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ABSTRACT OF THE DISSERTATION

Metabolomic Markers and Functional Data Methods for Characterizing and

Predicting Diabetic Kidney Disease Progression

by

Brian Kwan

Doctor of Philosophy in Biostatistics

University of California San Diego, 2021

Professor Loki Natarajan, Chair

Patients with diabetic kidney disease (DKD) are at high risk for hospitalization,

morbidity, and mortality. Early detection of patients with kidney function decline can

lead to effective intervention and management of high risk of developing DKD. The hu-

man metabolome is a powerful tool for informing the physiological and pathological ef-

fects of chronic diseases and could offer direct insights into biochemical pathways poten-

tially linked to kidney dysfunction. Furthermore, functional principal components analysis

(FPCA) is a novel approach for modeling and studying the variation of kidney function

trajectories for subgroups of diabetic patients, while accounting for complexity in curve

estimation. Here, we applied, validated, and extended rigorous statistical approaches that

utilize metabolomic markers and functional data methods for uncovering the characteristics

of and predicting DKD progression.

xvi



In Chapter 1, we give an overview of the background and rationale for our dis-

tinct research aims. In Chapter 2, we elucidate the choice between fitting a linear mixed

model, with serial estimated glomerular filtration rate (eGFR) outcomes, and two-stage

methods, with patient-specific eGFR slopes as outcomes, for modeling DKD progression,

with metabolites as predictors. Notably, two-stage models offer a suitable modeling alter-

ative to DKD researchers who can readily implement individual eGFR slopes in standard

regression models. In Chapter 3, we apply the top-scoring pair (TSP) algorithm to de-

rive simple, parameter-free decision rules (i.e., pair of metabolites) for binary DKD stage

classification. As a methodological contribution, we extended the TSP approach to allow

adjustment for clinical variables. In Chapter 4, we implement the FPCA approach, which

accounts for nonlinear trajectories via nonparametric smoothing while overcoming spar-

sity and irregularly spaced data. We examined the longitudinal patterns of kidney function

trajectories within clinically defined albuminuria-specific groups and expand the FPCA in-

ferential framework for considering whether separate group-level models to prospectively

predict group-specific outcome trajectories are needed. Our findings provided insights into

modeling choices for DKD progression, markers for renal dysfunction adjusted for clinical

variables, dominant modes of eGFR variation, and varying eGFR patterns between albu-

minuria groups, which can potentially inform therapeutic targets for personalized DKD

treatments.

xvii



Chapter 1

Introduction

Quantifying progression and identifying prognostic factors of chronic diseases is a

arguably the primary focus of public health and biomedical research. Thus statistical meth-

ods for (i) modeling disease progression using longitudinal biomarkers and (ii) building

useful and interpretable prognostic models are of keen interest. In this work, we imple-

ment, develop and compare statistical approaches focused on these two objectives in the

context of diabetic kidney disease.

Diabetes mellitus, or simply diabetes, is a group of diseases characterized by excess

levels of glucose in the blood. The pancreas produces the insulin hormone to allow the body

to use and store glucose as energy and regulate blood glucose levels. Diabetes is a leading

cause of chronic kidney disease (CKD) among the U.S. adult population [1, 2, 3, 4, 5], and

more than 90% of all diabetic cases are type 2 diabetes [6]. Patients with diabetic kidney

disease (DKD) are at high risk for hospitalization, morbidity, and mortality [7], with severe

DKD progression potentially leading to end-stage renal disease (ESRD), otherwise known

as kidney failure. At this terminal stage of kidney disease, patients are required to be treated

by dialysis or kidney transplant to elongate their life expectancy [1]. In a study of diabetes-

related complications from 1990 to 2010, the rate reduction of ESRD cases was lower

1



compared to the rates of other diabetes-complications among U.S. adults with diagnosed

diabetes [8]. Thus, early detection of diabetic patients with rapid kidney function decline

can lead to effective intervention and management of DKD progression.

Two clinical markers ubiquitously used for the assessment of kidney function are al-

buminuria and estimated glomerular filtration rate. Albuminuria is the condition of having

an unusually larger amount of albumin in the urine, which is indicative of greater damage to

the kidneys. Albuminuria is often stratified into groups of CKD risk, normo-, micro-, and

macro-albuminuria, in which patients with micro- or macro-albuminuria warrant monitor-

ing for kidney disease progression. Studies have demonstrated a large proportion of patients

could still develop kidney disease progression without micro- or macro-albuminuria [9, 10].

Moreover, early kidney function decline may precede the onset of micro-albuminuria and

its development to macro-albuminuria [11]. Estimated glomerular filtration rate (eGFR) is

widely used as the standard metric for kidney function with lower levels associated with

increased loss of kidney function. Equations have been widely developed and studied to

calculate eGFR for assessing kidney function based on notable risk factors, such as serum

creatinine, cystatin C, age, race, and sex [12, 13, 14, 15, 16]. In the following chapters of

our research aims, we use serial eGFR measures to quantify DKD progression and establish

eGFR thresholds to define DKD severity stages.

Metabolomics is the study of metabolites, small molecules that are products of the

metabolism and found within cells, tissues, and biofluids. As the furthest downstream

product of the genome and its interactions with the biological system, the metabolome

provides a direct representation of the molecular phenotype, which makes it a powerful tool

for studying the effects of chronic diseases [17, 18]. Recent systematic reviews noted the

potential of metabolites for discriminating DKD from controls [19, 20, 21, 22, 23]. Despite

their potential, metabolomics data is typically high-dimensional and standard statistical

methods are largely not applicable for this setting [24].

2



Our recent study evaluated the associations of thirteen previously identified metabo-

lites with future DKD progression [25]. We implemented rigorous statistical methods to

construct cross-validated multivariate models for kidney function decline that noted several

metabolites improving prognostication over and above clinical variables. The following

chapters dive into distinct research aims inspired by our study’s gaps and limitations. First,

our study utilized the “two-stage” approach to modeling kidney function decline via eGFR

slope which could result in loss of efficiency in the presence of irregularly spaced time

measures and missing data. Second, we worked with an a priori set of thirteen metabolites

with notable potential in discriminating DKD from healthy controls [26] and we would like

to uncover possibly more biomarkers over a larger pool of metabolites. Third, use of eGFR

slope outcome entailed a linearity assumption and we would like to account for nonlinear

trajectories. Finally, there may be clinically distinct populations (e.g., albuminuria group)

for whom our metabolite signatures may not be optimal.

1.1 Distinct Aspects of Research

Each of the following Chapters 2-4 addresses a distinct research aim in the applica-

tion of statistical methods for identifying patients at high risk of developing DKD.

In Chapter 2, we compare the use of a linear mixed model and two-stage methods

for predicting future disease progression based on clinic entry biomarker data under a set

of realistic study design scenarios, e.g., irregularly spaced time measures and missing data

in repeated outcome measures, via simulations and analytic calculations. While the linear

mixed model is considered the more conventional approach for modeling disease progres-

sion, the two-stage methods can be easily implemented using standard statistical methods

with slope outcomes, which makes it more accessible for applied researchers. Although

our work here is framed in the metabolite-DKD context, our findings are generalizable to
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other disease prognostic modeling studies.

In Chapter 3, we implement the top-scoring pair (TSP) and K-TSP binary classifi-

cation methods, in addition to proposing our residualizing approach that takes into account

covariates (e.g., clinical factors) that influence features, for the selection of metabolite-pairs

that best discriminate between DKD severity stages. We demonstrated by simulation and

application that incorporating our residualizing approach to the existing TSP and K-TSP

algorithms could identify novel (residualized) feature-pairs compared to typically using

the raw, or unresidualized, features. The residualized metabolites serve to be cleaner fea-

tures for discriminating DKD severity in which they are largely liberated from much of the

extraneous influence of clinical covariates. Furthermore, we compared the classification

accuracy of DKD severity stage between TSP, K-TSP, and conventional statistical learn-

ing methods, i.e., LASSO and random forests, using both raw and residualized metabolite

features.

In Chapter 4, we utilize functional principal components analysis (FPCA) meth-

ods to predict long-term eGFR trajectories, uncover for dominant modes of eGFR vari-

ation, and investigate for differences in longitudinal eGFR patterns between albuminuria

groups in CKD. As a follow-up, we developed a novel goodness-of-fit procedure to eluci-

date whether fitting a single overall model, trained using data from diabetic patients across

all albuminuria groups, is preferred over fitting multiple albuminuria group-specific mod-

els, each fitted using data from only diabetic patients of one particular group, for accurately

predicting eGFR trajectories for test patients.
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Chapter 2

Linear mixed model vs two-stage

methods: Developing prognostic models

of diabetic kidney disease progression

2.1 Abstract

Identifying prognostic factors for disease progression is a cornerstone of medical

research. Repeated assessments of a marker outcome are often used to evaluate disease

progression, and the primary research question is to identify factors associated with the

longitudinal trajectory of this marker. Our work is motivated by diabetic kidney disease

(DKD), where serial measures of estimated glomerular filtration rate (eGFR) are the longi-

tudinal measure of kidney function, and there is notable interest in identifying factors, such

as metabolites, that are prognostic for DKD progression. Linear mixed models (LMM)

with serial marker outcomes (e.g., eGFR) are a standard approach for prognostic model de-

velopment, namely by evaluating the time × prognostic factor (e.g., metabolite) interaction.

However, two-stage methods that first estimate individual-specific eGFR slopes, and then
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use these as outcomes in a regression framework with metabolites as predictors are easy

to interpret and implement for applied researchers. Herein, we compared the LMM and

two-stage methods, in terms of bias and mean squared error via analytic methods and sim-

ulations, allowing for irregularly spaced measures and missingness. Our findings provide

novel insights into when two-stage methods are suitable longitudinal prognostic modeling

alternatives to the LMM. Notably, our findings generalize to other disease studies.

2.2 Introduction

Repeated longitudinal assessment of a marker of disease occurrence or progression

is common in medical studies, e.g., serial measures of prostate specific antigen as a marker

of prostate cancer, or repeated hemoglobin A1C for diabetes control [27, 28]. Often, in-

terest lies in identifying baseline factors associated with longitudinal trajectories of these

markers, as these factors could provide early insights into actionable guidelines/treatments

for the condition in question. Statistical methods for modeling these risk factor-longitudinal

marker assessments is the focus of this article, with the specific research question motivated

by our prior work in diabetic kidney disease (DKD) [25].

Diabetes is a leading cause of kidney disease and patients with DKD are at high

risk of morbidity, hospitalization, and overall mortality [1, 7]. Studies have shown that the

human metabolome has considerable potential for characterizing patients with DKD ver-

sus healthy controls [19, 20, 21, 22, 23, 26]. By incorporating metabolomic analysis into

statistical model development, we could construct prognostic models for early detection of

patients at high risk of developing DKD, potentially leading to earlier and more targeted

treatments. Estimated glomerular filtration rate (eGFR) is a clinically accepted method for

measuring kidney function, with higher eGFR indicating better kidney function [13]; slope

of serial eGFR assessments, interpreted as annual eGFR change, are widely used to eval-
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uate kidney disease progression. In our previous work [25], we implemented a two-stage

approach for identifying metabolomic predictors of DKD progression via, first estimating

eGFR slope, and then using this slope as the outcome in a regression model with baseline

metabolites as predictors. We used data collected from the Chronic Renal Insufficiency

Cohort (CRIC) [29, 30, 31], a racially and ethnically diverse group of adults aged 21 to

74 years with a broad spectrum of renal disease severity, one of the largest in the US, with

comprehensive data on clinical and metabolite profiles. However, a more conventional and

statistically accepted modeling approach is to fit a single linear mixed model with serial

eGFR measures (outcomes) and evaluate the coefficient of the metabolite (biomarker) ×

time (year) interaction term, also interpreted as annual eGFR change. Nonetheless, two-

stage methods offer the advantage of estimating individual slopes, which are by themselves

of interest as a marker of disease progression, and can be readily implemented as outcomes

in standard regression models by researchers, as evidenced by the plethora of research

that uses eGFR slopes as outcomes in DKD research [5, 32, 33, 34, 35, 36]. Given their

widespread use by DKD researchers, in this paper, we aim to provide novel insights into

when two-stage methods are suitable longitudinal prognostic modeling alternatives to the

linear mixed model.

