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Structural, vibrational and thermal properties of densified silicates : insights from

Molecular Dynamics

M. Bauchy
Laboratoire de Physique Théorique de la Matière Condensée,

Université Pierre et Marie Curie, Boîte 121, 4, Place Jussieu, 75252 Paris Cedex 05, France

(Dated: April 4, 2012)

Structural, vibrational and thermal properties of densified sodium silicate (NS2) are investigated
with classical molecular dynamics simulations of the glass and the liquid state. A systematic investi-
gation of the glass structure with respect to density was performed. We observe a repolymerization
of the network manifested by a transition from a tetrahedral to an octahedral silicon environment,
the decrease of the amount of non-bridging oxygen atoms and the appearance of three-fold coor-
dinated oxygen atoms (triclusters). Anomalous changes in the medium range order are observed,
the first sharp diffraction peak showing a minimum of its full-width at half maximum according to
density. The previously reported vibrational trends in densified glasses are observed, such as the
shift of the Boson peak intensity to higher frequencies and the decrease of its intensity. Finally, we
show that the thermal behavior of the liquid can be reproduced by the Birch-Murnaghan equation
of states, thus allowing us to compute the isothermal compressibility.

I. INTRODUCTION

In the field of oxides, silicate glasses and melts have re-
ceived a huge attention for their important applications
in materials science and geophysics, such as magma dy-
namics and properties. Pressure (or density) is obviously
one of the most important thermodynamic variable for
geochemical processes in the mantle and crust. Indeed,
interesting macroscopic properties of silicate melts, such
as viscosity or diffusion, show significant changes with
pressure.1,2

Many experimental studies on silicate glasses, the
base material for various multi-components silicate sys-
tems, have suggested that those macroscopic proper-
ties were related to atomic-scale structural changes3

such as angles4,5 or coordination number5–7. Densified
sodium silicate is a very interesting system to be in-
vestigated as it shows the effect of polymerization and
depolymerization5,7. Indeed, in the silica network, Si
tetrahedrons are connected by bridging oxygen atoms
(BOs). Sodium silicate is usually described as a base sil-
ica network which is depolymerized by the sodium atoms.
In this view, sodium cations break Si-BO-Si bonds and
induce non-bringding oxygen atoms (NBOs). On the con-
trary, pressure tends to repolymerize the network by a
global increase of coordination numbers.

Sodium silicate glass has already been extensively
studied at ambient pressure using Molecular Dynamics
(MD). The first reported MD simulation of sodium sili-
cate glass in 1979 was based on a very small system (200
atoms) but it is remarkable to see that it presented a
very reasonable structural description of the glass. Since
this work, the used potentials have been continuously
improved to get a better reproduction of experimental
results. Progress in computing facilities progressively al-
lowed to reach longer time scales, thus making it possible
to study diffusion at lower temperature and rheological
properties8,9. The possibility to simulate larger systems
has also permitted to put in evidence the existence of

inhomogeneities and preferential diffusion pathways for
sodium atoms10–16. Simulations from Cormack and co-
workers17–19 have shown a very good agreement with ex-
perimental results on structure. Vibrational11,20,21 and
elastic22 properties of the glass at ambient pressure have
also been studied and successfully compared to experi-
mental data. Using superomputers, large scale classical
simulations have recently been performed23, as well as ab
initio Molecular Dynamics simulations24–26. However, to
our knowledge, no systematic study of the evolution of
the system according to pressure has been performed so
far.

We present here Molecular Dynamics simulation allow-
ing a systematic description of the structural, vibrational
and thermodynamics properties of densified glassy and
liquid sodium silicate. We focus in one particular com-
position (NS2) and study the properties with increasing
density. Results show that a transition from tetrahedral
to octahedral silicon environment occurs and that the
medium range order shows anomalous changes. Vibra-
tional properties are also found to be very sensitive to
pressure and we report some trends about the behavior
of the Boson peak according to density. Eventually, an
equation of state model is proposed, thus allowing the
computation of the isothermal compressibility.

The article is organized as follows. In section II, we
present the numerical model and methodology that has
been used. In section III, we report structural, topo-
logical and vibrational results of the glass. In section
IV, thermodynamics and structural results of the liquid
state are presented. Finally, section V summarizes these
results.

II. SIMULATION DETAILS

As just mentioned, (Na2O)x - (SiO2)1−x with x=0.30
system has been chosen (close to the so-called NS2 system
with x=0.33). The simulated system is composed of N =

http://arxiv.org/abs/1203.6033v2
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3000 atoms (700 Si, 1700 O and 600 Na), placed in a cubic
box of various lengths L to study different densities (from
1.5 g/cm3 to 5.4 g/cm3). To do so, all the simulations
were run in the canonical ensemble (NVT). The room
temperature density27 of 2.466 g/cm3 is obtained with

L=34.43Å. A computed pressure P = -1.6 GPa is found
in the glass at this density.

To take into account the oxidation state of atoms18,
partial charges are used for the Coulomb interaction,
while the short-range Buckingham potential is of the
form :

Vij(r) = Aijexp(−
r

̺ij
)−

Cij

r6
(1)

where Aij , ̺ij and Cij are parameters which have been
fitted by Teter18. Usually, the Buckingham potential can
induce spurious effects at high temperature (as V(r) can
go to negative infinity when r is close to zero, which
leads to a collapse of the interacting atoms28. As de-
scribed in17, a repulsive term Bij/r

nij was introduced at
short distance in order for the potential energy and its
derivative to be continuous at r0 to avoid this issue.

