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Open access repository-scale propagated
nearest neighbor suspect spectral library for
untargeted metabolomics

A list of authors and their affiliations appears at the end of the paper

Despite the increasing availability of tandem mass spectrometry (MS/MS)
community spectral libraries for untargeted metabolomics over the past
decade, the majority of acquired MS/MS spectra remain uninterpreted. To
further aid in interpreting unannotated spectra, we created a nearest neighbor
suspect spectral library, consisting of 87,916 annotated MS/MS spectra
derived from hundreds of millions of MS/MS spectra originating from pub-
lished untargeted metabolomics experiments. Entries in this library, or “sus-
pects,” were derived from unannotated spectra that could be linked in a
molecular network to an annotated spectrum. Annotations were propagated
to unknowns based on structural relationships to reference molecules using
MS/MS-based spectrum alignment. We demonstrate the broad relevance of
the nearest neighbor suspect spectral library through representative examples
of propagation-based annotation of acylcarnitines, bacterial and plant natural
products, and drug metabolism. Our results also highlight how the library can
help to better understand an Alzheimer’s brain phenotype. The nearest
neighbor suspect spectral library is openly available for download or for data
analysis through the GNPS platform to help investigators hypothesize candi-
date structures for unknownMS/MS spectra in untargetedmetabolomics data.

When searching untargeted tandem mass spectrometry (MS/MS)
metabolomics data using spectral libraries, on average only ~5% of the
data can be annotated (~10% for human datasets)1. Unannotated
spectra can arise due to incomplete coverage of the reference MS/MS
spectral libraries of known compounds, including missing MS/MS
spectra of different ion species, such as different ion forms, in-source
fragments, and formation ofmultimers2–4. We hypothesized thatmany
of the unidentified ions originate from different but related known
molecules. Those molecules could be a result of host or microbial
metabolism or promiscuous enzymes that accept various analogous
substrates during biosynthesis5. To find related candidate ion species
or to discover analogousMS/MS spectra from ions that originate from
relatedmolecules, strategies such asmolecular networking6 and other
analog searching strategies4,7–11 can be employed, for which molecular
networking—a data visualization and interpretation strategy of MS/MS
spectral alignment—in the Global Natural Products Social Molecular

Networking (GNPS) environment12 is one of the most widely used
tools13.

In this work, we show that these strategies can also be used to
generate new libraries of MS/MS reference spectra of potentially
related MS/MS annotations from analog molecules that can subse-
quently be reused by the community. Previously, small reference
spectral libraries of human milk oligosaccharides14 and urine
acylcarnitines15 have been produced using an analog searching strat-
egy (although the user licenses of these libraries restrict their redis-
tribution).Wehypothesized that thebenefits of this approach could be
further increased by considering analog matches across extremely
large collections ofMS/MS spectra tomaximize thenumber of relevant
spectrum links that can be found. Therefore, we have created a freely
accessible and reusable MS/MS spectral library of MS/MS spectra
related to identifiable molecules using molecular networking at the
repository scale and created a nearest neighbor suspect spectral
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library to facilitate the annotation of mass spectrometry features that
are present in public data.

Results
Nearest neighbor suspect spectral library creation
Using molecular networking, we have created a freely available and
open-access mass spectral library of chemical analogs, referred to as
the “nearest neighbor suspect spectral library.”The librarywas created
from compatible public datasets deposited to GNPS/MassIVE12,
MetaboLights16, and Metabolomics Workbench17. In total, 521 million
MS/MS spectra in 1335 public projects, with data from thousands of
different organisms from diverse sources, including microbial culture
collections, food, soil, dissolved organic matter, marine invertebrates,
and humans, were used to compile the nearest neighbor suspect
spectral library. Entries in this library, or “suspects,”were derived from
unannotated spectra that were linked in a molecular network (based
on spectral similarity) to an annotated spectrum by MS/MS spectral
library searching and where the precursor ion mass difference
between the two spectra was non-zero.

A hierarchical processing strategy was employed to compile the
nearest neighbor suspect spectral library from repository-scale public
MS/MS data (Fig. 1). First, separate molecular networks were created

for each dataset individually, whilemerging near-identical spectra and
only keeping spectra that occur at least twice within the dataset to
eliminate non-reproducible MS/MS spectra (Fig. 1, step 1). Spectrum
annotations were obtained at the individual dataset level by matching
against 221,224 reference spectra available in the GNPS community
spectral libraries (June 2021) using parameters consistent with a false
discovery rate < 1%12. The cosine similarity was calculated using filtered
spectra (the precursorm/z peak was removed and only the top 6most
intense ions in every 50m/z window were included), and spectrum
matches with a cosine score of 0.8 or higher and a minimum of 6
matching ions were accepted. Second, a globalmolecular networkwas
created from all of the individual networks using the GNPS modified
cosine similarity (Fig. 1, step 2). Finally, annotation propagations to the
nearest neighbors were extracted from all molecular networks to
create the library of nearest neighbor suspects (Fig. 1, step 3). To
maximize the quality of the suspect annotations, suspects with infre-
quent mass offsets that occur fewer than ten times were excluded, as
these are considered to be less-reproducible mass differences (Sup-
plementary Fig. 1). Finally, a representative number of the annotation
propagations were validated through expert manual inspection. The
compilation of a global molecular network by co-networking thou-
sands of datasets is an inherently more powerful strategy to discover
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Fig. 1 | Creation of the nearest neighbor suspect spectral library. Overview of
how the suspect library was created. Step 1: molecular networking of individual
datasets. Step 2: co-networking of the 1335 datasets to create a global molecular

network. Step 3: extract nearest neighbor suspects through annotation propaga-
tion to create the library.
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relationships between MS/MS spectra, and thus between their corre-
sponding molecules, than independent molecular networking within
separate datasets, as moving to the repository scale makes it possible
to discover patterns that cannot be detected from individual datasets
in isolation18. For example, if molecules are transformed during
metabolism, the unmodified form might only be present as an endo-
genous molecule in the originating organism, such as plant or animal-
based food products, with a modified variant due to metabolism pre-
sent in samples from humans that consumed these foods (Fig. 1).

In total, 87,916 unique MS/MS spectra and provenance to their
matching analogs in the GNPS spectral libraries are included in the
nearest neighbor suspect spectral library. Importantly, all of the
nearest neighbor suspects are real spectra that occur in experimental
data, whereas only a small portion (less than 10%) of reference MS/MS
spectra in public and commercially available MS/MS spectral libraries
have been observed in public data1. To homogenize and extend the
information available for the suspects, molecular formulas were
determined using SIRIUS19 and BUDDY20. The elemental composition
of the suspects reflects the characteristics of known reference libraries
(Fig. 2a). For example, molecules that exclusively contain CH display
poor ionization efficiency using electrospray ionization and are
observed very rarely for both library types. Some suspects, such as
common contaminants from sample vials, skin, or sodium formate
clusters, as well as those related to endogenous molecules, such as
fatty acids (e.g., vaccenic acid), bile acids (e.g., cholic acid), and lipids
(e.g., phosphatidylcholines), are found in hundreds of public datasets
and mass spectrometry files. In contrast, others, such as the natural
products apratoxin, chelidonine, or marrubiin are observed less fre-
quently (Fig. 2b, Supplementary Data 1).

There are 1350 frequent delta masses that occur in the nearest
neighbor suspect spectral library (Fig. 2c, Supplementary Data 2).

When possible, the elemental composition of the delta masses and
potential explanations, sourced from UNIMOD21—as many post-
translational modifications or adducts that are observed in pro-
teomics can also be found for small molecules—and a community-
curated list of delta masses (Supplementary Data 3) are provided. The
majority of delta mass explanations match the molecular formulas
predicted by SIRIUS and BUDDY (Supplementary Fig. 2), indicating the
complementarity of these approaches to interpret the structural
modifications that the suspects have undergone. The most common
mass offsets observed in the suspect library correspond to a gain or
loss of 2.016Da,which canbe interpreted as the gain or loss of 2H (e.g.,
a double bond or ring structure), followed by a gain or loss of
28.031 Da, 14.016Da, 18.011 Da, and 15.995 Da, corresponding to C2H4

(e.g., di(de)methylation or (de)ethylation), CH2 (e.g., (de)methylation),
H2O (e.g., water gain/loss), and O (e.g., (de)oxidation or (de)hydro-
xylation), respectively. However, 852 out of the 1350mass offsets have
not yet been explained (Supplementary Fig. 1). For example, although
these mass offsets occur less frequently, there are at least five
repeatedly observed offsets with a nominal delta mass of −80Da
(Fig. 2d), of which only phosphate loss (−79.966Da) and sulfate loss
(−79.957Da) could currently be explained.

Spectral libraries are typically created by acquiring spectral data
for pure standards, and reference MS/MS spectra have associated
information on the precursor ions, compound names, and, when
available, the molecular structures. In contrast, because the nearest
neighbor suspect spectral library was compiled in a data-driven fash-
ion, exact molecular structures are not known. Instead, the prove-
nance of the suspectMS/MS spectra is described by their relationships
to spectra that have an annotation, including the name and structure
of the nearest neighborMS/MS annotations and the observed pairwise
delta masses. This is complemented by computed molecular formulas

Fig. 2 | Composition of the nearest neighbor suspect spectral library. a The
composition of suspects that exclusively exist of CH, CHO, CHNO, or contain P or S
compared to the reference libraries.bRepeated occurrences of the suspects across
datasets and files (i.e., individual LC-MS runs). c Frequently observed mass offsets

(delta masses between pairs of spectra) associated with the suspect library.
d Frequently observedmass offsets around a nominal mass of −80Da. Source data
are provided as a Source Data file.
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and the elemental composition and potential explanation of the delta
masses, as determined by matching against a curated list of delta
masses. Suspects thus represent unknown molecules that are likely
structurally related to reference molecules annotated using spectral
library searching, with the location of the structural modification
generally unspecified. Without any additional information, this is in
agreement with a level 3 annotation (family level match) according to
the Metabolomics Standards Initiative guidelines22.

Suspects provide structural hypotheses for observed molecules
The nearest neighbor suspect spectral library covers various classes of
molecules arising from both primary and specialized metabolism,
including lipids, flavonoids, and peptides. A fundamental under-
standing of organic chemistry, mass spectral fragmentation, and
awareness of the information that mass spectrometry can or cannot
provide is key to achieve the deepest possible structural insights from
the suspect library. To demonstrate how the nearest neighbor anno-
tations can be used to propagate structural information, we highlight
examples of acylcarnitines, apratoxin natural products, drug metabo-
lism, flavonoids, and polymers in greater detail. Note that we do not
discuss the stereochemistry of the suspect examples, as this informa-
tion generally cannot be determined using mass spectrometry.