In prior statistical investigations, Sayers et al. [37] conducted a simulation study

comparing two-stage methods with individual slope as a predictor (i.e., independent vari-

able) for a dependent outcome by examining the bias and coverage of the association be-

tween birth length, linear growth and later blood pressure under several study design sce-

narios. Our set-up is different in that the slopes are the dependent variable in our models,

and we aim to evaluate a variety of two-stage approaches for assessing the prognostic value

of a covariate for predicting this slope. In particular, using the framework of our previ-

ous work [25], we will consider the baseline metabolite as the predictor for annual eGFR

change (slope). In addition, expanding on the statistical approaches of Sayers et al. [37], we
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compare via simulations the linear mixed effects model to our two-stage methods under an

expanded set of study design scenarios that incorporate irregularly spaced time measures,

and missing data and also analytically examine and compare bias and efficiency across

methods. More specifically, in Section 2.3, we outline our statistical approaches which

include a range of two-stage methods. In Section 2.4, we describe in detail our simulation

process, study design scenarios, and comparison performance metrics for our statistical ap-

proaches. Section 2.5 showcases analytical derivations for the relationships between our

statistical models. Section 2.6 presents the simulation results for our statistical approaches

under our set of study design scenarios. Lastly, Section 2.7 discusses the overall findings,

current limitations, and future directions for this work. We emphasize that although this

paper is motivated by the metabolite-DKD context with the terms metabolite and eGFR

serving as predictor and longitudinal outcome in the following sections, this work applies

to any predictor-longitudinal disease modeling application.

2.3 Statistical Approaches

2.3.1 Linear Mixed Model (LMM) Approach

The linear mixed effects model [38], ubiquitously used in longitudinal settings, in-

corporates fixed and random effects to model individual eGFR trajectories over time. Fixed

effects are shared between all individuals and model the population mean eGFR trajectory.

Random effects are unique to each individual and characterize individual eGFR profiles.

Our model, which incorporated fixed effects for metabolite, time, and their interaction as

well as random intercept and slope terms, was expressed as

yij = (β0 + b0i + β1 ∗Mi) + (β2 + b1i + β3 ∗Mi) ∗ tij + εij

8



for individual i and occasion j, where yij is the eGFR response, (β0, β1, β2, β3) are fixed

effects and (b0i, b1i) are random effects, Mi is individual i’s baseline metabolite value,

tij is time in years, and εij is the within-individual error. We assume the random effects

(b0i, b1i) ∼ N(02,Ω), where Ω =
(
ω0 ω01
ω10 ω1

)
, are independent of both Mi and εij . The

within-individual error εij is assumed to be normally distributed with mean zero and vari-

ance σ2. As our investigation primarily focuses on the association between metabolite and

annual rate of eGFR change, the β3 metabolite × time interaction coefficient is our main

effect of interest. The coefficient is interpreted as the population-averaged annual rate of

eGFR change for a one-unit higher in metabolite value.

An advantage to using a linear mixed effects model is that it can incorporate in-

complete and unbalanced longitudinal data among individuals. Therefore, we would be

avoiding the bias of using complete-case analysis as well as not requiring an equal number

of available eGFR measurements nor need these measurements be at a common set of oc-

casions for each individual. A further, more extensive overview, of the method is given in

Chapter 8 of Fitzmaurice et al. [38].

2.3.2 Two-Stage Approaches

Our two-stage methods model the association between metabolite and annual rate

of eGFR change in two stages: (1st) estimate individual eGFR slopes and (2nd) regress

eGFR slope on metabolite as the sole predictor. The first stage estimates individual eGFR

slopesCi (for individual i) where the method of estimation varies between approaches. The

second stage, similar for all approaches, fits a simple linear regression model with eGFR

slope Ci, taken from the first stage, as the outcome on metabolite Mi.

Ĉi = α0 + α1 ∗Mi + εi,SS, εi,SS ∼ N(0, σ2
SS)
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The metabolite coefficient α1 is the association between metabolite and annual rate of

eGFR change and is the population-averaged annual rate of eGFR change for a one-unit

increase in metabolite value, which is interpreted similarly to the metabolite × time inter-

action coefficient β3 from our linear mixed effects model.

Simple Approach

The simple approach to estimating eGFR slope is to take the difference between a

subject’s last and first observed eGFR measurements and divide by the elapsed time (years)

between measurements.

Ĉi,SIMPLE =
(yiJ − yi1)

(tiJ − ti1)

This method contains a notable loss of in-between measurement information and calculates

annual rate of eGFR change using only the latest and first observed eGFR measurements.

Due to this loss of measurement information, Ĉi,SIMPLE will generally have greater vari-

ance than the true Ĉi.

Ordinary Lease Squares (OLS) Approach

We can also fit a simple linear regression model to the serial eGFR measures of an

individual, with time as the predictor, to estimate the individual’s eGFR slope.

yij = γ0i + γ1i ∗ tij + εi,OLS, εi,OLS ∼ N(0, σ2
OLS)

The model parameters γ0i, γ1i, σ
2
OLS are estimated by OLS. Let γ̂1i = Ĉi,OLS be the eGFR

slope for individual i. Since the individual slopes do not all provide equally precise infor-

mation (differing number of individual eGFR measurements), Ĉi,OLS has greater variance

than the true Ci. This approach requires fitting I total models to estimate all of the individ-
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ual eGFR slopes.

Best Linear Unbiased Predictor (BLUP) Approach

As opposed to fitting separate simple linear regression models for each individual,

we can fit a single linear mixed-effects model to the longitudinal eGFR data of all individ-

uals to estimate all of their eGFR slopes. Our model consisted of a fixed effect for time and

random intercept and slope terms.

yij = (η0 + u0i) + (η1 + u1i) ∗ tij + εij,BLUP

for individual i and occasion j, where yij is the eGFR response, (η0, η1) are fixed effects

and (u0i, u1i) are random effects, tij is time in years, and εij,BLUP is the within-individual

error. We assume the random effects (u0i, u1i) ∼ N(02,ΩBLUP), where ΩBLUP =( ω0,BLUP ω01,BLUP
ω10,BLUP ω1,BLUP

)
, are independent of εij,BLUP . The estimated random effects (û0i, û1i)

are the best linear unbiased predictors (BLUPs) for the true (u0i, u1i). The within-individual

error εij,BLUP is assumed to be normally distributed with mean zero and variance σ2
BLUP .

Our estimated individual eGFR slopes are obtained by adding the estimated mean eGFR

slope η̂1 to the estimated BLUP slopes û1i, i.e. let (η̂1 + û1i) = Ĉi,BLUP .

Similarly, the model written in matrix notation is

Y = Xη + Zu + εBLUP

where Y = (Y1,Y2, . . . ,YI)
′ s.t. Yi = (yi1, yi2, . . . , yiJ)′ and Y is a vector of se-

rial eGFR response values with length I × J , X = (X1,X2, . . . ,XI)
′ s.t. Xi is the

fixed effects design matrix for subject i and dim(X) = (I × J) × 2, η = (η0, η1)′,

Z =

(
Z1

. . .
ZI

)
s.t. Zi is the random effects design matrix for subject i and dim(Z)
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= (I × J) × (2 × J), u = (u1,u2, . . . ,uI)
′ s.t. ui = (u0i, u1i)

′ and u is a vector of

random effects with length 2 × J , and εBLUP = (ε1,BLUP , ε2,BLUP , . . . , εI,BLUP )′

s.t. εi,BLUP = (εi1,BLUP , εi2,BLUP , . . . , εiJ,BLUP )′ and εBLUP is a vector of eGFR

measurement errors with length I × J . For our setup, we assume Xi = Zi since our

model consisted of only a fixed effect for time, while having both random intercept and

slope terms. We assume u ∼ N(0,GBLUP), where GBLUP =

(
ΩBLUP

. . .
ΩBLUP

)
and

εBLUP ∼ N(0, σ2
BLUP I) are independent of each other. We note that the BLUPs û are a

weighted average of the population- and individual-level counterparts, and hence will have

lower variance than the true values. We discuss a way to address this in the next section.

Inflated Approach

To address the under-estimation of variances of the BLUP random effects in com-

parison to its restricted maximum likelihood (REML) estimation for the covariance matrix

GBLUP , Carpenter et al. [39] transformed (re-inflated) the random effects so that their

crude covariance matrix is more equivalent to GBLUP . The re-inflated random effects are

then added to the estimated fixed effects intercept η̂0 and slope η̂1 to give the estimated

eGFR baseline value and slope, respectively, for each individual.

Here we briefly state the analytic steps as described by Sayers et al. [37]. The

re-inflation process involves multiplying our estimated random effects matrix by an upper

triangular matrix of equal order. Hence, we require finding a transformation A such that

Û∗ = ÛA

where Û∗ is the matrix of the inflated random effects and Û is the matrix of our origi-

nally estimated random effects, both with I rows and 2 columns. The matrix A is formed

using the lower triangular Cholesky decompositions of the empirical covariance matrix of
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the estimated random effects as well as its corresponding REML covariance matrix. The

empirical covariance matrix is calculated as

S = ÛT Û /N

and the REML covariance matrix as

R = Ω̂BLUP

and S and R written in terms of their lower triangular Cholesky decompositions are

S = LSLT
S

R = LRLT
R

Finally, A, an upper triangular matrix can be calculated as

A = (LRL−1
S )T

The transformed (re-inflated) random effects Û∗ now have covariance matrix equivalent to

that of the model estimate Ω̂BLUP.

2.4 Simulation study design

We compare our statistical approaches, i.e., linear mixed model vs two-stage meth-

ods, under various study design scenarios. Since the linear mixed model is the more con-

ventional method for modeling disease progression, it served as the data generating model

for our simulated study. Our model consisted of fixed effects for metabolite, time (i.e.,
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year of follow-up) and their interaction as well as random intercept and slope terms. The

number of individuals in our study (I) was set to 200, representing a medium sized study

cohort, and individuals had eGFR measurements biennially from 0 to 10 years of follow-up

(J = 6). For scenarios with missing eGFR data, value J will vary by individual (Ji ≤ 6).