This potential has been extensively used by Cormack
et al.17,18 and has revealed a very good description of the
glass at room density for various compositions. The ef-
fect of pressure on such systems using classical Molecular
Dynamics has been considered29 only at high tempera-
ture for the NS4 silicate by using a Born-Mayer interac-
tion potential fairly similar to the one that is presently
used. While, at ambient pressure, the use of a Coulomb
interaction with fixed partial charges is supported by the
ionic character of the interactions and the absence of
charge transfer, one may wonder to what extent fixed
charges can be still considered with increasing pressure.
While we are not aware of any report of densified sili-
cates, a recent ab initio Molecular Dynamics study (in
which electrons and charge transfer are explicitly com-
puted) on an oxide network-forming glass under high
pressure30,31 has not shown any deformations of the elec-
tronic cloud that would be significant enough for ambient
pressure pseudopotentials to be modified. The mentioned
example30,31, the consistency of the presently reported
results and the fact that the present potential was suc-
cessfully used to reproduce a diffusion anomaly of O and
Si atoms with increasing density16,32, also observed in
pure silica33 or water34, suggest that a certain degree of
confidence can be expected.

Classical Molecular Dynamics simulations were per-
formed using the DLPOLY package35. The equations
of motion were integrated with the Verlet-Leapfrog algo-
rithm, using a timestep of 2.0 fs. Coulomb interactions
were evaluated by the Ewald summation method with a
cutoff of 12.0 Å. The short-range interaction cutoff was
chosen at 8.0 Å. As mentioned, the simulations were
run in the canonical ensemble (NVT) with a Berendsen
thermostat.

For each density, the system was first equilibrated at
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FIG. 1: (Color online) Total radial correlation function of MD
modeled sodium silicate glasses for increasing densities and
comparison with neutron diffraction studies (white rounds)
from the work of Wright et al.36 (Neutron diffraction data).

6000 K during 106 steps (2ns). Each melt was then con-
tinuously cooled down to the selected temperature (from
300 K to 4000 K) using a cooling rate of 10 K/ps.

III. GLASS

A. Real space properties

1. Total radial correlation functions

The total correlation functions gT(r) for increasing
densities are shown in Fig. 1. To check the validity of
the simulated glass, comparison with experimental data
(neutron diffraction from the work of Wright et al.36)
at room pressure was made. We recover the same level
of agreement than in previous studies17,19. However, we
notice an increased structured system with main peaks
being sharper as compared to experiments. This com-
parison has also been done by Cormack17. Using the
same potential, a better agreement has been observed
by broadening the total correlation functions.37 The po-
sition of the first Si-O peak is well reproduced, but is
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found to be sharper than in experiments. The position
of the second O-O peak is also well reproduced, suggest-
ing a realistic O-Si-O angle in simulation. On the other
hand, simulation produces a peak at 3.1Å arising from
Si-Si correlations (see below) which is not present in ex-
periments but merged with other contributions in the
region 3-4Å. It means that the inter-tetrahedral angle
Si-O-Si may be underestimated with respect to experi-
ments. This angle turns out to be highly sensitive to
the employed potential. A detailed discussion about the
ability of the different potentials to reproduce the Si-O-Si
angle can be found in19.

As density increases, the first Si-O peak does not show
any shift in position but becomes broader, suggesting
an increased disorder in the network, manifested by in-
creased coordination numbers (integral of the first peak).
As observed on the partial gi(r) distributions (see below),
the second peak is shifted to lower r and becomes broader.

2. Partial radial correlation functions

The partial radial correlation functions gi(r) have been
computed from the pair correlation functions gij(r) :

gi(r) =
1

n

n∑
j=1

gij (2)

We have split the analysis according to BO and NBO.
These functions are shown in Fig. 2 for increasing den-
sities. While the position of the first peak in gSi (Si-O
correlations) does not show any significant change, an in-
crease in the shoulder on the lower r side of the second
peak (Si-Si correlations) is observed as density increases,
suggesting that the Si-O-Si angle decreases. As men-
tioned previously, the environment of the BO and NBO
are studied separately using gBO and gNBO. For both,
the position of the first peak (O-Si correlations) remains
the same, but important changes take place with density
change for the second-neighbor correlation. The second
peak (O-O correlations) is shifted to lower r and the dis-
tribution becomes broader. In the gNBO partial correla-
tion function, one notices the growth of a peak (at 2.4Å
for ̺ = 3.5 g/cm3) which contributes only to a shoulder

of the main peak at 2.6Å for ̺ = 2.5 g/cm3. This also
suggests that densification affects the O-Si-O and Si-O-
Si angles rather than the Si-O distance between nearest
neighbors. Finally, the first peak of gNa(r), associated
with Na-O correlations, is shifted to lower r. The de-
crease in the Na-O distance with pressure has also been
observed using NMR by Lee6. The Na-centered pair dis-
tribution functions are highly sensitive to density change
and this is not surprising as it involves non-directional
bonds. However, we notice that the increase of density
leads to a better defined first peak whose height increases
with the density.

