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Abstract

Clostridium difficile is an opportunistic pathogen that establishes in the colon when the gut 

microbiota is disrupted by antibiotics or disease. C. difficile infection (CDI) is largely caused by 

two virulence factors TcdA and TcdB. Here, we report a 3.87 Å resolution crystal structure of 

TcdB holotoxin that captures a unique conformation of TcdB at endosomal pH. Complementary 

biophysical studies suggest that the CROPs domain of TcdB is dynamic and can sample open and 

closed conformations that may facilitate modulation of TcdB activity in response to environmental 

and cellular cues during intoxication. Furthermore, we report three crystal structures of TcdB–

antibody complexes that reveal how antibodies could specifically inhibit the activities of individual 

TcdB domains. Our studies provide novel insights into the structure and function of TcdB 
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holotoxin and identify intrinsic vulnerabilities that could be exploited to develop new therapeutics 

and vaccines for the treatment of CDI.

Clostridium difficile is classified as one of the top three urgent antibiotic resistance threats 

by Center for Disease Control and Prevention (CDC). The pathology of CDI is primarily 

mediated by two homologous exotoxins, TcdA and TcdB, which target and disrupt the 

colonic epithelium, leading to diarrhea and colitis 1–5. While the relative roles of these two 

toxins in the pathogenesis of CDI are not completely understood, recent studies showed that 

TcdB is more virulent than TcdA and more important for inducing the host inflammatory 

and innate immune responses 5–8. Notably an anti-TcdB neutralizing antibody 

(bezlotoxumab) was recently approved by the US Food and Drug Administration (FDA) as a 

prevention against recurrent infection 9. However, more effective therapies for CDI are 

desperately needed.

TcdA (~308 kDa) and TcdB (~270 kDa) contain four functional domains: an N-terminal 

glucosyltransferase domain (GTD), a cysteine protease domain (CPD), a central delivery and 

receptor-binding domain (DRBD), and a C-terminal combined repetitive oligopeptides 

(CROPs) domain (Fig. 1a). Toxins bind to cell surface receptors via the DRBD and the 

CROPs, and enter the cells through endocytosis 10–14. Acidification in the endosome triggers 

conformational changes in the toxins that prompt the DRBD to form a pore and deliver the 

GTD and the CPD across the endosomal membrane 15–18.

In the cytosol, the CPD is activated by eukaryotic-specific inositol hexakisphosphate (InsP6) 

and subsequently undergoes autoproteolysis to release the GTD. The GTD then glucosylates 

small GTPases of the Rho family, including Rho, Rac, and Cdc42, and inhibits their function 
19–23. Numerous structures have been reported for fragments of TcdA and TcdB, which have 

provided tremendous insights into the functions of these toxin domains 10,12,13,24–28. 

However, it remains unknown how individual domains interact within the supertertiary 

structure of the holotoxin, and how the holotoxin dynamically responds in a precise stepwise 

manner to the environmental and cellular cues, such as low pH and InsP6, which lead to 

intoxication.

Here we report the crystal structure of TcdB holotoxin at 3.87 Å resolution, which was 

crystallized at an endosomal pH (pH 5.2) and displays an architecture that is distinct from 

the prior model derived from electron microscopy (EM) 29. To probe the structural dynamics 

of TcdB in solution, we used a combination of small-angle X-ray scattering (SAXS), single-

molecule fluorescence resonance energy transfer (smFRET), and cross-linking mass 

spectrometry (XL-MS). These experiments consistently demonstrate that the elongated 

CROPs of TcdB displays pH-dependent structural flexibility, which may help TcdB to 

modulate its activity in response to environmental pH change. Furthermore, we reveal novel 

structural mechanisms underlying neutralization of TcdB by three antibodies. These findings 

collectively reveal new strategies for developing therapeutics and vaccines for the treatment 

of CDI.
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RESULTS

Crystal structure of the full length TcdB

The full length TcdB holotoxin from the M68 strain of C. difficile was expressed using 

Bacillus megaterium 30. Large molecular weight, multi-domain proteins like TcdB are 

notoriously difficult to crystallize, and its structural flexibility has also hampered 3D 

analysis by EM 29. To facilitate crystal packing, we screened a panel of TcdB-binding 

VHHs, the antigen-binding region (VH) of the heavy-chain-only antibodies (also known as 

nanobodies or single-domain antibodies, sdAbs). The best X-ray diffraction data were 

collected at 3.87 Å resolution on a crystal of a heterotetrameric complex composed of TcdB 

and three neutralizing VHHs (5D, E3, and 7F) 18,31. The TcdB–VHH complex was 

crystallized at pH 5.2, which is a physiologically relevant pH in an endosome (Fig. 1a–b and 

Table 1).

We solved the crystal structure of the TcdB–VHH complex using molecular replacement 

(Methods). A complete structure of TcdB holotoxin was built except for two small regions 

(residues 944–949 and 1032–1047) that have no visible electron density due to high 

structural flexibility (Fig. 1b and Supplementary Fig. 1a–d). We further validated this 

structure using an anomalous difference electron density map generated from a crystal of the 

TcdB–VHH complex soaked in tantalum bromide (Supplementary Fig. 1e). E3 and 7F both 

bind to the GTD, while 5D binds to the DRBD (Supplementary Fig. 1f). This was further 

confirmed by three crystal structures of GTD–E3, GTDVPI10463 –7F, and TcdB1072–1433–5D 

complexes, which we determined at 2.39 Å, 2.20 Å, and 2.97 Å resolution, respectively 

(Table 1).

The crystal structure reveals that TcdB is composed of three major components. The GTD 

and CPD form the center piece involving extensive inter-domain interactions. The DRBD 

forms an extended module, interacting with both the GTD and the CPD on one side and 

pointing away from GTD/CPD. The most prominent finding is the elongated CROPs 

domain, which emerges from the junction of the CPD and the DRBD and stretches ~130 Å 

in the opposite direction to curve around the GTD like a hook (Fig. 1b). The overall 

architecture of TcdB at endosomal pH is distinct from structural models of TcdB and TcdA 

that were derived from a negative stain EM study at neutral pH, where the CROPs lies in 

parallel to and interacts with the DRBD (Supplementary Fig. 1g) 29. Furthermore, we 

observed that a portion of the pore-forming region in the DRBD (residues 957–1129) adopts 

a conformation that is different from TcdA at neutral pH 24. This likely represents a rarely 

seen intermediate state of TcdB in response to endosomal pH, which is “frozen” by a 

neutralizing antibody (5D) and will be discussed further below.

The unique structure of the CROPs domain

The CROPs of TcdB is composed of two types of repetitive sequences including twenty 

short repeats (SRs) of 20–23 residues and four long repeats (LRs) of 30 residues (Fig. 2a and 

Supplementary Fig. 2a). Each SR consists of a β-hairpin followed by a flexible loop, while 

each LR has three β-strands that form a twisted anti-parallel β-sheet together with the β-

hairpin of the preceding SR. Neighboring SRs are packed together into a ~31 screw axis with 
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~120° rotation between SRs, which creates a left-handed β-solenoid superhelix 32,33. The 

curvature of the CROPs arises because the straight, rod-like segments of the β-solenoid 

composed of SRs are interrupted by the interspersed LRs, which cause a ∼132–146° kink 

(Fig. 2b–c). Structurally, the CROPs could be divided into four equivalent units, and 

superposition of CROPs I–IV yielded a Cα root-mean square deviation (r.m.s.d.) of ~ 0.9–

2.6 Å (Fig. 2c).