Regardless, we use J for our model notation. We compared the bias and efficiency of our

4 two-stage statistical modeling approaches across study design scenarios based on dif-

fering (1) choice of spacing between eGFR measures (regularly vs irregularly spaced), (2)

amount of missing completely at random (MCAR) eGFR data (complete, 20%, 50%, 80%),

and (3) standard deviation (SD) value for the metabolite, random intercept, random slope,

and measurement error as well as the correlation value between the random effects in our

data generating model. Our chosen values are as follows

(a) σM (Metabolite) = (0.79), 2, 7, 10, 15, 20

(b) ω0 (Random Intercept) = 0.5, 1, 4, 7, (9.87), 12, 16

(c) ω1 (Random Slope) = 0.5, 1, (2.27), 4, 7, 10

(d) σerr (Error) = 0.5, 1, 3, (5.87), 8, 10, 15

(e) ρω (Random Effects Corr.) = -1, -0.75, -0.5, -0.25, 0, (0.159), 0.25, 0.5, 0.75, 1

When varying a particular simulation parameter (e.g., metabolite SD), the values for the

other parameters (i.e., random intercept SD, random slope SD, error SD, and random ef-

fects correlation) were held fixed at the value shown in parentheses for that parameter. The

parameter values in parentheses for the varying parameters were selected for our data gen-

erating model as they were the numerical estimates from the linear mixed model fitted to

the analytic cohort of the Chronic Renal Insufficiency (CRIC) Study from our previous

work [25]. In addition, again following from our previous work, the fixed effect parameters

and the mean of the metabolite were fixed for all simulations as follows:
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(a) β0 = −24.22

(b) β1 = 4.34

(c) β2 = −5.13

(d) β3 = 0.22

(e) µM (Metabolite Mean) = 14.8

In total, we studied 48 different scenarios and generated D = 1000 replications for each of

them to assess the performance of our statistical approaches. We compared the performance

of the different methods in estimating the association between annual rate of eGFR change

and metabolite for the linear mixed model (β̂3) versus two-stage methods (α̂1) by examining

the (relative) bias and efficiency, i.e. standard deviation (SD), standard error (SE), and root

mean square error (MSE), across methods. The bias, relative bias, SD, and SE are defined

as the following:

Bias =

(
1

D

D∑
d=1

α̂1,d

)
− β3

Rel. Bias(%) =
Bias
β3

× 100

Standard Deviation =

√√√√ 1

D − 1

D∑
d=1

(
α̂1,d −

1

D

D∑
d=1

α̂1,d

)2

Standard Error =
1

D

D∑
d=1

SE(α̂1,d)

where D is the total number of replications and root MSE is calculated as
√

Bias2 + SD2.

The notation here uses our estimated association from the two-stage models (α̂1,d), so cal-

culating these statistics of interest for the linear mixed model would require replacing α̂1,d

with β̂3,d.
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Simulation study design and statistical analysis was conducted using the R (version

3.6.1) programming environment [40].

2.5 Analytical Relationships Between Statistical Models

2.5.1 Unbiased association for the Simple and OLS methods

We prove analytically that the Simple and OLS methods have unbiased associa-

tion for the study design scenario with regularly spaced measures and complete data. In

particular, our general second-stage model was

Ĉi = α0 + α1 ∗Mi + εi,SS, εi,SS ∼ N(0, σ2
SS)

and we show that E(α̂1) = β3 with Ĉi,SIMPLE or Ĉi,OLS as the outcome. The coefficient

α1 has estimate

α̂1 =

∑I
i=1(Mi −M)Ĉi∑I
i=1(Mi −M)2

where M = 1
I

∑I
i=1Mi. We can rewrite Ĉi,SIMPLE based on our data generating model

and obtain

Ĉi,SIMPLE = (β2 + β3 ∗Mi + b1i) +
(εiJ − εi1)

(tiJ − ti1)

Our first-stage model in the OLS approach was

yij = γ0i + γ1i ∗ tij + εi,OLS, εi,OLS ∼ N(0, σ2
OLS)

and we let γ̂1i = Ĉi,OLS be the eGFR slope for individual i such that

Ĉi,OLS =

∑J
j=1(tij − ti)(yij − yi)∑J

j=1(tij − ti)2
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where ti = 1
J

∑J
j=1 tij and yi = 1

J

∑J
j=1 yij . Similarly, we can write Ĉi,OLS based on our

data generating model and obtain

Ĉi,OLS = (β2 + β3 ∗Mi + b1i) +

∑J
j=1(tij − ti)(εij − εi)∑J

j=1(tij − ti)2

where εi = 1
J

∑J
j=1 εij . We can write Ĉi,OLS as a function of Ĉi,SIMPLE

Ĉi,OLS = Ĉi,SIMPLE −
(εiJ − εi1)

(tiJ − ti1)
+

∑J
j=1(tij − ti)(εij − εi)∑J

j=1(tij − ti)2

and if J = 2, then Ĉi,OLS = Ĉi,SIMPLE .

Defining Ĉi,SIMPLE based on our data generating model and having it as the out-

come for the second-stage model, the estimated association α̂1 is

α̂1 =

∑I
i=1(Mi −M)

[
(β2 + β3 ∗Mi + b1i) + (εiJ−εi1)

(tiJ−ti1)

]
∑I

i=1(Mi −M)2

Taking the expected value, we have

E(α̂1) = β3 ∗
∑I

i=1(Mi −M)Mi∑I
i=1(Mi −M)2

and by simplifying we have E(α̂1) = β3 and conclude that using the Simple slopes for our

Two-Stage method give an unbiased association between annual rate of eGFR change and

metabolite.

Similarly, defining Ĉi,OLS based on our data generating model and having it as the

outcome for the second-stage model, the estimated association α̂1 is

α̂1 =

∑I
i=1(Mi −M)

[
(β2 + β3 ∗Mi + b1i) +

∑J
j=1(tij−ti)(εij−εi)∑J

j=1(tij−ti)2

]
∑I

i=1(Mi −M)2
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Taking the expected value, we have E(α̂1) = β3 and conclude that using the OLS slopes

for our Two-Stage method also give an unbiased association between annual rate of eGFR

change and metabolite.

2.5.2 Correction of association bias for the BLUP methods

In contrast, our BLUP method will contain noticeable bias for the association be-

tween annual rate of eGFR change and metabolite, assuming that the β3 metabolite × time

interaction coefficient is the true association. We first derive the bias analytically, and then

show how to correct for this bias by a transformation matrix for our estimated random ef-

fects (intercept & slope). Like before, we assume the study design scenario with regularly

spaced measures and complete data.

In order to derive the parameters of interest, recall that our general second-stage

model was

Ĉi = α0 + α1 ∗Mi + εi,SS, εi,SS ∼ N(0, σ2
SS)

and our goal is to estimate α̂1 with Ĉi,BLUP as the outcome. As noted in Section 2.3.2, in-

dividual eGFR (BLUP) slopes are obtained by adding the estimated mean eGFR slope

η̂1 to the estimated BLUP slopes û1i, i.e. let (η̂1 + û1i) = Ĉi,BLUP . Using stan-

dard mixed model theory we know that the Û matrix of our estimated (centered) ran-

dom effects (intercept & slope) is indexed by I rows and 2 columns, and can be es-

timated as Û = GBLUPZTV−1(Y −Xβ̂), where β̂ = (XTV−1X)−1XTV−1Y and

V = ZGBLUPZT +σ2
BLUP IN [38]. Having estimated the BLUP slopes, the second step of

our two-stage method is to regress this BLUP slope on the metabolite predictor, i.e., to es-

timate α̂1. However, although our main focus is on the BLUP slope, for ease of theoretical

development, we will use matrix notation, and consider the regression problem E(Û|M),

i.e., include random intercept and slope, and evaluate the expected value of our estimated
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random effects conditioned on the metabolite predictor. Using algebraic manipulations we

see that:

E(Û|M) = E(GBLUPZTV−1(Y −Xβ̂)|M)

= E(GBLUPZTV−1HZU|M), where H = IN −X(XTV−1X)−1XTV−1

= GBLUPZTV−1HZ ∗ E(U|M)

We can see that regressing the estimated random effects results in a multiplicative bias

matrix of GBLUPZTV−1HZ on the true random effects U. Thus except in the unlikely

scenario that this bias matrix is the identity, use of BLUP slopes will result in biased esti-

mates. We could correct for this bias by taking the inverse of this bias as a transformation

matrix for our estimated random effects and multiply it to both sides.

(GBLUPZTV−1HZ)−1E(Û|M) = E(U|M)

The recalculated random effects (GBLUPZTV−1HZ)−1Û will yield both transformed in-

tercepts and slopes for individuals, which when the slope is used as the outcome for the

second-stage model gives an unbiased association between annual rate of eGFR change

and metabolite, assuming that the β3 metabolite × time interaction coefficient is the true

association. We apply this correction for our BLUP method in the simulation study; how-

ever, calculating the inverse of GBLUPZTV−1HZ proved to be unfeasible in study design

scenarios with irregularly spaced time measures or MCAR data.
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2.6 Simulation Results

We compared the bias and efficiency of the linear mixed model to our two-stage

methods under our simulation study design, with the linear mixed model as the data gener-

ating model. We organized our simulation results based on varying a certain parameter in

our data generating model. The text, table, and figures elaborate on the results for Complete

Data and MCAR 50% and we describe the results in the text for MCAR 20% and 80% in

relation to Complete Data and MCAR 50%.

2.6.1 No Varying Parameters

Table 2.1 shows the results. There were similar results for having regularly spaced

and irregular spaced time measures in Complete Data. The LMM, Simple, and OLS meth-

ods have negligible bias supporting our analytic solution (Section 2.5.1) of the Simple and

OLS methods having unbiased association. There is notable upward and downward bias for

the BLUP and Inflated methods, respectively. However, after correcting for the bias in our

BLUP slopes from our proposed analytic solution (Section 2.5.2), the BLUP had minimal

bias (0.004) equal to that of the LMM, Simple, and OLS methods.

The BLUP and Inflated methods displayed overall greater efficiency than the other

methods in having lower SD, SE, and root MSE. These results also hold for regularly

spaced time measures in MCAR 50%. However, for irregularly spaced time measures in

MCAR 50%, the Simple and OLS methods have overwhelmingly large bias and worse ef-

ficiency while the BLUP and Inflated performed similarly as in the aforementioned scenar-

ios. For Complete Data scenarios or regularly spaced assessments, when comparing bias

and efficiency, all of the two-stage methods are well-suited for modeling the association

between eGFR slope and metabolite, with a notable bias-variance trade off in the BLUP

and Inflated method. However, for irregularly spaced time measures with 50% missingness
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Table 2.1: Comparison of simulation results (D = 1000, N = 200) for the estimated
association between annual rate of eGFR change and metabolite. True association β3 =
0.223.

(a) Complete Data
Statistic LMM Simple OLS BLUP Inflated

Bias 0.004 (-0.003) 0.004 (-0.003) 0.004 (-0.003) 0.071 (0.073) -0.01 (-0.016)
Rel. Bias (%) 1.66 (-1.202) 1.66 (-1.507) 1.66 (-1.175) 31.959 (32.666) -4.279 (-7.387)

SD 0.212 (0.217) 0.216 (0.225) 0.212 (0.219) 0.194 (0.195) 0.203 (0.205)
SE 0.214 (0.217) 0.218 (0.223) 0.214 (0.217) 0.196 (0.193) 0.205 (0.205)

Root MSE 0.212 (0.217) 0.216 (0.225) 0.212 (0.219) 0.207 (0.209) 0.203 (0.206)

(b) MCAR 50%
Statistic LMM Simple OLS BLUP Inflated

Bias -0.003 (0.003) -0.008 (7.631) -0.007 (7.64) 0.136 (0.141) -0.034 (-0.029)
Rel. Bias (%) -1.43 (1.127) -3.398 (3421.86) -3.187 (3426.183) 60.998 (63.097) -15.124 (-13.145)

SD 0.241 (0.259) 0.275 (243.471) 0.274 (243.472) 0.189 (0.19) 0.208 (0.216)
SE 0.24 (0.249) 0.272 (20.169) 0.271 (20.17) 0.181 (0.177) 0.206 (0.206)

Root MSE 0.242 (0.259) 0.275 (243.591) 0.274 (243.591) 0.233 (0.237) 0.21 (0.218)

Results displayed as: Regularly Spaced case (Irregularly Spaced case).
LMM, Linear Mixed Model; OLS, Ordinary Least Squares;
BLUP, Best Linear Unbiased Predictor;
SD, Standard Deviation; SE, Standard Error; MSE, Mean Squared Error.
Bias =

(
1
D

∑D
d=1 α̂1,d

)
− β3; Rel. Bias (%) = Bias

β3
× 100;

Standard Deviation =

√
1

D−1

∑D
d=1

(
α̂1,d − 1

D

∑D
d=1 α̂1,d

)2

;

Standard Error = 1
D

∑D
d=1 SE(α̂1,d);

Root MSE =
√

Bias2 + SD2

under a MCAR mechanism, we do not recommend using the Simple and OLS methods, as

these displayed large bias and root MSE.