3. Coordination numbers

In pure silica, the network in fully connected and the
coordination number CN of Si and O atoms are found
to be 4 and 2, in agreement with the stoichiometry of
the glass (CNSiNSi = CNONO). This is not the case
in sodium silicates since Na atoms create NBOs, thus
disrupting the network.

The distributions of IV, V and VI-fold coordinated sil-
icon atoms (SiIV, SiV and SiVI) can be obtained by enu-
merating the number of oxygen neighbors in the first co-
ordination shell of each silicon atom. These populations
are shown in Fig. 3a for each CN. The fraction of tetra-
hedral SiIV atoms starts to drop from ̺ = 2.7 g/cm3 (P
≃ 1 GPa). At the same density, the fraction of SiV atoms
grows and reaches a maximum around ̺ = 4.0 g/cm3 (P
≃ 28 GPa) prior to a continuous decrease as density in-
creases. The fraction of octahedral SiVI atoms increases
from ̺ = 3.1 g/cm3 (P = 5 GPa) and this basic structure
becomes predominant at high density. These trends are
rather usual in densified silicates. In amorphous silica,
simulations from Tse38 predicted the increase of the Si
CN to 5 at 15 GPa and up to 6 at 20 GPa. That trend
was confirmed by simulations from Horbach39. The ap-
pearance of SiV and SiVI in densified sodium silicate has
been confirmed experimentally using NMR.5,7

The environment of oxygen atoms has been analyzed
in the same fashion, i.e. by enumerating the number of
silicon atoms in the first coordination shell of each oxy-
gen atom. Here, Na atoms are not taken into account,
this in order to distinguish BO from NBO and thus to
split the Si CN analysis from the one involving the Qn

speciation which will be detailed below. Thus, OI refers
to the oxygen atoms that are surrounded by only one sili-
con atom (i.e. NBO atoms). At low density, the fraction
of NBO can be determined by x, the amount of soda,
as each sodium atom creates one NBO. The fraction of
NBO fNBO is thus given by fNBO = NNBO/NO = 2x/(2-
x). At x = 0.3, fNBO ≈ 0.35, which is consistent with
simulation results in Fig. 3b. The fraction of OI drops
for densities larger than ̺ = 2.6 g/cm3. At this density,
the fraction of OII starts to increase, reaches a maximum
at ̺ = 3.8 g/cm3 and decreases at higher density. The
present findings clearly indicate a repolymerization of the
network through the creation of density induced Si-BO-
Si connections at the expense of Si-NBO ones. They
are consistent with the decrease of the fraction of NBO
found experimentally from NMR in densified silicates6.
As a consequence, the model of the network modifier Na
atom simply given by stoichiometry (one Na atom involv-
ing the appearance of one NBO atom) does not remain
valid for ̺ > 3 g/cm3. Ultimately, OIII are found at high
density and their fraction grows up to nearly 50% at ̺
= 5.5 g/cm3. Note that 3-fold O atoms (termed triclus-
ters) have already been found both in experiments and
in simulations, for example in aluminosilicate glasses40.

At ̺ = 5.5 g/cm3, the fraction of NBOs is very low
(≃ 3%) so that the Si/O network can be considered as
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FIG. 2: (Color online) Partial radial correlation function gSi(r), gNa(r), gBO(r) and gNBO(r) at different selected densities ̺ =
2.5, 3.5, 4.5 g/cm3.

being fully connected as in pure silica, thus allowing us
to check the agreement between the stoichiometry of the
system (SiO2.43) and the computed coordination num-
bers. On average, we find CNSi = 5.90 and CNO = 2.43
so that the stoichiometry of the glass is satisfied (CNSiNSi

≈ CNONO).

These results show that the network undergoes strong
topological changes as density increases. The initial
tetrahedral silicon environment becomes octahedral at
high density, consistently with the decrease of the O-Si-O
angle (see below). On the other hand, a transition from
2-fold to 3-fold coordinated oxygen atoms is observed,
which is once again consistent with the decrease of the
Si-BO-Si angle (see below).

4. Qn populations

As mentioned earlier, changes in the glass network can
also be characterized by the Qn distribution analysis. We
remind that a Qn silicon atom is defined as an atom
linked with n bridging oxygen atoms. Defining BO and
NBO at high density needs a careful analysis since 3-fold
coordinated oxygen atoms can be found. NBOs are here
thus defined as oxygen atoms connected to only one Si.
BOs are defined as oxygen atoms that are not NBOs.

At ambient pressure, the Qn distribution usually range
from a full Q4 (the silica network) to Q0 network, the or-
thosilicate glass, depending on the amount of soda x. At
̺ = 2.5 g/cm3, the Q0, Q5 and Q6 populations were found
to be negligible (less than 0.1% in each case), Q1,2,3,4

populations from simulation being given in Table I and
compared with results from a previous simulation17, with
results of NMR studies41 and with results17 from a ran-
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FIG. 4: (Color online) Distribution of Qn populations with
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dom model proposed by Lacy42. First, we notice that our
findings differ slightly with those obtained by Cormack17

using the same potential. The origin may be due to
the fact that the system has a different thermal history
(the cooling methodology is slightly different although
the cooling rate is the same). However, both simulations
are consistent with the random model. Differences with
experimental data are important and these shifts have
been found even in very large-scale simulations23. They
have been attributed to the fact that the high cooling rate
used in simulations induces a structure with a higher ef-
fective temperature43 so that the simulated Qn statistics
is the one of a high temperature frozen liquid.

