
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
WaveFunctionCollapse: Content Generation via Constraint Solving and Machine Learning

Permalink
https://escholarship.org/uc/item/3rm1w0mn

Authors
Karth, Isaac
Smith, Adam Marshall

Publication Date
2021-05-03

DOI
10.1109/TG.2021.3076368

Data Availability
The data associated with this publication are available upon request.

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3rm1w0mn
https://escholarship.org
http://www.cdlib.org/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

WaveFunctionCollapse: Content Generation via
Constraint Solving and Machine Learning

Isaac Karth and Adam M. Smith, Member, IEEE

Abstract—We describe WaveFunctionCollapse (WFC), a new
family of algorithms for content generation. WFC was recently
invented by independent game developer Maxim Gumin and
has since been adopted and adapted by other game developers.
Trends in academic research on content generation have only
recently suggested the use of ideas from constraint solving and
machine learning, so it is surprising to see these manifested in in-
the-wild algorithms developed outside of an academic context. We
illuminate the common components in this family of algorithms
by way of a rational reconstruction. Through experiments with
the reconstruction we probe the impact of design choices made in
various adaptations of WFC (e.g. the role of backtracking, search
heuristics, or pattern classification and rendering strategies).
This work highlights a mode of incremental content generation
that has been overlooked by past surveys of content generation
methods.

Index Terms—Procedural Content Generation, constraint
solving, WaveFunctionCollapse, rational reconstruction, search
heuristics

I. INTRODUCTION

MULTIPLE academics have proposed ways to use con-
straint solving and machine learning for procedural

content generation [1], [2]. However, procedural content gener-
ation, as it is practiced and studied, tends to focus on construc-
tive and search-based techniques. In this article, we illuminate
a surprising example of constraint satisfaction problem (CSP)
and machine learning (ML) techniques: WaveFunctionCol-
lapse (often known simply as WFC).

In the fall of 2016, a new approach to procedural content
generation burst onto the scene. Invented by Maxim Gumin,
WFC uses constraint solving and machine learning to translate
minuscule artist-created training images into large, expressive
generated content. It has been used on everything from small-
scale game jam and PICO-8 fantasy console projects to larger
commercial games released on the Nintendo Switch,1 and has
since been taught to undergraduates at several universities and
used in technical games research.

This article is intended to be the definitive academic ac-
count of the emergence of WFC, continuing the examination
started in 2017 with a workshop paper [3]. We present a
compact overview of the family of algorithms that make up
WFC, including the terminology and concepts that it uses or
introduces, such as tiles, patterns, propagation, and the use
of inputs and outputs in the algorithm’s pipeline. This paper
is intended to provide equal weight in its tutorial, technical,

I. Karth and A.M. Smith are with the Computational Media Department,
University of California Santa Cruz, Santa Cruz, CA 95064 USA email:
ikarth@ucsc.edu and amsmith@ucsc.edu

1Respectively: https://arcadia-clojure.itch.io/proc-skater-2016,
https://trasevol.dog/2017/09/01/di19/, and Bad North (2018)

and survey contributions. For tutorial content, we present
an approachable high-level pseudo-code walkthrough of the
operation of WFC. For technical contribution, we include a
rational reconstruction of WFC, which we use as a testbed for
experiments on the contributions of the different elements in
its pipeline. This additionally reveals how constraint solving
and machine learning (including deep machine learning) can
factor into the algorithm. Finally, we trace the adoption of
WFC across academic, industrial, and artistic users.

A. Research Context
WFC can be positioned as a development of a number

of lines of previous research. While this does not lessen the
surprise of its viral adoption, it does provide context.

1) Texture Synthesis: In computer graphics, texture synthe-
sis is the problem of generating a large (and often seamlessly
tiling) output image with texture resembling that of a smaller
input image [4]. In many texture synthesis approaches (e.g.
the work of Liang et al. [5]), the input and output images
are characterized in terms of the local patterns they contain,
where these patterns are typically sub-images of just a few
pixels in width (e.g. 5-by-5 pixel windows). Many texture
synthesis algorithms explicitly intend to produce outputs such
that every local pattern in the output resembles a local pattern
in the input. In the visual setting of graphics, this resemblance
need not be exact pixel-for-pixel matching and is often judged
based on a distance metric (e.g. Euclidean distance of pixel
color vectors) that judges some colors to be closer than others.
By contrast, exact matching is the only sense of resemblance
present in WFC.

In Liang’s method [5], the output image is grown incremen-
tally. Part-way through the generation process, a large region
of the output has already been generated, but more remains.
A location on the border of this region is selected, and the
surrounding already-chosen pixels (the context) are used to
query an index of patterns generated from the source image.
A pattern with similar local pixels is retrieved and used to
paint in a few more pixels of the output image, growing the
region of completed pixels. WFC also grows its output image
incrementally, expanding the known regions of the output by
completing them with details from local patterns of the input
image. However, it also considers the not-yet-known space
because of its consideration for exact pattern matching.

While WFC is loosely inspired by quantum mechanics,2

Gumin was also inspired by Paul Merrell’s discrete synthesis

2Very loosely, and mostly confined to how it models the superposition
of possible image states. As Gumin explains, “The coefficients in these
superpositions are real numbers, not complex numbers, so it doesn’t do the
actual quantum mechanics, but it was inspired by QM.” [6]

This article has been accepted for publication in IEEE Transactions on Games. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TG.2021.3076368

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://arcadia-clojure.itch.io/proc-skater-2016
https://trasevol.dog/2017/09/01/di19/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

approach. While Merrell was inspired by texture synthesis,
he focused on the problem of generating 3D geometric mod-
els [7]. In this setting, we want to generate a new (typically
large) 3D model which is made up of components and ar-
rangements taken from a (typically small) 3D model provided
by a human artist. Per texture synthesis traditions, artifacts
are characterized in terms of their local patterns on a regular
grid. Instead of blendable pixel colors, however, discrete model
synthesis aims to exactly reuse rigid geometric chunks.

In personal correspondence with us, Gumin described how
he was influenced by convolutional neural network style
transfer, but found it lacking for videogame level generation.
He experimented with several approaches to model and texture
generation, looking for a texture synthesis algorithm with
strong local similarity, where each N×N pattern in the output
could be traced to a specific input pattern. Gumin’s intent was
to capture the rules for how the source image was made.

Gumin’s SynTex project [8] implemented several texture
synthesis methods, yielding attractive results for game tex-
ture images but nonsensical outputs for non-texture images
where pixel-grid analysis destroyed the visual semantics of
structured objects (e.g. swords). In his ConvChain project [9],
he experimented with an approach based on Markov Chain
Monte Carlo (MCMC), a statistical sampling approach that
directly measures how likely an output image is under the
distribution of local patterns implied by the input image.
Statistical modeling is also present, if much less explicitly, in
the notion of entropy used in Gumin’s later WFC algorithm.

2) Constraint Solving: In the field of artificial intelligence
(AI), largely disconnected from computer graphics until re-
cently,3 constraint solving uses ideas from knowledge rep-
resentation and search to model continuous and combinato-
rial search and optimization problems and solve them with
domain-independent algorithms [11, Chap. 6].

Constraint satisfaction problems (CSPs) are typically de-
fined in terms of decision variables and values. In the context
of WFC-style image generation, there is a variable associated
with each location in the output image. In a solution to the
problem (called an assignment), each variable takes on a value.
Depending on the context, values may come from continuous
or discrete domains. For the task addressed by WFC, the
values are associated with the discrete set of unique local
patterns in the input image. The choice to assign a specific
variable a specific value will often constrain the available
choices that can be made for other variables. Constraints relate
the legal combination of values that a set of variables might
take on in a valid assignment. For the image generation task,
we want to model the idea that the patterns chosen at each
location in the output are compatible in terms of exact matches
for the pixels in which their associated local windows overlap.

The goal of an algorithm for solving CSPs (a solver) is
to find a total assignment (an assignment for every variable)
such that no constraints are violated. Although there are many
different approaches to constraint solving, most operate by

3Recent innovations in style transfer were sparked by a breakthrough
in using deep convolutional neural network classifiers to mimic artistic
styles [10] This has led to a flood of related research, along with the
exploration of other applications of neural networks to graphics.

searching in the space of partial assignments. That is, they
search the space of incomplete solutions, not generating a
single candidate solution until that solution is known to be
free of conflicts (constraint violations). The solver repeatedly
selects an unassigned variable and then decides on a value
to assign from the variable’s domain. If the solver encounters
a partial assignment for which no subsequent variables can
be assigned without violating constraints, the solver typically
backtracks on a recent decision—backing out of a dead-end by
moving to another point in the space of partial assignments.

To the skeleton of backtracking search sketched above,
advanced constraint solving methods add improvements that
attempt to speed up identification of a legal total assign-
ment. Some heuristics (either domain-specific or domain-
independent) aid the selection of a promising variable to select
next while others aid the decision of a promising value to
assign for that variable. The addition of heuristics typically
alter the order in which the solver explores the space without
impacting completeness guarantees (i.e. that the solver will
return a solution in bounded time if at least one exists).

