be used to infer the time-varying transition 

rates (see STAR Methods).
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