TABLE I: Proportion of Qn populations at room density.

Qn Present MD MD Cormack17 NMR41 Random model42

Q1 1.288 1.857 0.000 2.985
Q2 18.598 15.571 4.776 16.716
Q3 44.067 49.000 68.358 41.493
Q4 35.908 33.571 26.567 37.910

When density changes, we observe that the changes in
Qn populations are correlated with the change in O and
Si coordination numbers (Fig. 3), i.e. they take place
only for ̺ > 3 g/cm3. Qn populations do not show any
significant changes at low density. At ̺ = 2.5 g/cm3, the
Q5 proportion starts to increase however and reaches a
maximum at ̺ = 4.0 g cm3. Again we notice a clear cor-
relation between the Q5 population and the proportion
of SiV. The Q6 proportion only starts to increase from
̺ = 3.1 g /cm3, thus showing a behavior similar to the
one of the proportion of SiVI.

5. Bond-angle distributions

We now focus on the bond-angle distributions (BAD)
and their variations with density, which have been
shown to be extremely sensitive in other tetrahedral
systems38,44. Even at ambient pressure, it allows to un-
derstand how the basic structures of the glass connect to
each other. The O-Si-O BAD, which characterizes the Si
tetrahedrons, is shown in Fig. 5a for three selected den-
sities (̺ = 2.5, 3.5 and 4.5 g/cm3). As expected at the
lowest density (̺ = 2.5 g/cm3), the distribution is sharp
and the average O-Si-O angle is close to the ideal 109.5◦

tetrahedral angle (see also Fig. 6a). At intermediate den-
sities however (̺ ≈ 3.5 g/cm3), the O-Si-O angle displays
now a bimodal distribution with a peak still located at
109◦, reminiscent of the initial tetrahedral structure, and
a growing peak at 90◦. The latter corresponds to the an-
gle that is expected for an octahedral environment. An
additional signature for this environment is provided by
the contribution at 180◦ which appears for larger den-
sities (Fig. 5a) and grows with ̺. At high density (̺
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FIG. 5: (Color online) O-Si-O (a), Si-BO-Si (b) and Si-NBO-
Na (c) bond angle distributions at ̺ = 2.5, 3.5 and 4.5 g
cm−3.

= 4.5 g/cm3, all silicon atoms display an octahedral en-
vironment with a single peak at 90◦ (and the vanishing
of the tetrahedral peak at 109◦) and the contribution at
180◦. The second moment of the O-Si-O BAD is shown
in Fig. 6b and grows from 5◦ at ordinary density (̺ = 2.5
g/cm3) up to more than 30◦ at high density, suggesting
the appearance of a pressure induced disorder manifested
by an increased angular excursion around a mean value.

The Si-BO-Si angle characterizes the way two adjacent
silicon tetrahedrons are connected. At ordinary density,
the angle shows a broad distribution between 120◦ and
180◦ and centered at 153◦ (see also Fig. 6a), compared to
the 142◦ experimental value from NMR45,46. This differ-
ence was also observed by previous simulations, as re-
viewed in19 and is consistent with the over estimated
value of the Si-Si distance. Like the O-Si-O angle, the
Si-BO-Si angle displays a bimodal distribution as den-
sity increases. The BAD shows a second peak close to
100◦ at high density (̺ = 4.5 g/cm3). This contribution
is absent at intermediate densities (̺ = 3.5 g/cm3, see
Fig. 5b) but the trend with ̺ is clearly correlated with
the population of OIII (see Fig. 3b and Fig. 6a). The
decrease of the average value of the Si-BO-Si angle has
also been observed experimentally in silicates47 and for
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GeO2
4.

On the contrary, the Si-NBO-Na BAD does not show
any significant change with density.

6. Orientational parameter

An interesting means to analyze the tetrahedral to oc-
tahedral conversion in liquids and glasses is provided by
the orientational order parameter q (introduced by Chau
and Hardwick48 and rescaled in34), which quantifies the
extent to which a molecule and its four nearest neighbors
adopt a tetrahedral arrangement. It is defined by :

q = 1− 〈
3

8

3∑
i=1

4∑
k=j+1

(cos θijk +
1

3
)〉 (3)

where θijk is the angle formed by the central Si atom
i and its oxygen nearest neighbors j and k, the brack-
ets representing an average over the central Si atoms i
and over the time. This parameter is normalized so that
its average varies between 0 (randomly arranged bonds)
and 1 (perfect tetrahedral network). It has been used
for the analysis of diffusivity anomalies in relationship
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with tetrahedral to octahedral changes in liquid water34,
silica33 and germania49.

Fig. 7 shows the calculated distribution of q values
for 3 selected densities (̺ = 2.5, 3.5 and 4.5 g/cm3).
At room density, the distribution exhibits only a sharp
peak close to q = 0.7 (see Fig. 8), which corresponds
to near-perfect tetrahedral order, as also found for silica
at ambient pressure33. At ̺ = 3.5 g/cm3, the observed
bimodal distribution suggests the existence of both tetra-
hedral Si (high q peak) and higher coordinated Si (low q
peak with q < 0.6). At ̺ = 4.5 g/cm3, the tetrahedral
contribution has vanished. The second moment of the
distributions according to density is shown in Fig. 8. It
characterizes the orientational disorder around central Si
atoms, with σq going from 0.02 at low density up to 0.1

at ̺ = 4.5 g/cm3, suggesting once again the appearance
of a pressure induced disorder.