Complementary to heuristics, constraint propagation meth-
ods do additional bookkeeping in order to prune away values
from domains that would lead to dead-ends later. Constraint
propagation ideally allows a solver to skip past fruitless search
without impacting the order in which the space is explored.
AC-3 is a well known constraint propagation algorithm [11,
Chap. 6]. Although AC-3 and other propagators can end up
making assignments to variables as part of their operation,
they are not complete solvers by themselves. Propagators are
typically run after each choice by a solver in order to simplify
the remaining search problem. For a game-focused audience,
we refer the reader to the Game AI Pro 2 book chapter
“Rolling Your Own Finite-Domain Constraint Solver” [12] for
more details.

3) Constraint Solving in PCG: Although there are a few
examples of note, until recently constraint solving was mostly
overlooked for the purposes of content generation. Taxonomies
of PCG such as in the notable search-based PCG survey [13]
do not account for approaches to content generation that are
neither directly constructive nor perform their search at the
level of completed candidate designs. The concept of working
with partial designs is part of what makes the animations
derived from WFC executions so visually stunning—we are
not used to seeing our generators work this way.

Constraint-based PCG methods are often associated with
making strong guarantees about outputs as well as having the
cost of those guarantees paid in unpredictability of total run-
ning time. Most backtracking solvers yield good performance
on their associated search tasks for real world problems, but
this outcome is hard to characterize in terms of theory (where
exponential worst case analyses are uninformative). Horswill
and Foged [14] describe a “fast” method for populating a
level design with content under strong playability guarantees.
Their algorithm is based on backtracking search with (AC-
3) constraint propagation. Although it makes only modest
demand on processor and memory resources, it is expected to
be used by programmers who are at least moderately literate
in search algorithm design.

This article has been accepted for publication in IEEE Transactions on Games. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TG.2021.3076368

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

In G. Smith’s Tanagra system [15], a mixed-initiative plat-
former level design tool, the Choco [16] solver is invoked to
solve a specific geometric layout subproblem in the overall
level design process. In this system, the user is in a de-
signer role rather than a programmer role. When the solver
determines that the given CSP is impossible to solve (we
say the constraints are unsatisfiable), it signals to the larger
tool that other decisions about the working level design, such
as what activity the player performs on each platform, need
to be relaxed (backtracked). Although Tanagra illustrates that
CSPs need not only be created by programmers (they can
be assembled programmatically from the data input into a
graphical user interface), backtracking still plays a major
role. By surprising contrast, Gumin’s original formulation of
WaveFunctionCollapse does not make use of backtrack.

4) ASP in PCG: Answer set programming (ASP) is a
form of logic programming targeted at modeling combinatorial
search and optimization problems [17]. In ASP, low-level
constraints are automatically derived from the high-level rules
in a problem formulation program, and the implied CSP is
solved using algorithms rooted in the SAT/SMT literature [18].

A. M. Smith proposed the use of ASP in PCG [1] within
the paradigm of modeling design spaces. Rather than directly
aiming to code and algorithm for generating content, this
approach suggests we should declaratively model the space of
content we want to see and let a domain-independent solver
take care of the procedural aspects. Although programmers
using ASP need not have or use any knowledge of search
algorithm design, they are expected to be familiar with the
declarative programming paradigm and Prolog-like syntax.
This background is not common amongst technical artists who
were recently excited to find WaveFunctionCollapse.

Modern answer set solvers (such as Clingo [19]) allow for
specification of custom heuristics, externally checked con-
straints interleaved with the search process, and hooks for
scripting languages in the service of integrating solvers with
outside environments. These custom extension points in Clingo
have been used to replicate the incremental growth behavior
of WFC to produce an animated4 log of the solver’s decisions.

II. ILLUMINATING GUMIN’S REFERENCE
IMPLEMENTATION OF WFC

In this section, we examine the general idea of Gumin’s
original formulation of the WFC algorithm [20]. The details
of the generation process–and observed variations–will be
discussed further below, while this overview will provide a
high-level introduction.

Although Gumin’s project (including utilities for generating
the example animations that attracted so many others to WFC)
is not large—it involves less than a thousand lines of C#
code—the broad ideas of the algorithm are difficult to interpret
by directly reading the code. In personal correspondence and
observing several users of WFC online, we learned that many
of them treated the code as a black box, either using it directly

4“Visualizing WaveFunctionCollapse reimplemented in ASP: 46x46 Flow-
ers N=3, using clingo’s default heuristic (VSIDS). Just 3 conflicts.” https:
//twitter.com/rndmcnlly/status/867605489789489152

Tiles

Patterns

Solver

Render

Input

Output

f()
pattern
classifier

g()
pattern
renderer

input
(tiles)

adjacency
validity

(learned adjacencies)

output

solver
8+57 (0,1) 8+2 (0,1) 9+86 (0,-1)

8+57 (0,1) 8+2 (-1,0) 9+86 (0,-1)

Adjacency

Fig. 1. Diagram of the WFC generative pipeline, using the overlapping model
to automatically determine allowed adjacencies between tiles. Left column
shows selections of data at each step in the pipeline, right column shows how
the functions in the pipeline are related. Starting with a source image, it is (1)
subdivided into tiles; (2) tiles in source image are classified into patterns via
a convolution of their local neighborhood; (3) a matrix of pattern adjacency
constraints is constructed based on how patterns overlap with neighboring
tiles, the image here shows how the two neighboring patterns overlap on a
specific dimension; (4) the constraint solver generates a new configuration of
patterns; (5) the pattern renderer converts the patterns into tiles (or pixels or
whatever other representation is desired); (6) finally, resulting image is output.

without attempting to alter it or re-implementing their own
versions based on the animations of WFC.5 In response, we
offer a pseudocode summary below.

One way that WaveFunctionCollapse stands out from many
other PCG algorithms is that both the input and the output
are images. While there are many generative operations that
can act on images (e.g. as a filter) there are comparatively
few that take an image as constraint specification. At a high
level, the processes of WFC analyze the input image, solve the
constraints found by the analysis over a grid of user-specified
size, and render the result as an image again (Fig. 1). Many
machine learning image generation algorithms require millions
of images in training data. In contrast, the training data for
WFC is tiny: a single image, often less than 32x32 pixels.

The WFC solver typically operates on N × N patterns
of tiles rather than on individual tiles, referred to as the

5“It was hard to crack your computer science lingo about collapsing wave
functions, so I basically just looked at your gifs” https://twitter.com/OskSta/
status/784850280093478912

This article has been accepted for publication in IEEE Transactions on Games. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TG.2021.3076368

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://twitter.com/rndmcnlly/status/867605489789489152
https://twitter.com/rndmcnlly/status/867605489789489152
https://twitter.com/OskSta/status/784850280093478912
https://twitter.com/OskSta/status/784850280093478912

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

overlapping pattern model. Gumin characterizes the relation-
ship between a simple tile model and the overlapping pattern
model as being the same as the relationship between higher
order Markov chains and order-one Markov chains [6]. The
implications of using patterns will be examined in more detail
below, but for now the important property to note is that
they can be interpreted as convolutions that compress the
surrounding context into a value associated with a single
point. WFC is primarily concerned with grids of these pattern
identifiers. The final result of the analysis is a set of patterns
and an adjacency matrix that describes which patterns can be
validly placed next to one another.

Listing 1. Basic WFC Constraint Solver
function Solve(adjacencies, wave_matrix):

loop while no contradiction:
wave_matrix := Propagate(wave_matrix,
↪→ adjacencies)

if all domains collapsed:
return wave_matrix

wave_matrix := Observe(wave_matrix)
throw error: generation attempt failed

The generation process seeks to fill in the details for a
new grid of patterns (the shape of the new grid does not
necessarily match the shape of the grid seen in the input).
During the core generation loop, the algorithm solves the
constraint problem implied by the pattern adjacency matrix.
It repeats a two step process (contextualized in Fig. 2):
Observe(grid), which finds the most constrained variable
and picks a value to assign via weighted random sampling,
and Propagate(grid, adjacencies), which updates
the domains of variables at each grid location.

Listing 2. WFC Observation Step
function Observe(wave_matrix):

find the minimum entropy cell in grid
cell = FindMinimumEntropy(wave_matrix)
If any cell has zero possibilities:

this is contradictory state, where a node has
↪→ an empty domain

return paradox failure exception
If all cells have exactly one possibility:

return wave_matrix
In node with the least entropy (ties broken

↪→ randomly):
Assign a value via weighted random sample of

↪→ the cell’s current domain.
Add node to the propagation stack.