Interestingly, we identified an unrecognized SR module (residues 1815–1834) at the C-

terminus of the DRBD. This new SR, together with an upstream long loop and a short α 
helix, form a structurally distinct module (residues 1792–1834), which we refer to as the 

“hinge” because it connects the DRBD to the elongated CROPs. Furthermore, the hinge 

directly interacts with a three-stranded β-sheet in the CPD (residues 742–765, termed the β-

flap) that is crucial for CPD activation 27, as well as a 3-helical bundle (residues 766–841, 

referred to as 3-HB) that is located in a crevice surrounded by GTD, CPD, DRBD, and 

CROPs (Fig. 2d–e and Supplementary Fig. 2c). Because of its strategic location, this hinge 

is primed to mediate structural communications among all four domains of TcdB. A 

functional role for this hinge is supported by our earlier studies showing that deletions in this 

area drastically reduced the toxicity of TcdB 34. Additionally, hypervariable sequences near 

the hinge may contribute to differences in toxicity and antigenicity displayed by TcdB 

variants produced by the hypervirulent C. difficile 027 ribotype and other less virulent 

strains 35–37 (Supplementary Fig. 2b).

Differences in the conformation of TcdB at neutral and acidic pH

To examine the solution structure of TcdB holotoxin, we carried out online size-exclusion 

chromatography coupled to SAXS (SEC-SAXS) for TcdB at pH 5.0 and pH 7.4 

(Supplementary Table 1 and Supplementary Fig. 3a–c). Curve-fit analysis showed that the 

calculated scattering profile from our crystal structure is well fit to the experimental 

scattering profile at pH 5.0 (Fig. 3a), suggesting that the structure of TcdB in solution is 

similar to the crystal structure at pH 5.0. However, the calculated profile for the crystal 

structure disagreed with the experimental SAXS data at pH 7.4, particularly at the middle-

angle (middle q) region of the scattering profile (Fig. 3a), which suggests that TcdB samples 

different conformations at neutral pH 38.

Guinier and P(r) analyses showed similar Rg values at pH 5.0 and 7.4. However Dmax at pH 

5.0 (~ 233.0 Å) was longer than that at pH 7.4 (~ 205.0 Å). The Dmax at pH 5.0 is 

comparable to the value predicted from our crystal structure (~247 Å). The shorter Dmax at 

pH 7.4 is comparable to the value predicted for the TcdB core that is composed of the GTD, 

CPD, and DRBD (~203 Å) (Supplementary Fig. 3d–e). This suggests that the elongated 

CROPs may swing towards the TcdB core at neutral pH, which would shorten the maximum 

dimension.

To better characterize the conformation of the CROPs at pH 7.4, we employed XL-MS to 

determine inter-domain interactions of TcdB using MS-cleavable cross-linker DSSO 

(disuccinimidyl sulfoxide) 39 Lysine residues on the surface of TcdB that can approach 

within 30 Å Cα–Cα distance are preferentially cross-linked and identified by multistage 

tandem MS 39,40 (Supplementary Fig. 4a–c). In total, we identified 87 intra-molecular cross-
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links in TcdB at pH 7.4, representing 27 inter-domain and 60 intra-domain interactions (Fig. 

3b, Supplementary Note 1, and Supplementary Data 1). When the XL-MS data was mapped 

to our crystal structure, almost all of these cross-links satisfy the distance cutoff of 30 Å, 

indicating a good correlation with the crystal structure of TcdB (Supplementary Fig. 4d).

Interestingly, we identified 7 pairs of cross-linked peptides between the CROPs and the 

DRBD. Based on our crystal structures, the Cα–Cα distances between these cross-linked 

lysine residues range between 90 Å and 210 Å (Supplementary Fig. 4d). This suggested that 

the CROPs of TcdB, especially the central portion of the CROPs around residues K1965 and 

K1977 and the C-terminal tip of the CROPs around residues K2234 and K2249, were able to 

move within ~30 Å of the DRBD (Fig. 3c). Closing of the CROPs is consistent with the 

shorter Dmax of TcdB derived from SAXS at pH 7.4, and similar to the closed conformation 

of TcdB and TcdA observed in the EM study (Supplementary Fig. 1g) 29. Since XL-MS 

captures dynamic and transient contacts in addition to stable structures, the time that the 

CROPs spends in a closed conformation at neutral pH remains unknown.

pH-dependent structural flexibility of the CROPs

We used smFRET to further probe the conformation of the CROPs 41. We used three VHHs 

(7F, B39, and 5D) as molecular tools to label and capture TcdB in order not to modify its 

endogenous cysteine residues. Specifically, we attached the acceptor dye (Alexa-647) to 7F, 

which labels the core of TcdB holotoxin, and attached the donor dye (Alexa-555) to B39, 

which specifically binds to the CROPs IV 25. Biotin-labeled 5D was used for immuno-

pulldown of TcdB onto a microscope slide, which has no effect on TcdB conformational 

change based on an ensemble FRET study (Supplementary Fig. 4e). In the structure of TcdB 

holotoxin at endosomal pH, the distance between dyes is ~47 Å, which would give FRET 

efficiency near 0.5. Any movement of the CROPs would affect energy transfer between 

these two dye-labeled VHHs (Fig. 3d). A structural modeling suggested that we would 

expect no FRET if TcdB holotoxin stably adopts a closed conformation.

For FRET analysis, we only selected those complexes containing a single donor and 

acceptor dye that both photobleached to background during observation (Supplementary Fig. 

4f and Supplementary Table 2) 42. We observed single FRET peaks for the heterotetrameric 

TcdB–VHH complexes at both acidic and neutral pH (Fig. 3e and Supplementary Fig. 4g). 

A simple calculation from the mean FRET efficiency at pH 5.0 (0.532 ± 0.015) gives an 

estimated distance of 49.9 ± 0.05 Å between the dye-labeled VHHs, which is consistent with 

the crystal structure of TcdB holotoxin at acidic pH (~47 Å). Similar results were observed 

at pH 5.5 and pH 5.25 (Supplementary Fig. 4h).

At neutral pH, we observed a slight decrease in mean FRET efficiency (0.484 ± 0.007) and a 

25% decrease in the distribution width at pH 7.0 (0.113 ± 0.002) relative to pH 5.0 (0.141 

± 0.026) (Fig. 3e). Simple calculation based on FRET suggests a slight distance increase to 

51.5 ± 0.05 Å at neutral pH, which is accompanied by a dramatic increase in the rate of 

conformational dynamics. We note that a single FRET pair is insufficient to position the 

CROPs relative to the rest of TcdB, and changes in conformational dynamics could affect 

the simple conversion of FRET to distance. However, this smFRET data suggests that the 
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CROPs does not stably occupy a closed conformation at neutral pH under the conditions 

tested.

Thus far, we have identified two limiting structural states for TcdB: an open conformation 

revealed by the crystal structure at acidic pH and a closed conformation captured by XL-MS 

at neutral pH (Fig. 3d). Combined with our SAXS and smFRET studies, these data 

collectively suggest that the CROPs predominantly occupies the open state at acidic pH, but 

dynamically samples an ensemble of conformations relative to the core of TcdB at neutral 

pH. Such protein dynamics are faster than our 100 ms integration time in smFRET, so 

motions between open and closed conformations would be time averaged into a single peak 
43. The lack of stabilizing contacts between the CROPs and the TcdB core and the potential 

structural rearrangement in the hinge that connects the DRBD and the CROPs should permit 

such conformational sampling.