The first example involves several acylcarnitines, a group of
molecules that plays a key role in mammalian—including human—
energy cycling (Fig. 3)23. Hexanoylcarnitine, C6:0, is formed from the
condensationof carnitinewithhexanoic acid, a linear fatty acidwith six
carbons and zero double bonds (Fig. 3a). Based on expert interpreta-
tion of the MS/MS spectra for suspects related to hexanoylcarnitine,
we were able to derive structural hypotheses for several related acyl-
carnitines (Fig. 3b). The first suspect examplewas initially annotated as

a hexanoylcarnitine but with a loss of 2.016Da. This indicates that this
suspect is likely a hexenoylcarnitine derived from a C6:1 fatty acid.
Thus, the six carbon fatty acid tail now has one double bond, but the
location of the double bond and its configuration (E vs Z) cannot be
determined. The second acylcarnitine suspect was annotated as a
hexanoylcarnitine with a gain of 5.955Da, which corresponds to a gain
of one C along with the loss of six hydrogens. The only structure that
can match the acyl side chain is a planar benzoyl ester. The third
acylcarnitine suspect example showed an addition of 114.068Da,
representing a carnitine with an acyl side chain that has two oxygens
and twelve carbons, as derived from the mass difference and char-
acteristic neutral losses for carnitine conjugates of dicarboxylic
acids (179.121 Da and 207.130Da)24, which is consistent with dodeca-
nedioylcarnitine. Additionally, we also found two suspects related
to hexanoylcarnitine that include a characteristic 3-hydroxy fragment
ion with a mass of 145.050Da25 (Fig. 3c). The first of these was initi-
ally annotated as hexanoylcarnitine but with a loss of 12.036Da.
Although close in value, based on accuratemass defects, the observed
mass difference does not correspond to a loss of C (12.000Da),
but rather a combination that corresponds to the loss of C2H4 and
gain ofO. As the typical carnitine fragmentation pattern is conserved15,
we can determine that these changes occur in the fatty acid portion
of the molecule, and thus, that this is likely a hydroxybutanoic
acid carnitine derivative, leading to the final interpretation of
3-hydroxybutyrylcarnitine. The second 3-hydroxy suspect derived
from hexanoylcarnitine showed an addition of 15.995Da, representing
a possible oxidation that can be localized based on the characteristic
3-hydroxy fragment25, resulting in a spectrum annotation of
3-hydroxyhexanoylcarnitine. These two 3-hydroxy suspects also show
excellent correspondence to commercial standards that were

a c

b

Fig. 3 | Novel acylcarnitine reference spectra obtained using the nearest
neighbor suspect spectral library. Reference MS/MS spectra are indicated by ★.
aReferenceMS/MS spectrum for hexanoylcarnitine originally included in theGNPS
community spectral libraries. b Nearest neighbor suspects related to hex-
anoylcarnitine. Annotations based on expert interpretation are: hexanoylcarnitine
derived from a C6:1 fatty acid (unknown location of the double bond),

benzoylcarnitine, and dodecanedioylcarnitine. cNearest neighbor suspects related
to hexanoylcarnitine for 3-hydroxybutyrylcarnitine and
3-hydroxyhexanoylcarnitine (bottom) confirmed against commercial standards
(top). The suspect MS/MS spectra show a very high cosine similarity of 0.9988 and
0.9927 to the reference MS/MS spectra for 3-hydroxybutyrylcarnitine and 3-
hydroxyhexanoylcarnitine, respectively.
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subsequently purchased and measured, confirming our structural
assignments (Fig. 3c).

The suspect library is also informative for the analysis of more
complex molecules. The apratoxin family of natural products was
isolated from filamentous cyanobacteria, and has been investigated in
a number of biological systems due to its potent antineoplastic
activities26,27. Using the suspect library to analyze aMoorena bouillonii
cyanobacterial dataset achieved six additional spectrum annotations
in the apratoxinmolecular family (Fig. 4a). A structural annotation can

be determined for four of these based on comparisons to the MS/MS
spectra of apratoxin standards. The four MS/MS spectra in Fig. 4b
show standards of purified apratoxin A, D, F, andC, while Fig. 4c shows
four apratoxin suspects with proposed structures. Some key sub-
stitutions observed are proline for N-methylalanine, methoxytyrosine
for tyrosine, and dimethyl versus trimethyl polyketide initiating units.
These substitutions are likely generated due to biosynthetic pro-
miscuity commonly associated with multimodular hybrid non-
ribosomal peptide synthetases-polyketide synthases28. The apratoxin

Fig. 4 | Novel apratoxin reference spectra obtained using the nearest neighbor
suspect spectral library. a Apratoxin cluster in a molecular network created from
Moorena bouillonii crude extracts. The reference spectral library hits are shown by
the blue squares (b). The purple and pink diamond nodes representmatches to the
nearest neighbor suspect spectral library, with the purple diamonds matching the
MS/MS spectra shown for which structures could be proposed (c). The white nodes
are additional MS/MS spectra within the apratoxin molecular family that remained

unannotated, even when including the suspect library. b ReferenceMS/MS spectra
and molecular structures of known apratoxins. c MS/MS spectra and structural
hypotheses for four novel apratoxin suspects. All four apratoxin suspects were
derived from the tropical marine benthic filamentous cyanobacterium Moorena
bouillonii, which is known to produce apratoxins (MSV000086109 [https://doi.org/
10.25345/C52475]).
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suspects that were observed are apratoxin A and F with loss of
30.010Da, apratoxin A with loss of 26.015Da, apratoxin A with loss of
28.031 Da, and apratoxin A and Fwith loss of 14.016Da; corresponding
to CH2O (e.g., methoxy loss), C2H2 or CH2 +C loss, C2H4 loss (e.g.,
dimethylation), and CH2 loss (e.g., methyl), respectively. The MS/MS
spectra for four of the apratoxin suspects are shown in Fig. 4c. Based
on the fragmentation, them/z difference corresponding to CH2 loss in
apratoxin A is due to unmethylated tyrosine, which could be explained
by inactivity of an O-methyl transferase during biosynthesis. The
fragmentation for both apratoxins with the 30.010Da loss supports
that the m/z difference corresponding to methoxy loss is a result of
phenylalanine incorporation by the associated adenylation domain
rather than the methylated tyrosine observed in previously published
apratoxin structures. Finally, although the loss of 26.015Da is more
complex, the other known apratoxins, together with their fragmenta-
tion, can be used to formulate a refined structural hypothesis. Com-
pared to apratoxin A, the proline is likely substituted by an
N-methylalanine, corresponding to a loss of C, and the trimethyl
initiating unit is replaced by an isopropyl initiating unit. To obtain
support for thesemodifications, isolation of this suspect (apratoxin A -
26.015Da) was attempted from an extract of Moorena bouillonii;
however, this resulted in a semi-pure fraction consisting of the suspect
and small amounts of coeluting impurities. The semipure fraction was
subjected to nuclear magnetic resonance (NMR) analysis (Supple-
mentary Figs. 3–4). Compared to NMR analysis of apratoxin A and
consistent with the mass spectrometry interpretation, the NMR cor-
relations associated with proline are lost and the NMR signals corre-
sponding to N-methylation of alanine are now observed. Substructure
analysis based on the MS/MS data revealed that the polyketide syn-
thase portion of the apratoxin suspect differs by one methyl group.
This is consistent with the suspect containing an isopropyl group, as
observed in apratoxin C, rather than the tert-butyl group observed in
nearly all of the other apratoxins.

The suspect library also contains modified versions of known
drugs that can arise due to in-source fragmentation, the formation of
different ion species, incomplete synthesis or biosynthesis of the
active ingredient that arises during manufacturing of the drug, or
modifications introduced due to metabolism. An example is a suspect
found in a human breast milk dataset matching the antibiotic azi-
thromycin (Supplementary Fig. 5)29. The suspect is 14.015Da lighter,
consistent with a CH2 loss. Based on inspection of theMS/MSdata, it is
possible to tentatively assign this loss of CH2 to the methoxy group in
the cladinose sugar, based on the presence of a hydroxy loss and
absence of a methoxy loss.

Next, MS/MS data from medicinal plants listed in the Korean
Pharmacopeia were analyzed using molecular networking. Several
flavonoid diglycosides containing pentoses and hexoses were detec-
ted using MS/MS spectral library searching, with the default GNPS
libraries providing ten spectrum annotations in this molecular family
and the suspect library contributing annotations for 27 diglycoside
analogs (Supplementary Fig. 6)30. Visual inspection of the MS/MS
spectra indicated several modifications to formulate structural
hypotheses for these suspects. For example, the apigenin-8-C-hex-
osylhexoside suspect with a delta mass of −30.019Da corresponds to
apigenin-8-C-pentosylhexoside. The presence of a pentose, instead of
a hexose, is indeed consistent with the loss of CH2O.

Finally, analysis of closely related polymeric substances resulted
in a substantial increase in annotations (Supplementary Fig. 7). In an
indoor chemistry environmental study31, where a house was sampled
before and after a month of human occupancy, there was a single
spectrummatchusing the default GNPS libraries, to p-tert-octylphenol
pentaglycol ether. Incorporating the suspect library added 55matches
that are related topolyethers, and that could be interpreted as part of a
molecular family containing polymers. Thus, matching to the default
GNPS spectral libraries alone gave the erroneous impression that there

were only a few octylphenol-polyethylene glycol molecules detectable
within the house, while the suspect library revealed that there is a large
and diverse group of them.

In conclusion, these examples highlight how annotations pro-
vided by MS/MS spectral libraries, including the nearest neighbor
suspect spectral library, can assist in providing structural hypotheses
at the molecular family level for observed molecules.

Increases in MS/MS spectrum annotation provide new biome-
dical insights
To evaluate the spectrum annotation performance of the nearest
neighbor suspect spectral library, we performed spectral library
searching of public untargeted metabolomics data on GNPS/MassIVE
(Fig. 5a). For the 1335 public datasets included during the creation of
the suspect library, the default GNPS libraries resulted in an average
MS/MS spectrum match rate of 5.5% (median 3.6%). Inclusion of the
suspect library boosted the MS/MS spectrum match rate to 9.3%
(median 6.4%), corresponding to 19 million additional spectrum mat-
ches. While these datasets were used to generate the suspect library, a
similar increase in spectrummatch rate was achieved for independent
test data that were not part of the molecular networks from which the
suspect library was compiled. For 72 datasets that were publicly
deposited after the creation of the suspect library, the average spec-
trum match rate using the default GNPS libraries was 5.7% (median
4.7%), which increased to 8.9% (median 7.5%) when including the sus-
pect library. Furthermore, we evaluated the performance of the sus-
pect library for samples of different origins as recorded using the
ReDU metadata system (Fig. 5b)18. For 45,845 raw files from 179 data-
sets with controlled vocabularies for sample information, such as
animal (including human), bacterial, fungal, environmental, food, and
plant samples, the suspect library consistently achieved an increased
spectrum match rate, ranging from a 1.7 ± 0.3 fold increase in inter-
preted spectra for food data to 3.0 ±0.7 fold increase for environ-
mental samples (mean and standard deviation).

To further demonstrate the utility of the suspect library, we
focusedonuntargetedmetabolomicsdata from514humanbrainswith
and without Alzheimer’s disease32. Using the default GNPS libraries
there were 248,317 MS/MS spectral library matches, corresponding to
1305 unique molecule annotations. Including the suspect library
increased the number of spectrummatches to 401,039, covering 5184
unique molecule annotations (Fig. 5c). One specific class of molecules
that saw a particularly large increase in the number of annotations in
this cohort was the acylcarnitines. There were 942 spectrum matches
to 12 unique molecule annotations before the suspect library was
included, but 1896 spectrum matches to 104 unique molecule anno-
tations after inclusion of the suspect library.

We observed significant abundance differences for six acylcarni-
tines, as well as carnitine, when comparing brain metabolites between
groupswith andwithout Alzheimer’s diagnosis (Fig. 5d). Threeof those
—carnitine, octanoylcarnitine, and lauroylcarnitine—could be anno-
tated using the default GNPS libraries, while the remaining four
metabolites couldonly be identified as acylcarnitines using the suspect
library. The annotations of these seven metabolites were covered by
three spectral library matches and eight suspect matches. When mul-
tiple spectra matched against the same metabolite, these annotations
reinforced eachother. For example, the carnitine annotation co-occurs
with a match to the acetylcarnitine suspect with a loss of 42.010Da. In
this case, 42.010Da corresponds to the mass of acetylation, which is
lost in the suspect annotation, and therefore the suspect MS/MS
spectrum represents carnitine itself. The four suspects that would
otherwise remain unassigned as potential acylcarnitines are hex-
anoylcarnitine with loss of 12.036Da (3-hydroxybutyrylcarnitine,
Fig. 3c), hexanoylcarnitine with addition of 15.995Da (3-hydro-
xyhexanoylcarnitine, Fig. 3c), decanoyl-L-carnitine with loss of
14.090Da (-3C,-10H, + 2O in the acyl chain), and decanoyl-L-carnitine
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with loss of 42.047Da (-3C,-6H in the acyl chain). The first two suspects
are related 3-hydroxy acylcarnitines that have 3-hydroxy-butyrate and
3-hydroxy-hexonate as the acyl side chain, whose predictionsmatched
to data from commercial standards (Fig. 3c). The other two suspects
are consistentwithDC7:1 andC7:0 acylcarnitines33. Theseobservations
provide additional support that there are different fatty acids—now
also including 3-hydroxy and odd-chain fatty acids—that are

transported as carnitine derivatives in Alzheimer’s disease brains in
comparison to healthy brains34,35.