Gumin’s implementation of WFC uses a metaphor of en-
tropy to identify the most constrained cell (least risk choice)
at each stage. This notion is similar to, but not identical to,
the notion of entropy of probability distributions in statistics:
both are maximized for a uniform distribution (when anything
is possible) and minimized for the distribution with only one
option (when there is no uncertainty about the result). Gumin
defines the entropy of a cell as the weighted sum of patterns
that may still be validly placed at that cell (with weights based
on how often that pattern was seen in the input image). The
same weights are used when deciding which pattern to place at
the selected cell. This explicitly random search is not a usual
default approach to constraint solving, though many solvers
support it as a configurable option. While a solution can
be found without using the weighting, the weighted random

search is important for Gumin’s secondary goal for local
similarity: the distributions of patterns seen in the output
should be similar in the input and output [6].

If the entropy of a cell reaches zero, with no valid members
in its domain, the solution is in a contradictory state. Rather
than using local backtracking, Gumin’s implementation simply
globally restarts when it reaches a contradiction.

Once a cell is solved (the domain of the associated variable
is reduced to a single value), WFC propagates the implications
of the change to the neighboring cells. Like AC-3, WFCs
propagation procedure implements arc consistency—it ensures
that a value only appears in a domain of a variable if there
exists a valid value in the domain of related variables such
that constraints over those variables could be satisfied. When
originally released in 2016, Gumin’s code implemented an
AC-3 style propagation algorithm that was later improved with
an asymptotically more efficient AC-4 style algorithm in 2018.

Listing 3. WFC Propagation Step.
function Propagate(wave_matrix, adjacencies):

Initialize the propagation stack to contain the
↪→ last cell observed.

while there are cells on the propagation stack:
for neighbor of this cell:

for neighbor_pattern in neighbor_domain(
↪→ neighbor):

if not(adjacency(original_pattern,
↪→ neighbor_pattern)):

Decrement count of neighbor_pattern.
if count is zero:
Remove neighbor_pattern from

↪→ neighbor_cell.
Add neighbor_cell to the propagation

↪→ stack.
return wave_matrix

III. RATIONAL RECONSTRUCTION

Now that we have introduced a high-level summary of the
reference implementation, we can break it down further, into
modular substages. WFC is not a monolithic generator, but
rather a multi-stage pipeline of generators and data trans-
formations (Fig. 2). Many variations on this pipeline exist
in the wild, but all of the members of this family share
the core adjacency-learning and constraint solving stages.
Breaking the general case down to component steps, the stages
in the complete list are: making data input interpretable as
tiles, tile classification and grouping, pattern classification and
adjacency learning, constraint solving, and rendering the result
of the constraint solver into tile data. The description that
follows is intended to be detailed enough to guide a reader
in producing their own implementation of WFC.6.

A. Adjacencies

Conventionally, WFC operates on a rectilinear grid. This
gives us an easy way to define the cells and adjacency edges:
the cells are each intersection on the grid and the edges are the
lines between them. However, WFC can work on any graph
for which a well-defined adjacency function can be specified.

6Our Python reconstruction can be found at https://github.com/ikarth/wfc
2019f

This article has been accepted for publication in IEEE Transactions on Games. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TG.2021.3076368

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://github.com/ikarth/wfc_2019f
https://github.com/ikarth/wfc_2019f

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

adjacencies

adjacencies

propagate

observe

wave matrix

wave matrix

initialize

wave matrix

wave matrix

contradiction

output

wave matrix
yes

no

image

2d matrix of pixels

convert
to patterns

list of patterns

determine
adjacencies

list of adjacencies

2d matrix of pattern ids

render

constraint
solver

2d matrix of pixels

output

input
image

constraint
rules

constraint
solver

WFC
pipeline

legality conditions

pattern heuristic

choice heuristic

conversion heuristic

output
shape

tuple

size of
the output
image

output
shape

tuple

Fig. 2. Diagram of data and control flow in the WFC generative pipeline.
Given an image, WFC finds patterns within it and then determines the valid
adjacencies between those patterns. These become the constraint rules for
the solver—one of the two main data type it uses. The other major data
in the solver is the wave matrix, a Boolean representation of all of the
pixels in the image indexed against all of the patterns. The solver alternates
between propagating the implications of the constraint rules (propagate) and
constraining a domain via assignment (observe).

For example, Stålberg’s experiments with triangular meshes7

or Florian Drux’s GraphWaveFunctionCollapse.8 These can be
non-spatial: to create a looping animation Matt Rix added a
time edge.9 In fact, Gumin notes that d-dimensional WFC
can capture the behavior of any (d − 1)-dimensional cellular
automata [6]. Similarly, Martin O’Leary’s WFC-based poetry
generator10 uses non-local edges for rhyming patterns and
scansion. We call the basic unit that patterns are constructed
out of tiles. Tiles, in our terminology, are the atomic units
of the input data: the palette of pixels in most of Gumin’s
WFC examples, the set of game map tiles in Caves of Qud,
the collection of modules of 3D geometry in Bad North, the
lexicon of words in O’Leary’s Oisı́n, and so forth. Generalized,
tiles are discrete sets of items that can be uniquely recognized
at each location in the input and for which new outputs can
be assembled from a grid (or graph) of tile identifiers.

Because the constraint solver is the heart of WaveFunc-
tionCollapse, the adjacency constraints are critical data and
the adjacency learning stage is a vital (but distinct) part of
the overall generator. In the most extreme simplification these
can be the literal input tiles, with hand-written adjacency

7“Content-agnostic algorithm for placing tiles. Heavily based on the work
of @ExUtumno. Basically a Sudoku-solver on steroids.” https://twitter.com/
OskSta/status/784847588893814785

8https://github.com/lamelizard/GraphWaveFunctionCollapse
9“last one for tonight, a 3 second loop!” https://twitter.com/MattRix/status/

872674537799913472
10https://github.com/mewo2/oisin

data. However, rather than operating on literal tiles, WFC
typically operates on higher-order data about the tiles plus their
local context: Gumin’s name for this data is patterns. Other
strategies for learning adjacency include the approach used in
Bad North, which takes the 3D geometry modules (exported
from a 3D modeling program) and classifies them by whether
the profiles match. Profiles are the (polyline) cross-sections of
3D meshes sliced at grid cell boundaries.

Gumin’s OverlappingModel describes patterns as an N×N
region of tiles (where N is typically 2 or 3)11 that act as
the context for a given tile. Therefore, a single tile can
be in multiple patterns. Valid pattern-region adjacencies are
when the intersection of two pattern-regions are identical
when overlapped with a given offset in space (e.g. pattern 8
overlaps with pattern 57 in direction (0,1) in Fig. 1). Gumin’s
implementation represents this as a Boolean matrix with the
shape pattern × pattern × offset direction which is optimized
for quick lookups in the solver, though when pre-processing
the patterns the list of adjacency tuples is often easier to work
with.

The analysis can be considered a form of machine learn-
ing [21] Whether one pattern can be placed next to another
with a given offset can be decided by a classifier that accepts
two patterns and outputs a Boolean judgment. This classifier
is fit to agree with the adjacencies demonstrated in the source
image. One simple representation of this classifier is simply a
list of allowed pattern pairings.

B. Pre-constraints

Sometimes we want to further constrain the output. For
example, Gumin’s reference implementation has support for
pre-constraining the bottom image row, which is useful for
things like side views, such as the Flower sample. This can be
done by simply setting the patterns in the domain of the nodes
on the bottom row to only include patterns with dirt tiles and
removing dirt tiles from the domains of all of the nodes in
the sky. Generalizing this, we can supply a partially-painted
image with some of the final tile values already in place while
leaving gaps to be filled in by the solver. We expect the user
to specify pre-constraints at the level of tiles so that they do
not need to think about the notion of patterns used by the
generator.

C. Constraint Solving

The core of WFC is the constraint solver. This can be imple-
mented with an existing constraint solver, such as Clingo [3].
However, Gumin’s reference implementation is a custom-
written probabilistic constraint solver in C#, which is tailored
to the requirements of WFC constraint solving. The following
description breaks down how each part of the solver in the
reference implementation works, as well as some remarks on
variations.

11Large values of N rapidly increase the complexity of the generated
patterns.

This article has been accepted for publication in IEEE Transactions on Games. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TG.2021.3076368

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://twitter.com/OskSta/status/784847588893814785
https://twitter.com/OskSta/status/784847588893814785
https://github.com/lamelizard/GraphWaveFunctionCollapse
https://twitter.com/MattRix/status/872674537799913472
https://twitter.com/MattRix/status/872674537799913472
https://github.com/mewo2/oisin

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

1) Initialization with Clear(): The state of the solver is
primarily captured in one data structure: the wave matrix,
representing which patterns are still valid for each cell by a
Boolean value. The adjacency matrix, representing the patterns
that are valid for each edge per pattern, is unchanging in the
solver. Optionally, an auxiliary table of counters may avoid
having to recalculate the number of remaining patterns and
their sampling weights. At the start of solving, every entry in
the wave matrix cleared to a value of true.