Results for MCAR 20%, in both the regularly and irregularly spaced cases, and

MCAR 80%, in just the regularly spaced case, were similar to those of Complete Data;

results for the irregularly spaced case for MCAR 80% were similar to the same case for

MCAR 50%.
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2.6.2 Vary Metabolite SD

Figure 2.1 shows the results. Similar results hold across the regularly and irreg-

ularly spaced time measures for Complete Data and the regularly spaced case for MCAR

50%. The LMM, Simple, and OLS have low relative bias across the spectrum of metabolite

SD values, while the BLUP has notable upwards relative bias and the Inflated having down-

wards relative bias for lower metabolite SD values. However, with increasing metabolite

SD values, the relative bias shrinks toward zero for both the BLUP and Inflated methods.

Even with the bias in the BLUP and Inflated methods, they remain competitive to the LMM,

Simple, and OLS methods in root MSE due to their lower SD values for their estimated

metabolite associations (Appendix Figure A.1). In contrast with the scenario of irregularly

spaced measures in MCAR 50%, the Simple and OLS methods have overwhelmingly large

relative bias and SD, particularly for lower metabolite SD values which is reflected in their

root MSE performance.

Results for the regularly spaced case for MCAR 20% and 80% were similar to those

of the regularly and irregularly spaced cases for Complete Data and the regularly spaced

case for MCAR 50%. The Simple and OLS in the irregularly spaced case for MCAR 20%

had larger SD, SE, and root MSE across metabolite SD values than when they were in the

aforementioned scenarios, while the irregularly spaced case for MCAR 80% shared similar

results to the scenario of irregularly spaced measures in MCAR 50%.

2.6.3 Vary Random Slope SD

Figure 2.2 shows the results. For regularly spaced time measures in Complete Data

and MCAR 50%, the LMM, Simple, and OLS methods have lower relative bias across

all random slope SD values. The BLUP and Inflated methods both start off with notable

downward relative bias with the BLUP spiking and then leveling off on a consistent up-
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Vary metabolite SD σM
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Figure 2.1: Performance in relative bias (%) and root MSE of our methods in estimating
the association between annual rate of eGFR change and metabolite for the linear mixed
model (β̂3) versus two-stage methods (α̂1) as a function of metabolite SD for the regularly
and irregularly spaced cases of Complete Data and MCAR 50%.
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wards relative bias trend and the Inflated spiking before proceeding on a decreasing trend.

The root MSE was similar across all methods. Similar results were observed for irregularly

spaced time measures in Complete Data except for a noticeable spike of increasing relative

bias for all methods at our last random slope SD value (15), where the Inflated method had

the lowest relative bias. However, for irregularly space time measures in MCAR 50%, the

relative bias is noticeably worse for the Simple and OLS methods with the magnitude >

100% for lower random slope SD values. The SD values were many times larger for the

Simple and OLS methods (Appendix Figure A.2) resulting in their consistently higher root

MSE than the other methods.

Results for the regularly spaced case for MCAR 20% were similar to those of the

irregularly spaced case for Complete Data. Both the regularly spaced case for MCAR 80%

and irregularly spaced case for MCAR 20% shared similar results to the regularly spaced

case for MCAR 50%, but with larger SD, SE, and root MSE across random slope SD

values. Finally, the irregularly spaced case for MCAR 80% shared similar results to the

scenario of irregularly spaced measures in MCAR 50%.

2.6.4 Vary Correlation between Random Intercept and Slope

Figure 2.3 shows the results. For regularly and irregularly spaced time measures

in Complete Data, the LMM, Simple, and OLS methods have small relative bias across

correlation values. The Inflated method performs similarly except that for perfect negative

or positive correction there is notable upward relative bias. However, the BLUP method

has a generally increasing trend in relative bias with greater correlation values. All meth-

ods performed competitively in root MSE. Similar results hold for regularly spaced time

measures in MCAR 50% but there is more noticeable separation in root MSE performance

with higher values for the Simple and OLS methods for non-perfect correlation values.
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Vary random slope SD ω1
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Figure 2.2: Performance in relative bias (%) and root MSE of our methods in estimating the
association between annual rate of eGFR change and metabolite for the linear mixed model
(β̂3) versus two-stage methods (α̂1) as a function of random slope SD for the regularly and
irregularly spaced cases of Complete Data and MCAR 50%.

This is attributed to the noticeable separation in SD performance across correlation values

with the Simple and OLS displaying greater variability (Appendix Figure A.3). In contrast,

for irregularly spaced time measures in MCAR 50%, the Simple and OLS methods have

overwhelmingly large relative bias on much worse efficiency leading to both methods have

much larger root MSE across correlation values.

The regularly spaced case for MCAR 20% had similar results to having regularly

and irregularly spaced time measures in Complete Data. Similar results were true for the

irregularly spaced case for MCAR 20% and the regularly spaced case for MCAR 80%,

but with the Simple and OLS having larger SD, SE, and root MSE than the other methods

across all correlation values. Finally, the irregularly spaced case for MCAR 80% shared

similar results to the scenario of irregularly spaced measures in MCAR 50%.
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Vary random effects correlation ρω
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Figure 2.3: Performance in relative bias (%) and root MSE of our methods in estimating
the association between annual rate of eGFR change and metabolite for the linear mixed
model (β̂3) versus two-stage methods (α̂1) as a function of the correlation between random
intercept and slope for the regularly and irregularly spaced cases of Complete Data and
MCAR 50%.
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2.6.5 Vary Random Intercept SD

The results for varying the random intercept SD are very similar to results from

varying metabolite SD with a few exceptions. For regularly and irregularly spaced time

measures for Complete Data and just the regularly spaced case for MCAR 50%, the BLUP

method has slightly larger root MSE than the other methods for lower random intercept SD

values (Appendix Figure A.4). For irregularly spaced time measures in MCAR 50%, the

Simple and OLS methods also have noticeably larger root MSE from having larger relative

bias and SD than the other methods (Appendix Figure A.5). Results for MCAR 80% are

similar to that of MCAR 50%. Furthermore, results of MCAR 20% are similar to that of

Complete Data, except that the Simple and OLS methods had overall larger SD, SE, and

root MSE than the other methods for the irregularly spaced case compares to the same case

for Complete Data.

2.6.6 Vary Error SD

For regularly and irregularly spaced time measures for Complete Data and just the

regularly spaced case for MCAR 50%, the LMM, Simple, and OLS methods have low rel-

ative bias across all error SD values, while the BLUP and Inflated methods have growing

upward and downward relative bias for increasing error SD values, respectively (Appendix

Figure A.6). The BLUP and Inflated methods have lower SD values across all error SD val-

ues and thus performed similarly or better in root MSE than the other methods (Appendix

Figure A.7). For irregularly spaced time measures in MCAR 50%, there was both lack of

consistent direction in and relatively larger relative bias for the Simple and OLS methods,

particularly for larger error SD values. In addition, the SD and root MSE for both the Sim-

ple and OLS methods displayed a monotonically increasing trend for increasing error SD

values. Results for MCAR 80% are similar to that of MCAR 50%. Furthermore, results of
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MCAR 20% are similar to that of Complete Data, except that the Simple and OLS methods

had larger relative bias, SD, SE, and root MSE than the other methods for larger error SD

values in the irregularly spaced case of MCAR 20%.

2.7 Discussion

We have uncovered study design scenarios where two-stage methods are well-suited

modeling alternatives to the linear mixed model by comparing the association between

metabolite and annual eGFR change. For regularly and irregular spaced time measures in

Complete Data and just regularly spaced time measures in MCAR 50%, the Simple and

OLS methods have lower bias than the BLUP and Inflated methods. However, we have

shown that the BLUP method can correct bias and both the BLUP and Inflated methods

have greater efficiency with lower SD, SE, and root MSE. This provides credence to our

previous work [25] in using the BLUP approach to estimate eGFR slopes. Also, with

regularly spaced or complete data, we saw that increasing the SD of metabolite or ran-

dom intercept is associated with a decreasing trend in the bias for the BLUP and Inflated

methods. Furthermore, with regularly spaced or complete data across random slope SD,

random effects correlation, and error SD values, the Simple and OLS methods performed

much more favorably in bias with the trade-off of slightly worse efficiency compared to the

BLUP and Inflated methods. Thus in these scenarios the choice of optimal method will be

dictated by the goals of the analysis, namely whether to minimize overall prediction error

vs unbiased estimation of associations. Most importantly, throughout our simulation study

when varying parameters, the Simple and OLS methods performed noticeably worse in sta-

tistical performance with irregularly spaced time measures and MCAR 50% data, scenarios

that are not uncommon in observation studies, and so we do not recommend either of these

methods when both data criterion are met.
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We acknowledge limitations of our work. First, our linear mixed model and two-

stage methods assume eGFR has a linear rate of change. Statistical models that account for

nonlinear trajectories should be considered; however, despite the rigid linearity assump-

tion, eGFR slopes are an established, clinically useful, and commonly used measure of

diabetic kidney disease progression [5, 25, 32, 33, 34, 35, 36]. Second, the chosen num-

ber of subjects N=200 for our simulation study design compares our statistical approaches

under a medium sized cohort and further analysis with smaller and larger N could provide

additional guidance on optimal choice of methods for small and large sized cohorts, respec-

tively. Third, we have only compared our statistical approaches under a single missing data

mechanism, MCAR. More complex missing data mechanisms could also arise such as data

that is missing at random (MAR) or missing not at random (MNAR). Further investigation

of these topics would require additional simulation scenarios and assumptions; we aim to

investigate this in future studies.

Our work has elucidated the choice between the linear mixed model vs two-stage

methods for predicting possible patient future disease progression based on their clinic en-

try biomarker data under various study design scenarios. Although the linear mixed model

is an optimal approach, there were numerous scenarios where at least one two-stage method

was a suitable modeling alternative to mixed models, which opens the doors for clinicians

to implement standard statistical methods using slope outcomes. Similar to Sayers et al.

[37], we examined a single continuous biomarker predictor and additional studies look-

ing into adjusting for key clinical risk factors and confounders that could further improve

prognostication of disease progression, e.g., baseline eGFR [41], will further illuminate

our modeling options across various study design scenarios. However, including covari-

ates would require assumptions on joint covariate distributions and additional simulations,

and we do not pursue this further here. Importantly, in our single marker setting, we were

able to analytically calculate bias (or lack thereof) for the proposed two-stage methods, and

29



propose a method to mathematically correct this bias.