Discussion
The annotation of untargeted metabolomics data is based on refer-
ence spectral libraries. However, because many known compounds
and previously undiscovered analogs of compounds are unavailable as

Fig. 5 | Impact of the nearest neighbor suspect spectral library on spectrum
matches to enable the formulation of structural hypotheses. a The MS/MS
spectrummatch rate with and without the suspect library for 1407 public datasets
on GNPS/MassIVE. The full center line indicates the median values, and the dashed
center line indicates the mean values. The box limits indicate the first and third
quartiles of the data, and the whiskers extend to 1.5 times the interquartile range.
b TheMS/MS spectrummatch rate for different types of datasets with and without
the suspect library. The data comes from 45,845 raw files in 179 datasets with
known sample types recorded using the ReDU metadata system18. c MS/MS mat-
ches to anuntargetedmetabolomics humanbrain dataset fromAlzheimer’s disease
patients (n = 360) and healthy subjects (n = 154) with and without the suspect
library.dDifferentially abundant carnitines for Alzheimer’s disease patients (n = 514
biologically independent samples; Benjamini-Hochberg corrected p-value < 0.05).
The suspect library was able to identify four additional mass spectrometry features
as acylcarnitines, which would have remained unannotated matched only against
the default GNPS libraries. Statistically significant carnitines were determined using

the Spearman correlations between all acylcarnitine extracted ion chromatograms
(XICs) and the subjects’ CERAD scores (ameasure of Alzheimer progression, with 1
indicating “definite” Alzheimer’s disease and 4 indicating “no” Alzheimer’s disease)
and the correlation coefficients and associated p-values were recorded. Multiple
testing correction of the p-values was performed using the Benjamini-Hochberg
procedure. For visualization purposes the four-scale CERAD scorewas binarized by
considering a CERAD score of 1 or 2 to correspond to positive Alzheimer’s disease
patients, and a CERAD score of 3 or 4 to correspond to healthy individuals. The box
limits indicate the first and third quartiles of the data, the center represents the
median, and the whiskers extend to 1.5 times the interquartile range. P-values for
the statistically significant carnitines are as follows. Hexanoylcarnitine – 12.036Da
→ 0.00073; octanoylcarnitine → 0.03558; L-carnitine → 0.03966; hexanoyl-L-
carnitine → 0.03966; lauroylcarnitine → 0.03966; decanoyl-L-carnitine – 14.090Da
→ 0.03966; decanoyl-L-carnitine – 42.047Da → 0.03966. Source data are provided
as a Source Data file.
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reference standards, alternative approaches are required to interpret
suchMS/MS spectra. Here we have introduced a data-driven approach
to compile an extensive nearest neighbor suspect spectral library. This
library consists of 87,916 unique MS/MS spectra and can be freely
downloaded as Mascot generic format and MSP files from the GNPS
website. Additionally, through its direct integration in the spectral
library searching andmolecular networking functionality on the GNPS
platform, the scientific community can incorporate the nearest
neighbor suspect spectral library in their data analyses to formulate
structural hypotheses.

The nearest neighbor suspect spectral library is closely related to
analog searching. As suspects are derived from unannotated spectra
that were linked in a molecular network to an annotated spectrum by
MS/MS spectral library searching, conceptually analog searching can
be used to directly annotate the MS/MS spectra as well. However, the
nearest neighbor suspect spectral library has several ways it comple-
ments and/or brings advantages to analog searching. First, analog
searching is computationally very expensive due to themassive search
space that needs to be considered by opening up the precursor mass
tolerance. As such, optimized algorithms36,37 or even specialized
hardware38 are required to be able to do this efficiently. In contrast, the
nearest neighbor suspect spectral library seamlessly works with stan-
dard spectral library searching procedures that are ubiquitously
available. Second, analog searching suffers from an increased rate of
false positive annotations, as random high-scoring matches are more
likely to occur when considering a very large search space. In contrast,
we explicitly safeguarded the quality of the nearest neighbor suspect
spectral library by using stringent approaches towards spectrum
matching and data filtering. Third, it can be challenging to interpret
individual MS/MS spectrum annotations from analog searching, which
generally involves a manual process. The nearest neighbor suspect
spectral library addresses this by integrating relevant information
from various sources and tools, including predicted molecular for-
mulas and delta mass interpretations, to facilitate its annotations. In
essence, this library contextualizes MS/MS spectrum annotations
obtained from the nearest neighbor suspect spectral library within the
full library and even the global molecular network from which it was
compiled, making this an inherently more efficient strategy than ana-
log searching.

Entries in the nearest neighbor suspect spectral library are not
obtained by measuring pure reference standards. Therefore, it is
important to consider that, initially, the exact molecular structure of
the suspects is undetermined. Nevertheless, the suspect library
includes essential information that can help to interpret MS/MS data
that would otherwise remain entirely unexplored. Additionally, all of
the spectra that are part of the suspect library have been detected
experimentally and occur in biological data. In contrast, only a min-
ority of the compounds contained in reference spectral libraries are
actually observed in public data, indicating a mismatch between the
laborious reference library creation efforts and the practical needs of
metabolomics researchers. Consequently, incorporating the nearest
neighbor suspect spectral library significantly increases the spectrum
match rate across a wide variety of sample types. We have demon-
strated how careful investigation of the suspects can provide highly
detailed interpretations, and we anticipate that similar community
contributions will be used to add and confirm further suspect anno-
tations. Finally, when future studies uncover biologically relevant
suspects, their molecular identities, including the location of mod-
ifications and stereochemical features, might be refined by measuring
orthogonal properties, such as collision cross-section by ion mobility
spectrometry or using genomemining, when possible. Ultimately, as is
the case for all spectrum annotations, experimental validation of the
complete molecular stereostructure requires either a reference stan-
dard or further isolation followed by structure elucidation by NMR,
X-ray crystallography, or cryogenic electron microscopy experiments.

As the nearest neighbor suspect spectral library was compiled
from hundreds of millions of MS/MS spectra deposited to public data
repositories, its creation was only possible by building on the collec-
tive efforts of the scientific community over the past decade. Conse-
quently, besides the tangible outcome of the library itself, an
important contribution of this work is demonstrating the benefit of
repository-scale data analysis and integration, by unlocking patterns
and insights that individual studies, in isolation, could never reveal.
This represents an important phase transition that now allows us to
answer questions that were previously difficult to address. Further-
more, rather than a static resource, by harnessing the continuous data
reanalysis efforts of the GNPS living data system12 we will system-
atically incorporate newly deposited public data into the suspect
library to continuously update its scope and applicability.

Methods
Integration of MetaboLights into GNPS/MassIVE
As a joint effort of the European Bioinformatics Institute (EMBL-EBI)
and the GNPS/MassIVE teams, approximately 10,000 LC-MS/MS sam-
ples acquired in positive ionmodewere imported fromMetaboLights16

into the GNPS/MassIVE repository by mirroring relevant files from
MetaboLights on GNPS/MassIVE. These files represent over a hundred
studies containing data from biologically diverse backgrounds,
including but not limited to human, fungus, various bacterial and
microbial species, and ecological samples. The data consist of both
metabolomics and lipidomics samples.

GNPS living data molecular networking
The nearest neighbor suspect spectral library was derived from
molecular networking results as performed by GNPS’s “living data”
functionality, which periodically reanalyzes all publicly available
untargeted metabolomics data on GNPS/MassIVE12. The living data
analysis (update performed on November 17, 2020) includes results
for 1335 datasets, corresponding to 520,823,130 million MS/MS spec-
tra. Spectrum clustering grouped 168,193,526 MS/MS spectra in
8,543,020 clusters while discarding 352,629,604 singleton spectra, of
which 454,091 cluster representatives could be annotated using
spectral library searching against the default GNPS spectral libraries
(5.3% annotation rate), and which formed a molecular network con-
sisting of 13,179,147 spectrum pair edges.

This analysis consisted of twophases of spectrumclustering using
MS-Cluster39 andmolecular networking. First, spectra were networked
within each individual dataset. Per-dataset molecular networking
outputs are available on the MassIVE repository with dataset identifier
MSV000084314 [https://doi.org/10.25345/C5WQ0T]. Next, a second
round of molecular networking was performed on the combined
consensus spectra for all datasets generated from the first molecular
network.

Spectra were preprocessed by removing all MS/MS fragment ions
within +/- 17 Da of the precursor m/z. Only the top 6 most abundant
ions in every 50m/z window were retained. The first round of mole-
cular networking used a precursor mass tolerance of 2.0m/z, a frag-
ment mass tolerance of 0.5m/z, and three rounds of MS-Cluster
clustering with mixture probability threshold 0.05. Thresholds for the
second round of molecular networking were modified due to com-
putational andmemory constraints, and consisted of a precursormass
tolerance of 0.1m/z and a fragment mass tolerance of 0.1m/z. MS-
Cluster used the standard cosine similarity to group near-identicalMS/
MS spectra, whereas the molecular networking analyses employed a
GNPS modified cosine similarity that takes directly matching ions into
account aswell as ions that are shifted according to the precursormass
difference10. The molecular networking used a minimum cosine simi-
larity of 0.8, minimum six matched peaks, only considered clusters
that consist of at least two MS/MS spectra, and retained the ten
strongest edges for each node in the molecular network.
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Spectral annotations were obtained through spectral library
searching against the default GNPS spectral libraries (GNPSCollections
Bile Acid Library 201912, CASMI40, Dereplicator Identified MS/MS
Spectra41, GNPS Collections Miscellaneous12, Pesticides, EMBL Meta-
bolomics Core Facility42, Faulkner Legacy Library provided by
Sirenas MD, GNPS Library12, NIH Clinical Collection 1, NIH Clinical
Collection 2, NIH Natural Products Library Round 143, NIH Natural
Products Library Round 243, Pharmacologically Active Compounds in
the NIH Small Molecule Repository, GNPS Matches to NIST1412, Phy-
toChemical Library, FDA Library Pt 1, FDA Library Pt 2, HMDB44,
LDB Lichen Database45, Massbank Spectral Library46, Massbank EU
Spectral Library, MIADB Spectral Library47, Medicines for Malaria
Venture Pathogen Box, Massbank NA Spectral Library, Pacific North-
west National Lab Lipids48, ReSpect Spectral Library49, Sumner/Bru-
ker), which contained 221,224 reference MS/MS spectra (June 2021).
Settings for the living data spectral library searching step included
a precursor ion tolerance of 2.0m/z, a fragment ion tolerance of
0.5m/z, a minimum cosine similarity of 0.7, and minimum six
matched peaks.

Nearest neighbor suspect spectral library creation
High-quality MS/MS spectra were extracted from the GNPS living data
molecular network to compile the nearest neighbor suspect spectral
library. Suspects were derived from spectrum pairs for which only one
of the spectra was identified during spectral library searching and both
spectra have a non-zero precursor mass difference. In this case, the
unidentified spectrum was included in the nearest neighbor suspect
spectral library, as it corresponds to a previously unknown molecule
that is structurally related to the reference molecule identified using
spectral library searching. Strict filtering thresholdswere used to avoid
inclusion of incorrect entries: spectrum–spectrummatches required a
maximum precursor mass tolerance of 20 ppm, a minimum cosine
similarity of 0.8, and minimum six matched ions.