One metaphor is to consider the wave matrix as a chess
board, with puzzle pieces stacked in each space, representing
the patterns. At the start each space on the board has a stack
of all the patterns. Propagation is the process of removing
pieces that no longer fit with any of their potential neighbors.
Observation is the process of removing all but one of the
puzzle pieces. If there is an empty square, a contradiction has
occurred and the current state is invalid. The goal is to get the
chessboard into a state where every square has exactly one
puzzle piece.

2) Removal of alternatives with Ban(): An operation that
is shared by both observation and propagation is to remove
patterns from the domains of the cells. The reference im-
plementation has a separate function for this. It takes a grid
location and a pattern and does the bookkeeping to remove the
pattern from the constraint solving domains. The wave matrix
entry for the location and pattern are set to false, the pattern is
removed from the edge compatibility, and the entropy values
are decremented. The neighboring nodes are added to the stack
for updating during the propagation phase.

3) Choice of Design with Observe(): The purpose of Ob-
serve() is to select a decision variable and decide its value.
The reference implementation uses a heuristic that chooses the
most constrained cell. The cell with the tightest or smallest
domain after propagation has the lowest entropy, with ties
broken at random. There are two termination cases: first, if
any of the cells have zero remaining patterns, the search has
dead-ended with a contradiction. Second, if all of the cells
have an entropy of one (i.e. there is exactly one pattern for
each node, which is the minimum non-contradictory state)
we have found our solution. The heuristic of selecting the
most constrained variable or equivalently the variable with
minimum remaining values (MRV) is well known in the
constraint solving literature [11, Chap. 6].

The strategy of selecting the location with the lowest non-
zero entropy (or minimum remaining values) might seem
arbitrary at first. If we want to optimize our chances of un-
covering a total assignment without restarting or backtracking,
we should make choices that maximize the number of total
assignments consistent with our choices so far. This avoids
ruling out (potentially extremely rare) legal total assignments
under the assumption that they are distributed amongst other
total assignments. If the number of remaining total assign-
ments is approximated as the product of the size of the
domains of the unassigned variables (in other words, assuming
the remaining choices are independent), then assigning the
location with the smallest domain (lowest entropy / minimum
remaining values) maximizes the value of the product after the
assignment. To make another loose physics connection (this

time to statistical mechanics), Gumin’s (least) entropy heuristic
could be interpreted as an intent to maximize the entropy of
a uniform distribution over possible completed designs.

Once a cell is chosen, one pattern needs to be selected from
the domain. This is done through weighted random sampling,
with the weight derived from the frequency that the pattern
appears in the input training data image. This implements
Gumin’s secondary goal for local similarity: that patterns
appear with a similar distribution in the output as are found
in the input [6]. All non-selected patterns are then removed
from the cell’s domain. The reference implementation does this
with the Ban() function which also adds the neighbors onto the
propagation stack and takes care of the entropy bookkeeping.

The first observation selects between all of the possible
patterns, but the subsequent observations tend to look at vastly
fewer options. The exact number is heavily dependent on the
input image, but it is typical that the algorithm only chooses
between two or three remaining valid patterns in a domain.

4) Resolving implications with Propagate(): Once an ob-
servation has been performed, the neighboring cells need to
be updated. Updating the domain of one cell implies the need
to update the adjacent cells, propagating the implications of
the previous observations via the Ban() function.

Even within Gumin’s reference implementation of WFC, the
propagation approach has changed over time. Early pre-release
implementations of the propagation function used belief prop-
agation, but was later changed to “constraint propagation with
a saved stationary distribution” [6] for performance reasons. A
further post-release optimization changed the reference imple-
mentation of WFC to execute propagation with a stack-based
flood fill, incorporating performance improvements introduced
by Fehr and Courant [20], [22].

Propagation can result in the domain of a cell being reduced
to one pattern, completely resolving that cell. The distribution
of which cells are resolved by propagation and which through
observation varies based on the input image, and visualizing
this can be useful for debugging.

The observation-and-propagation loop demonstrates that
WFC is a family of algorithms that use constraint solving
as the core generation algorithm. Indeed, Gumin occasionally
describes the algorithm as a constraint solver.12 It uses the min-
imum remaining values (MRV) heuristic to select the variable
to decide next. For decisions, it uses the heuristic of choosing
patterns according to their distribution in the original image.
An alternative to this heuristic would be to use the well known
least constraining value (LCV) selection heuristic [11]. (LCV
can also be motivated by the maximum entropy principle.)
However, it is difficult to predict the implications of this
heuristic choice for the purposes of content generation. The
topic of sampling from combinatorial spaces with statistical
uniformity guarantees is surprisingly subtle [23].

5) Contradictions: Unlike many constraint solvers, the ref-
erence implementation of WFC does not employ backtrack-
ing. When it encounters a contradiction, it restarts from the
beginning, giving up if it fails too many times (by default, the

12“I can help with the grasp part. WFC is basically a constraint solver.
You start with everything unknown and when possible...” https://twitter.com/
ExUtumno/status/793601984800624640

This article has been accepted for publication in IEEE Transactions on Games. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TG.2021.3076368

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://twitter.com/ExUtumno/status/793601984800624640
https://twitter.com/ExUtumno/status/793601984800624640

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

limit is ten attempts). The nature of the generation task makes
this less of an issue than it would be for a general constraint
solving problem: the patterns are likely to fit together (at least
in the same way they did in the input image), ideally in many
different configurations, so for most input images in the sample
set at the sizes the solver is trying to generate, contradictions
are very rare.

It is possible to construct an input image that forces con-
tradictions: the sample set has the example of a wrapping
chessboard with odd length and width, which is, of course,
impossible to solve. It is also possible to construct inputs that
are trivially perfect.13

WFC encounters contradictions more frequently with more
restricted tilesets and larger output spaces. They also, as
discussed in our experiments below, can become more frequent
when additional global constraints are introduced. At this
point, the addition of backtracking becomes more important, as
does the ability to distinguish between an impossible problem
and a merely complicated one.

D. Rendering

Once the constraint solver has discovered a solution, it is
represented as a grid of pattern identifiers. Therefore, one final
step needs to be performed to translate the patterns back into
tiles. In the reference implementation this is straightforward:
because the patterns overlap, each cell resolves to exactly one
tile. In most WFC variations, tiles are simply reproduced in
the form they appear in the source image.

However, variations are possible. One variation in the
reference implementation is used to render partial solutions:
because a partially-solved constraint problem has more than
one pattern per cell, the visualization for the algorithm in
progress averages the colors of the tiles derived from the
patterns in the domain for each cell.

An implementation that uses a more interesting represen-
tation for the tiles might include additional processing in
the rendering step. For example, if the tiles are part of a
3D landscape generator, the number of trees added on this
particular tile can be additionally informed by how many other
forest tiles are nearby, quite apart from the encapsulated WFC
step in the generation pipeline. A generator that has a coastline
might use only water and land tiles in the WFC patterns,
and only add the coastal transition sub-tiles as part of a post-
processing step. This possibility is examined more deeply in
one of the experiments in the next section.

E. Visualizing WFC

One of the factors that lead to WFC going viral14 are
the visualizations of the solving process. The way these ani-
mations visualize modifications to partially-completed design
immediately sets this generative method apart from ones based

13Gumin gives an example of an “easy” tileset: “the unrestrained knot
tileset (with all 5 tiles being allowed) is not interesting for WFC, because you
can’t run into a situation where you can’t place a tile” and without “special
heuristics” the length of correlations in the generated image quickly fall [6].

14“Procedural generation from a single example by wave function collapse”
https://twitter.com/ExUtumno/status/781833475884277760

on a generate-and-test paradigm where only complete designs
are considered during execution.

In addition to the visualizations of the intermediate states
of the solving (showing the averaged possibility space of each
cell) other useful visualizations can help us understand what
is happening or has happened during the generation process.
We here introduce a visualization that we call a crystal growth
diagram (see on the bottom row of Fig. 3), a map showing the
order in which the solver resolved the final contents of each
cell in a single image rather than an animation. Such diagrams
record the incremental growth of a design without the use of
animation in the same way as the patterns of colors apparent
in the cross-section of a geode.

Other visualizations we have found useful for debugging
are tracking whether a cell was resolved with propagation
or observation, the number of patterns an observation selects
from, and the number of remaining possible patterns for a cell.
These visualizations have revealed that most cells are resolved
via propagation, and that the cells with the least remaining
patterns (those likely to be selected for observation next) are
usually adjacent to cells that have been recently resolved.

IV. EXPERIMENTS

There are many implementations of WFC (the reference
repository links to over 20 publicly available implementa-
tions in more than a dozen languages). While most function
similarly, there are many variations already extant: adding a
time dimension,15 edges for rhymes and metre, [24]16 using
backtracking, or adding global constraints (e.g. testing if
a level is traversable from entrance to exit). This section
experimentally probes the importance of design decisions in
Gumin’s original WFC, aiming to separate the essence of the
idea from its first implementation. In particular we ask:

• Is the entropy location heuristic necessary?
• Is the weighted pattern heuristic necessary?
• Is it safe to run WFC without backtracking when plausible

global constraints are added?
• Does WFC need to operate on human-curated tiles?