In summary, in this work via simulations and analytic calculations, we evaluated

two-stage methods for estimating marker-DKD progression associations in a longitudinal

setting. We examined a range of realistic study designs commonly encountered in medical

research (e.g., irregularly spaced measures, missing data), and identified scenarios where

two-stage models performed competitively. Of note, for many disease settings (e.g., eGFR

trajectory and kidney disease, prostate-specific-antigen change and prostate cancer, rate of

decline in FEV and chronic obstructive pulmonary disease) [28, 42, 43], the rate of change

(i.e. slope) of the biomarker is of interest in its own right as a marker of disease, and thus

is often an outcome of interest. Thus our findings are easily generalizable to other disease

prognostic modeling studies.
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Chapter 3

Identifying metabolite-pair markers for

chronic kidney disease stage

classification in diabetic patients: results

from applying the top-scoring pairs

algorithm to the Chronic Renal

Insufficiency Cohort (CRIC) Study

3.1 Abstract

The top-scoring pair (TSP) algorithm has showcased notable potential in deriving

biologically interpretable single pair decision rules that are accurate and robust in disease

discrimination and classification, particularly in gene-cancer studies. However, existing

31



TSP-based methods do not take into account covariates that could largely influence feature

selection for the top-scoring pair. We proposed our method of residualizing the features on

selected covariates to obtain the top-scoring pair liberated from much of their extraneous

effects and demonstrated in our simulation study that residualizing features yields a dif-

ferent top-scoring pair when the identified top-scoring pair from raw features was highly

correlated with selected covariates. In a cohort of 977 diabetic patients selected for un-

targeted metabolome profiling in the Chronic Renal Insufficiency Cohort (CRIC) study,

we identified raw and resiudalized metabolite ion top-scoring pairs that best discriminated

between early and advanced diabetic kidney disease (DKD) stage. In particular, the resid-

ualized top-scoring pairs brought us “cleaner” metabolite ion features, uncorrelated from

clinical covariates, for discriminating DKD stage, which could motivate follow-up studies

on the order reversals in the disease vs non-disease states. Finally, we compared the cross-

validated classification accuracy of TSP-based methods to LASSO and random forests, and

found TSP-based methods can accurately identify a healthier or less severe disease group.

3.2 Introduction

The ever increasing amount of high-dimensional biomolecular data generated us-

ing high-throughput technologies has brought a critical need for decision rules that would

strengthen our understanding of clinical diseases and health outcomes [44, 45, 46, 47]. A

prominent challenge is deriving decision rules that are not only accurate and robust across

a diverse range of settings but also have ease of biological interpretability for a desired

future clinic usage. Modern statistical and machine learning methods permeate the liter-

ature and frequently achieve superior classification accuracy [48, 49, 50, 51]. However,

a key limitation of these methods is the “black box dilemma”, namely decision rules that

make accurate assessments of patient disease and outcomes often at the expense of using
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nonlinear functions of hundreds or even thousands of features, which involves estimating

a plethora of model parameters. This leads to the construction of highly complex decision

boundaries for distinguishing between different classes of patients, which can be difficult

to interpret and characterize in a biologically meaningful manner.

We focus on the parameter-free Top-Scoring Pair (TSP) algorithm [52], that has the

advantage of providing simple and biologically interpretable decision rules. As a primer,

the TSP algorithm identifies a single pair of features that best discriminates between two

classes of interest among all possible feature-pairs – the top-scoring pair – along a pre-

defined fixed decision boundary, a 45-degree line passing through the origin in the space

defined by the two features. Measure of discrimination of a feature-pair is assessed via

a score for which an observed ordering of the two features is prominent in one class and

scarce in the other. After the pair of features with the maximal score is identified, classifi-

cation entails assigning the class for which the observed ordering of the top-scoring pair is

most common in a test sample. As the TSP algorithm is concerned with the ordering of fea-

tures, the method replaces the values of the features with their corresponding ranks within

individual profiles prior to identifying the top-scoring pair. Since TSP bases selection in

a ranks context, the algorithm is highly robust to data normalization procedures involving

monotonic transformation of raw feature values.

The TSP algorithm has been noted for identifying gene-pair markers for cancer clas-

sification. For instance, the TSP classifier achieved prediction rates in breast, leukemia, and

prostate cancer studies comparable to those of standard classification methods with much

fewer genes [52]. The K-TSP classifier, based on the top k gene pairs and a majority voting

procedure for classification, had competitive binary and multi-class prediction accuracy for

human cancer compared to TSP and standard methods [53]. Moreover, the TSP algorithm

identified a robust marker gene-pair for prostate cancer diagnosis through the direct integra-

tion of inter-study microarray data [54]. Finally, TSP demonstrated reliable classification
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for diverse human diseases, e.g. HIV infection and diabetes, using top-scoring gene pairs

[55].

However, the existing TSP methods do not take into account possible covariates that

influence the features, e.g., clinical risk factors for genes, in identifying the top-scoring pair

and we aim to address this gap. As a novel extension of the TSP algorithm, we propose

using the residuals from a regression of features on covariates of interest to select the top-

scoring pair, different from the existing practice of using the raw values of features. As a

benefit to using residuals, TSP would be selecting from features largely liberated from the

extraneous effects of the covariates. Thus, we would be able to capture a top-scoring pair

that discriminates the binary-class outcome through its own efforts without much influence

from “known” covariates.

Although the TSP algorithm has mainly been applied to gene-cancer studies, we

provide an application of TSP to the novel setting of metabolomics and chronic kidney dis-

ease (CKD) in diabetic patients of the Chronic Renal Insufficiency Cohort (CRIC) Study.

Recent reviews highlighted key metabolites that differentiated cases of diabetic kidney dis-

ease (DKD) from healthy controls [19, 20, 21, 22, 23]. In our previous work, we identified

several metabolites that were consistently and significantly reduced in patients with dia-

betes and CKD when compared to patients with diabetes without CKD [26].

In this article, we implement the existing TSP and K-TSP methods [52, 56], as well

as our proposed technique of using the features’ residuals, for the selection of top-scoring

pairs. We conduct a simulation study to illustrate the implications of using the features’

residuals as the input to the TSP algorithm. Furthermore, we demonstrate the application

of the TSP and K-TSP methods in identifying top-scoring metabolite-pair classifiers that

best discriminate between DKD severity in a study sample of the CRIC Study, using both

raw and residual values of the patient’s metabolites. Finally, since TSP and K-TSP are

binary classification methods, we compare their classification accuracy to popular statis-
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tical learning methods, i.e., LASSO (least absolute shrinkage and selection operator) and

random forests [24].

3.3 Methods

3.3.1 TSP and K-TSP: Brief review

We first provide a review of the TSP and K-TSP methods. Let X =

{X1, X2, . . . , Xp} denote the p features for an individual profile. The TSP algorithm [52]

identifies the top-scoring feature pair Θ∗ among the p features with the maximum absolute

difference in the probability of Xi < Xj between two classes of individuals, C = 1, 2. In

particular, we calculate the discriminant score of all possible feature pairs Θ:

ŝij = |P (Xi < Xj|C = 1)− P (Xi < Xj|C = 2)|

and ŝij is maximized from the top-scoring feature pair Θ∗, i.e., Θ∗ = arg max(i,j)∈Θŝij .

These conditional probability quantities are estimated using maximum likelihood from the

observed sample proportions of the ordering Xi < Xj between both classes. Accordingly,

it is sufficient to know the ranks of features within individual profiles to obtain the scores

for all feature-pairs ŝij, i, j = 1, 2, . . . , p, i 6= j. A feature-pair (i, j) achieves perfect

discrimination when ŝij = 1 and no discrimination when ŝij = 0. If multiple pairs achieve

the top score, ties were broken with a secondary rank-score to select a single top-scoring

pair [54].

Classification with TSP amounts to observing the ordering of the two features of the

top-scoring pair (i, j) for a future test sample. If P (Xi < Xj|C = 1) < P (Xi < Xj|C =

2), then if we observe Xi < Xj TSP classifies the test sample as class C = 2 or if instead

observed as Xi ≥ Xj TSP classifies as class C = 1. Otherwise, if P (Xi < Xj|C = 1) ≥
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P (Xi < Xj|C = 2), then if we observe Xi < Xj TSP classifies the test sample as class

C = 1 or if instead observed as Xi ≥ Xj TSP classifies as class C = 2.

In practice, the results of TSP may be sensitive to perturbations in the training data

and a more stable alternative, the K-TSP algorithm [53]. K-TSP defines the set of k disjoint

features pairs with the highest scores to be Θk = {(i1, j1), ..., (ik, jk)}. The set of k disjoint

top-scoring pairs is chosen Θ∗k = {(i∗1, j∗1), ..., (i∗k, j
∗
k)} to maximize the score ŝirjr :

Θ∗k = arg maxΘk

k∑
r=1

ŝirjr

for each value k. From this, we now obtain the optimal value k∗ from the set of k values that

maximizes the following criterion τ̂KTSP motivated by the concept of analysis of variance

[56]:

τ̂KTSP (Θ∗k) =

∑k
r=1 ŝirjr√

V̂ ar(
∑k

r=1 I(Xi∗r < Xj∗r )|C = 1) + V̂ ar(
∑k

r=1 I(Xi∗r < Xj∗r )|C = 2)

Classification with K-TSP amounts to observing the ordering of the k top-scoring

pairs {(i∗1, j∗1), ..., (i∗k, j
∗
k)} and taking a simple majority voting rule for a test sample. That

is, the test sample will be assigned the class receiving the most votes.

We implemented the TSP and K-TSP algorithms from the R package switchbox

[57] for our statistical analysis.

3.3.2 Residualizing the Features

In most studies of chronic disease, there are clinical risk factors known to be asso-

ciated with the outcome of interest. The aforementioned TSP classifiers do not take into

account the effects of such variables, Z = {Z1, Z2, . . . , Zq}, in selecting the top-scoring

feature pairs that best distinguish the binary outcome between two classes of individuals.
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In particular, the top-scoring feature pairs may be strongly confounded by these variables

and we seek to suppress the effects of Z in the top-scoring pair selection as to capture

“cleaner” features for discriminating the outcome between two classes. Thus we aim to

identify top-scoring pairs conditional on covariate values, Z:

ŝij|Z = |P ((Xi|Z) < (Xj|Z)|C = 1)− P ((Xi|Z) < (Xj|Z)|C = 2)|

To operationalize this approach, we propose fitting linear regression models with

features X as outcomes and Z as covariates, and use the model residuals as opposed to

feature values for selecting the top-scoring pairs. We refer to this process as residualizing

which largely decorrelates features, X , from the individual covariates, Z. In particular, the

fitted regression model for feature Xi = {Xi1, Xi2, . . . , XiN}, such that i = 1, 2, . . . , p, is

defined as

X̂ik = β̂0 + Zk1β̂i1 + Zk2β̂i2 + · · ·+ Zkqβ̂iq

for the kth individual, k = 1, 2, . . . , N . We define the residual of the ith feature for the kth

individual to be

eik = Xik − X̂ik

in which ei = {ei1, ei2, ..., eiN} is the set of residuals of the ith feature.

Thus, two types of TSP-based methods were developed and compared in our appli-

cation setting for feature selection and classification accuracy: (1) non-residualized, trained

from the raw features data Xi, and (2) residualized, trained from the residuals of features

ei.
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3.4 Simulations

3.4.1 Simulation Setup

To describe our residualizing process and its effect on the selection of the top-

scoring pair, we first conducted a simulation study. In particular, we generate feature pairs

with strong vs no correlation with a “clinical” feature, which itself is highly predictive of

the outcome. Sample size for our simulation study was set to N = 200 and we defined

our “disease” outcome (Y ) as binary with values 0 or 1. We consider the simple case of a

single “clinical” covariate (Z) also binary with values 0 or 1. Total sample was evenly split

between values Z = 0 and Z = 1, and we defined the high association between Z and Y

as the probabilistic relationship P (Y = 1|Z) = |Z − 0.05|. Two different sets of bivariate

data were generated to illustrate how residualizing changes the scores of these feature-pairs

which, in turn, affects whether a set is likely to still be a selected as a top-scoring pair.