To homogenize and extend the information available for the
suspects, their molecular formulas were determined using SIRIUS19

and BUDDY20. For the SIRIUS (version 4.5.2) analysis, only MS/MS data
were used as input and the precursormass tolerancewas set to 10 ppm
for Orbitrap spectra and 25 ppm for Q-TOF spectra. For the BUDDY
(version 1.3) analysis, a precursor mass tolerance of 5 ppm for FT-ICR
spectra, 10 ppm for Orbitrap spectra, and 25 ppm for Q-TOF spectra
was used. The fragment mass tolerance was set to twice the precursor
mass tolerance and no database restriction was applied. All other
settings were kept at their default values. If BUDDY could not annotate
MS/MS spectra with molecular formulas while only considering
CHNOPS elements, the spectra were subsequently reannotated while
considering additional elements: CHNOPSFClBrI. Molecular formulas
predicted by SIRIUS and BUDDY agreed for 32,302 suspects, while
SIRIUS predicted a different molecular formula for 32,508 suspects
and BUDDY for 47,508 suspects. In case SIRIUS and BUDDY predicted
different molecular formulas, both were included in the suspect name
(see below).

Additionally, the observed precursor mass differences were cali-
brated and matched to putative modification explanations contained
in the UNIMOD database21 and a manually compiled list of modifica-
tions and their mass differences (Supplementary Data 3). Suspects
whose delta mass occurred fewer than ten times were discarded, as
true modifications are expected to occur repeatedly for different
molecules, while suspectswith infrequentmassdifferencesmore likely
correspond to spurious matches.

To ensure that the provenance of the suspects to the matched
reference molecules compared to which they are annotated based on
spectral similarity is properly understood, their names are of the form:
“Suspect related to [compound name] (predicted molecular formula:
[molecular formula SIRIUS and/or BUDDY]) with delta m/z [positive
(addition) or negative (loss) delta m/z] (putative explanation:

[modification]).” In case multiple propagations to different reference
spectra are available, information for all matches is included.

Spectrum annotation using the nearest neighbor suspect spec-
tral library
The spectrum annotation performance of the nearest neighbor sus-
pect spectral library was assessed by large-scale spectral library
searching using the default GNPS spectral libraries excluding and
including the nearest neighbor suspect spectral library on 1407 public
datasets available on GNPS/MassIVE, consisting of a combined 592
million MS/MS spectra. Of these datasets, 1335 datasets were also
included in the GNPS living data analysis from which the nearest
neighbor suspect spectral library was compiled (521 million MS/MS
spectra; see above) and 72 datasets were deposited at a later date and
can be considered a completely independent test set (72 million MS/
MS spectra). All searches used a precursor mass tolerance of 2.0m/z, a
fragment mass tolerance of 0.5m/z, a minimum cosine similarity of
0.8, and minimum 6 matched peaks. Other options were kept at their
default values.

Evaluation of acylcarnitine suspects
Mass spectrometry analysis. Structural hypotheses for several sus-
pect acylcarnitines were confirmed using reference standards based
on spectral matches, accurate masses, and retention times: [(3 R)-3-
Hydroxybutyryl]-L-carnitine (Catalog No. 918639-76-6, Sigma-Aldrich
Inc.), [(3 R)-3-Hydroxyhexanoyl]-L-carnitine (Catalog No. 1469900-93-
3, Sigma-Aldrich Inc.) and Hexanoyl-L-carnitine (Catalog No. 22671-29-
0, Sigma-Aldrich Inc.). Standardswere prepared at 1μMconcentration.
Untargeted LC-MS/MS acquisition was performed on a Vanquish
Ultrahigh Performance Liquid Chromatography (UHPLC) system cou-
pled to a Q-Exactive Hybrid Quadrupole-Orbitrap (Thermo Fisher
Scientific, Bremen, Germany). Chromatographic separation was per-
formed on a Kinetex 1.7μm100Åpore size C18 reversed phase UHPLC
column 50 × 2.1mm (Phenomenex, Torrance, CA) with a constant flow
rate of 0.5mL/min. The following solvents were used during the LC-
MS/MS acquisition: water with 0.1% formic acid (v/v), Optim LC/MS
grade, Thermo Scientific (solvent A) and acetonitrile with 0.1% formic
acid (v/v), Optima LC/MS grade, Thermo Scientific (solvent B). After
injection of 1μL of sample into the LC system and eluted with isocratic
gradient of 5% B from 0 to 1min and linear gradient from 5 to 100% B
(1–7min), 100%B (7–7.5min), 100 to 5%B (7.5–8min), 5%B (8–10min).
Data dependent acquisition mode was used for acquisition of MS/MS
data with default charge state of 1. An inclusion list containing the
following ions was used: m/z 260.18563 (molecular formula:
C13H25NO4, start: 2.00min, end: 3.00min),m/z 248.14925 (molecular
formula: C11H21NO5, start: 0.00min, end: 1.00min), m/z 276.18055
(molecular formula: C13H25NO5, start: 0.50min, end: 1.50min). Full
MS was acquired using 1 microscan at a resolution of 35,000 at
200m/z, automatic gain control (AGC) target 5e5, maximum injection
time of 100ms, scan range 100–1500m/z and data acquired in profile
mode.DDAofMS/MSwas acquired using 1microscan at a resolutionof
35,000 at 200m/z, AGC target 5e5, top 5 ions selected for MS/MS with
isolation window of 2.0m/z with scan range 200–2000m/z, fixed first
mass of 50m/z and stepped normalized collision energy of 20, 30, and
40 eV,minimumAGC target 5e3, intensity threshold 5e4, apex trigger 2
to 15 s, all multiple charges included, isotopes were excluded, and a
dynamic exclusion window of 10 s.

Evaluation of apratoxin suspects
Mass spectrometry analysis. Apratoxin suspects were investigated in
the context of Moorena bouillonii, a tropical marine benthic fila-
mentous cyanobacterium. The mass spectrometry data were derived
from both field-collected and laboratory-cultured biomass ofMoorena
bouillonii (MassIVE dataset identifierMSV000086109 [https://doi.org/
10.25345/C52475]). A number of collections are represented in this
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dataset, including those originating from sites around Guam, Saipan
(Commonwealth of the Northern Mariana Islands), Palmyra Atoll,
Papua New Guinea, American Samoa, Kavaratti (Lakshadweep, India),
the Paracel Islands (Xisha, China), the Solomon Islands, and the Red
Sea (Egypt). The biomass fromeachof the sampleswasextracted using
2:1 dichloromethane and methanol. The crude extracts were con-
centrated and resuspended in acetonitrile, followed by a desalting
protocol using C18 SPE with acetonitrile. Samples were then resus-
pended in methanol containing 2μM sulfamethazine as an internal
standard. Untargeted metabolomics was performed using an UltiMate
3000 liquid chromatography system (Thermo Scientific) coupled to a
Maxis Q-TOF (Bruker Daltonics)mass spectrometer with a Kinetex C18
column (Phenomenex). Data were collected in positive ionmode using
data-dependent acquisition. All solvents used were LC-MS grade.

Molecular networking. Molecular networking and spectral library
searching were performed using the GNPS platform as described
above. Settings included a precursor mass tolerance of 2.0m/z, frag-
ment mass tolerance of 0.5m/z, minimum cosine similarity of 0.7, and
minimum 6 matched peaks. Data visualization was performed using
the Metabolomics USI interface50 and spectrum–spectrum matches
were evaluated manually to develop hypotheses regarding the struc-
ture of apratoxin analogs that were annotated using the nearest
neighbor suspect spectral library.

Cyanobacterial culture. Moorena bouillonii PNG5-198 was initially
collected by scuba in 3–10m of water off the coast of Pigeon Island,
Papua NewGuinea (S4 16.063’ E152 20.266’) inMay 2005. Live cultures
have been maintained in SWBG-11 media under laboratory conditions
at 27 °C and a 16/8 h light/dark schedule. Biomass for Moorena bouil-
lonii was obtained through ongoing laboratory culture.

Extraction and isolation of apratoxins. The cultured biomass was
extracted using 2:1 CH2Cl2/MeOH affording 241.4mg of organic
extract. The extract was then subjected to vacuum liquid chromato-
graphy (VLC) on silica gel (type H, 10–40μm) using normal phase
solvents in a stepwise gradient of hexanes/EtOAc and EtOAc/MeOH,
resulting in nine fractions (A-I). The fraction eluting with 25% MeOH/
75% EtOAc (fraction H) had a mass of 21.6mg. This fraction was found
to have the characteristic MS/MS signatures of the apratoxins and
was selected for further purification using reversed-phase HPLC. A
Phenomenex Kinetex C18 5μm 100Å 100× 4.6mm column with a
3mL/minwas used to obtain 1.2mg of semipure suspect (apratoxin A -
26.015Da) and 2.1mg of semipure apratoxin A.

NMR spectroscopy. 1H NMR and 2D NMR spectra were obtained on a
Bruker Advance III DRX-600 NMR with a 1.7mm dual tune TCI cryop-
robe (600MHz and 150MHz for 1H and 13C, respectively). NMR spectra
were referenced to residual solvent CDCl3 signals as an internal stan-
dard. NMR spectra were processed using MestReNova (Mnova 14.2.3,
Mestrelab Research).

Evaluation of azithromycin suspects
Mass spectrometry analysis. The presence of azithromycin suspects
was investigated using human breast milk data (MassIVE dataset
identifier MSV000081432 [https://doi.org/10.25345/C58K7570Q])29.
Human milk samples were extracted using 80:20 methanol and water.
Untargeted metabolomics was performed using an UltiMate 3000
liquid chromatography system (Thermo Scientific) coupled to a Maxis
Q-TOF (Bruker Daltonics) mass spectrometer with a Kinetex C18 col-
umn (Phenomenex). Samples were run using a linear gradient of
mobile phase A (water 0.1% formic acid (v/v)) and phase B (acetonitrile
0.1% formic acid (v/v)). A representative linear gradient consisted of
0–0.5min isocratic at 5% B, 0.5–8.5min 100% B, 8.5–11min isocratic at
100% B, 11–11.5min 5% B, and 11.5–12min 5% B. Data were collected in

positive ionmode using data-dependent acquisition. All solvents used
were LC-MS grade.

Molecular networking. Molecular networking and spectral library
searching were performed using the GNPS platform as described
above. Settings included a precursor mass tolerance of 0.02m/z,
fragment mass tolerance of 0.02m/z, minimum cosine similarity of
0.6, andminimum 5matched peaks. Data visualization was performed
using the Metabolomics USI interface50 and spectrum–spectrum mat-
ches were evaluated manually to interpret the azithromycin suspect.

Evaluation of flavonoid suspects
Mass spectrometry analysis. Untargeted metabolomics data for
medicinal plants listed in the Korean Pharmacopeia were used to
investigate flavonoid suspects (MassIVE dataset identifier
MSV000086161 [https://doi.org/10.25345/C5SB50]). Samples were
extracted using methanol. Untargeted metabolomics was performed
using an Acquity liquid chromatography system coupled to a Xevo G2
Q-TOF (Waters) mass spectrometer with a BEH C18 column at 40 °C
(Waters Corp.; 50mm; 2.1mm; 1.7μm particle size). Water (solvent A)
and acetonitrile (solvent B) were used as mobile phase, both with 0.1%
formic acid, and amethod of 20min (linear gradient), flow0.3mL/min
was performed using the following settings: 0–14min. from 5 to 95% B;
14–17min, 95% B; 17–17.1min from 95% to 5% B; 17.1–20min, 5% B for
equilibration of the column for the next sample. Data were collected in
positive and negative ionmodes using data-dependent acquisition. All
solvents used were LC-MS grade.