A. Location (Selection) Heuristics Experiment

The heuristic Gumin used for selecting the location of
observations in WFC is partially inspired by observing humans
drawing: “Why the minimal entropy heuristic? I noticed that
when humans draw something they often follow the minimal
entropy heuristic themselves. That’s why the algorithm is so
enjoyable to watch.”17 However, we know that other heuristics
are possible: several of the other implementations of WFC use
different ones. Therefore, in our first experiment, we aim to
understand the importance of Gumin’s entropy heuristic. We
do this by comparing multiple heuristics in our reconstructed
Python implementation18 which is equivalent to Gumin’s in

15@MattRix, Jun 8, 2017: “yep exactly! :) it has 3 dimensions, but the trick
is that it has 14 edges so it can check forward & backward “diagonally” in
time” https://twitter.com/MattRix/status/872785320445706241

16https://github.com/mewo2/oisin
17https://github.com/mxgmn/WaveFunctionCollapse/blob/master/

README.md
18https://github.com/ikarth/wfc 2019f

This article has been accepted for publication in IEEE Transactions on Games. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TG.2021.3076368

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://twitter.com/ExUtumno/status/781833475884277760
https://twitter.com/MattRix/status/872785320445706241
https://github.com/mewo2/oisin
https://github.com/mxgmn/WaveFunctionCollapse/blob/master/README.md
https://github.com/mxgmn/WaveFunctionCollapse/blob/master/README.md
https://github.com/ikarth/wfc_2019f

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

Fig. 3. Visualizing the order in which design decisions are made when using different heuristics. Final results are shown on the top row while crystal growth
diagrams on the bottom show the order in which the result was assembled. Note that with strongly anisotropic pattern adjacencies (e.g. a side-view of a
skyline) some location heuristics (such as lexical) tend to produce more clustered results (in this case, placing nearly all of the roofs of the buildings near the
top of the generated image) which may or may not be aesthetically desirable.

terms of the state of the wave matrix after each observe–
propagate cycle.

For all of the experiments, we used the reference imple-
mentation’s selection of example source images. These define
53 different settings for testing the overlap WFC model. The
heuristics tested were as follows:
entropy Original entropy calculation: select the node with the most

constrained domain.
anti Opposite of entropy, select the node with the least con-

strained domain, breaking ties randomly (Included for a
comparison as the most degenerate strategy).

lexical Select the first unsolved (domain > 1) node in top-to-
bottom, left-to-right lexical order.

random Select a random unsolved node.
spiral Select the first unsolved node found by traversing a spiral

path outward from the center.
hilbert Select the first unsolved node along a space-filling curve.

Rather than measuring wall-clock time (which is likely to
vary between implementations), we measure the number of
choices (observations) that the solver makes against the num-
ber of test scenarios that heuristic successfully completes. A
good, fast heuristic is one that makes fewer choices (resolving
faster) while minimizing restarts.

Our hypothesis was that the main factor in the entropy
heuristic’s success was that it kept the search space as the fron-
tier of a growing solved continent, rather than an archipelago
of islands that might contradict when they grew enough to
encounter each other. We expected the heuristics to fall into
two broad groups: entropy, lexical, spiral, and hilbert tend
to grow contiguous regions, while random and anti-entropy
created discontiguous chunks.

As expected, the degenerate case of anti-entropy found the
fewest solutions (Fig. 4). While the heuristics that sampled
the entire unsolved space were often faster when they reached
a solution, there were significantly fewer solutions found. In
contrast, the heuristics that focused the search on a growing
solved region performed similarly to each other. Surprisingly,

0

500

1000

1500

2000

2500

1 11 21 31 41 51 61 71 81 91 101 111 121 131

So
lu

tio
n

Ti
m

e
(m

ea
su

re
d

in
 o

bs
er

vt
ar

io
ns

)

Number of inputs for which a solution was found

Solutions and Time by Location Heuristic

anti-entropy entropy hilbert lexical random simple spiral

Fig. 4. Cactus plot of location (selection) heuristic experiments. Lines
reaching further to the right indicate more test scenarios solved, lower lines
indicate that fewer choices (observations) were required. The choice count for
a solution include any restarts required because of contradictions. The default
limit of 10 restarts was used. There are three clusters of performance: anti-
entropy had the fewest solutions, hilbert and random had a few more, and the
rest performed comparably. In general, discontiguous location heuristics tend
to find solutions slightly faster but are more likely to encounter contradictions.

hilbert performed worse than expected, most likely due to the
space-filling curve not interacting well with the dimensions
of the output. These findings about which order is best to
assign tile codes in a grid roughly confirm the conclusions
from a recent paper on transformer-based image generation
[25], namely that new tiles should be chosen very close to
previously chosen tiles and that a simple lexical ordering (e.g.
“row-major” in their terms) was sufficient.

However, when choosing an heuristic, the aesthetic dimen-
sion should also be considered. For example, when using a
training image with strongly anisotropic details, such as a side
view of a city skyline the solutions found tend to be very
dependent on the location heuristic used (Fig. 3). Because the

This article has been accepted for publication in IEEE Transactions on Games. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TG.2021.3076368

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

building roofs can only have sky above them, the lexical or-
dering leads to the roofs being placed earlier than would occur
with a random starting location. In this case, lexical ordering
strongly biases the generation, reducing the expressive range.
While this lexical anisotropy may be a valid aesthetic choice
for some purposes, the entropy heuristic performs well on both
the performance and aesthetic dimensions, and when in doubt
should be the default.

B. Pattern (Decision) Heuristics Experiment
The second major heuristic is used to decide a value

(pattern) for each variable (grid location).
weighted The reference implementation uses a random sam-

ple weighted by the frequency the pattern appears
in the source image.

random Uniform random sampling from the domain
rarest Choose the least-used pattern; defined as the pattern

that appears with the lowest frequency in all the
remaining domains

common Choose the most-used pattern; defined as the pat-
tern that appears with the highest frequency in all
the remaining domains

lexical Choose the pattern with the lowest array index
We omit quantitative charts in the interest of space. Rarest

and common frequently run into contradictions. Lexical per-
forms surprisingly well, depending on the characteristics of the
input, but only weighted and random find enough solutions
to be generally viable. The “local similarity” in Gumin’s
“locally similar to the input bitmap” includes the “Weak C2”
characteristic: [6]

Distribution of NxN patterns in the input should be similar
to the distribution of NxN patterns over a sufficiently large
number of outputs. In other words, probability to meet
a particular pattern in the output should be close to the
density of such patterns in the input.

This is satisfied stochastically by the weighted pattern
heuristic: it is likely to sample patterns with the desired
characteristic frequency. In practice, many input images are
relatively homogeneous and this matters more for scenarios
with rare but noticeable patterns.

C. Backtracking Experiment
A surprising feature that the original WFC algorithm lacked

was backtracking. Backtracking is a common feature in con-
straint solvers [11, Chap. 6], but WFC performed quite well
without it, instead opting for a brute-force restarting approach.
Some implementations of WFC added backtracking.19 The
question remained: how effective is backtracking for typical
WFC problems? There was expressed interest in the wild in
adding global constraints.20 Our hypothesis was that genera-
tion with global constraints would be more likely to benefit
from the ability to backtrack. To test this, we implemented
an “allpatterns” global constraint, which required that every
pattern found in the input should be used at least once in the
output (Fig. 5).

19Including Oskar Stålberg’s implementation and the PICO-8 implementa-
tion by Rémy Devaux: https://trasevol.dog/2017/09/01/di19/

20“No, it’s a very good question, I think about global constraints
like connectivity a lot. Thanks!” https://twitter.com/ExUtumno/status/
760235500858900480

0

500

1000

1500

2000

2500

1 11 21 31 41 51 61 71 81 91 101 111 121 131

so
lu

tio
n

co
m

pl
et

ei
on

 ti
m

e
(in

 p
ro

pa
ga

tio
ns

)

number of inputs for which a solution was found

Backtracking and Global Constraints

allpatterns-no-backtracking allpatterns-with-backtracking

no-global-no-backtracking no-global-with-backtracking

Fig. 5. Cactus plot for backtracking experiments. With only local (adjacency)
constraints, backtracking improves performance slightly. Introducing a global
constraint without backtracking significantly increases the difficulty (solutions
take longer to find and/or fail more often). However, a global constraint with
backtracking has comparable performance to non-global-constraint scenarios.

For the test scenario set, backtracking had a minor bene-
fit when only local (adjacency) constraints were used. This
is consistent with the general performance of WFC: using
constraint solving for procedural generation allows for much
more leeway in solution-finding compared to general-purpose
constraint solving. With WFC, contradictions are often clashes
between deeply incompatible regions in the solution, so shal-
low backtracking does not have a dramatic effect on the
result. In contrast, adding a global constraint has a noticeable
impact on performance. Solutions consistently take longer,
with significantly more failures. In this case, backtracking
makes the global constraint performance comparable to the
local constraint performance.21 This confirms our earlier ex-
perimental results with global constraints and backtracking
using an ASP-based rational reconstruction of WFC [3].