A pore-forming intermediate state of TcdB at endosomal pH

The DRBD serves to protect the hydrophobic pore-forming region (residues 957–1129), 

which is predicted to be released upon endosome acidification in order to form a pore that 

delivers the GTD and the CPD to the cytosol. The pore forming activity of TcdB also 

contributes to cell necrosis observed in vitro 16,44. A structural comparison between TcdB 

holotoxin at acidic pH and a TcdA fragment at neutral pH reveals drastic differences in the 

homologous C-terminal portion of the pore-forming region (residues 1032–1093 in TcdB) 

(Fig. 4a–b). In TcdA, this region adopts a mixed α/β configuration, where hydrophobic 

residues are shielded in a continuous groove formed mostly by β-sheets in the DRBD (Fig. 

4c–d). However, in the acidic conformation of TcdB, there was no electron density visible 

for residues 1032–1047, likely due to high flexibility, indicating that these residues unfolded 

and detached from the toxin core at endosomal pH. Furthermore, TcdB residues equivalent 

to the α2 in TcdA unfolded into a loop, while TcdB residues equivalent to the β3 and part of 

the α3 in TcdA assembled into a new helix that occupied the same area as the original α3 in 

TcdA. Because of this transition, hydrophobic residues in TcdB (residues 1084–1093), 

which are equivalent to the C-terminal portion of the α3 helix in TcdA, bulged out as an 

extended loop. Intriguingly, the conformational change did not spread into the region where 

TcdB is bound by 5D (residues 1094–1134), which maintains a similar conformation as that 

observed in TcdA.

We produced TcdB1072–1433 to further examine the effect of acidic pH and 5D on the pore-

forming region. Using an environmentally sensitive fluorescent dye 16,35,45, we observed an 

increase in exposed hydrophobic surface in TcdB1072–1433 upon acidification, which was 

inhibited by 5D (Supplementary Fig. 5a–b). This is consistent with a pH-triggered 

conformational change in TcdB that is blocked by 5D. We then determined the crystal 

structure of TcdB1072–1433 in complex with 5D at pH 8.5 (Table 1), which revealed that its 

pore-forming region adopts a TcdA-like neutral pH conformation (Supplementary Fig. 5c–

d). Together, these findings suggest that the novel conformation observed in the pore-

forming region of TcdB likely represents an intermediate state induced by endosomal pH.

Furthermore, we found that the binding mode of 5D to TcdB is almost identical at neutral or 

acidic pH, in which 5D directly binds P1105, L1107, N1110, and L1112 in the pore-forming 
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region (Supplementary Fig. 5e–f and Supplementary Table 3). Prior mutagenesis studies 

showed that the pore-forming region around the 5D-binding site in TcdB is crucial for pore 

formation and cellular toxicity. For example, mutation of L1107 (L1107K), which is located 

in the β4 and targeted by 5D, caused a >1,000-fold decreased toxicity 16,24. These findings 

thus suggest that 5D is able to bind to TcdB at both neutral and acidic pH and fix the 

conformation of β4–β5 in TcdB, which would inhibit the conformational changes necessary 

for pore formation at endosomal pH. This notion is further supported by observations that 

TcdB-induced calcein release from liposomes at pH 4.6 was significantly reduced by 5D, 

and that 5D prevented TcdB from dissipating the valinomycin-induced membrane potential 

in liposomes (Fig. 4e–f).

Taken together, these findings suggest that 5D neutralizes TcdB 31,46 by preventing the pore-

forming region from completing the necessary pH-induced conformational change. Notably, 

the pore-forming region recognized by 5D is highly conserved among a family of large 

clostridial glucosylating toxins (LCGTs), which include TcdA and TcdB, C. novyi α-toxin 

(Tcnα), C. sordellii lethal and hemorrhagic toxins (TcsL and TcsH), and C. perfringens 
toxin (TpeL) (Fig. 4c) 47. Therefore, this portion of the pore-forming region represents a 

good target for the development of broad-spectrum vaccines and antibodies targeting TcdA, 

TcdB, and other LCGTs.

Modulation of autoprocessing of TcdB

Activation of the CPD by InsP6 upon cell entry is a critical step in regulating the pathology 

of TcdA and TcdB 27,48. The structures of the apo-CPD in TcdB holotoxin and an InsP6-

bound CPD fragment are very similar except for the β-flap 11,27,49 (Fig. 5a–b). In the CPD 

fragment, InsP6 triggers a ~90° rotation of the β-flap (Fig. 5b), which activates the CPD by 

properly ordering the active site and the substrate pocket 27,49. However, the β-flap partially 

occupies the P1 substrate pocket of the CPD in TcdB holotoxin, which would prevent 

substrate binding 50. Furthermore, the InsP6-triggered rotation of the β-flap is prohibited in 

TcdB holotoxin, because it would otherwise sterically clash with the neighboring 3-HB (Fig. 

5c–d).

Interestingly, we observed a zinc atom in the CPD that simultaneously interacts with the 

catalytic dyad (H654 and C699), the β-flap (H758), and a residue (D547) near the scissile 

bond (L544–G545) in the GTD (Supplementary Fig. 6a–c). A similar zinc was observed in 

TcdA 24, but never seen in any structures of a CPD fragment. As a result, the β-flap in TcdB 

holotoxin helps to protect the catalytic C699 through Zn–H758 interaction, while the Zn–

D547 interaction also prevents the scissile bond from entering the active site. These findings 

thus provide new insights into how TcdB autoprocessing is inhibited in the holotoxin.

Besides allosteric modulation by InsP6, some studies suggested that the CROPs also affects 

TcdB autoprocessing 24,51,52. We found that the InsP6-induced cleavage of the GTD was 

much more efficient in TcdB1–1805, which does not have the hinge or the CROPs, than the 

holotoxin, suggesting that the CROPs and the hinge help to inhibit the CPD function in 

TcdB holotoxin (Supplementary Fig. 6d). Furthermore, a previous study showed that 

TcdA1–1832 that carries the hinge showed a weaker InsP6-dependent cleavage of GTD than 

TcdA1–1795 without the hinge 24. These data suggest that the hinge is involved in regulation 
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of TcdB and TcdA autoprocessing. Notably, the hinge interacts with the β-flap and the 3-HB 

in TcdB holotoxin, and they together form the “heart” of TcdB that connects all four 

domains (Fig. 5c–d). Since the β-flap and the 3-HB are important for coupling between 

InsP6 binding and CPD activation, structural rearrangement in the hinge, associated with 

pH-dependent movement of the CROPs, could contribute to the regulation of CPD function.

VHH 7F and E3 reveal two distinct neutralizing epitopes on the GTD

7F inhibits GTD cleavage 18, but does not directly interact with the CPD. Instead, 7F binds 

to the C-terminus of the GTD, immediately juxtaposed to the cleavage site (Supplementary 

Fig. 5g–i). Notably, the CDR3 of 7F binds to an α helix upstream of the scissile bond and a 

neighboring α helix with extensive polar and hydrophobic interactions (Supplementary 

Table 3). Such interactions interfere with the movement of the scissile bond into the CPD 

cleavage site and a proper orientation of GTD relative to CPD, and thus inhibit GTD 

cleavage (Supplementary Fig. 6d).