Molecular networking. Molecular networking and spectral library
searching were performed in the GNPS platform as described above.
Settings included a precursor ion mass tolerance of 2.0m/z, fragment
ion mass tolerance of 0.5m/z, minimum cosine similarity of 0.7, and
minimum 6 matched peaks. Data visualization was performed using
the Metabolomics USI interface50 and spectrum–spectrum matches
were evaluated manually to interpret the flavonoid suspects.

Home environment personal care products
Mass spectrometry analysis. The presence of polymeric suspects
was investigated in the context of the HOMEChem project, a study
of the indoor chemical environment (MassIVE dataset identifier
MSV000083320 [https://doi.org/10.25345/C5CP63])31. For full details
on the experimental set-up, see Aksenov et al. (2021)31. Briefly, scripted
activities, including cleaning and cooking, were performed in a con-
trolled home environment. Sample collection consisted of swabbing
different locations in the test house. Untargeted metabolomics was
performed using a Vanquish liquid chromatography system (Thermo
Scientific) coupled to a QExactive Orbitrap (Thermo Scientific) mass
spectrometer with a Kinetex C18 column (Phenomenex). The mobile
phase used was water (phase A) and acetonitrile (phase B), both con-
taining 0.1% formic acid (Fisher Scientific, Optima LC/MS), employing
the following gradient: 0–1min 5%B, 1–8min 100%B, 8–10.9min 100%
B, 10.9–11min 5% A, 11–12min 5% B. Data were collected in positive ion
mode using data-dependent acquisition. All solvents used were LC-
MS grade.

Molecular networking. Molecular networking and spectral library
searching were performed using the GNPS platform as described
above. Settings included a precursor mass tolerance of 0.02m/z,
fragment mass tolerance of 0.02m/z, minimum cosine similarity of
0.7, and minimum 6 matched peaks.

Alzheimer’s disease acylcarnitine analysis
Mass spectrometry analysis. The presence of acylcarnitine suspects
was investigated in the context of the Religious Orders Study/
Memory and Aging Project (ROSMAP) to study Alzheimer’s disease
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(MassIVE dataset identifier MSV000086415 [https://doi.org/10.25345/
C5977C])32. Untargetedmetabolomics was performed on human brain
samples from 514 individuals with and without Alzheimer’s disease
(360 Alzheimer’s disease patients, 154 healthy subjects). Human brain
tissue samples were placed into tubes with 800 µl of a 1:1 mixture of
H2O (Optima LC-MS grade W64) and MeOH (100%) containing 1 µMof
sulfamethazine. The samples were homogenized using a Qiagen Tis-
sueLyser II at 25 Hz for 5min, then centrifuged at 14,000 g for 5min
before being incubated for a period of 30min at −20 °C. A 200 µl
aliquot of supernatant fromeach samplewas transferred into a 96-well
plate and vacuum concentrated to dryness via centrifugal lyophiliza-
tion (Labconco Centrivap). Once dried, the samples were stored at
−80 °C until LC-MS was performed. Untargeted metabolomics was
performed using a Vanquish liquid chromatography system (Thermo
Scientific) coupled to a QExactive (Thermo Scientific) mass spectro-
meter with a C18 column (Phenomenex Kinetex 1.7 µm C18 100Å LC
Column 50× 2.1mm). The mobile phase used was LC-MS grade water
(phaseA) and LC-MSgrade acetonitrile (phase B), both containing0.1%
formic acid (Fisher Scientific, Optima LC-MS), with a flow rate set to
0.5mL/min. Samples were injected at 95%A:5%B, which was held for
1min, before ramping up to 100%B over 7min, which was held for
0.5min before returning to starting conditions. Data were collected in
positive ionmode using data-dependent acquisition to acquireMS full
scan spectra, followed by MS/MS spectra of the top 5 most abundant
ions. Precursor ions were fragmented once before being added to an
exclusion list for 30 s.

Data analysis. Spectral library searching was performed using the
GNPS platform as described above using the default GNPS spectral
libraries only and including the nearest neighbor suspect spectral
library. Settings included a precursor mass tolerance of 2.0m/z, frag-
ment mass tolerance of 0.5m/z, minimum cosine similarity of 0.8, and
minimum 6matched peaks. RawMS data visualization was performed
using the GNPS Dashboard51. Spectrum annotations corresponding to
carnitines were extracted by filtering on “carnitine” in the compound
name. Different spectrum annotations with near-identical precursor
m/z (precursorm/z tolerance 100 ppm) and retention time (retention
time tolerance 20 s) were merged. Feature abundances were obtained
by computing extracted ion chromatograms (XICs) withm/z tolerance
100ppm and retention time tolerance 20 s for all uniquely annotated
acylcarnitines across all 514 raw files. Next, the Spearman correlations
between all acylcarnitine XICs and the subjects’ CERAD scores (a
measure of Alzheimer’s disease progression, with 1 indicating “defi-
nite” Alzheimer’s disease and 4 indicating “no” Alzheimer’s disease)
were calculated and the correlation coefficients and associated p-
values were recorded. Multiple testing correction of the p-values was
performed using the Benjamini-Hochberg procedure, and acylcarni-
tines with a corrected p-value below 0.05 were considered to be sig-
nificantly associated with Alzheimer’s disease. For visualization
purposes the four-scale CERAD score was binarized by considering a
CERAD score of 1 or 2 to correspond to positive Alzheimer’s disease
patients, and a CERAD score of 3 or 4 to correspond to healthy
individuals.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Sourcedata areprovidedwith thispaper. All of thedata involved in this
work are publicly available through GNPS/MassIVE: GNPS living data
molecular networking. •GNPS living data (version November 17, 2020)
[https://gnps.ucsd.edu/ProteoSAFe/result.jsp?task=25cc4f9135c6428
aabe1f41a9e54c369&view=advanced_view]. • Living data global mole-
cular network [https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=4f

69e11bfb544010b2c4225a255f17ba]. Spectrum annotation using the
nearest neighbor suspect spectral library. • Spectral library searching
using the default GNPS libraries only.○ part 1 [https://gnps.ucsd.edu/
ProteoSAFe/status.jsp?task=308b3393a2b2401e8c9b562152531b4c].
○ part 2 [https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=18cf4e52
1f9b4124af54d7e3d837a888]. ○ part 3 [https://gnps.ucsd.edu/Proteo
SAFe/status.jsp?task=c0249eb6a52e4ea993b03de90a509b35]. ○ part
4 [https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=debd3bbb51f64
90394e905e13779f295]. part 5 [https://gnps.ucsd.edu/ProteoSAFe/
status.jsp?task=8cdb4d7d1a784f5bb4f99e4c31564cd1]. ○ part 6
[https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=a9e7e4b1b810441
6a39142fd6072e02a]. ○ part 7 [https://gnps.ucsd.edu/ProteoSAFe/
status.jsp?task=334ed0d944844e90b71d6151d4e74263]. ○ part 8
[https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=b55aef34c0bd4d7
8a1f3952f7c49a52c]. • Spectral library searching using the default
GNPS spectral libraries and the nearest neighbor suspect spectral
library. ○ part 1 [https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=
064be855f46e407f9f5fcbe652c8b9d5]. ○ part 2 [https://gnps.ucsd.
edu/ProteoSAFe/status.jsp?task=d243afb8f233490886bb8ab5eedcf8
b8]. ○ part 3 [https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=
febab54db7a14af6b451ab5e5789785f]. ○ part 4 [https://gnps.ucsd.
edu/ProteoSAFe/status.jsp?task=eba0dfe63a464b0a924fd5e373917b
37]. ○ part 5 [https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=95b
541cb3be54d08a0b14367554630ca]. ○ part 6 [https://gnps.ucsd.edu/
ProteoSAFe/status.jsp?task=1df48f2dc7c443fc9364dfc8b28f6b47]. ○
part 7 [https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=b7f8c3d
47a464b53ab94f1780f56c893]. ○ part 8 [https://gnps.ucsd.edu/
ProteoSAFe/status.jsp?task=50e3d8ae4e004f989862fcc9d1353534].
Evaluation of suspect use cases. • Molecular networking of apratoxin
suspects [https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=5c4169
3f607d4b4cabbcfbbf5b9bcf86]. • Molecular networking of azi-
thromycin suspects [https://gnps.ucsd.edu/ProteoSAFe/status.jsp?
task=e91e2e44e3234f08bb3d7f3f16d5f782]. • Molecular networking
of flavonoid suspects [https://gnps.ucsd.edu/ProteoSAFe/status.jsp?
task=38a1bd60bd094c8a97cf49d822e7f853]. • Molecular networking
of home environment personal care products [https://gnps.ucsd.edu/
ProteoSAFe/status.jsp?task=890e39f28140470ab0598c77cc5c048e]. •
Spectral library searching of Alzheimer’s disease data. ○ Using the
default GNPS spectral libraries only [https://gnps.ucsd.edu/
ProteoSAFe/status.jsp?task=b55aef34c0bd4d78a1f3952f7c49a52c]. ○
Using the default GNPS spectral libraries and the nearest neighbor
suspect spectral library [https://gnps.ucsd.edu/ProteoSAFe/status.jsp?
task=50e3d8ae4e004f989862fcc9d1353534]. Additionally, all relevant
data files have been deposited to a permanent Zenodo archive at
https://doi.org/10.5281/zenodo.8282733. Potential explanations for
the observed delta masses were partially sourced from the UNIMOD
database of protein modifications (https://www.unimod.org/)21, com-
plemented with a community-curated list of delta masses (Supple-
mentaryData 3).Metabolomics and clinical data for the ROSMAP clinic
cohorts are also available via the AD Knowledge Portal (https://
adknowledgeportal.org) and through request to Dr. David Bennett at
Rush University who provided brain samples used for analysis. The AD
Knowledge Portal is a platform for accessing data, analyses, and tools
generated by the AcceleratingMedicines Partnership (AMP-AD) Target
Discovery Program and other National Institute on Aging (NIA)-sup-
ported programs to enable open-science practices and accelerate
translational learning. The data, analyses, and tools are shared early in
the research cycle without a publication embargo on secondary use.
Data is available for general research use according to the following
requirements for data access and data attribution (https://
adknowledgeportal.synapse.org/Data%20Access). For access to con-
tent described in this manuscript see: https://doi.org/10.7303/
syn30255033.1. The nearest neighbor suspect spectral library is
freely available under the CC0 license at https://gnps.ucsd.edu/
ProteoSAFe/gnpslibrary.jsp?library=GNPS-SUSPECTLIST and archived