Importantly, despite the simplicity of adding backtracking
to an existing WFC implementation, backtracking makes the
search algorithm complete: it will always find a solution if
one exists, given enough time. Whether a method may fail
has been a notable feature examined in other example-driven
generative methods research [26].

D. Learned Classification and Rendering Experiment

In most applications of WFC so far, the algorithm was
applied to source material built from a small vocabulary of
intentionally recombinable tiles. Must these tilesets always be
carefully human-curated, or can these be generated as well
while still making use of WFC? In this experiment we consider
an application where the vocabulary of elementary tiles must
be automatically derived from a high-resolution image and the
rendering of individual tiles may depend on the context of tiles
placed nearby.

As our source image, we used a specific 4096x4096 pixel
image of one of the maps from the videogame WarCraft II:

21This is partially because of the rapid detection of when the global
constraint has been violated. Global constraints that require more computation
to verify will be correspondingly slower, and global constraints that have more
long-range implications will require more backtracking to be successful.

This article has been accepted for publication in IEEE Transactions on Games. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TG.2021.3076368

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://trasevol.dog/2017/09/01/di19/
https://twitter.com/ExUtumno/status/760235500858900480
https://twitter.com/ExUtumno/status/760235500858900480

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

Fig. 6. The left image is the source (training) image for our VQ-VAE experiment (sourced from vgmaps.com). The right image visualizes which of the 16
latent tile codes is assigned to each point on the 128x128-tile grid by our trained VQ-VAE model. Note that the reconstructed appearance of any given latent
tile will depend on the tiles placed around it. Zoom in for full detail.

Tides of Darkness.22 We chose this type of image because,
although the image is apparently composed of 32x32 pixels
tiles, the number of unique tiles needed to exactly reproduce
the image is surprisingly high. The map includes several
terrain types (water, lowlands, plains, forest, mountain) each
with some variations. Between these terrain types are all
of the appropriate transitions. For example, the transition
from lowlands to water rendered as a shoreline can occur
in n/s/e/w as well as diagonal combinations. Additionally,
multi-tile buildings and units sit atop the terrain and can cast
stippled shadows onto the detail below. Although the overall
structure of image is suggestive of a relatively compact data
representation, it takes perceptual skill to recover this from the
image data given. Figure 6 shows our chosen source image and
the tile codes assigned by our learned tile classifier.

Inspired by a line of recent work aiming to bridge contin-
uous neural representations with discrete symbolic represen-
tations [27], we implemented a vector-quantized variational
autoencoder (VQ-VAE), a kind of neural network that makes
use of discrete integer codes in its bottleneck layer. Our
network was composed of three subnetworks. The encoder
network consumes high-resolution color images and produces
a low-resolution grid of high-dimensional vectors (one for
each tile on the 32x32 grid). The decoder network consumes
grids of that same shape and yields high-resolution color
images. Both are shallow, fully-convolutional networks which
would together work like a traditional autoencoder with a
512-dimensional bottleneck representation.23 Between these,

22Specifically, we used a user-generated image: https://vgmaps.com/Atlas/
PC/WarCraftII-TidesOfDarkness-Humans-Mission12-BattleAtCrestfall.png

23Additional design details of these networks are beyond the scope of this
WFC-focused article.

we place a vector quantization layer which maps all input
vectors to their nearest vector from a trainable codebook with
16 entries. Although each entry in the codebook contains a
512-dimensional vector, it takes just 4 bits of information to
identify which codebook entry is used for a given tile. This
codebook index, a learned discrete representation for tiles, is
the true bottleneck representation in our VQ-VAE.

After training the VQ-VAE on a set of cropped views of the
WarCraft source image, we split it into a reusable tile classifier
(encoder with attached quantizer) and tile renderer (codebook
lookup followed by decoding). Passing the full source image
through the learned tile classifier, we get a grid of tile codes.
We can then generate novel maps in the style of the specific
source image by having WFC operate on local (2x2) patterns
of these learned tile codes. Figure 7 shows generation results.

These results demonstrate that WFC does not inherently re-
quire a carefully curated tileset. The strategy of using a learned
latent tile vocabulary for high-resolution image synthesis here
parallels recent work in computer vision (where a transformer-
based model replaces WFC for the purposes of generating
fresh tile grids with spatial coherence) [25]. Computer vision
techniques have previously been used in other work on map
generation from images and videos (e.g. in the literature of
PCGML [2]), but the focus has been on maps composed
of a small vocabulary of identically rendered tiles. In our
demonstration here, the value of context-dependent rendering
is shown in how local combinations of just 16 latent tile codes
can be used to express many more visually-distinct image
patches.

This article has been accepted for publication in IEEE Transactions on Games. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TG.2021.3076368

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://vgmaps.com/Atlas/PC/WarCraftII-TidesOfDarkness-Humans-Mission12-BattleAtCrestfall.png
https://vgmaps.com/Atlas/PC/WarCraftII-TidesOfDarkness-Humans-Mission12-BattleAtCrestfall.png

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

WFC-Selected Tile Codes Tiles Rendered with Learned Decoder

Fig. 7. Novel WFC-generated WarCraft map segments. Images on the left
visualize the grid of tile codes (referencing a 512-dimensional vector codebook
with 16 entries) output by the solver core of WFC, and those at right show
the result of passing those grids through the learned neural decoder. These
five samples were chosen from larger batch of 20 unconstrained outputs in
order to highlight the variety of terrain transitions and building or unit types.

V. TRACING WFC IN THE WILD

A. Game Development

Within a day of the September 30th 2016 release of Wave-
FunctionCollapse to the public [28], other developers were
actively experimenting with it in the wild. Spreading through
social media, particularly via images and animations on Twit-
ter, WFC soon had re-implementations in many environments,
including multiple ones for the PICO-8 fantasy console.24

One game developer who has contributed to the populariza-
tion of WFC is Oskar Stålberg. A technical artist who previ-
ously worked on Tom Clancy’s The Division [29], Stålberg was
among the first to start generalizing WFC, extending it with

24By Joseph Parker https://twitter.com/jplur /status/873551783347589120
and TRASEVOL DOG / Rémy Devaux https://trasevol.dog/2017/06/19/
week60

other tile shapes,25 3D meshes,26 performance optimizations,27

and adding backtracking.28 In May 2017, as part of a talk about
his approach to procedural generation, he released a “small
browser demo”29 to illustrate how his version of the algorithm
works under the hood [30]. Notably, Stålberg’s WFC started as
a clean-room implementation based on the animations rather
than on the original code.30 Stålberg would go on to use his
implementation of WFC in the viking invasion game Bad
North, released in 2018.

One commercially-released indie game that uses WFC is
Caves of Qud [31], which added partially-WFC-generated
villages in July 2018. Caves of Qud is a roguelike developed
by Freehold Games that is currently in early-access release.
One of the developers, Brian Bucklew, started experimenting
with using WFC for level generation.31 Caves of Qud uses
WFC as part of a pipeline, adding additional pre-generation
constraints, using WFC multiple times with different input
images, and making further changes to the map after the
generation is run.32 One of the benefits of WFC that Caves
of Qud has demonstrated is that the simple inputs mean
that it is much easier for the entire team to experiment
with the generator.33 The Caves of Qud developers noticed
two drawbacks of WFC: isotropy and overfitting [32]. While
WFC can capture long range correlations, there are limits and
large images tend toward isotropy and homogeneity at lower
frequencies. Their solution to this was to partition the space
with other algorithms and only run WFC on a subset of the
level. Likewise, adding more detail to the small training image
risked over-constraining the results, as the training overfitted
to the image. Their solution was to avoid putting too much
detail in the training image and instead add detailing (such as
extra doors) using other approaches later in the pipeline.