B. Reciprocal space properties

To investigate the structure of the glass on intermedi-
ate length scales, the neutron structure factor has been
computed. The partial structure factors have been first
calculated from the pair distribution functions gij(r) :

Sij(Q) = 1+̺0

∫ R

0

4πr2(gij(r)−1)
sin(Qr)

Qr
FL(r) dr (4)

where Q is the scattering vector, ̺0 is the average atom
number density and R is the maximum value of the in-
tegration in real space (here R = 15Å). The FL(r) =
sin(πr/R)/(πr/R) term is a Lortch-type window function
used to reduce the effect of the finite cutoff of r in the
integration50. As discussed in51, the use of this function
reduces the ripples at low Q but induces a broadening of
the structure factor peaks. The total neutron structure
factor can then be evaluated from the partial structure
factors following :

SN (Q) = (

n∑
i,j=1

cicjbibj)
−1

n∑
i,j=1

cicjbibjSij(Q) (5)

where ci is the fraction of i atoms (Si, O or Na) and bi
is the neutron scattering length of the species (given by
5.803, 4.1491 and 3.63 fm for oxygen, silicon and sodium
atoms respectively52).

1. Neutron structure factor

The total neutron structure factor SN for different in-
creasing densities are shown on Fig. 9. The room den-
sity structure factor is compared both with the neutron
diffraction results from Wright et al.36 and the simulated
NS2 glass from Horbach et al.14, using an alternative
(BKS) potential. We note that the agreement between
simulation and experiment is good. The agreement of
the first peak with experiment is discussed in details in
the FSDP section below. The second peak position is well
reproduced (3.0Å−1 experimentally, compared to 3.0Å−1

from the present potential and 2.9Å−1 from the BKS po-
tential). The third peak position is also very well repro-

duced (5.4Å−1 experimentally, compared to 5.3Å−1 from

the present potential and 5.2Å−1 from the BKS poten-
tial).

As observed on Fig. 9, the density mainly influences
the low wave vector part of the structure factors, which
suggests that the main effects of density do not apply at
short length scales. The shape in the high Q limit (at

Q>10Å−1 is nearly unchanged for ̺ 6 3.5 g/cm3. All
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FIG. 9: (Color online) Neutron structure factors for increas-
ing densities. Neutron diffraction results from Wright et
al.36 (open circles) and simulation results from Horbach at
al.14 (dotted line) are shown for comparison. Examples of
Lorentzian fits of the FSDP are displayed in orange.

peaks are shifted to higher wave vector (lower r) as den-
sity increases, which is linked to the compaction of the
network. Interestingly, the second moments of the differ-
ent peaks do not show the same behavior with density.
The so-called first sharp diffraction peak (FSDP) at very
low Q becomes broader and less intense with increasing
density, as discussed below. The main peak around 3Å−1

becomes narrower as density increases, whereas the third
one (around 5Å−1) becomes broader. These trends can
be analyzed in more details from the partial structure
factors (see below). The shape of the other peaks are
almost unaffected by density.

2. Partial structure factors

Fig. 10 shows the decomposition of the total structure
factor into contributions of different pair structure factors
SSi-O(Q), SO-O(Q) and SNa-O(Q) for different increasing
densities. The partial SSi-Si(Q), SNa-Na(Q) and SSi-Na(Q)
decay the fastest and have thus not been displayed. At
normal density, the shape of these pair structure factors
and the positions of the peaks are in excellent agreement
with previously reported results from MD simulations53.
At room pressure, the partial SSi-O(Q) shows the most
significant variations with Q both at short wave vector,
correlated to the medium-range order of the silicate net-
work, and at long Q, correlated to the strong short-range
Si-O order. As already observed in the total structure
factor, most of the peaks are also shifted to higher Q
(lower r) as density increases.

The decomposition of the total structure factor can
serve to understand the behavior of the main peak (≃
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FIG. 10: (Color online) Partial structure factors Si-O, O-O
and Na-O for increasing densities.

3Å−1) and of the second main peak (≃ 5Å−1) with den-

sity. Indeed, the peak at 3Å−1 in O-O and Na-O par-
tial structure factors becomes narrower as density in-
creases, an effect which is related to the increased struc-
tural medium-range order at high density. These peaks
contribute the most of the second peaks of the total struc-
ture factor. On the other hand, the main contribution
for the peak at 5Å−1 of the total structure factor arises
from the second Si-O partial structure factor peak, which
becomes broader as density increases. This apparent dis-
order may be attributed to the appearance of coexisting
tetrahedral and octahedral Si-O environment as density
increases.