The first set generated was bivariate normal (X1, X2) conditional on Z:

(
X1
X2

)
|Z=0 ∼ N [

(
0
5

)
,
(

2 0
0 2

)
];

(
X1
X2

)
|Z=1 ∼ N [

(
5
0

)
,
(

2 0
0 2

)
]

The second set also bivariate normal (X3, X4) but conditional on Y and independent

of Z: (
X3
X4

)
|Y=0 ∼ N [

(
0

2.5

)
,
(

3 0
0 3

)
];

(
X3
X4

)
|Y=1 ∼ N [

(
2.5
0

)
,
(

3 0
0 3

)
]

With features (X1, X2, X3, X4) and covariate data Z, we calculated the poste-

rior probabilities of Y as P (Y |X1, X2, X3, X4, Z) using Bayes’ theorem, although since

(X1, X2) is conditionally independent of Y :

P (Y |X1, X2, X3, X4, Z) = P (Y |X3, X4, Z) =
P (X3, X4|Y, Z)× P (Y |Z)

P (X3, X4)
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These posterior probabilities constituted Bernoulli probabilities, and were used to generate

the binary outcome class indicator Y . Finally, we calculate the TSP scores for the raw and

residualized (on Z) variants of (X1, X2) and (X3, X4).

3.4.2 Simulation Results

The results are plotted in Figure 3.1 with the rows corresponding to (X1, X2) and

(X3, X4) and columns to their raw and residualized features. In total, 96 samples had

class Y = 0 (48%) and 104 samples had class Y = 1 (52%). Both classes of Y from

the raw (X1, X2) data were mostly well separated by the TSP’s fixed decision boundary

and this raw pair had a score of 0.64. However, the residualized (X1, X2) did not achieve

nearly the same level of discrimination in the classes of Y by having a much lower score

of 0.07. We can attribute this to the raw (X1, X2) generated conditional on Z which is

strongly associated with Y . Residualizing the raw (X1, X2) decorrelates the pair from Z,

which substantially decreases the capability of (X1, X2) to discriminate between the two

classes of Y along TSP’s decision boundary. In practice, if the raw values of (X1, X2) are

identified as the top-scoring pair, and we know this pair to be highly dependent on Z, then

residualizing (X1, X2) with Z would most likely drop its candidacy as a top-scoring pair

and opens the door for another feature-pair to be selected by the TSP algorithm for best

discriminating between the classes of Y .

In contrast, residualizing the raw (X3, X4) with Z did not drastically affect the

feature-pair’s capability to distinguish between both classes of Y along the decision bound-

ary based on the small drop in score from 0.38 to 0.33. We can attribute this to the raw

(X3, X4) generated conditional on Y and independent on Z, which would likely retain

(X3, X4) as the top-scoring pair even after residualizing with Z. In summary, residualizing

captures “cleaner” top-scoring pairs liberated from much of the extraneous influence of
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Figure 3.1: Left column: Scatter plots of generated feature pairs from our simulation study
(N = 200) conditional on our single “clinical” covariate, (X1, X2), and independent of our
single “clinical” covariate, (X3, X4). Right column: Scatter plots of the residualized fea-
ture pairs. The two evenly split classes are represented as red and blue and TSP’s decision
boundary is overlayed on the plots.

covariates, and thus identifies potentially novel markers of outcome.

3.5 Application

3.5.1 CRIC Study description with outcome

Our study cohort comprised a sample of 977 diabetic patients selected for untar-

geted metabolome profiling in the Chronic Renal Insufficiency Cohort (CRIC) Study. De-

tails on the rationale and design of the parent CRIC Study and this metabolomics sub-
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study have been previously published [25, 29, 30, 31]. The study included a racially and

ethnically diverse group of adults aged 21 to 74 years with a broad spectrum of kidney

disease severity, assessed via estimated glomerular filtration rate (eGFR) between 20 and

70 ml/min/1.73m2. Sociodemographic information, medical history, medications used in

the previous 30 days, anthropometric measures (weight, height), and resting blood pres-

sure were collected from CRIC participants. In addition, blood specimens and 24-h urine

samples were also obtained. For our cohort, 45% were white, 44% were female, 57%

smoked > 100 cigarettes in lifetime, and 81% reported using angiotensin-converting en-

zyme (ACE) inhibitors or angiotensin-receptor blockers (ARB). Patients have mean (SD)

age 59.9 (9.4) years, body mass index (BMI) 34.2 (7.9) kg/m2, hemoglobin A1c (HbA1c)

7.6 (1.6)%, mean arterial pressure 89.9 (13.3) mmHg, urine albumin 0.9 (1.8) mg/day,

serum creatinine 1.9 (0.6) mg/dL, and estimated glomerular filtration rate (eGFR) 40.6

(11.2) ml/min/1.73m2. Furthermore, they were sampled across CKD stages G2 (eGFR

60-70), G3a (eGFR 45-60), G3b (eGFR 30-45) and G4 (eGFR 20-30).

Our outcome of interest for the current analysis is a binary indicator of early-stage

DKD (stage G2-3b, N=777) versus advanced-stage DKD (stage G4, N=200). Patients

with early-stage DKD had mean (SD) eGFR 44.68 (8.53) ml/min/1.73m2, while those with

advanced-stage DKD had mean (SD) eGFR 24.82 (3.6) ml/min/1.73m2.

3.5.2 Metabolomics

Untargeted metabolome profiling in urine was performed for our 977 CRIC sam-

ples. Assay procedures have been described previously [25, 58], but we briefly recapitulate

key points here for completeness. Aliquots of urine samples stored at -80 °C and limited

to less than 3 free thaw cycles were used in this study. Quantification of relative ion abun-

dance was carried out with an MPS3xt autosampler (Gerstel) coupled to an Agilent 6550
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Q-TOF mass spectrometer (Agilent Technologies) by non-targeted flow injection analy-

sis as described previously [58]. Profile mass spectra were recorded in 4Ghz acquisition

mode from 50 to 1000 m/z in negative ionization mode. Raw mass spectrometry data was

normalized based on creatinine ion abundances. Final annotation of approximately 15k

ions common to all datasets were done based on accurate mass comparison using 1 mDa

mass tolerance against Human Metabolome Database HMDBv4.0 assuming single depro-

tonation. A single ion could annotate multiple metabolites resulting in ambiguities in the

assignments. Therefore, we shall refer to our features as metabolite ions for our study.

Following prior protocols, we used stringent statistical criteria, based on Pearson

and Spearman correlation, intraclass correlation, and coefficients of variation applied to

technical replicates, to eliminate noisy metabolite ions, and identified a final set of 698

annotated metabolite ions for our analysis.

3.5.3 TSP and K-TSP results on CRIC Study with and without resid-

ualizing

As an application demonstration, we apply the TSP and K-TSP algorithms to our

CRIC study sample to identify metabolite-pairs that best discriminate between DKD stages,

with and without residualizing the metabolite ions. The residuals are obtained from the

fitted linear regression models with metabolitie ions as outcomes and the demographic

and clinical variables age, race, sex, smoked > 100 cigarettes in lifetime, BMI, HbA1c,

mean arterial pressure, urine albumin, serum creatinine, and ACE Inhibitor or ARB use as

covariates. These covariates are known to be associated with DKD severity. The results of

TSP and K-TSP algorithms applied to our CRIC samples are displayed in Figures 3.2 and

3.3.

From among the raw metabolite ions, the TSP algorithm identified the metabolite-
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Figure 3.2: (a) Scatter plot for the top pair of raw metabolite ions selected by the TSP al-
gorithm along with TSP’s decision boundary. The axes are metabolite ion abundances that
were creatinine normalized and natural log transformed. Patients had either early-stage
DKD (stage G2-3b, N = 777) or advanced-stage DKD (stage G4, N = 200). (b) Heatmap
correlation matrix of clinical variables vs raw metabolite ions selected by the K-TSP al-
gorithm. Single ion can annotate to multiple metabolites, which resulted in ambiguity in
assignments.
Ion 13: 3,6-Dihydro-4-(4-methyl-3-pentenyl)-1,2-dithiin
Ion 17: 13,14,15-trihydroxy-9-oxo-8,17-dioxatetracyclo[8.7.0.02,7 .011,16]heptadeca-1(10),2(7),3,5,11,13,15-heptaen-5-yl acetate
Ion 19: 2-Phenylethyl beta-D-glucopyranoside
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pair (Valine-Betaine, Dimethyl-Arg) to be the top-scoring pair (score: 0.391) in Figure 3.2a.

As mentioned earlier, a single ion could be annotated as multiple metabolites; the selected

top-scoring pair contained an ion that could be annotated as Valine or Betaine. Hence,

to note this ambiguity we will refer to this feature as Valine-Betaine. Here, the TSP’s

decision rule is that if a test patient’s observed metabolite ion ordering is Valine-Betaine <

Dimethyl-Arg then the patient will be classified as having early-stage DKD and the reversed

metabolite ion ordering for advanced-stage DKD. Applying the K-TSP algorithm gave us

a total of 10 metabolite-pairs, including (Valine-Betaine, Dimethyl-Arg), with score range

0.259-0.391. These 20 metabolite ions are listed in the correlation heatmap with the clinical

variables used for the residualizing process in Figure 3.2b. The metabolite ions Valine-

Betaine and Dimethyl-Arg have the largest variation explained by the clinical variables

with R2 values 0.31 and 0.23, respectively. Notably, Valine-Betaine has a relatively high

correlation with urine albumin and likewise for Dimethyl-Arg and serum creatinine, which

likely indicates that in this application, TSP selected metabolites ions with a moderate-high

correlation with known clinical markers of kidney disease.

Our simulation study demonstrated that residualizing a raw top-scoring pair that is

highly correlated with covariates significantly drops its score; therefore, yielding another

candidate to be the top-scoring pair. Hence, we residualize our raw metabolomics data,

and the TSP algorithm instead identified the metabolite-pair (Pipazethate, Octaethylene

glycol) to be the top-scoring pair (score: 0.25). This TSP’s decision rule is that if a test

patient’s observed metabolite ion ordering is Pipazethate < Octaethylene glycol then the

patient will be classified as having early-stage DKD and the reversed metabolite ion or-

dering for advanced-stage DKD in Figure 3.3a. Applying the K-TSP algorithm gave us a

total of 9 metabolite-pairs, including (Pipazethate, Octaethylene glycol), with score range

0.158-0.25. These 18 metabolite ions are listed in the correlation heatmap with the clin-

ical variables used for the residualizing process in Figure 3.3b. The R2 values for these
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Figure 3.3: (a) Scatter plot for the top pair of residualized metabolite ions selected by the
TSP algorithm along with TSP’s decision boundary. The axes are residuals of metabolite
ion abundances that were creatinine normalized and natural log transformed. Patients had
either early-stage DKD (stage G2-3b, N = 777) or advanced-stage DKD (stage G4, N =
200). (b) Heatmap correlation matrix of clinical variables vs the raw values of residualized
metabolite ions selected by the K-TSP algorithm. Single ion can annotate to multiple
metabolites, which resulted in ambiguity in assignments.
Ion 10: 3,6-Dihydro-4-(4-methyl-3-pentenyl)-1,2-dithiin
Ion 12: [4-(5-hydroxy-7-methoxy-8-methyl-4-oxo-4H-chromen-3-yl)-2-methoxyphenyl]oxidanesulfonic acid
Ion 16: alpha-L-Rhamnopyranosyl-(1→ 3)-alpha-D-galactopyranosyl-(1→ 3)-L-fucose
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18 metabolite ions are much smaller than those of the 20 metabolite ions selected under

the raw metabolomics setting. Here, Pipazethate and Octaethylene glycol do not have rel-

atively high correlation values with the clinical variables indicating that these metabolite

ions are not serving as proxies for clinical markers of kidney disease.