Article https://doi.org/10.1038/s41467-023-44035-y

Nature Communications |         (2023) 14:8488 11

https://doi.org/10.25345/C5977C
https://doi.org/10.25345/C5977C
https://gnps.ucsd.edu/ProteoSAFe/result.jsp?task=25cc4f9135c6428aabe1f41a9e54c369&view=advanced_view
https://gnps.ucsd.edu/ProteoSAFe/result.jsp?task=25cc4f9135c6428aabe1f41a9e54c369&view=advanced_view
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=4f69e11bfb544010b2c4225a255f17ba
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=4f69e11bfb544010b2c4225a255f17ba
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=308b3393a2b2401e8c9b562152531b4c
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=308b3393a2b2401e8c9b562152531b4c
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=18cf4e521f9b4124af54d7e3d837a888
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=18cf4e521f9b4124af54d7e3d837a888
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=c0249eb6a52e4ea993b03de90a509b35
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=c0249eb6a52e4ea993b03de90a509b35
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=debd3bbb51f6490394e905e13779f295
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=debd3bbb51f6490394e905e13779f295
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=8cdb4d7d1a784f5bb4f99e4c31564cd1
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=8cdb4d7d1a784f5bb4f99e4c31564cd1
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=a9e7e4b1b8104416a39142fd6072e02a
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=a9e7e4b1b8104416a39142fd6072e02a
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=334ed0d944844e90b71d6151d4e74263
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=334ed0d944844e90b71d6151d4e74263
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=b55aef34c0bd4d78a1f3952f7c49a52c
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=b55aef34c0bd4d78a1f3952f7c49a52c
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=064be855f46e407f9f5fcbe652c8b9d5
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=064be855f46e407f9f5fcbe652c8b9d5
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=d243afb8f233490886bb8ab5eedcf8b8
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=d243afb8f233490886bb8ab5eedcf8b8
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=d243afb8f233490886bb8ab5eedcf8b8
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=febab54db7a14af6b451ab5e5789785f
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=febab54db7a14af6b451ab5e5789785f
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=eba0dfe63a464b0a924fd5e373917b37
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=eba0dfe63a464b0a924fd5e373917b37
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=eba0dfe63a464b0a924fd5e373917b37
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=95b541cb3be54d08a0b14367554630ca
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=95b541cb3be54d08a0b14367554630ca
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=1df48f2dc7c443fc9364dfc8b28f6b47
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=1df48f2dc7c443fc9364dfc8b28f6b47
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=b7f8c3d47a464b53ab94f1780f56c893
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=b7f8c3d47a464b53ab94f1780f56c893
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=50e3d8ae4e004f989862fcc9d1353534
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=50e3d8ae4e004f989862fcc9d1353534
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=5c41693f607d4b4cabbcfbbf5b9bcf86
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=5c41693f607d4b4cabbcfbbf5b9bcf86
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=e91e2e44e3234f08bb3d7f3f16d5f782
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=e91e2e44e3234f08bb3d7f3f16d5f782
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=38a1bd60bd094c8a97cf49d822e7f853
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=38a1bd60bd094c8a97cf49d822e7f853
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=890e39f28140470ab0598c77cc5c048e
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=890e39f28140470ab0598c77cc5c048e
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=b55aef34c0bd4d78a1f3952f7c49a52c
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=b55aef34c0bd4d78a1f3952f7c49a52c
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=50e3d8ae4e004f989862fcc9d1353534
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=50e3d8ae4e004f989862fcc9d1353534
https://doi.org/10.5281/zenodo.8282733
https://www.unimod.org/
https://adknowledgeportal.org
https://adknowledgeportal.org
https://adknowledgeportal.synapse.org/Data%20Access
https://adknowledgeportal.synapse.org/Data%20Access
https://doi.org/10.7303/syn30255033.1
https://doi.org/10.7303/syn30255033.1
https://gnps.ucsd.edu/ProteoSAFe/gnpslibrary.jsp?library=GNPS-SUSPECTLIST
https://gnps.ucsd.edu/ProteoSAFe/gnpslibrary.jsp?library=GNPS-SUSPECTLIST


on Zenodo at https://doi.org/10.5281/zenodo.8282733. Additionally, it
can be used for any data analysis task on GNPS by selecting it from the
CCMS_SpectralLibraries > GNPS_Propogated_Libraries > GNPS-SUS-
PECTLIST >GNPS-SUSPECTLIST.mgf path in the GNPS file selector
dialog. Step-by-step instructions are also provided on GitHub
at https://github.com/bittremieux/gnps_suspect_library and on the
GNPS Documentation website. Individual spectra are accessible
by their Universal Spectrum Identifiers (USIs)50,52. The spectra dis-
played in Figs. 3, 4, Supplementary Figs. 5, and 6 are: • Hex-
anoylcarnitine, C6:0: mzspec:GNPS:GNPS-LIBRARY:accession:CCMS
LIB00003135669. • Hexenoylcarnitine, C6:1: mzspec:MSV000085561:
011c:scan:2864. • Benzoylcarnitine: mzspec:MSV000085561:010c:s-
can:2829. •Dodecanedioylcarnitine, C12-DC:mzspec:MSV000082650:
M031_48:scan:1501. • 3-Hydroxybutyrylcarnitine reference: mzs
pec:GNPS:TASK-015e9e338c5649a7af6715af2be98e2f-spectra/specs_
ms.mgf:scan:1. • 3-Hydroxybutyrylcarnitine suspect: mzspec:MSV
000082049:20_51:scan:106. • 3-Hydroxyhexanoylcarnitine reference:
mzspec:GNPS:TASK-015e9e338c5649a7af6715af2be98e2f-spectra/
specs_ms.mgf:scan:4. • 3-Hydroxyhexanoylcarnitine suspect: mzspec:
MSV000085561:018b:scan:2609. • Apratoxin A: mzspec:GNPS:GNPS-
LIBRARY:accession:CCMSLIB00000424840. • Apratoxin D:
mzspec:GNPS:GNPS-LIBRARY:accession:CCMSLIB00000424841. •

Apratoxin F: mzspec:GNPS:GNPS-LIBRARY:accession:CCMSLIB
00000070287. • Apratoxin C: mzspec:MSV000086109:BF9_BF9_
02_57124.mzML:scan:722. • Apratoxin A – 30.010Da: mzspec:MSV
000086109:BD5_dil2x_BD5_01_57213:scan:760. • Apratoxin F –

30.010Da: mzspec:MSV000086109:BC11_dil2x_BC11_02_57176:scan:
736. • Apratoxin A – 26.015Da: mzspec:MSV000086109:BD5_dil2x_
BD5_01_57213:scan:614. • Apratoxin A – 14.016Da: mzspec:MSV0000
86109:BD11_BD11_02_57022:scan:591. • Azithromycin: mzspec:GNPS:
GNPS-LIBRARY:accession:CCMSLIB00005434451. • 3’-O(desmethyl)
azithromycin: mzspec:MSV000084132:Pos_C18_Aq7:scan:977. • Api-
genin-8-C-hexosylhexoside: mzspec:GNPS:GNPS-LIBRARY:accession:
CCMSLIB00004698180. • 7-O-methylapigenin-6-C-hexoside + 132.042
Da: mzspec:GNPS:TASK-38a1bd60bd094c8a97cf49d822e7f853-spec-
tra/specs_ms.mgf:scan:1573560. • Apigenin-8-C-hexosylhexoside –

30.010Da: mzspec:GNPS:TASK-38a1bd60bd094c8a97cf49d822e7f
853-spectra/specs_ms.mgf:scan:1559636. • Apigenin-8-C-hexosylhexo-
side – 31.991 Da: mzspec:GNPS:TASK-38a1bd60bd094c8a97cf49d8
22e7f853-spectra/specs_ms.mgf:scan:1559563. • Apigenin-8-C-hex-
osylhexoside – 46.005Da: mzspec:GNPS:TASK-38a1bd60bd094
c8a97cf49d822e7f853-spectra/specs_ms.mgf:scan:1543689. Source
data are provided with this paper.

Code availability
Code to extract spectra from themolecular networks and compile the
nearest neighbor suspect spectral library, as well as code notebooks to
generate the figures and analyses presented in this manuscript are
freely available on GitHub at https://github.com/bittremieux/gnps_
suspect_library under the open source BSD-3-Clause license. A per-
manent code archive is available on Zenodo at https://doi.org/10.5281/
zenodo.6459282. All code was implemented in Python 3.8, and uses
NumPy (version 1.19.2)53, SciPy (version 1.5.2)54, Pandas (version 1.1.3)55,
and statsmodels (version 0.13.1)56 for scientific data processing,
Pyteomics (version 4.4.0)57 to interface the UNIMOD repository21, and
matplotlib (version 3.5.1)58, Seaborn (version 0.11.0)59, spectrum_utils
(version 0.3.4)60,61, Jupyter notebooks62, and Cytoscape (version
3.9.1.)63 for visualization purposes.

References
1. Bittremieux, W., Wang, M. & Dorrestein, P. C. The critical role that

spectral libraries play in capturing the metabolomics community
knowledge. Metabolomics 18, 94 (2022).

2. Sindelar, M. & Patti, G. J. Chemical discovery in the era of meta-
bolomics. J. Am. Chem. Soc. 142, 9097–9105 (2020).

3. Schmid, R. et al. Ion identity molecular networking for mass
spectrometry-based metabolomics in the GNPS environment. Nat.
Commun. 12, 3832 (2021).

4. Chen, L. et al. Metabolite discovery through global annotation of
untargeted metabolomics data. Nat. Methods 18, 1377–1385 (2021).

5. Djoumbou-Feunang, Y. et al. BioTransformer: a comprehensive
computational tool for small molecule metabolism prediction and
metabolite identification. J. Cheminform. 11, 2 (2019).

6. Aron, A. T. et al. Reproducible molecular networking of untargeted
mass spectrometry data using GNPS. Nat. Protoc. 15,
1954–1991 (2020).

7. Burke, M. C. et al. The hybrid search: a mass spectral library search
method for discovery of modifications in proteomics. J. Proteome
Res. 16, 1924–1935 (2017).

8. Huber, F. et al. Spec2Vec: Improved mass spectral similarity scor-
ing through learning of structural relationships. PLOSComput. Biol.
17, e1008724 (2021).

9. Aisporna, A. et al. Neutral loss mass spectral data enhances mole-
cular similarity analysis in METLIN. J. Am. Soc. Mass Spectrom. 33,
530–534 (2022).

10. Bittremieux, W. et al. Comparison of cosine, modified cosine, and
neutral loss based spectral alignment for discovery of structurally
related molecules. J. Am. Soc. Mass Spectrom. 33,
1733–1744 (2022).

11. Treen, D. G. C. et al. SIMILE enables alignment of tandem mass
spectra with statistical significance. Nat. Commun. 13, 2510 (2022).

12. Wang, M. et al. Sharing and community curation of mass spectro-
metry data with Global Natural Products Social Molecular Net-
working. Nat. Biotechnol. 34, 828–837 (2016).

13. Fox Ramos, A. E., Evanno, L., Poupon, E., Champy, P. & Beniddir, M.
A. Natural products targeting strategies involving molecular net-
working: different manners, one goal. Nat. Prod. Rep. 36,
960–980 (2019).

14. Remoroza, C. A., Mak, T. D., De Leoz, M. L. A., Mirokhin, Y. A. & Stein,
S. E. Creating amass spectral reference library for oligosaccharides
in human milk. Anal. Chem. 90, 8977–8988 (2018).

15. Yan, X. et al. Mass spectral library of acylcarnitines derived from
human urine. Anal. Chem. 92, 6521–6528 (2020).

16. Haug, K. et al. MetaboLights-an open-access general-purpose
repository for metabolomics studies and associated meta-data.
Nucleic Acids Res. 41, D781–D786 (2013).

17. Sud, M. et al. Metabolomics workbench: an international repository
for metabolomics data and metadata, metabolite standards, pro-
tocols, tutorials and training, and analysis tools. Nucleic Acids Res
44, D463–D470 (2015).

18. Jarmusch, A. K. et al. ReDU: a framework to find and reanalyze
public mass spectrometry data. Nat. Methods 17, 901–904 (2020).

19. Dührkop, K. et al. SIRIUS 4: a rapid tool for turning tandem mass
spectra into metabolite structure information. Nat. Methods 16,
299–302 (2019).

20. Xing, S., Shen, S., Xu, B., Li, X. &Huan, T. BUDDY:molecular formula
discovery via bottom-up MS/MS interrogation. Nat. Methods 20,
881–890 (2023).