E3 inhibits Rho glucosylation by targeting the GTD 18,31. In two independently solved 

crystal structures using the GTD fragment or TcdB holotoxin, E3 binds to the N-terminal 

four-helix bundle (residues 1–90) in a similar manner, involving extensive polar and 

hydrophobic interactions (Supplementary Fig. 5j and Supplementary Table 3). Since 

structure of a GTD–Rho complex has not been reported, it remains unknown how E3 may 

affect GTD–Rho interactions or the catalysis. The homologous four-helix bundle is also 

found in other LCGTs, which is believed to be involved in plasma membrane binding of the 

glucosyltransferase domain 11,53–55. It suggests that E3 may interfere with membrane 

association of the GTD. The structure of the GTD–E3 complex thus lays the foundation for 

further validating and exploiting of this mechanism as a new strategy to counteract TcdB and 

potentially other LCGTs.

DISCUSSION

Prior studies of CDI have provided key insights into the activity and pathogenesis of TcdA 

and TcdB, and numerous structures have been determined for fragments of these toxins 11. 

However, knowledge of the holotoxin structures is central to bridge the structure-function 

gap. Our comprehensive analyses of the structure of TcdB holotoxin collectively 

demonstrate that TcdB has evolved a delicate mechanism to coordinate its four structurally 

and functionally distinct domains in order to balance the needs for self-protection and timely 

activation. Notably, the β-flap, the 3-HB, and the hinge are co-localized at the “heart” of 

TcdB holotoxin, which are well positioned to modulate structural communications among 

all four domains and coordinate their activities (Fig. 5c–d and Supplementary Fig. 6b–c). 

Interestingly, TpeL is the only LCGT member that does not possess a CROPs domain or a 

hinge-like region 56. Furthermore, TpeL has 13 amino acids deleted near the C-terminus of 

the 3-HB when compared to other LCGTs, which suggests that TpeL may have a different 

structure in this modulatory area. The structure of TcdB holotoxin thus provides a blueprint 

to guide future studies into how TcdB and other LCGTs response to environmental and 

cellular cues during intoxication. Such mechanistic understanding could help to develop new 
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therapeutics that promote extracellular activation of the CPD and premature cleavage of the 

GTD before cell entry 57.

The conformational dynamics of the CROPs may impact receptor binding of TcdB and 

therapy. Chondroitin sulfate proteoglycan 4 (CSPG4) is a TcdB receptor that is believed to 

interact with the DRBD, the hinge, and the CROPs (Supplementary Fig. 7a) 14,58. Notably, 

two residues essential for CSPG4 binding (Y1824 and N1839) are located in the hinge and 

the first SR of CROPs 58. Therefore, conformational flexibility of the CROPs and the hinge 

may affect the engagement of CSPG4 or the release of CSPG4 as TcdB interacts with 

multiple host receptors during different stages of cell entry 13,14,58. In contrast, Frizzled 

proteins (FZDs), which are the major TcdB receptors in the colonic epithelium 59, bound to 

TcdB holotoxin similarly at pH 5 and pH 7.5 based on an in vitro pull-down assay, and were 

not affected by conformational dynamics of the CROPs (Supplementary Fig. 7b). FZD binds 

TcdB in a middle portion of the DRBD, and its binding site is adjacent to, but separate from, 

the pore-forming region 13 (Supplementary Fig. 7c). Thus, FZD binding will help to orient 

the pore-forming region of TcdB near the membrane. Interestingly, bezlotoxumab, which is 

believed to affect TcdB binding to host cells, binds TcdB in the CROPs I and II 28,58. 

However, in the context of TcdB holotoxin at endosomal pH, there is insufficient space near 

the CROPs I to allow binding, due to steric clashes with the GTD and the DRBD 

(Supplementary Fig. 7d–e). Therefore, bezlotoxumab may interfere with the conformational 

change in the CROPs, and the therapeutic relevance of this novel feature of bezlotoxumab is 

well worth further studies.

Besides unveiling structural weakness in TcdB holotoxin, our studies reveal distinct 

mechanisms for antibody neutralization of TcdB by inhibiting autoprocessing and activation 

of the toxin, glucosylation of Rho GTPases, or transmembrane delivery of the toxin. These 

findings provide the structural basis for antibody engineering to improve their antitoxin 

activities, or developing multidomain antibodies that simultaneously target multiple 

neutralizing epitopes on the toxins 31,46,60. Taken together, our studies expose crucial 

structural and functional vulnerabilities of TcdB, which provide novel avenues for the 

development of next generation vaccines and therapeutics that have enhanced potency and 

broad-reactivity across different C. difficile strains.

METHODS

No statistical method was used to predetermine sample size. The experiments were not 

randomized and were not performed with blinding to the conditions of the experiments.

Cloning, expression, and purification of recombinant proteins

TcdB produced by the M68 strain of C. difficile was used throughout this study. TcdB 

holotoxin and its GTD (residues 1–543) were expressed as described previously 61. The gene 

encoding the four VHHs (5D, E3, 7F, and B39) and the GTD of TcdB produced by the VPI 

10463 strain (residues 1–542, termed GTDVPI10463), and a truncated DRBD of TcdB 

(residues 1072–1433, TcdB1072–1433) were cloned into a modified pET28a vector, which has 

a 6xHis/SUMO (Saccharomyces cerevisiae Smt3p) tag introduced to the N-terminus of all 

proteins. A TcdB fragment (residues 1–1805, TcdB1–1805) was cloned into a modified 
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pET22b vector, which has a twin-Strep tag introduced between the SUMO tag and 

TcdB1–1805 and a C-terminal 6xHis tag. All mutants were generated by two-step PCR and 

verified by DNA sequencing.

5D, E3, 7F, B39, GTDVPI10463, TcdB1–1805 and TcdB1072–1433 were expressed in 

Escherichia coli strain BL21-Star (DE3) (Invitrogen). Bacteria were cultured at 37°C in LB 

medium containing kanamycin or ampicillin. The temperature was reduced to 16°C when 

OD600 reached ~0.8. Expression was induced with 1 mM IPTG (isopropyl-b-D-

thiogalactopyranoside) and continued at 16°C overnight. The cells were harvested by 

centrifugation and stored at −80°C until use.

The His6-tagged TcdB, GTD, and the His6-SUMO-tagged 5D, E3, 7F, B39, GTDVPI10463, 

TcdB1–1805, and TcdB1072–1433 were purified using Ni2+-NTA (nitrilotriacetic acid, Qiagen) 

affinity resins in a buffer containing 50 mM Tris, pH 8.5, 400 mM NaCl, and 10 mM 

imidazole. The proteins were eluted with a high-imidazole buffer (50 mM Tris, pH 8.5, 400 

mM NaCl, and 300 mM imidazole) and then dialyzed at 4°C against a buffer containing 20 

mM Tris, pH 8.5, 1 mM TCEP, and 40 mM NaCl. The His6-SUMO tag of 5D, E3, 7F, B39, 

GTDVPI10463, and TcdB1072–1433 were cleaved by SUMO protease. These proteins, as well 

as TcdB holotoxin and GTD with un-cleaved His-tag, were further purified by MonoQ ion-

exchange chromatography (GE Healthcare) in a buffer containing 20 mM Tris, pH 8.5, and 

eluted with a NaCl gradient. TcdB1–1805, after cleaved by SUMO protease, was further 

purified using streptavidin resins.