Thus, in the metabolite-DKD context, if we obtained a top-scoring pair from the

raw metabolomics data and the features are highly correlated with our clinical variables,

then we would very likely acquire a different top-scoring pair after residualizing.

3.5.4 Comparison to other methods: LASSO and random forests

Methods

To evaluate the relative prediction performance of the TSP and K-TSP algorithms

for DKD severity, we compared their classification accuracy to that of LASSO and random

forests. The LASSO model was tuned to the regularization parameter that minimizes mean

10-fold cross-validated misclassification error for feature selection among the 698 metabo-

lite ions [59]. The random forests model was fitted using Breiman’s algorithm, growing

500 trees and randomly sampling 26 metabolite ions as candidates at each split [60]. We

implemented the LASSO and random forest methods using the R packages glmnet and

randomForest, respectively.

Several classification accuracy measures were used for comparing TSP, K-TSP,

LASSO, and random forests: (1) overall accuracy, i.e., overall proportion correctly clas-

sified, (2) sensitivity, i.e., proportion correctly classified among those with advanced-stage

DKD, (3) specificity, i.e., proportion correctly classified among those with early-stage

DKD, (4) balanced accuracy, i.e., average of sensitivity and specificity, (5) positive pre-

dictive value (PPV), i.e. proportion that truly have advanced-stage DKD among those clas-

sified with advanced-stage DKD, and (6) negative predictive value (NPV), i.e. proportion
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that truly have early-stage DKD among those classified with early-stage DKD. To estimate

their variabilities, we conducted one-hundred iterations of 5-fold cross-validation for each

of these accuracy measures. One fold is held out as a test set and our models are trained

on the remaining four folds with our accuracy measures calculated on the test set. The

four folds in the training data will also each serve as a test set, which would result in accu-

racy measures from all five folds. The averages of these accuracy measures across all five

folds are our 5-fold cross validated estimates. Since the partition of the five folds varies for

each iteration, TSP, K-TSP, LASSO, and random forests may select different metabolite

predictors at each iteration.

Results

Results for overall accuracy, sensitivity, specificity, and balanced accuracy of early-

stage DKD vs advanced-stage DKD for our statistical methods with metabolite ion predic-

tors are displayed in Figure 3.4. TSP and K-TSP did not have higher median cross-validated

overall accuracy (0.649-0.728) compared to that of LASSO and random forests (0.793-

0.823) with either raw or residualized metabolite ion predictors. However, both LASSO and

random forests displayed extremely poor sensitivity and high specificity, which indicates

that the overall accuracy for these two methods is driven by classifying an overwhelmingly

large number of patients as having early-stage DKD, regardless of their observed DKD

stage. In contrast, TSP and K-TSP achieved a more balanced tradeoff of sensitivity and

specificity and had values closer to their overall accuracy. Notably, we also have imbal-

anced classes with 79.5% of our patients with early-stage DKD and we examine balanced

accuracy for our methods which is preferred over overall accuracy for class imbalance

data. Here, TSP and K-TSP did have higher median cross-validated balanced accuracy

(0.566-0.689) compared to that of LASSO and random forests (0.5-0.652) for the raw or

residualized metabolite ion predictors cases. For positive predictive value, TSP and K-TSP
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Figure 3.4: Box plots of model prediction performance for DKD stage: 100 repeats of
5-fold cross-validated (a) overall accuracy, (b) sensitivity, (c) specificity, (d) balanced ac-
curacy, (e) positive predictive value, and (f) negative predictive value.
(K-)TSP: (K) Top-Scoring Pair(s)
LASSO: Least Absolute Shrinkage and Selection Operator
RF: Random Forests
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did not perform better than LASSO or random forests when using raw metabolite ions;

however, random forests displayed relatively high variability in its cross-validated values,

and when using residualized metabolite ions, LASSO did not predict advanced-stage DKD

even once for any patient in all 100 iterations of 5-fold cross-validation (hence the absence

of its boxplot in Figure 3.4e). Finally, for negative predictive value, all methods performed

reasonably well with TSP and K-TSP taking the lead.

In essence, TSP and K-TSP displayed comparatively good classification for early-

stage DKD patients from their specificity and NPV performances. Furthermore, residual-

ized metabolite ions are a valid option as predictors for our statistical methods in classifica-

tion for early-stage DKD patients. In particular, specificity and NPV did not show a notable

decrease in performance going from using raw metabolite ions to their residualized variants

while taking into account that the residualized metabolite ions are features liberated from

much of the known important clinical variables.

3.6 Conclusion and discussion

The large influx of high-dimensional biomolecular data brought about by cutting-

edge high-throughput technologies, particular in ‘omics research, exhibits inordinate po-

tential for improving our understanding of the link between biological profiles and clinical

diseases. There is a critical need for accurate and robust decision rules based on these bio-

logical data that are easily interpretable for translation to future clinic use. We focused on

the TSP (or K-TSP) algorithm that identifies a single pair (or set of pairs) of features that

best discriminates between two classes of interest among all possible feature-pairs. TSP

identifies the feature-pair for which an observed ordering of the two features is very com-

mon in one class and rare in the other, which allows the top-scoring pair to be interpreted

as a “biological switch” from one class to another based on feature ordering. Thus, the TSP
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approach by construction aims to offer insights into underlying mechanisms of disease, a

salient advantage over other statistical and machine learning methods.

A major potential of ‘omics studies is the possibility to discover “new” insights into

disease mechanisms and discrimination; hence, interest usually lies in identifying markers

that are associated with disease status after adjusting for known clinical factors. Previous

studies utilizing TSP methods have not accounted for possible covariates in the selection

of the top-scoring pairs. We provided a novel extension of the TSP algorithm for removing

much of the extraneous effects that covariates could have on the features, so as to cap-

ture a top-scoring pair largely independent of covariates. We implemented a residualizing

process, and demonstrate via simulation and application that using the residuals from a

regression of features on covariates known to be highly associated with the outcome, and

then applying the TSP algorithm to these residuals, could identify potentially novel pairs

compared to simply using the raw (unresidualized) features. In fact in our data application,

the top-scoring pairs using the raw features were valine (or betaine) and dimethyl-arginine,

known amino acids linked to albuminuria [26, 61], a potent risk factor for CKD. Thus, this

pair could simply reflect a known underlying CKD marker, as seen in Figure 3.2b. On

the other hand, the top-scoring pair from the residualized analysis were pipezethate [62], a

non-narcotic antitussive agent, and octaethylene glycol [63, 64, 65, 66], a member of the

class of polyethylene glycols, found in osmotic laxatives. Thus these residualized metabo-

lite ions, are potentially new markers, and could offer insights into drug metabolism and

CKD. Notably, the idea of using residuals to adjust for covariates has been considered in

classical discriminant analysis [67, 68, 69, 70], and more recently for decision trees [71],

but to our knowledge, our use of residuals for the TSP algorithm is novel.

TSP and K-TSP are classification methods, hence we evaluated and compared their

classification accuracy of DKD stage using metabolite ion predictors to more conventional

statistical learning methods, i.e., LASSO and random forests. While TSP and K-TSP did
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not perform better than LASSO and random forests by the overall accuracy metric, we

have imbalanced classes with over three-fourths of our samples with early-stage DKD.

By the balanced accuracy metric, which accounts for imbalanced classes, TSP and K-TSP

performed better than the others. Both TSP and K-TSP performed moderately and well in

specificity and negative predictive value, respectively, which suggests that these methods

can accurately identify a healthier or less severe disease group. Furthermore, residualized

metabolite ions yielded similar specificity and negative predictive value results for TSP and

K-TSP.

We acknowledge limitations and future directions of our work. First, we looked at a

binary class outcome since the TSP and K-TSP algorithms were developed as binary clas-

sification methods. However, methods exist for multi-class classification [72, 73], which

could be easily extended to our setting. In particular, for our DKD setting, multi-class

would allow us to use residualized features to discriminate between different levels of kid-

ney (dys)function among diabetic patients; given the relatively small cell sizes we leave

this to future work using a larger cohort. Second, our stringent statistical criteria elim-

inated noisy compounds and resulted in 698 annotated metabolite ions as candidates for

the identification of the top-scoring pairs which could have missed biomarkers significant

to characterizing DKD stage. Thus, a future aim is to include metabolite ions highly as-

sociated with DKD and part of pathways informative of therapeutic targets for DKD to

administer biological understanding to top-scoring pair selection. Third, our residualiz-

ing process involves the use of linear regression to obtain the residuals of the features and

more complex statistical models could be fitted to obtain the residuals. However, the linear

regression models have simple implementation and have the residuals orthogonal to the

covariates, which is beneficial for capturing cleaner features.

In summary, in this work we extended the TSP-algorithms to account for clinical

covariates, via a simple, easy to implement residualizing process. The TSP and K-TSP
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algorithms have the advantage of deriving parameter-free decision rules that best discrim-

inate the class outcome of interest by examining just the ordering of feature-pairs. Thus,

they yield parsimonious classifiers that are biological interpretable in the ‘omics setting.

We demonstrated the utility of our residualizing approach for TSP via simulation and real

application to the novel metabolite-DKD context. The residualized metabolite ions bought

us “cleaner” top-scoring pairs, uncorrelated to clinical covariates, which we could identify

as biomarkers classifying disease stage outcome on their own merit. These metabolite ions

could serve to motivate hypotheses for future studies, for instance, laboratory studies could

further examine the selected pairs to confirm or refute the order reversals in the disease vs

non-disease states.
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Chapter 4

Inference and Prediction using

Functional Principal Components

Analysis: Application to Diabetic

Kidney Disease Progression in the

Chronic Renal Insufficiency Cohort

(CRIC) Study

4.1 Abstract

Patients with diabetic kidney disease (DKD) are at high risk for kidney failure and

estimated glomerular filtration rate (eGFR) trajectories are markers for DKD progression.

We propose applying the functional principal components analysis (FPCA) to modeling
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eGFR trajectories while overcoming nonlinear, sparse, and irregularly spaced time series

data. Furthermore, FPCA is a novel approach to exploring dominant modes of eGFR varia-

tion among diabetic patients of different albuminuria groups, a clinical subgroup of interest

in the renal disease context. In a cohort of 2641 participants with diabetes and up to 15

years of annual follow-up from the Chronic Renal Insufficiency Cohort (CRIC) study, we

detected novel and different dominant modes of variation and patterns of DKD progression

among albuminuria groups. To determine whether fitting a single overall model or fitting

separate albuminuria group-specific models is more optimal for modeling eGFR trajecto-

ries, we developed a goodness-of-fit procedure based on cross-validation prediction error.

Our findings indicate that both model approaches have their advantages in different settings

that is mainly linked to the trade-off between parsimony and complexity.

4.2 Introduction

Diabetes mellitus is the leading cause of chronic kidney disease (CKD) [1, 2, 3, 4,

5] and patients with diabetic kidney disease (DKD) progression are at increased risk for

kidney failure, which would require treatment by kidney transplant or dialysis. Estimated

glomerular filtration rate (eGFR) is a ubiquitous marker for kidney function and previous

studies examined change in eGFR for assessing change in kidney function [74, 75], which

make eGFR trajectories natural markers for DKD progression. Linear mixed effect models

are often used to estimate change in eGFR; however, nonlinear trends may exist. Estimation

is further complicated by observing sparse or irregular spaced eGFR time series data as

depicted in Figure 4.1.