21. Creasy, D. M. & Cottrell, J. S. Unimod: protein modifications for
mass spectrometry. Proteomics 4, 1534–1536 (2004).

22. Sumner, L. W. et al. Proposed minimum reporting standards for
chemical analysis: Chemical Analysis Working Group (CAWG)
Metabolomics Standards Initiative (MSI). Metabolomics 3,
211–221 (2007).

23. McCann,M. R.,GeorgeDe laRosa,M. V., Rosania,G. R.&Stringer, K.
A. L-Carnitine and acylcarnitines: Mitochondrial biomarkers for
precision medicine. Metabolites 11, 51 (2021).

24. Zuniga, A. & Li, L. Ultra-high performance liquid chromatography
tandem mass spectrometry for comprehensive analysis of urinary
acylcarnitines. Anal. Chim. Acta 689, 77–84 (2011).

Article https://doi.org/10.1038/s41467-023-44035-y

Nature Communications |         (2023) 14:8488 12

https://doi.org/10.5281/zenodo.8282733
https://github.com/bittremieux/gnps_suspect_library
https://ccms-ucsd.github.io/GNPSDocumentation/browselibraries/#nearest-neighbor-suspect-spectral-library
https://github.com/bittremieux/gnps_suspect_library
https://github.com/bittremieux/gnps_suspect_library
https://doi.org/10.5281/zenodo.6459282
https://doi.org/10.5281/zenodo.6459282


25. Su, X., Han, X., Mancuso, D. J., Abendschein, D. R. & Gross, R. W.
Accumulation of long-chain acylcarnitine and 3-hydroxy acylcar-
nitine molecular species in diabetic myocardium: Identification of
alterations in mitochondrial fatty acid processing in diabetic myo-
cardium by shotgun lipidomics. Biochemistry 44, 5234–5245
(2005).

26. Luesch, H., Yoshida, W. Y., Moore, R. E., Paul, V. J. & Corbett, T. H.
Total structure determination of apratoxin A, a potent novel cyto-
toxin from the marine cyanobacterium Lyngbya m. ajuscula.J. Am.
Chem. Soc. 123, 5418–5423 (2001).

27. Gutiérrez, M. et al. Apratoxin D, a potent cytotoxic cyclodepsipep-
tide from Papua New Guinea collections of the marine cyano-
bacteria Lyngbya majuscula and Lyngbya sordida. J. Nat. Prod. 71,
1099–1103 (2008).

28. Fischbach, M. A. & Clardy, J. One pathway, many products. Nat.
Chem. Biol. 3, 353–355 (2007).

29. Thomas, S. et al. An untargeted metabolomics analysis of exogen-
ous chemicals in humanmilk and transfer to the infant.Clin. Transl.
Sci. 15, 2576–2582 (2022).

30. Kang, K. B. et al. Mass spectrometry data on specialized metabo-
lome of medicinal plants used in East Asian traditional medicine.
Sci. Data 9, 528 (2022).

31. Aksenov, A. A. et al. The molecular impact of life in an indoor
environment. Sci. Adv. 8, eabn8016 (2022).

32. Bennett, D. A. et al. Religious orders study and rush memory and
aging project. J. Alzheimers Dis. 64, S161–S189 (2018).

33. Fahy, E. et al. Update of the LIPID MAPS comprehensive classifica-
tion system for lipids. J. Lipid Res. 50, S9–S14 (2009).

34. Horgusluoglu, E. et al. Integrative metabolomics‐genomics
approach reveals key metabolic pathways and regulators of Alz-
heimer’s disease. Alzheimers Dement 18, 1260–1278 (2022).

35. Jia, L. et al. A metabolite panel that differentiates Alzheimer’s dis-
ease from other dementia types. Alzheimers Dement 18,
1345–1356 (2022).

36. Kong, A. T., Leprevost, F. V., Avtonomov, D. M., Mellacheruvu, D. &
Nesvizhskii, A. I. MSFragger: ultrafast and comprehensive peptide
identification in mass spectrometry–based proteomics. Nat. Meth-
ods 14, 513–520 (2017).

37. Bittremieux, W., Meysman, P., Noble, W. S. & Laukens, K. Fast open
modification spectral library searching through approximate near-
est neighbor indexing. J. Proteome Res. 17, 3463–3474 (2018).

38. Bittremieux, W., Laukens, K. & Noble, W. S. Extremely fast and
accurate open modification spectral library searching of high-
resolution mass spectra using feature hashing and graphics pro-
cessing units. J. Proteome Res. 18, 3792–3799 (2019).

39. Frank, A. M. et al. Clustering millions of tandem mass spectra. J.
Proteome Res. 7, 113–122 (2008).

40. Schymanski, E. & Neumann, S. The Critical Assessment of Small
Molecule Identification (CASMI): challenges and solutions. Meta-
bolites 3, 517–538 (2013).

41. Mohimani, H. et al. Dereplication of peptidic natural products
through database search of mass spectra. Nat. Chem. Biol. 13,
30–37 (2016).

42. Phapale, P. et al. Public LC-Orbitrap tandemmass spectral library for
metabolite identification. J. Proteome Res. 20, 2089–2097 (2021).

43. Huang, R. et al. The NCATS pharmaceutical collection: a 10-year
update. Drug Discov. Today 24, 2341–2349 (2019).

44. Wishart, D. S. et al. HMDB5.0: the humanmetabolomedatabase for
2022. Nucleic Acids Res. 50, D622–D631 (2021).

45. Olivier-Jimenez, D. et al. A database of high-resolution MS/MS
spectra for lichen metabolites. Sci. Data 6, 294 (2019).

46. Horai, H. et al. MassBank: a public repository for sharing mass
spectral data for life sciences. J. Mass Spectrom. 45,
703–714 (2010).

47. Fox Ramos, A. E. et al. Collected mass spectrometry data on
monoterpene indole alkaloids from natural product chemistry
research. Sci. Data 6, 15 (2019).

48. Kyle, J. E. et al. LIQUID: an-open source software for identifying
lipids in LC-MS/MS-based lipidomics data. Bioinformatics 33,
1744–1746 (2017).

49. Sawada, Y. et al. RIKEN tandem mass spectral database (ReSpect)
for phytochemicals: a plant-specific MS/MS-based data resource
and database. Phytochemistry 82, 38–45 (2012).

50. Bittremieux, W. et al. Universal MS/MS visualization and retrieval
with the Metabolomics Spectrum Resolver web service. bioRxiv
https://doi.org/10.1101/2020.05.09.086066 (2020).

51. Petras, D. et al. GNPS Dashboard: collaborative exploration of mass
spectrometry data in the web browser. Nat. Methods 19,
134–136 (2022).

52. Deutsch, E. W. et al. Universal spectrum Identifier for mass spectra.
Nat. Methods 18, 768–770 (2021).

53. Harris, C. R. et al. Array programming with NumPy. Nature 585,
357–362 (2020).

54. SciPy 1.0 Contributors. et al. SciPy 1.0: fundamental algorithms
for scientific computing in Python. Nat. Methods 17, 261–272
(2020).

55. McKinney, W. Data structures for statistical computing in Python. In
Proceedings of the 9th Python in Science Conference (eds. van der
Walt, S. & Millman, J.) 51–56 https://doi.org/10.25080/Majora-
92bf1922-00a (2010).

56. Seabold, S. & Perktold, J. statsmodels: Econometric and statistical
modeling with Python. In Proceedings of the 9th Python in Science
Conference (SciPy 2010) 92096 https://doi.org/10.25080/Majora-
92bf1922-011 (2010).

57. Levitsky, L. I., Klein, J. A., Ivanov, M. V. & Gorshkov, M. Pyteomics
4.0: Five years of development of a Python proteomics framework.
J. Proteome Res. 18, 709–714 (2019).

58. Hunter, J. D. Matplotlib: A 2D graphics environment. Comput. Sci.
Eng. 9, 90–95 (2007).

59. Waskom,M. L. seaborn: statistical data visualization. J. OpenSource
Softw. 6, 3021 (2021).

60. Bittremieux, W. spectrum_utils: a Python package for mass spec-
trometry data processing and visualization. Anal. Chem. 92,
659–661 (2020).

61. Bittremieux, W. et al. Unified and standardized mass spectrometry
data processing in Python Using spectrum_utils. J. Proteome Res.
22, 625–631 (2023).

62. Thomas, K. et al. Jupyter Notebooks - A publishing format for
reproducible computational workflows. In Positioning and Power in
Academic Publishing: Players, Agents and Agendas 87–90 (IOS
Press, 2016).

63. Shannon, P. et al. Cytoscape: a software environment for integrated
models of biomolecular interaction networks. Genome Res. 13,
2498–2504 (2003).

Acknowledgements
This research was supported in part by BBSRC-NSF award 2152526. This
research was supported in part by National Institutes of Health awards
R01 GM107550, U19 AG063744, U01AG061359, R03 CA211211, P41
GM103484, T32 HD123456. This research was supported in part by the
National Institute of Aging’s Accelerating Medicines Partnership for AD
(AMP-AD) and was supported by NIH grants 1R01AG069901-01A1,
U01AG061357, aswell as by theAlzheimerGutMicrobiomeProject grant
1U19AG063744. This research was supported in part by federal award
DE-SC0021340 subaward 1070261-436503. This research was sup-
ported in part by the Gordon and BettyMoore Foundation through grant
GBMF7622. This research was supported in part by the Intramural
Research Program of National Institute of Environmental Health

Article https://doi.org/10.1038/s41467-023-44035-y

Nature Communications |         (2023) 14:8488 13

https://doi.org/10.1101/2020.05.09.086066
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.25080/Majora-92bf1922-011
https://doi.org/10.25080/Majora-92bf1922-011


Sciences of the National Institutes of Health (ZIC ES103363). WB
acknowledges support by theUniversity of AntwerpResearch Fund. This
research was supported in part by the National Center for Com-
plementary and Integrative Health of the NIH under award number
F32AT011475 to N.E.A. E.L.S. and T.K. acknowledge funding support
from the LuxembourgNational Research Fund (FNR) for project A18/BM/
12341006.M.W.waspartially supportedby theUSDepartment of Energy
Joint Genome Institute operated under Contract No. DE-AC02-
05CH11231. D.P. was supported by the Deutsche For-
schungsgemeinschaft (DFG) through the CMFI Cluster of Excellence
(EXC 2124). S.A.K. was supported by the Fund for Financing Science and
Supporting Innovation under the Ministry of Innovative Development of
the Republic of Uzbekistan. K.B.K. was supported by the National
Research Foundation of Korea (NRF) grant funded by the Ministry of
Science and ICT (NRF-2020R1C1C1004046). H.W.K. was supported by
the National Research Foundation of Korea (NRF) grant funded by the
KoreanGovernment (MSIT) (2018R1A5A2023127). H.M.-R. acknowledges
the Brazilian National Council for Scientific and Technological Devel-
opment (CNPq, #142014/2018-4) and the Brazilian Fulbright Commission
for the scholarships provided. L.-F.N. has been supported by the French
government, through the UCAJ.E.D.I. Investments in the Future project
managed by the National Research Agency (ANR) with the reference
number ANR-15-IDEX-01. J.J.J.vd.H. was supported by an ASDI eScience
grant from the Netherlands eScience Center (ASDI.2017.030). C.O.D.
was supported by EMBL core funds. The Alzheimer’s disease metabo-
lomics data was funded wholly or in part by the Alzheimer’s Gut
Microbiome Project (AGMP) NIH grant U19AG063744 awarded to R.F.K.-
D. at Duke University in partnership with a large number of academic
institutions. More information about the project and the institutions
involved can be found at https://alzheimergut.org/meet-the-team/.