The TcdB–5D–E3–7F complex was assembled by mixing the purified TcdB holotoxin with 

the 3 purified VHHs at a molar ratio of 1:2:2:2 for 2 hours on ice. The complex was then 

purified by MonoQ ion-exchange chromatography in 20 mM Tris, pH 8.5, followed by a 

Superose 6 size-exclusion chromatography (SEC; GE Healthcare) in 20 mM Tris, pH 8.5, 1 

mM TCEP, and 40 mM NaCl. The GTD–E3, GTDVPI10463–7F, and TcdB1072–1433–5D 

complexes were made by mixing the purified GTD, GTDVPI10463, and TcdB1072–1433 with 

E3, 7F, and 5D at a molar ratio of 1:2, respectively, for 2 hours on ice, followed by further 

purification using a MonoQ ion-exchange column (20 mM Tris, pH 8.5) and a Superdex-200 

Increase SEC (20 mM Tris, pH 8.5, 1 mM TCEP, and 40 mM NaCl). All protein complexes 

were concentrated to ~10 mg/ml and stored at −80°C until use.

Crystallization

Initial crystallization screens for all 4 protein complexes were carried out at 20°C with a 

Gryphon crystallization robot (Art Robbins Instruments) using high-throughput 

crystallization screening kits (Hampton Research and Qiagen). Extensive manual 

optimizations were then performed at 20°C using the hanging-drop vapor-diffusion method 

when proteins were mixed with reservoir solution at 1:1 ratio.

1. The best crystals for the TcdB–5D–E3–7F complex suitable for X-ray diffraction 

were obtained in a reservoir containing 0.1 M sodium acetate, 0.1M magnesium 

acetate, and 5% PEG 8K (final pH 5.2) with a protein concentration of ~4 mg/ml. 

The crystals were cryo-protected in the mother liquor supplemented with 25% 

(v/v) ethylene glycol. The tantalum bromide cluster-derivatized crystals were 
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obtained by adding a trace amount of tantalum bromide powder to the 

crystallization drop. The TcdB–5D–E3–7F crystals were soaked in this solution 

for 1–3 days until the crystals turned green, which were then cryo-protected 

similarly as native crystals.

2. The best crystals for the GTD–E3 complex were obtained in a reservoir 

containing 0.2 M potassium acetate and 20% PEG 3350 with a protein 

concentration of ~10 mg/ml, which were then cryo-protected in the same mother 

liquor supplemented with 25% (v/v) glycerol.

3. The best crystals for the GTDVPI10463–7F complex were found in a reservoir 

containing 0.1M Tris, pH 8.8, 0.4 M ammonium sulfate, and 24% PEG 3350 

with a protein concentration of ~10 mg/ml. The crystals were cryo-protected in 

the mother liquor supplemented with 25% (v/v) ethylene glycol.

4. The best crystals for the TcdB1072–1433–5D complex were obtained in a reservoir 

containing 0.1 M Tris, pH 8.5, 0.2 M lithium sulfate, 18% PEG 4000 with a 

protein concentration of ~5 mg/ml, which were cryo-protected in the same 

mother liquid.

Data collection and structure determination

The X-ray diffraction data for the GTD–E3 complex were collected at 100 K at beam line 

BL9–2 at Stanford Synchrotron Radiation Lightsource (SSRL). All other data were collected 

at 100 K at the NE-CAT beamline 24-ID-C, Advanced Photon Source (APS). The data were 

processed with HKL2000 package 62 or XDS as implemented in RAPD (https://github.com/

RAPD/RAPD) 63.

In order to determine the structure of the TcdB–5D–E3–7F complex, we first determined the 

structures of the GTD–E3 and GTDVPI10463–7F complexes using molecular replacement 

under PHENIX.Phaser 64. We used structures of the GTD (PDB: 2BVL) 26 and the 

homology models of E3 or 7F that were built based on a VHH in PDB 3V0A as search 

models 26,65. The structure of the TcdB–5D–E3–7F complex was solved by 3-rounds of 

molecular replacement with PHENIX.Phaser. We first located the 3 VHHs and the N-

terminal fragment of TcdB (residues 1–1805) using the structures of a truncated TcdA 

(residues 1–550 and 743–1285, PDB: 4R04), the CPD of TcdB (residues 551–742, PDB: 

3PEE), the DRBD of TcdB (residues 1285–1804, PDB: 6C0B), the structures of the GTD–

E3 and the GTDVPI10463–7F complexes determined in our lab, and a homology model for 

5D (PDB: 3V0A) as models 13,24,27,65. This partial structure was defined as a fixed partial 

model for a second round of molecular replacement using the CROPs I and II of TcdB 

(residues 1834–2100, PDB: 4NP4) and the CROPs IV of TcdB (residues 2249–2366, PDB: 

4NC2) as search models 25,28. After the structures of the CROPs I, II, and IV were found, 

the position of the CROPs III was located by another round of molecular replacement using 

the CROPs I of TcdB (residues 1835–1968, PDB: 4NP4) as a search model. Structural 

modeling and refinement were carried out iteratively using COOT 66, Prosmart external 

restraints under Refmac5 67, followed by Phenix-Rosetta 68 and Phenix.Refinement 64 with 

enforcement of secondary structure restraints. Along this process, the electron density for 

residues in the hinge region improved steadily, which eventually allowed manual model 
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building in this region. Final refinement was performed by jelly body refinement and 

Refmac5 67. The model of TcdB holotoxin was additionally validated using anomalous 

signal from tantalum bromide cluster-derivatized crystals.

The crystals of the TcdB1072–1433–5D complex showed anisotropic diffraction. The 

diffraction data were scaled using diffraction anisotropy server (https://

services.mbi.ucla.edu/anisoscale/), which yielded an ellipsoidal resolution boundary with 

limits of 3.2, 3.2, and 3.0 Å along the a*, b*, and c* axes, respectively 69. The structure of 

the TcdB1072–1433–5D complex was solved by molecular replacement with PHENIX.Phaser 

using a fragment of TcdB holotoxin (residues 1098–1431) as a search model. All the 

refinement progress was monitored with the free R value using a 5% randomly selected test 

set 70. The structures were validated using MolProbity 71. The TcdB–5D–E3–7F complex 

has 85.91%, 13.34%, and 0.75% residues in Ramachandran-favored, allowed, and outlier 

regions, respectively. All of the other three structures have good geometry without 

Ramachandran outliers observed. Data collection and structural refinement statistics are 

listed in Table 1. All structure figures were prepared using Pymol (DeLano Scientific).