WaveFunctionCollapse in Caves of Qud is an addition to
an existing level generator. While Bad North also uses WFC
as part of a pipeline, the Bad North island generator would
not exist without WFC. Bad North islands are constructed out
of 3D modules, designed in Maya and exported into Unity

25“Content-agnostic algorithm for placing tiles. Heavily based on the work
of @ExUtumno. Basically a Sudoku-solver on steroids.”
https://twitter.com/OskSta/status/784847588893814785

26“More procedural tile placement. Now in 3D. Algorithm in-
spired by the work of @ExUtumno” https://twitter.com/OskSta/status/
787319655648100352

27“It’s getting faster (mostly due to bitwise operations). Actual speed
depicted below” https://twitter.com/OskSta/status/794993371261665280

28“I gave it an extra difficult tileset to work with to make sure it
can repair itself when it has screwed up” https://twitter.com/OskSta/status/
793806535898136576

29“I built a small browser demo to help explain how the WFC algorithm
works. Give it a go: http://oskarstalberg.com/game/wave/wave.html . . . ” https:
//twitter.com/OskSta/status/865200072685912064

30“It was hard to crack your computer science lingo about collapsing wave
functions, so I basically just looked at your gifs” https://twitter.com/OskSta/
status/784850280093478912

31“The peaceful gardens of Inner Aarranip. A Caves of Qud dungeon
generated via https://github.com/mxgmn/WaveFunctionCollapse . . . based syn-
thesis.”
https://twitter.com/unormal/status/805987523596091392

32https://forums.somethingawful.com/showthread.php?threadid=3563643&
userid=68893&perpage=40&pagenumber=23#post467126402

33“Ha! I’m experimenting with the WFC map generator @unormal just
added.”
https://twitter.com/ptychomancer/status/805964921443782656

This article has been accepted for publication in IEEE Transactions on Games. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TG.2021.3076368

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://twitter.com/jplur_/status/873551783347589120
https://trasevol.dog/2017/06/19/week60
https://trasevol.dog/2017/06/19/week60
https://twitter.com/OskSta/status/784847588893814785
https://twitter.com/OskSta/status/787319655648100352
https://twitter.com/OskSta/status/787319655648100352
https://twitter.com/OskSta/status/794993371261665280
https://twitter.com/OskSta/status/793806535898136576
https://twitter.com/OskSta/status/793806535898136576
https://twitter.com/OskSta/status/865200072685912064
https://twitter.com/OskSta/status/865200072685912064
https://twitter.com/OskSta/status/784850280093478912
https://twitter.com/OskSta/status/784850280093478912
https://twitter.com/unormal/status/805987523596091392
https://forums.somethingawful.com/showthread.php?threadid=3563643&userid=68893&perpage=40&pagenumber=23#post467126402
https://forums.somethingawful.com/showthread.php?threadid=3563643&userid=68893&perpage=40&pagenumber=23#post467126402
https://twitter.com/ptychomancer/status/805964921443782656

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

with a process that calculates which modules have matching
geometry along their edges. These “profiles” are used to define
the adjacencies: modules with matching profiles are allowed
to be adjacent. Some larger modules take up multiple spaces.
Variation across islands is achieved by changing the set of
modules allowed for an island, thereby creating regions of
similar islands by having them use similar sets of tiles and
allowing a progression to be created from the input to WFC.
The islands are constructed on three-dimensional 11 × 11
grids (with some degree of vertical space) and some additional
constraints, the most important of which is a connectivity local
constraint: the island needs guaranteed paths from the Vikings
on the beach to the houses the player is defending.

B. Artistic

In addition to level design, WFC has been applied to
other kinds of content. One of the most unexpected was
developed by Martin O’Leary, a glaciologist who also makes
“weird internet stuff” [33] including twitter bots and generated
travel guides. Inspired by WFC, O’Leary created a poetry
generator called Oisı́n which enforces rhyme/meter constraints
to construct sonnets,34 limericks,35 and ballads.36 In personal
correspondence with us, O’Leary explained that, “I treat sylla-
bles as the basic unit, so each ‘tile’ is a sequence of syllables
(tagged with the word/position it comes from).” This is put
into a 1-dimensional WFC sequence, together with “some
extra long-distance constraints induced by rhyme, meter, etc.”
O’Leary has released the source code [24].

Oisı́n also demonstrates that while WFC is typically used
on a rectangular grid, the algorithm has already been extended
to graphs. Indeed, Oskar Stålberg demonstrated WFC on the
surface of a sphere tessellated with triangles, Github user
“Boris the Brave” made an implementation that supports both
hexagonal grids and global constraints,37 and Florian Drux
implemented WFC for arbitrary graphs as GraphWaveFunc-
tionCollapse.38

C. Academic

On the research side, WFC has been incorporated into
several avenues of research. In “Procedural Content Gener-
ation via Machine Learning” (PCGML), Summerville et al.
described WFC in relation to Markov random fields and
constraint propagation [2].

In “Addressing the Fundamental Tension of PCGML with
Discriminative Learning”, we use WFC to discuss the tension
between having to author enough training data and saving
effort. They also discuss how the overlap model’s pattern clas-
sifier/renderer uses machine learning (similar to autoencoders)

34“Using @ExUtumno’s “wavefunction collapse” algorithm to enforce
rhyme/meter constraints in text (Alice in Wonderland as Shakespearean
sonnet)” https://twitter.com/mewo2/status/789167437518217216

35“Also, Pride and Prejudice as a limerick. Turns out the limerick constraints
are much harder to satisfy than sonnets, which are easy to write”
https://twitter.com/mewo2/status/789177702620114945

36“Moby Dick in a conveniently singable ballad form, thanks to WFC”
https://twitter.com/mewo2/status/789187174683987968

37https://boristhebrave.github.io/DeBroglie/
38https://github.com/lamelizard/GraphWaveFunctionCollapse and https://

github.com/lamelizard/GraphWaveFunctionCollapse/blob/master/thesis.pdf

and how can use multiple input sources as part of a mixed-
initiative design approach [21].

WFC has also been applied to other research problems
and generators. Khokhlov, Koh, and Huang developed a voxel
synthesis approach based on WFC and Merrell’s texture syn-
thesis work, taking advantage of WFC’s ability to learn from
single-input models [34]. Oliveria et al. used WFC to generate
a city as part of an experiment into mixed reality cycling
environments [35]. Scurti and Verbrugge used WFC as part
of a pipeline to generate example-based paths based on non-
programmer input [36]. Finally, Snodgrass includes WFC in a
theoretical framework of Markov Models in PCG [37].

VI. CONCLUSION

WaveFunctionCollapse is a family of algorithms that have
found widespread use across many spheres. The many imple-
mentations of WFC vary in details of the pipeline but they
all use constraint solving for the propagation of relationships
and many use some form of machine learning to learn the
constraints from tiny amounts of non-programmer input. In
contrast to many parameter-controlled generative methods,
WFC starts from a high-level example of the desired output
and synthesizes the result. The focus on extremely small
amounts of example data has made WFC approachable to
many outside of academia in a way that the kinds of data-
intensive methods examined the the PCGML literature have
not [21].

Our experiments demonstrate the relative importance and
resource use of various heuristics and the impact of backtrack-
ing in the presence of global design constraints. By examining
each facet of the pipeline both individually and in context, we
demonstrate paths for future research exploration. In partic-
ular, through the connection to vector-quantizing models, we
have shown a pathway for integrating recent deep learning
techniques while still learning from just one (large) example.
Future work might examine the possibility of intentionally
learning tile classifiers that lead to compactly expressible
(e.g. sparse or low-rank) tile-adjacency matrices or learning
rendering functions that take the form of recombinable micro-
tiles or other simple representations so that, after training, no
neural networks are involved in rendering (allowing the result
to be as widely deployed as current WFC variants).

Our explanation of the algorithm is intended to introduce the
complex code of the reference implementation in an approach-
able way. Separating out the different modules in our rational
reconstruction enabled us to experiment with heuristics and
other aspects of the algorithm’s pipeline. Surveying the many
implementations and uses for WFC, we have traced how its
adoption spread in hobby, academic, and industrial contexts.
Following the path of WFC’s early adopters, future work
should continue to identify and overcome limitations in past
variants, demonstrating new ways of using constraint solving
and machine learning.

WaveFunctionCollapse presages opportunities for new di-
rections in PCG research. Its influence, already spreading
rapidly, ushers us into a new era of PCG that successfully com-
bines techniques that were previously outside the commonly-
known PCG sphere.

This article has been accepted for publication in IEEE Transactions on Games. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TG.2021.3076368

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://twitter.com/mewo2/status/789167437518217216
https://twitter.com/mewo2/status/789177702620114945
https://twitter.com/mewo2/status/789187174683987968
https://boristhebrave.github.io/DeBroglie/
https://github.com/lamelizard/GraphWaveFunctionCollapse
https://github.com/lamelizard/GraphWaveFunctionCollapse/blob/master/thesis.pdf
https://github.com/lamelizard/GraphWaveFunctionCollapse/blob/master/thesis.pdf

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

ACKNOWLEDGMENT

The authors would like to thank Oskar Stålberg, Brian Buck-
lew, Jason Grinblat, Joseph Parker, and Martin O’Leary for
their correspondence; and, most importantly, Maxim Gumin
for developing WaveFunctionCollapse in the first place.

REFERENCES

[1] A. M. Smith and M. Mateas, “Answer set programming for procedural
content generation: A design space approach,” IEEE Transactions on
Computational Intelligence and AI in Games, vol. 3, no. 3, pp. 187–
200, Sept 2011.

[2] A. Summerville, S. Snodgrass, M. Guzdial, C. Holmgård, A. K. Hoover,
A. Isaksen, A. Nealen, and J. Togelius, “Procedural content generation
via machine learning (pcgml),” IEEE Transactions on Games, vol. 10,
no. 3, pp. 257–270, Sep. 2018.