Author contributions
P.C.D. conceptualized and supervised the work. C.O.D. and C.M.A.
helped transfer and convert data from MetaboLights. W.B., M.W. and
P.C.D. created the methodology to compile the nearest neighbor sus-
pect spectral library from molecular networking data. W.B., J.M.G. and
M.W. developed the software. T.H. and S.X. generated molecular for-
mulas using BUDDY. W.B., N.E.A., S.P.T., S.A.K., A.A.A., P.W.P.G.,
A.M.C.R., J.M.G., A.K.J., T.K., H.M.-R., M.J.M., L.F.N., M.P., D.P., R.S., R.S.,
E.L.S. and J.J.J.vd.H. validated entries in the suspect spectral library and
evaluated its identification performance. N.E.A., S.P.T., S.A.K., A.A.A. and
P.W.P.G. provided case studies to demonstrate the utility of the tool. MW
provided computational resources. C.M.A., C.O.D., M.P. and J.Z. per-
formeddata curation. A.M.C.R. acquired the acylcarnitine standardsMS/
MSdata.W.H.G. supervised acquisition of theMoorenabouilloniiMS/MS
data. K.B.K., H.W.K. and H.Y. acquired the medicinal plants from the
Korean Pharmacopeia MS/MS data. A.A.A. and A.M. acquired the
HOMEChem MS/MS data. R.F.K.D. supervised acquisition of the ROS-
MAP metabolomics data and links to ADMC and AMP-AD consortia.
M.J.M., M.P., K.C.W. and J.Z. processed and prepared the ROSMAP

samples and acquired the MS/MS data. W.B., N.E.A., S.P.T., A.A.A.
P.W.P.G., C.M.A., M.J.M. and P.C.D. wrote the manuscript. All authors
reviewed and edited the manuscript.

Competing interests
P.C.D. consulted for DSM animal health in 2023, is an advisor and holds
equity in Cybele, and is co-founder and scientific advisor and holds
equity in Ometa, Arome, and Enveda, with prior approval by UC San
Diego. M.W. is a co-founder of Ometa Labs LLC. A.A.A. and A.V.M. are
founders of Arome Science Inc. C.M.A. is a consultant for Nuanced
Health. J.J.J.vd.H. is a member of the Scientific Advisory Board of NAI-
CONS Srl., Milano, Italy and consults for Corteva Agriscience, Indiana-
polis, IN, USA. R.F.K.D. is an inventor on several patents in the
metabolomicsfield andholds founder equity inMetabolon, Chymia, and
PsyProtix. The remaining authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-44035-y.

Correspondence and requests for materials should be addressed to
Wout Bittremieux or Pieter C. Dorrestein.

Peer review informationNatureCommunications thanksReza Salek and
the other, anonymous, reviewer(s) for their contribution to the peer
review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

Wout Bittremieux 1 , Nicole E. Avalon 2, Sydney P. Thomas3,4, Sarvar A. Kakhkhorov 5,6, Alexander A. Aksenov3,4,7,8,
Paulo Wender P. Gomes 3,4, Christine M. Aceves9, Andrés Mauricio Caraballo-Rodríguez3,4, Julia M. Gauglitz3,4,
William H. Gerwick 2,3, Tao Huan 10, Alan K. Jarmusch 3,4,11, Rima F. Kaddurah-Daouk12,13,14, Kyo Bin Kang 15,
Hyun Woo Kim 16, Todor Kondić 17, Helena Mannochio-Russo 3,4,18, Michael J. Meehan3,4, Alexey V. Melnik7,8,
Louis-Felix Nothias19,20, Claire O’Donovan21, Morgan Panitchpakdi3,4, Daniel Petras 3,4,22,23, Robin Schmid 3,4,

Article https://doi.org/10.1038/s41467-023-44035-y

Nature Communications |         (2023) 14:8488 14

https://alzheimergut.org/meet-the-team/
https://doi.org/10.1038/s41467-023-44035-y
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-3105-1359
http://orcid.org/0000-0002-3105-1359
http://orcid.org/0000-0002-3105-1359
http://orcid.org/0000-0002-3105-1359
http://orcid.org/0000-0002-3105-1359
http://orcid.org/0000-0003-3588-892X
http://orcid.org/0000-0003-3588-892X
http://orcid.org/0000-0003-3588-892X
http://orcid.org/0000-0003-3588-892X
http://orcid.org/0000-0003-3588-892X
http://orcid.org/0000-0002-4698-8793
http://orcid.org/0000-0002-4698-8793
http://orcid.org/0000-0002-4698-8793
http://orcid.org/0000-0002-4698-8793
http://orcid.org/0000-0002-4698-8793
http://orcid.org/0000-0001-5478-2448
http://orcid.org/0000-0001-5478-2448
http://orcid.org/0000-0001-5478-2448
http://orcid.org/0000-0001-5478-2448
http://orcid.org/0000-0001-5478-2448
http://orcid.org/0000-0003-1403-4458
http://orcid.org/0000-0003-1403-4458
http://orcid.org/0000-0003-1403-4458
http://orcid.org/0000-0003-1403-4458
http://orcid.org/0000-0003-1403-4458
http://orcid.org/0000-0001-6295-2435
http://orcid.org/0000-0001-6295-2435
http://orcid.org/0000-0001-6295-2435
http://orcid.org/0000-0001-6295-2435
http://orcid.org/0000-0001-6295-2435
http://orcid.org/0000-0002-2228-6308
http://orcid.org/0000-0002-2228-6308
http://orcid.org/0000-0002-2228-6308
http://orcid.org/0000-0002-2228-6308
http://orcid.org/0000-0002-2228-6308
http://orcid.org/0000-0003-3290-1017
http://orcid.org/0000-0003-3290-1017
http://orcid.org/0000-0003-3290-1017
http://orcid.org/0000-0003-3290-1017
http://orcid.org/0000-0003-3290-1017
http://orcid.org/0000-0003-2473-8360
http://orcid.org/0000-0003-2473-8360
http://orcid.org/0000-0003-2473-8360
http://orcid.org/0000-0003-2473-8360
http://orcid.org/0000-0003-2473-8360
http://orcid.org/0000-0001-6662-4375
http://orcid.org/0000-0001-6662-4375
http://orcid.org/0000-0001-6662-4375
http://orcid.org/0000-0001-6662-4375
http://orcid.org/0000-0001-6662-4375
http://orcid.org/0000-0002-4961-2353
http://orcid.org/0000-0002-4961-2353
http://orcid.org/0000-0002-4961-2353
http://orcid.org/0000-0002-4961-2353
http://orcid.org/0000-0002-4961-2353
http://orcid.org/0000-0002-6561-3022
http://orcid.org/0000-0002-6561-3022
http://orcid.org/0000-0002-6561-3022
http://orcid.org/0000-0002-6561-3022
http://orcid.org/0000-0002-6561-3022
http://orcid.org/0000-0003-0922-3887
http://orcid.org/0000-0003-0922-3887
http://orcid.org/0000-0003-0922-3887
http://orcid.org/0000-0003-0922-3887
http://orcid.org/0000-0003-0922-3887


Emma L. Schymanski 17, Justin J. J. van der Hooft 4,24, Kelly C. Weldon3,4, Heejung Yang 25, Shipei Xing3,4,10,
Jasmine Zemlin3,4, Mingxun Wang26 & Pieter C. Dorrestein 3,4

1Department of Computer Science, University of Antwerp, 2020 Antwerpen, Belgium. 2Scripps Institution of Oceanography, University of California San
Diego, La Jolla, CA 92093, USA. 3Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA.
4Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA 92093, USA. 5Laboratory of Physical and Chemical
Methods of Research, Center for Advanced Technologies, Tashkent 100174, Uzbekistan. 6Department of Food Science, Faculty of Science, University of
Copenhagen, Rolighedsvej 26, 1958FrederiksbergC,Denmark. 7Department ofChemistry, University ofConnecticut, Storrs, CT06269,USA. 8AromeScience
inc., Farmington, CT 06032, USA. 9Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA. 10Department of
Chemistry, University of BritishColumbia, Vancouver, BCV6T 1Z1, Canada. 11Immunity, Inflammation, andDisease Laboratory, Division of Intramural Research,
National Institute of Environmental Health Sciences, National Institutes ofHealth, Research Triangle Park, Durham,NC27709, USA. 12Department of Psychiatry
and Behavioral Sciences, Duke University School of Medicine, Durham, NC 27701, USA. 13Department of Medicine, Duke University, Durham, NC 27710, USA.
14Duke Institute of Brain Sciences, Duke University, Durham, NC 27710, USA. 15College of Pharmacy and Research Institute of Pharmaceutical Sciences,
Sookmyung Women’s University, Seoul 04310, Korea. 16College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University,
Goyang 10326, Korea. 17Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367 Belvaux, Luxembourg. 18Department of Bio-
chemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University, Araraquara 14800-901, Brazil. 19Université Côte d’Azur, CNRS, ICN,
Nice, France. 20Interdisciplinary Institute for Artificial Intelligence (3iA) Côte d’Azur, Nice, France. 21European Molecular Biology Laboratory, European
Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK. 22Interfaculty Institute of Microbiology and Infection
Medicine, University of Tuebingen, 72076 Tuebingen, Germany. 23Department of Biochemistry, University of California Riverside, Riverside, CA 92507, USA.
24Bioinformatics Group, Wageningen University & Research, 6708 PBWageningen, The Netherlands. 25Laboratory of Natural Products Chemistry, College of
Pharmacy, Kangwon National University, Chuncheon 24341, Korea. 26Department of Computer Science and Engineering, University of California Riverside,
Riverside, CA 92507, USA. e-mail: wout.bittremieux@uantwerpen.be; pdorrestein@health.ucsd.edu

Article https://doi.org/10.1038/s41467-023-44035-y

Nature Communications |         (2023) 14:8488 15

http://orcid.org/0000-0001-6868-8145
http://orcid.org/0000-0001-6868-8145
http://orcid.org/0000-0001-6868-8145
http://orcid.org/0000-0001-6868-8145
http://orcid.org/0000-0001-6868-8145
http://orcid.org/0000-0002-9340-5511
http://orcid.org/0000-0002-9340-5511
http://orcid.org/0000-0002-9340-5511
http://orcid.org/0000-0002-9340-5511
http://orcid.org/0000-0002-9340-5511
http://orcid.org/0000-0001-5986-9024
http://orcid.org/0000-0001-5986-9024
http://orcid.org/0000-0001-5986-9024
http://orcid.org/0000-0001-5986-9024
http://orcid.org/0000-0001-5986-9024
http://orcid.org/0000-0002-3003-1030
http://orcid.org/0000-0002-3003-1030
http://orcid.org/0000-0002-3003-1030
http://orcid.org/0000-0002-3003-1030
http://orcid.org/0000-0002-3003-1030
mailto:wout.bittremieux@uantwerpen.be
mailto:pdorrestein@health.ucsd.edu

	Open access repository-scale propagated nearest neighbor suspect spectral library for untargeted metabolomics
	Results
	Nearest neighbor suspect spectral library creation
	Suspects provide structural hypotheses for observed molecules
	Increases in MS/MS spectrum annotation provide new biomedical insights

	Discussion
	Methods
	Integration of MetaboLights into GNPS/MassIVE
	GNPS living data molecular networking
	Nearest neighbor suspect spectral library creation
	Spectrum annotation using the nearest neighbor suspect spectral library
	Evaluation of acylcarnitine suspects
	Mass spectrometry analysis
	Evaluation of apratoxin suspects
	Mass spectrometry analysis
	Molecular networking
	Cyanobacterial culture
	Extraction and isolation of apratoxins
	NMR spectroscopy
	Evaluation of azithromycin suspects
	Mass spectrometry analysis
	Molecular networking
	Evaluation of flavonoid suspects
	Mass spectrometry analysis
	Molecular networking
	Home environment personal care products
	Mass spectrometry analysis
	Molecular networking
	Alzheimer’s disease acylcarnitine analysis
	Mass spectrometry analysis
	Data analysis
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