SAXS

SEC-SAXS experiments were performed at SSRL beamline 4–2 as described previously 

(Supplementary Table 1) 45. TcdB holotoxin was exchanged into a buffer containing 

phosphate-buffered saline (PBS), pH 7.4, and 5 mM DTT, or 20 mM sodium acetate, pH 5.0, 

50 mM NaCl, and 5 mM DTT, and then concentrated to 20 mg/ml. SEC-SAXS data were 

collected at pH 5.0 and 7.4 using Superdex-200 Increase PC 3.2/300 columns (GE 

Healthcare). A total of 500 images were recorded with 1 sec exposure every 5 sec at 0.05 

ml/min flow rate. After background (buffer) data collection, the X-ray shutter was closed 

until the main elution peak showed up in order to keep the sample cell clean from 

accumulation of dirt. Data reduction and initial analysis were performed using SECPipe, a 

real-time data processing and initial analysis pipeline at SSRL beamline 4–2. SECPipe 
implements the program SASTOOL (https://www-ssrl.slac.stanford.edu/smb-saxs/content/

documentation/sastool) and ATSAS AUTORG 72. The first 100 images were used for 

background images. The data were presented as I(q) versus q, where q = 4πsin(θ)/λ, 2θ is 

the scattering angle, and λ is the wavelength of the X-ray. After careful manual inspection, 

the average profiles were generated and used for further analysis (image number 290–304 

for pH 5.0 and 280–289 for pH 7.4). The program GNOM was used for the indirect Fourier 

transform to estimate the distance distribution function P(r) 73. The theoretical scattering 

profile of the crystal structure was computed and fitted with experimental data using the 

program CRYSOL 74.

DSSO cross-linking of TcdB

TcdB holotoxin (50 μl, 10 μM) in PBS (pH 7.4) was reacted with DSSO at the molar ratio of 

1:100 for 1 hour at room temperature. Cross-linking was quenched by addition of 50-fold 

excess ammonium bicarbonate for 10 minutes, and the resulting products were subjected to 

enzymatic digestion using a FASP protocol. Briefly, cross-linked proteins were transferred 

into Milipore Microcon™ Ultracel PL-30 (30 kDa filters), reduced/alkylated and digested 

with Lys-C/trypsin sequentially 75. The resulting digests were desalted and fractionated by 
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peptide SEC 76. The fractions containing cross-linked peptides were collected for 

subsequent MSn analysis 75. Three biological replicates were performed to obtain highly 

reproducible cross-link data. To confirm intra-TcdB interactions, DSSO cross-linked TcdB 

was separated by 1-D SDS-PAGE and the cross-linked TcdB monomer band was selected 

for in-gel digestion 77. The extracted tryptic digest was fractionated by SEC and analyzed by 

LC MSn.

LC MSn analysis

LC MSn analysis was performed using a Thermo Scientific™ Dionex UltiMate 3000 system 

online coupled with an Orbitrap Fusion Lumos™ mass spectrometer. A 50 cm x 75 μm 

Acclaim™ PepMap™ C18 column was used to separate peptides over a gradient of 1% to 

25% ACN in 82 mins at a flow rate of 300 nl/min. Two different types of acquisition 

methods were utilized to maximize the identification of DSSO cross-linked peptides: (1) top 

4 data-dependent MS3 and (2) targeted MS3 acquisition optimized for capturing DSSO 

cross-linked peptides by utilizing the mass difference between characteristic MS2 fragment 

ions of DSSO cross-linked peptides (α−β) (i.e. Δ = αT−αA = βT−βA = 31.9721 Da) 78.

Data analysis and identification of DSSO cross-linked peptides

MSn data extraction and analysis were performed as previously described 78. MS3 data was 

subjected to Protein Prospector (v.5.19.1) for database searching, using Batch-Tag against a 

custom database containing 9 protein entries concatenated with its random version. The 

mass tolerances were set as ±20 ppm and 0.6 Da for parent and fragment ions, respectively. 

Trypsin was set as the enzyme with three maximum missed cleavages allowed. Variable 

modifications included protein N-terminal acetylation, cysteine carbamidomethylation, 

methionine oxidation, and N-terminal conversion of glutamine to pyroglutamic acid. In 

addition, three defined modification on un-cleaved lysines were chosen, which included 

alkene (C3H2O; +54 Da), sulfenic acid (C3H4O2S; +104 Da), and thiol (C3H2SO; +86 Da), 

representing cross-linker fragment moieties on lysine residues. Only a maximum of 4 

modifications on a given peptide was allowed during the search. Initial acceptance criteria 

for peptide identification at the MS3 level required a reported expectation value ≤0.2, which 

yielded a false discovery rate >0.5%. The in-house program Xl-tools was used to identify, 

validate and summarize cross-linked peptides based on MSn data and database searching 

results 78. Following integration of MSn data, no cross-links involving decoy proteins were 

identified. Only cross-linked peptides that were identified in all three biological replicates 

are reported.

Single-molecule FRET analysis of TcdB

A cysteine residue was introduced by mutagenesis into the N-terminus of 7F (at the −1 

position) or into a surface-exposed loop in B39 (G42C). Expression and purification of the 

mutant VHHs were similar to the wild type proteins, except that 5 mM DTT was used in all 

the buffers during purification. 7F was labeled with Alexa-647 maleimide while B39 was 

labeled with Alexa-555 maleimide (Thermo Fisher Scientific). The labeling efficiency was 

determined by UV-Vis spectroscopy to be >90%. 5D was biotinylated using EZ-Link NHS-

PEG4-Biotin (Thermo Fisher Scientific) at pH 6.5 to preferentially label the N-terminal 

amine. TcdB holotoxin in complex with the Alexa-647-labeled 7F, the Alexa-555-labeled 
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B39, and the biotin-labeled 5D was further purified using a Superose 6 SEC to remove the 

excess VHHs.

Cleaned quartz slides were passivated with biotinylated bovine serum albumin followed by a 

mixture of 2% Biolipidure 203 and 0.2% Biolipidure 206 (NOF America Corp.) before 

adding streptavidin. Following this treatment, the preformed TcdB–VHH complex showed 

no nonspecific binding to the slide at concentrations orders of magnitude higher than the 100 

pM concentration used to achieve optical resolution between single molecules. Samples 

were incubated for 5 minutes, rinsed briefly and exchanged into the indicated buffer 

supplanted with 0.1 % glucose, 20 U/ml pyranose oxidase, 1000 U/ml catalase and 

0.0001 % (vol/vol) cyclooctatetraene to prevent photobleaching and blinking. Using 

pyranose oxidase and catalase insures pH stability at any arbitrary pH 79. Measurements 

were made in 50 mM Hepes, pH 7, 100 mM NaCl or 50 mM acetate, pH 5, 100 mM NaCl. 

For intermediate pH, a mixture of citrate and phosphate was used at 50 mM with 100 mM 

NaCl.

At such low protein concentrations, the non-covalently bound VHHs partially dissociated so 

measurements had to be made rapidly, which required seven repeated surface preparations at 

each pH condition. Samples were imaged using a prism-based Total Internal Reflection 

Fluorescence microscope constructed on an IX71 base with a 60x, 1.2 NA water-immersion 

objective (Olympus) 42. Alternating laser excitation, with mechanical shutters (Uniblitz), 

was used to confirm the presence of both a donor and acceptor dye in all molecules used for 

analysis. Samples were excited with a laser diode at 637 nm (Coherent Inc.) for Alexa-647 

and a diode pumped solid-state laser at 532 nm (Laser Quantum USA) for Alexa-555. 

Emission from donor and acceptor was separated using an Optosplit ratiometric image 

splitter (Cairn Research Ltd) containing a 645 nm dichroic mirror with a 585/70 band pass 

filter for the donor channel and a 670/30 band pass filter for the acceptor channel (IDEX 

Health & Science). The replicate images were relayed to a single iXon DU-897 EMCCD 

camera (Andor Technologies) at a frame rate of 10 Hz.