3. First sharp diffraction peak

FSDPs are not simply the first of the many peaks
of any diffraction pattern but display many anomalous
behavior as a function of temperature, pressure and
composition.54 Since the position of the FSDP QFSDP

is smaller than QP (the position of the principal peak of
the structure factor, associated to the nearest-neighbor
distance), the FSDP corresponds to structural correla-
tions on a larger length scale. This feature has been ob-
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FIG. 11: (Color online) FSDP position of the total Neutron
structure factor and positions of each relevant partial struc-
ture factors FSDP. The insert shows the associated character-
istic distance d = 2π/QFSDP of the total and partial structure
factors.

served both in covalent55,56 and ionic57 amorphous sys-
tem. In ionic systems, this medium range order has been
associated to the forced separation between cations be-
cause of their mutual Coulomb repulsion, thus producing
a prepeak in the cation-cation structure factor58. Pre-
peaks can also arise from size effects of the atoms of the
network59. However, the network formation itself can
have a major role since the FSDP is also observed in the
monoatomic tetravalent systems a-Si and a-Ge60,61. The
FSDP origin is now usually explained by using a void-
based model54,62 in which ordering of interstitial voids
occurs in the structure.

The FSDPs we obtained from simulations were further
studied by fitting them with Lorentzian functions (exam-
ples of fitted functions can be seen on Fig. 9). This choice
is supported by the fact that the experimental results in
neutron scattering factor of silica can be better fitted
with a Lorentzian function than with a Gaussian one63.
It should be noted that the fit has been done on the low
Q part of the FSDP to avoid the contribution of the fol-
lowing peaks. This allows to track precisely intensity,
position and full-width at half maximum (FWHM) with
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FIG. 12: (Color online) (a) Intensity of the FSDP of the total
and partial structure factors. (b) FSDP FWHM of the total
and partial structure factors. The insert shows the correlation
length L = 2π/FWHM.

density. Fig. 11 and 12 show the position QFSDP, the
intensity IFSDP and the FWHM of the FSDP. The com-
puted FSDP position at room density (1.85Å−1) is found
to be in very good agreement with the one obtained from
experiment (1.83Å−1)64 and with the one from the MD

work by Corrales et al. (1.77Å−1)51. Except at very low
density (̺ < 2.5 g/cm3, negative pressure domain), the
FSDP position increases with density while its intensity
decreases. This trend is consistent with X-ray diffraction
results from Benmore in densified silica.65 Interestingly,
the FHWM of the FSDP exhibits a density window be-
tween 2.3 and 3.3 g/cm3 with a minimum found at ̺ =
2.7 g/cm3.

Coming back to the real space correlations, the FSDP
peak position QFSDP is usually related to a character-
istic repeat distance d = 2π/QFSDP and the FWHM
to a correlation length L = 2π/FWHM, sometimes
also called ’coherence length’, due to atomic density
fluctuations66,67. The effect of irradiation36,68, water
content67,69 and alkali content51 on the FSDP have been
studied, leading to the idea that a depolymerization of
the network (a decrease of the atomic order) is associ-
ated to a decrease of the intensity of the FSDP and a
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decrease in the characteristic distance d. A global un-
derstanding of the correlation length L is lacking since it
has been found to decrease with increasing potassium
amount in silica network, to increase with increasing
lithium amount and to show a maximum in sodium sili-
cate when x = 0.2051. It seems therefore highly system
dependent.

The inserts of Fig. 11 and 12b show the computed
characteristic distance d and characteristic correlation
length L as a function of density. It can be observed
that the characteristic distance d decreases with density,
which suggests a decrease of the medium range order
(MRO). On the contrary, the correlation length L does
not follow a general behavior with density since it shows
a density window between 2.3 and 3.3 g/cm3 with a max-
imum at 2.7 g/cm3. We notice that the density of the
maximum of L corresponds to the density of the begin-
ning of the growth of the SiV fraction (see Fig. 3a).

4. Contributions to the FSDP

Even though it can be noticed from Fig. 10 that all
partial structure factors show a FSDP, they do not con-
tribute to the FSDP of the total structure factor at the
same level. To understand the behavior of the FSDP,
the position, intensity and FWHM of the FSDPs of each
partial structure factor Sij(Q) have been computed.

Fig. 11 and 12a show the position and the inten-
sity of the FSDPs according to density. At low den-
sity (̺ < 2.7g/cm3), the main contribution to the total
FSDP clearly comes from the Si-O FSDP, since their po-
sition and intensity are similar and show the same trend.
However, at larger densities, the partial FSDPs positions
show a maximum (around ̺ = 3.1g/cm3) whereas the
total FSDP continuously increases. These maximums
correspond to minimums of the characteristic repeat dis-
tance d and we notice that they occur at the density at
which the SiVI fraction starts to grow. This shows that
the total FSDP is not a simple superposition of the par-
tial FSDP. The shift of the total FSDP to higher Q at
high density can mainly be explained by the increased
contribution of the main peak of the SO-O (at 3Å−1)
whose intensity grows with the density.

Even though the link between the total and the par-
tial FSDPs is not simple, it is interesting to notice that
each partial FSDPs show a minimum of their FWHMs
according to the density (see Fig. 12b). Si-O and O-
Na partial FSDPs FWHM reach their minimums around
2.7g/cm3, corresponding to the minimum of the to-
tal FSDP FWHM. The O-O partial FSDP shows the
sharpest minimum of its FWHM around 3.2g/cm3 (i.e.
at larger density than for the total FSDP) but does not
contribute a lot to the total FSDP due to its low intensity
(see Fig. 12a).
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FIG. 13: (Color online) Vibrational density of states at room
pressure computed from the Fourier transform of the velocity
autocorrelation function (VAF) and from the diagonalization
of the dynamical matrix (DM). The results are compared with
the one from the simulation of Zotov et al.70 using a different
potential. The partial VDOS for Si, BO, NBO and Na are
also shown.