[3] I. Karth and A. M. Smith, “WaveFunctionCollapse is constraint
solving in the wild,” in Proceedings of the 12th International
Conference on the Foundations of Digital Games, ser. FDG ’17. New
York, NY, USA: ACM, 2017, pp. 68:1–68:10. [Online]. Available:
http://doi.acm.org/10.1145/3102071.3110566

[4] A. A. Efros and T. K. Leung, “Texture synthesis by non-parametric
sampling,” in Computer Vision, 1999. The Proceedings of the Seventh
IEEE International Conference on, vol. 2, IEEE. IEEE Computer
Society, 1999, 1999, pp. 1033–1038.

[5] L. Liang, C. Liu, Y.-Q. Xu, B. Guo, and H.-Y. Shum, “Real-time texture
synthesis by patch-based sampling,” ACM Transactions on Graphics
(ToG), vol. 20, no. 3, pp. 127–150, 2001.

[6] M. Gumin. (2017, May) WaveFunctionCollapse Readme.md.
[Online]. Available: https://github.com/mxgmn/WaveFunctionCollapse/
blob/master/README.md

[7] P. C. Merrell, “Model synthesis,” Ph.D. dissertation, University of North
Carolina at Chapel Hill, 2009.

[8] M. Gumin, “Syntex,” GitHub repository, 2016. [Online]. Available:
https://github.com/mxgmn/SynTex

[9] ——, “Convchain,” GitHub repository, 2016. [Online]. Available:
https://github.com/mxgmn/ConvChain

[10] L. A. Gatys, A. S. Ecker, and M. Bethge, “A neural algorithm of
artistic style,” CoRR, vol. abs/1508.06576, 2015. [Online]. Available:
http://arxiv.org/abs/1508.06576

[11] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
3rd ed. Pearson Education, 2016.

[12] L. Foged and I. Horswill, Rolling Your Own Finite-Domain Constraint
Solver. A K Peters/CRC Press, 2015, pp. 283–302.

[13] J. Togelius, G. N. Yannakakis, K. O. Stanley, and C. Browne, “Search-
based procedural content generation: A taxonomy and survey,” IEEE
Transactions on Computational Intelligence and AI in Games, vol. 3,
no. 3, pp. 172–186, 2011.

[14] I. D. Horswill and L. Foged, “Fast procedural level population with
playability constraints,” in Eighth Artificial Intelligence and Interactive
Digital Entertainment Conference, 2012.

[15] G. Smith, J. Whitehead, and M. Mateas, “Tanagra: Reactive planning and
constraint solving for mixed-initiative level design,” IEEE Transactions
on Computational Intelligence and AI in Games, vol. 3, no. 3, pp. 201–
215, 2011.

[16] C. Prud’homme, J.-G. Fages, and X. Lorca, Choco Documentation,
TASC, INRIA Rennes, LINA CNRS UMR 6241, COSLING S.A.S.,
2016. [Online]. Available: http://www.choco-solver.org

[17] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub, Answer Set
Solving in Practice, ser. Synthesis Lectures on Artificial Intelligence
and Machine Learning. Morgan and Claypool Publishers, 2012.

[18] M. Gebser, B. Kaufmann, and T. Schaub, “Conflict-driven answer set
solving: From theory to practice,” Artificial Intelligence, vol. 187, pp.
52–89, 2012.

[19] R. Kaminski, T. Schaub, and P. Wanko. (2017) A tutorial on
hybrid answer set solving with clingo. [Online]. Available: https:
//www.cs.uni-potsdam.de/∼torsten/hybris.pdf

[20] M. Gumin, “Wavefunctioncollapse,” GitHub repository, 2016. [Online].
Available: https://github.com/mxgmn/WaveFunctionCollapse

[21] I. Karth and A. M. Smith, “Addressing the fundamental tension
of pcgml with discriminative learning,” in Proceedings of the 14th
International Conference on the Foundations of Digital Games, ser.
FDG ’19. New York, NY, USA: ACM, 2019, pp. 89:1–89:9. [Online].
Available: http://doi.acm.org/10.1145/3337722.3341845

[22] M. Fehr and N. Courant, “fast-wfc,” GitHub repository, 2018. [Online].
Available: https://github.com/math-fehr/fast-wfc

[23] C. P. Gomes, A. Sabharwal, and B. Selman, “Near-uniform sampling
of combinatorial spaces using xor constraints,” in Advances in Neural
Information Processing Systems, 2006, pp. 481–488.

[24] M. O’Leary. (2017, May) Oisı́n: Wave function collapse for poetry.
[Online]. Available: https://github.com/mewo2/oisin

[25] P. Esser, R. Rombach, and B. Ommer, “Taming transformers for high-
resolution image synthesis,” 2020.

[26] S. M. Lucas and V. Volz, “Tile pattern kl-divergence for analysing and
evolving game levels,” in Proceedings of the Genetic and Evolutionary
Computation Conference, 2019, pp. 170–178.

[27] A. van den Oord, O. Vinyals, and K. Kavukcuoglu, “Neural discrete
representation learning,” 2018.

[28] M. Gumin. (2016, Sep) Bitmap & tilemap generation
from a single example by collapsing a wave function
https://github.com/mxgmn/wavefunctioncollapse. [Online]. Available:
https://twitter.com/ExUtumno/status/781834584136814593

[29] T. Holmes. (2016, Jan) Interview with phenomenal game designer
oskar stälberg. [Online]. Available: https://taylorholmes.com/2016/01/
22/interview-with-phenomenal-game-designer-oskar-stalberg/

[30] O. Stålberg. (2017, May) wave.html. [Online]. Available: http:
//oskarstalberg.com/game/wave/wave.html

[31] J. Grinblat and C. B. Bucklew, “Caves of Qud,” 2010.
[32] C. B. Bucklew, “Roguelike celebration 2019,” Oct 2019. [Online].

Available: https://www.youtube.com/watch?v=fnFj3dOKcIQ
[33] M. O’Leary. (2017) Twitter bio. [Online]. Available: https://twitter.com/

mewo2
[34] M. Khokhlov, I. Koh, and J. Huang, “Voxel synthesis for generative

design,” in Design Computing and Cognition ’18, J. S. Gero, Ed. Cham:
Springer International Publishing, 2019, pp. 227–244.

[35] W. Oliveira, W. Gaisbauer, M. Tizuka, E. Clua, and H. Hlavacs, “Virtual
and real body experience comparison using mixed reality cycling envi-
ronment,” in Entertainment Computing – ICEC 2018, E. Clua, L. Roque,
A. Lugmayr, and P. Tuomi, Eds. Cham: Springer International
Publishing, 2018, pp. 52–63.

[36] H. Scurti and C. Verbrugge, “Generating paths with wfc,” in Fourteenth
Artificial Intelligence and Interactive Digital Entertainment Conference,
2018.

[37] S. Snodgrass, “Markov models for procedural content generation,” Ph.D.
dissertation, Drexel University, 2018.

This article has been accepted for publication in IEEE Transactions on Games. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TG.2021.3076368

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

http://doi.acm.org/10.1145/3102071.3110566
https://github.com/mxgmn/WaveFunctionCollapse/blob/master/README.md
https://github.com/mxgmn/WaveFunctionCollapse/blob/master/README.md
https://github.com/mxgmn/SynTex
https://github.com/mxgmn/ConvChain
http://arxiv.org/abs/1508.06576
http://www.choco-solver.org
https://www.cs.uni-potsdam.de/~torsten/hybris.pdf
https://www.cs.uni-potsdam.de/~torsten/hybris.pdf
https://github.com/mxgmn/WaveFunctionCollapse
http://doi.acm.org/10.1145/3337722.3341845
https://github.com/math-fehr/fast-wfc
https://github.com/mewo2/oisin
https://twitter.com/ExUtumno/status/781834584136814593
https://taylorholmes.com/2016/01/22/interview-with-phenomenal-game-designer-oskar-stalberg/
https://taylorholmes.com/2016/01/22/interview-with-phenomenal-game-designer-oskar-stalberg/
http://oskarstalberg.com/game/wave/wave.html
http://oskarstalberg.com/game/wave/wave.html
https://www.youtube.com/watch?v=fnFj3dOKcIQ
https://twitter.com/mewo2
https://twitter.com/mewo2

	Introduction
	Research Context
	Texture Synthesis
	Constraint Solving
	Constraint Solving in PCG
	ASP in PCG

	Illuminating Gumin's Reference Implementation of WFC
	Rational Reconstruction
	Adjacencies
	Pre-constraints
	Constraint Solving
	Initialization with Clear()
	Removal of alternatives with Ban()
	Choice of Design with Observe()
	Resolving implications with Propagate()
	Contradictions

	Rendering
	Visualizing WFC

	Experiments
	Location (Selection) Heuristics Experiment
	Pattern (Decision) Heuristics Experiment
	Backtracking Experiment
	Learned Classification and Rendering Experiment

	Tracing WFC in the Wild
	Game Development
	Artistic
	Academic

	Conclusion
	References