Data was processed in home written MATLAB scripts to cross-correlate the replicate images 

and extract time traces for diffraction limited spots with intensity above baseline. We 

selected only those complexes containing a single donor and acceptor dye that showed anti-

correlated photobleaching to baseline in a single time step. From the magnitude of the 

anticorrelated photobleaching event, we can perform per-molecule γ-normalization, which 

allows us to report the absolute FRET efficiency 42. The FRET efficiency was compiled into 

histograms, which were fit to Gaussian functions.

Photophysical Controls for the FRET Assays

To insure that FRET changes were not the result of photophysical changes, we measured the 

relative quantum yield and fluorescence anisotropy for the free dyes, the dye-labeled VHHs, 

and the individual dye-labeled VHHs in complex with TcdB. All measurements were carried 

out at a dye concentration of 10 nM using the same buffers as the smFRET at pH 7 and pH 

5.
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Ensemble fluorescence was recorded on an ISS PC1 photon counting spectrofluorometer 

using a 2.0 mm excitation slit and a 2.0 mm emission slit. Alexa-555 and Alexa-647 labeled 

samples were excited at 532 nm at 637 nm respectively. Concentrations of samples used for 

fluorescence were determined from absorption measurements using the same cuvette. The 

emission intensity was taken as the sum of a 20 nm window about the emission maxima. 

Relative quantum yields were calculated by normalizing the intensities to the emission of 

free dye at pH 7. Anisotropy measurements were collected with 2.0 mm excitation slit and a 

2.0 mm emission slit using Glan Thompson polarizers in the L conformation. Emission was 

recorded at 567 nm and 670 nm for the donor and acceptor, respectively. All measurements 

were done in triplicate and reported as the mean and standard error (Supplementary Table 2).

The effect of 5D on the fluorescence emission of the TcdB–B39–7F complex was 

investigated by ensemble FRET study. TcdB (0.5 μM) was incubated with equimolar ratio of 

the Alexa-555-labeled B39, the Alexa-647-labeled 7F, or both VHHs with or without 5D at 

room temperature for 15 minutes in a buffer containing 100 mM NaCl, and either 50 mM 

Hepes (pH 7.0) or 50 mM sodium acetate (pH 5.0). Fluorescence was measured on a 

Spectramax M2e cuvette module with excitation at 540 nm, cutoff at 550 nm, and 

fluorescence emission at 550–730 nm. The experiments were performed in duplicate.

ANS (8-anilinonaphthalene-1-sulfonic acid) binding assay

TcdB1072–1433, the TcdB1072–1433–5D complex, or 5D at ~1.2 μM was incubated with 200 

μM ANS for 20 minutes at 37°C in a buffer containing 0.1 M NaCl and 0.1 M sodium 

acetate (pH 4.0–5.8), 0.1 M MES (pH 6.0), or 0.1 M Hepes (pH 7.0). Fluorescence spectra 

were recorded in a Molecular Devices SpectraMax M2e spectrophotometer with excitation 

at 366 nm. The emission spectrum was collected from 400 to 640 nm. The fluorescence 

intensity was corrected by subtraction of background fluorescence from ANS in a buffer 

without protein. Error bars indicate standard deviation of three replicate measurements.

Calcein dye release assay

Lipids (Avanti Polar Lipid) at the indicated molar ratios were mixed in chloroform and then 

dried under nitrogen gas and placed under vacuum overnight. The dried lipids were 

rehydrated and were subjected to five rounds of freezing and thawing cycles. Unilamellar 

vesicles were prepared by extrusion through a 200 nm pore membrane using an Avanti Mini 

Extruder.

Dried lipids containing 55% 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 15% 1,2-

dioleoyl-sn-glycero-3-phospho-L-serine (DOPS), and 30 % cholesterol (10 mg/ml) were 

resuspended in 150 mM NaCl, 20 mM Hepes (pH 7.0), 1 mM EDTA, and 50 mM calcein. 

Free calcein dye was removed by desalting (Zeba). Fluorescence was measured on a 

Spectramax M2e cuvette module with excitation at 493 nm and emission at 525 nm. 

Liposomes were diluted in 150 mM NaCl, 20 mM sodium acetate (pH 4.6), 1 mM EDTA, to 

give a final concentration of 0.3 mM and incubated until the fluorescence signal was stable. 

TcdB (0–25 nM), or TcdB pre-incubated with 5D or 7F at a TcdB:VHH=1:2 molar ratio, 

was added and the fluorescence intensity was recorded for 7 minutes. The reaction was 

stopped by adding 0.1% Trion X-100. The percentage of fluorescence change was calculated 
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as the ((F − Finitial) / (Ffinal − Finitial)). The initial rate of calcein dye release was deduced 

from the slope of the linear part of the curve. The experiments were repeated three times 

independently.

Membrane depolarization assay

Depolarization was measured as previously described 45. Briefly, liposomes composed of 

55% DOPC, 15% DOPS, 30% cholesterol were prepared in 200 mM NaCl, 1 mM KCl, and 

10 mM Hepes (pH 7.0). To create a trans-positive membrane potential (+135 mV), 

liposomes were diluted in 200 mM KCl, 1 mM NaCl, 10 mM sodium acetate (pH 4.6) to 

give a final concentration of 0.1 mM. Membrane potential was monitored using 12 μM ANS. 

Valinomycin was added at time 0-second to give a final concentration of 30 nM. At 180-

second, 100 nM TcdB holotoxin, or TcdB pre-incubated with 0.02–1 μM 5D or 1 μM 7F, 

was added and the fluorescence intensity at 490 nm was monitored for 7 minutes with 

excitation at 380 nm. The reaction was stopped by adding 2 μM gramicidin from Bacillus 
anerinolyticus (Sigma-Aldrich). The fluorescence change relative to the maximal change in 

the presence of gramicidin was calculated as the ((F − Finitial) / (Ffinal − Finitial)). The 

experiments were repeated three times independently.

TcdB autoprocessing assay

The autoprocessing assays 36,80 were performed in 25 µl of 20 mM Tris-HCl, pH 8.0, which 

contained 0.4 µM of TcdB holotoxin or TcdB1–1805, InsP6 at the indicated concentrations, 

with or without 7F (2 µM). The reaction mixtures were incubated at 37°C for 1 hour, and 

then boiled for 5 minutes in SDS sample buffer to quench the reaction. The samples were 

examined by 4–20% SDS-PAGE and visualized by Coomassie blue staining.

Pull-down assay

The purified CRD2 13 was biotinylated using EZ-Link NHS-PEG4-Biotin (Thermo Fisher 

Scientific) at pH 6.5. The pull-down assays were performed in 1 ml binding buffer, which 

was composed of 50 mM Tris (pH 7.5) or 20 mM sodium acetate (pH 5.0), together with 

400 mM NaCl, 1 mM TCEP, and 0.1% Tween-20. Biotin-labeled CRD2 (~5 µg) was 

incubated with Strep-Tactin®XT Superflow® resins (IBA Lifesciences) at room temperature 

for 30 minutes, and the unbound protein was washed away using the binding buffer. The 

CRD2-bound resins were mixed with a ~2-fold molar excess of TcdB for 30 minutes at 

room temperature. The resins were then washed twice, and the bound proteins were released 

from the resins with 50 mM D-biotin and further examined by 4–20% SDS-PAGE.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Overall structure of the full length TcdB holotoxin. (a) A schematic diagram showing the 

domain organization of TcdB and the approximate VHH-binding regions. GTD, 

glucosyltransferase domain (red); CPD, cysteine protease domain (light blue); DRBD, 

delivery and receptor-binding domain (yellow); CROPs, combined repetitive oligopeptides 

domain (blue). (b) Cartoon representations of TcdB holotoxin. The 3 VHHs that were used 

to facilitate crystallization were omitted for clarity. TcdB domains are colored as in panel 

(a).
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Figure 2. 
The unique structure of the CROPs of TcdB. (a) A schematic diagram of the CROPs 

showing the organization of the short repeats (SRs, thin blue bars) and the long repeats (LRs, 

thick black bars). The dashed red lines indicate the boundaries of four CROPs units (I–IV). 