C. Vibrational properties

The nature of the vibrational excitations of silicate
glasses has so far remained a challenging issue. As con-
trary to crystals, the lack of long-range structural or-
der in amorphous solids strongly affects their vibrational
dynamics. The appearance of an excess of vibrational
modes over the Debye level at terahertz frequencies, the
so-called Boson peak (BP), is one of the special features
exhibited by glasses.

1. Vibrational density of states

The vibrational density of states (VDOS) g(ω) can be
computed in two different ways. Starting from a relaxed
glass (via energy minimization or cooling to 0K), one
can compute the dynamical matrix (DM) by evaluating
the second derivative of the total energy with respect to
small atomic displacements71. The diagonalization of the
DM provides the eigenvalues, i.e. the frequency of each
normal vibrational mode. Another way is to compute the
Fourier transform of the velocity autocorrelation function
(VAF) :

g(ω) =
1

NkBT

N∑
j=1

mj

∫
∞

−∞

< vj(t)vj(0) > exp(iωt) dt

(6)
where N is the number of atoms, mj is the mass of an
atom j, ω is the frequency and vj(t) is the velocity of
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FIG. 14: (Color online) Vibrational density of states, com-
puted from the VAF, for different selected densities.

an atom j. It has been reported that both methods lead
to quite similar VDOS in silica72. Although the DM ap-
proach is far more expensive computationally than the
VAF one, it should be noted that, looking at the eigen-
vectors ei associated to each eigenvalue frequency ωi, one
can get the details of the nature of each normal mode.
One can, for example, compute the partial VDOS gα(ω)
(α = Si, BO, NBO, Na) for each atom defined as :

gα(ωi) = g(ωi)
∑
j∈α

|ej(ωi)|
2 (7)

where ej(ωi) are the 3-component real space eigenvectors
associated to the atoms α.

Fig. 13 shows the VDOS, scaled to one, computed us-
ing the two previously described methods. We observe a
fair agreement between both methods, especially at low
and intermediate frequency. The difference at high fre-
quency can be explained by the harmonic assumption on
which the DM method relies. The results are compared
with the one from the simulation of Zotov et al.70. We
observe that the agreement is very poor even if some
trends are similar (sharp peak at high frequency and ap-
pearance of a new peak at low frequency increasing with
respect to the amount of sodium). We note that the sim-
ulation from Zotov et al. uses a different potential (from
Vessal) involving both 2- and 3-body terms and that the
system is quite smaller (1080 atoms, as compared to 3000
in the present simulation). Unfortunately, to our knowl-
edge, no experimental VDOS is currently available for
this composition.

Using Eq. 7, the partial VDOS have been computed
and are shown on Fig. 13. Note that O atoms have
been split into BOs and NBOs. Relying on the vi-
brational analysis of silica72,73, one can interpret some
features of the present VDOS. Si atoms contribute the
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0.1
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ω
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-3

ρ = 4.5 g cm
-3

FIG. 15: (Color online) Boson peak visualization for different
selected densities.

most at high frequency (27-37 THz, symmetric and anti-
symmetric stretching modes) and at intermediate fre-
quency (22 THz, O-Si-O bending mode). BO atoms pre-
dominant contributions occur at high frequency (29-37
THz, symmetric stretching modes) and at low and inter-
mediate frequency (0-26 THz, Si-BO-Si bending mode
and symmetric stretching mode). The contribution of
NBOs differs from the one of the BOs because of the
decreased number of O-Si stretching modes and of the
softening of the Si-NBO-Na bending mode as compared
to the Si-BO-Si mode. Most of the low frequency contri-
bution comes from Na atoms (0-10 THz, Na-NBO low-
energy stretching modes).

Fig. 14 shows the vibrational density of states, scaled
to one, for different increasing densities. We observe
some trends which are similar to the ones observed
in densified silica74 : decrease of the number of low-
frequency modes, disappearance of the gap between in-
termediate and high frequency modes around 27 THz
and broadening of the high-frequency peak. The low-
frequency region, whose contribution mainly comes from
Na atoms, is the most affected part of the VDOS, suggest-
ing that the Na vibrational modes are strongly modified
during densification.

As density increases, the low-frequency peak coming
from Na-O bounds decreases in intensity and is shifted
to higher frequencies. The high frequency peak coming
from Si-O bounds becomes broader but does not show
any significant frequency shift.

2. Boson peak

The origin of the BP in silica, still controversial, has
been associated to the existence of local modes involving
rocking motions of distorted SiO4 tetrahedrons75–77. The
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FIG. 16: (Color online) Boson peak position (left axis) and
intensity (right axis) with respect to density.

BP can be observed by looking at the excess VDOS over
the Debye law g(ω)− gD(ω) or at the quantity g(ω)/ω2.
The latter quantity can be identified with the one-phonon
scattering cross section as measured in neutron scatter-
ing experiments77,78 and is shown on Fig. 15 for three
selected densities. A pronounced peak can be observed
at each density, even if its intensity decreases with den-
sity. At room pressure, the BP is found to be located
at ωBP=1.3 THz, which is lower than the value found
experimentally (Raman) of 1.95 THz (65 cm−1)79.

The BP properties have been further analyzed by com-
puting its position ωBP and its intensity IBP, quantities
that are displayed on Fig. 16. It can been observed that
IBP decreases with density, while ωBP increases with den-
sity. Both of these two trends (decrease of the intensity
and increase of the frequency) have been observed ex-
perimentally in many system, such as in pure silica80, in
lithium silicate glass81, in a Na2FeSi3O8 glass82 as well
as in different polymers83.

IV. LIQUID

A. Thermodynamics

To evaluate the equation of state (EOS) of the liquid,
many thermodynamics points have been computed (T, ̺,
P). The following range has been studied : 1.5 6 ̺ 6 5.5
g/cm3 and 1500 6 T 6 3000 K, which correspond to the
following pressure range : −2.23 6 P 6 150 GPa. In con-
trast with previous works on molecular fluids84,85 and sil-
ica, where the data were fitted using a Van der Waals type
EOS, the data of the current simulations were fitted with
a Birch-Murnaghan equation of state (BM EOS) that has
a simpler form86,87. It has revealed to give reasonable fits
in the case of a liquid densified germania88 and is widely
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FIG. 17: (Color online) Isotherms for glass and liquid NS2.
The curves are separated by 500K each. The inset shows the
corresponding data in (̺, P) together with the BM fits (solid
lines).
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FIG. 18: (Color online) Isothermal compressibility κT with
respect to density in liquid NS2 for various temperatures rang-
ing from 3000 to 1500K separated by 500K each. The curves
are computed using the BM EOS. The inset shows the room
pressure density ̺0 change with temperature.

used in geophysical studies (see for example89).
Fig. 17 shows the isotherms of the glass and the liquid

in the (P, V) representation. The data have been fitted
far from the critical region with the BM EOS, that has
the following form :

P =
3

2
K((

̺

̺0
)7/3 − [

̺

̺0
]5/3)(1 −

3

4
(4−K1)([

̺

̺0
]2/3 − 1))

(8)
where K is the bulk modulus at P=0, K1 = dK/dP at P
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FIG. 19: (Color online) Radial distribution function for in-
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= 0 and ̺0 is zero-pressure density of the liquid. The fit
can be made with two parameters only (K and K1) since
̺0 can be accessed from the isothermal data displayed on
Fig. 17. It can be seen that the data are very well fitted
by the BM EOS along all the density and temperature
range.

In addition, the BM EOS allows to have access to the
bulk modulus K at P=0 and to the isothermal compress-
ibility κT = ̺−1(∂̺/∂P )T according to the density (plot-
ted on Fig. 18). The observed behavior, enhanced com-
pressibility with falling density, is realistic, as well as the
decrease of the bulk modulus at P = 0 with respect to
the temperature (see the insert of Fig. 18). The results
are in good agreement with the only experimental data
on liquid NS2 we are aware of (K = 13.4 GPa and κT =
0.075 GPa−1 at T=1500 K and P = 0)90.

B. Structure

Fig. 19 shows the total correlation function gT(r) for
different increasing temperatures, both at low and high
density. It can be observed that density seems to have
a more critical influence on structure than temperature.
Indeed, the positions of the peaks do not show any signif-
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FIG. 20: (Color online) Distribution of IV, V and VI-fold
coordinated silicon atoms (a) and of I, II and III-fold coordi-
nated oxygen atoms (b) with respect to density both at 300K
(filled symbols) and 2000K (open symbols). Sodium atoms
are not taken into account in the enumeration of the neigh-
bors, so that OI refer to NBOs.

icant shift as temperature increases. The only behavior
that can be seen is a broadening of all peaks as tempera-
ture increases, which can be explained by the increasing
disorder due to the increasing thermal energy. The same
trends are observed in pure silica91.

Eventually, the influence of the temperature on the co-
ordination numbers has been checked. The populations
of the different Si and O species according to the density
are plotted on Fig. 20 both at T = 300K and 2000K. The
transition between SiIV into SiV and SiVI is still clearly
observed, although the transition occurs at a lower den-
sity than in the glass (density shift of approximately 0.2
g/cm3). The same shift can be observed for the O species.

V. CONCLUSION

Our purpose in the present paper has been to provide a
systematic and extensive study of the properties of den-
sified glassy and liquid NS2 sodium silicate.

While bond distances remains nearly unchanged, pres-
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sure has a strong effect on angles and coordination num-
bers. A transition from tetrahedral to octahedral silicon
environment is found. The fraction of NBOs decreases
and OIII tricluster are observed at high density. The
usual vibrational behavior is observed, i.e. the decrease
of the amount of low frequency modes, the increase of the
frequency of the Boson peak and the decrease of its in-
tensity under pressure. Expected anomalous effects are
found in the medium range order (increase of the po-
sition of the FSDP and decrease of its intensity under
pressure), but, more surprisingly, we observe a minimum
of the FWHM of the FSDP according to the density.
Temperature is found to have only small effects on struc-
ture and the Birch-Murnaghan equation of state allows
to reproduce the densification of the liquid at each tem-
perature.

Finally, it is worth mentioning that, as ambient pres-

sure, it is well-known that changes in composition of the
glass (and especially in the amount of sodium atoms) in-
duce changes of the degree of polymerization of the glass.
These competitive effects (depolymerization by sodium
atoms and repolymerization by the pressure) should be
addressed in the future for a better understanding of the
glass network properties.
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