(b) A close-up view into the CROPs while the remainder of TcdB is in a surface 

representation. (c) Superposition of the 4 CROPs units. The LR in each CROPs unit causes a 

~132–146° kink. (d, e) The hinge region (colored olive), which connects the CROPs to the 

rest of the toxin, is located at the center of TcdB and surrounded by the GTD, the CPD, and 

the DRBD.
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Figure 3. 
The CROPs undergoes pH-dependent conformational changes. (a) Curve-fit analysis in 

SAXS studies. The theoretical Kratky plot based on the structure of TcdB holotoxin agreed 

with the experimental scattering profile at pH 5.0 (upper panel), but differed from that at pH 

7.4 (lower panel). (b) Cross-linked peptides between different TcdB domains were identified 

by XL-MS. (c) The XL-MS results suggest that TcdB could sample a closed conformation at 

neutral pH, where the central portion and the C-terminal tip of the CROPs move within ~30 

Å of the DRBD. (d) A model of the two limiting structure states of TcdB holotoxin. The 

acceptor dye on the GTD-bound 7F and the donor dye on the CROPs-bound B39 are shown 

as a blue hexagon and a red star, respectively. (e) Population histogram of unaveraged FRET 

efficiency from TcdB in complex with dye-labeled VHHs at pH 5.0 (n = 498) and pH 7.0 (n 

= 594).
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Figure 4. 
TcdB displays a novel conformation in the pore-forming region at endosomal pH. (a) 5D 

binds to the DRBD and directly interacts with the pore-forming region. The pore-forming 

region of TcdB is shown in a purple ribbon model while the rest of the toxin is shown in a 

surface model. (b) A representative 2Fo-Fc electron density map of a portion of the pore-

forming region (residues 1048–1134) contoured at 1.0 σ, which was overlaid with the final 

refined model. (c) Amino acid sequence alignment of the pore-forming region among 

different members in the LCGT family. TcdB*, TcdB, and TcdB2 are produced by the M68 

strain, the VPI 10463 strain, and the BI/NAP1/027 strain, respectively. Secondary structures 

of TcdB* and TcdA 24 are shown on the top and the bottom, respectively. Residues 1032–

1047 in TcdB* holotoxin that have no visible electron density are indicated by “x”. (d) TcdB 

at acidic pH (purple) and TcdA at neutral pH (orange) adopt drastically different 

conformations in the pore-forming region. The two structures were superimposed based on 

the DRBD. (e) Calcein dye release assay. TcdB (0–25 nM) was tested with liposomes loaded 

with 50 mM calcein at pH 4.6, in the presence or absence of 5D or 7F. The rate of calcein 

dye release was determined based on the increase of fluorescence at 525 nm during 

excitation at 493 nm. (f) Membrane depolarization assay. Liposomes were polarized at a 

positive internal voltage by adding valinomycin in the presence of a transmembrane KCl 

gradient. Membrane potential was measured using the voltage-sensitive fluorescence dye 

ANS (8-anilinonaphthalene-1-sulfonic acid). After 3 min, TcdB with various concentrations 

of 5D or 7F was added. The data in (e–f) are presented as mean ± SEM, n=3 independent 

experiments.
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Figure 5. 
Three modulatory components are clustered at the “heart” of TcdB holotoxin. (a) A 

schematic diagram showing the locations of the β-flap, the 3-HB, and the hinge in the 

primary sequence of TcdB. (b) Superposition of the apo CPD in TcdB holotoxin and an 

InsP6-bound CPD fragment. The overall structure of the CPD remains unchanged (gray 

coils), while the β-flap displays a ~90° rotation upon InsP6 binding. The zinc atom in the 

apo CPD is shown as a sphere, and InsP6 is in a stick model. (c, d) The β-flap, the 3-HB, 

and the hinge co-localize at the center of TcdB, which are well positioned to regulate the 

interplay among four domains in response to environmental and cellular cues.
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Table 1.

Data collection and refinement statistics

TcdB–5D–E3–7F
(PDB 6OQ5)

TcdB1072–1433–5D
(PDB 6OQ6)

GTD–E3
(PDB 6OQ7)

GTDVPI10463–7F
(PDB 6OQ8)

Data collection

Space group P212121 P6122 P212121 P43212

Cell dimensions

 a, b, c (Å) 149.62, 168.56, 179.92 169.82, 169.82, 79.12 66.02, 104.10, 113.83 114.71, 114.71, 301.01

 α, β, γ (°) 90, 90, 90 90, 90, 120 90, 90, 90 90, 90, 90

Resolution (Å) 48.91 – 3.87

(3.97 – 3.87) *
147.07 – 2.97
(3.14 – 2.97)

43.14 – 2.39
(2.45 – 2.39)

107.19 – 2.20
(2.26 – 2.20)

Rmerge 0.14 (>1) 0.15 (>1) 0.14 (0.5) 0.11 (0.63)

I / σI 7.7 (0.7) 12. 5 (1.3) 14.6 (3.3) 19.2 (4.6)

CC1/2 0.998 (0.327) 0.998 (0.810) 0.987 (0.927) 0.999 (0.929)

Completeness (%) 99.4 (99.3) 99.9 (99.6) 99.7 (99.9) 99.6 (99.3)

Redundancy 3.7 (3.6) 8.6(8.5) 7.1 (7.1) 13.4 (13.5)

 

Refinement

Resolution (Å) 48.91 – 3.87
(3.97 – 3.87)

147.07 – 2.97
(3.05 – 2.97)

43.14 – 2.39
(2.45 – 2.39)

107.19 – 2.20
(2.26 – 2.20)

No. reflections 42,865 12,367 30,060 102,252

Rwork / Rfree 26.3/31.5 25.9/27.4 19.7/23.6 19.7/22.0

No. atoms

 Protein 21,503 3,719 5,229 10,757

 Ligand/ion
2 

a -
39 

b -

 Water - - 100 1,001

B-factors

 Protein 169.7 57.3 50.4 32.3

 Ligand/ion 119.8 - 47.3 -

 Water - - 49.14 38.2

R.m.s deviations

 Bond lengths (Å) 0.003 0.003 0.003 0.003

 Bond angles (°) 1.097 1.216 0.998 0.898

*
Values in parentheses are for highest-resolution shell.

a
The 2 atoms are 1 Zn2+ and 1 Mg2+.

b
The 39 atoms include 1 UDP (25 atoms), 1 Glucose (12 atoms), 1 Mn2+ and 1 Mg2+.

Each dataset was derived from a single crystal.
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