We propose the functional principal components analysis (FPCA) approach to pre-

dicting long-term trajectories while accounting for complexity in curve estimation, i.e.,

nonlinearity, sparsity, and irregularity. FPCA translates the omnipresent dimension reduc-
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Figure 4.1: Various patterns of observed eGFR trajectories for patients with diabetes in
the Chronic Renal Insufficiency Cohort (CRIC) study, including sparse or irregular spaced
data.

tion method, principal components analysis (PCA) [76] from the multivariate data setting

to the functional data setting, thereby allowing it to investigate for dominant modes of vari-

ation and project infinite-dimensional curves into finite-dimensional vector scores. A brief

introduction to FPCA, as well as the general area of functional data analysis, is described

in Ramsay and Silverman [77]. Moreover, a thorough literature review on the development

of FPCA is elaborated in detail in Wang et al. [78]. Worthy of note is that the application

of FPCA to the sparse functional data setting has been subjected to much investigation and

development since the nineties [79, 80, 81, 82, 83, 84, 85, 86].

In a recent study by Dong et al. [87], FPCA was used to uncover major sources

of variations of eGFR trajectories of kidney transplant recipients. Our work is different

in that we applied FPCA to predict the long-term eGFR trajectories and detect the domi-

nant modes of eGFR variation of diabetic patients. Furthermore, a question of interest is if

longitudinal eGFR patterns, i.e., mean and correlation functions, vary between key clinical

subgroups. Albuminuria, excess of albumin in the urine, is an established biomarker for

renal disease and, in conjunction with eGFR, is often used in the classification of patient
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CKD stage [88]. As such, we investigated for differences in longitudinal eGFR patterns be-

tween different albuminuria groups in CKD. Furthermore, a follow-up question is whether

an overall model, trained using data from all diabetic patients irrespective of albuminuria

groups, is sufficient for accurately predicting the long-term eGFR trajectory within spe-

cific albuminuria groups. If not, we consider multiple albuminuria group-specific models,

each fitted using data from only patients of one particular group, to prospectively predict

eGFR trajectories for new subjects of the same group. To decide whether this group-level

approach is needed, we developed a procedure to compare the goodness-of-fit between the

overall and group-specific models via prediction error.

The breakdown of the organization of this paper is in the following sections. Section

4.3 presents our methods. This includes the FPCA approach, tests of equality for the mean

and correlation functions, comparison of goodness-of-fit between models, our CRIC study

cohort, assignment of albuminuria groups, and computational tools. Section 4.4 describes

our statistical analysis results in detail. Lastly, Section 4.5 is a discussion of our findings,

limitations, and future directions.

4.3 Methods

4.3.1 Functional Principal Components Analysis (FPCA)

Let Yij = Xi(tij) + εij be the observed outcome at time tij , where Xi(·) is the

measurement-free outcome for subject i at time tij and εij are measurement errors assumed

to be identically and independently distributed normal with mean zero and variance σ2 such

that i = 1, 2, . . . , N and j = 1, . . . ,mi.

We model the individual trajectories as a smooth random function X(t) with un-

known mean function µ(t) and covariance function Σ(s, t), where s, t ∈ T and T is a
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bounded and closed time interval. Let Xi(t) be the outcome trajectory for the ith individ-

ual and t be years of follow-up. Under the Karhunen-Loeve expansion, the ith individual’s

trajectory can be expressed as

Xi(t) = µ(t) +
∞∑
k=1

φk(t) ∗ ξik

where φk(t) is the kth functional principal component (FPC) and ξik is the associated kth

FPC score for the ith individual. The individual scores ξik are uncorrelated random vari-

ables with mean zero and variance λk, where λ1 ≥ λ2 ≥ · · · ≥ 0 and
∑

k λk < ∞. The

covariance function Σ(s, t) can be defined as

Σ(s, t) = Cov(Xi(s)− µ(s), Xi(t)− µ(t)) =
∞∑
k=1

λk ∗ φk(s) ∗ φk(t)

We briefly recapitulate the workflow of the PACE algorithm by Yao et al. [83] to

estimate these model components. The mean function µ̂(t) is estimated using a local linear

smoother that aggregates data from all individuals. The smooth covariance is estimated

from the individual “raw” covariances. Let Σi(tij, til) = (Yij−µ̂(tij))(Yil−µ̂(til)) be the ith

individual’s raw covariance and it can be seen that E(Σi(tij, til)) = Cov(X(tij), X(til)) +

σ2δjl, where δjl = 1 if j = l else 0. Hence, the off-diagonal elements of the individual

raw covariances Σi(tij, til) are used for estimating the smooth covariance Σ̂(s, t). Since

the covariance of X(t) achieves its highest values along the diagonal, a local linear fit

is used along the direction of the diagonal while a local quadratic fit is used along the

direction orthogonal of the diagonal to approximate the surface. The estimates of the FPCs

(eigenfunctions), φ̂k, and its eigenvalues, λ̂k, are solutions to the eigenequations

∫
T

Σ̂(s, t)φ̂k(s)ds = λ̂kφ̂k(t)
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satisfying the constraints
∫
T
φ̂k(t)

2dt = 1 and
∫
T
φ̂k(t)φ̂m(t)dt = 0 for m < k. The FPCs

are estimated by discretizing the smooth covariance Σ̂(s, t). The estimated kth FPC score

for the ith individual is acquired through conditional expectation

ξ̂ik = Ê(ξik|Yi) = λ̂kφ̂
T
ikΣ̂
−1
Yi

(Yi − µ̂i)

such that Yi = (Yi1, . . . , Yimi
)T . The components φ̂ik and µ̂i are vector variants of φ̂k(t) and

µ̂(t), respectively, evaluated on a grid of time points tij, j = 1, . . . ,mi. Finally, Σ̂Yi = Σ̂ +

σ̂2Imi
is also obtained by evaluating Σ(s, t) on the same grid of time points. Noteworthy,

the PACE method gives estimates for the best prediction of these individual FPC scores.

Since the outcome trajectory is often well approximated by the top K FPCs and

their associated scores, we select K as the number of FPCs that explained at least 95% of

the total variance in the outcome of interest. Compiling the above altogether for the PACE

algorithm, we obtain the predicted outcome trajectory for the ith individual as

X̂i(t) = µ̂(t) +
K∑
k=1

φ̂k(t) ∗ ξ̂ik

4.3.2 Testing equality of mean functions

We provide a simplified overview of Gorecki-Smega et al.’s permutation test [89]

based on a basis function presentation to test the equality of mean functions between G

groups. The global null hypothesis and its alternative are

H0 : µ1(t) = µ2(t) = · · · = µG(t) vs. H1 : ∃ u 6= v s.t. µu(t) 6= µv(t),

respectively. Suppose that we have individual smooth random functions Xgi ∈ L2(T )

indexed by G groups, where g = 1, . . . , G and i = 1, . . . , ng such that
∑G

g=1 ng = N .
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The trajectories Xgi(t) can be represented as a linear combination of orthonormal basis

functions {ψl} of L2(T ), e.g., Fourier,

Xgi(t) =
L∑
l=1

cgil ∗ ψl(t)

where t ∈ T and cgil are random variables with finite variance. Defining ψ(t) =

(ψ1(t), ψ2(t), ..., ψL(t))T and cgi = (cgi1, cgi2, . . . , cgiL)T , we can represent the individual,

sample group mean, and sample grand mean trajectories as

Xgi(t) = cTgiψ(t), Xg(t) =
1

ng

ng∑
i=1

cTgiψ(t), X(t) =
1

N

G∑
g=1

ng∑
i=1

cTgiψ(t),

respectively. The F-test statistic for the one-way ANOVA problem can be adapted for the

functional data setting as

FP =
1

G−1

∑G
g=1 ng||Xg −X||22

1
N−G

∑G
g=1

∑ng

i=1 ||Xgi −Xg||22

where ||f ||22 =
∫
T
f 2(t)dt for f ∈ L2(T ).

Here, FP serves as the test statistic for a permutation-based p-value in testing the

global null hypothesis. Gorecki-Smaga et al. [89] noted that the statistic FP can be written

in a form less computationally burdensome for computer programs as

1
G−1

(a− b)
1

N−G(c− a)

where

a =
G∑
g=1

1

ng
1Tng

CT
g Cg1ng , b =

1

N

G∑
g=1

G∑
h=1

1Tng
CT
g Ch1nh

, c =
G∑
g=1

tr(CT
g Cg)
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here Cg = (cg1, cg2, ..., cgng) and 1ng is a vector of ones with length ng. As such, the

statistic FP only depends on the coefficient vectors cgi and not on the basis functions

ψl. Furthermore, we can see that random permutations of the trajectories Xgi(t) will only

change the value of a. We set 1000 permutation replicates for this test and the significance

level at 5%.

4.3.3 Testing equality of correlation functions

To test the equality of correlation functions between G groups, we proceed in two

steps. First, we center the individual trajectories by subtracting them by their group mean

trajectories, estimated by taking the sample means of the FPCA-predicted eGFR at each

time grid point (years) of the group-specific patients and connecting these sample means to

form that group’s trajectory. Second, we scale the individual trajectories by dividing them

by the square root of the diagonal of the smooth covariance estimates (standard deviations)

from our overall model. Finally, we apply the multiple-group permutation test developed

by Cabassi et al. [90] to test the equality of the covariance functions of our standardized

trajectories between G groups. The application of this test is feasible since the covari-

ance of our standardized trajectories is equivalent to the correlation of our un-standardized

trajectories.

The global null hypothesis and its alternative are

H0 : Σ1 = Σ2 = · · · = ΣG vs. H1 : ∃ u 6= v s.t. Σu 6= Σv,

respectively. The permutation test procedure combines the G(G-1)/2 partial tests into a

single global test by the non-parametric combination algorithm of Pesarin and Salmaso

[91]. The partial test statistics are evaluated as the distances between the covariance func-

tions of two groups, for a pre-defined distance function. Like the previous notation, let
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Xgi be the outcome trajectory for the ith patient in the gth group where g = 1, . . . , G and

i = 1, . . . , ng. The permutation test procedure is described in detail by Cabassi et al. [90]:

1. Center individual trajectories by subtracting them from their group mean trajectories,

estimated by taking the sample means of the individual eGFR values at each time grid

point i = 1, . . . , ng, i.e. X(0)
gi = Xgi −Xg.

2. Let T(0) be the vector containing the pairwise distances between the sample covari-

ance functions of the centered groups d(Σ̂
(0)
u , Σ̂

(0)
v ), for all 1 ≤ u < v ≤ G.

3. For b = 1, 2, . . . , B, conduct random permutations of the data group labels and com-

pute T(b), the vector containing distances between the sample covariance functions

of two groups in the permuted dataset, d(Σ̂
(b)
u , Σ̂

(b)
v ), for all 1 ≤ u < v ≤ G.

4. Compute the estimated pairwise p-values of the test as p̂u,v(d) =
∑

b=1 1[d(Σ̂
(b)
u ,Σ̂

(b)
v )≥d]

B
,

for d = d(Σ̂
(0)
u , Σ̂

(0)
v ).

5. Aggregate the pairwise p-values using the combining function ω by Pesarin and

Salmaso (2010) to form the global test statistic T (0)
ω = ω(p̂1,2, p̂1,3, ..., p̂G,G−1).

6. For the b = 1, 2, . . . , B random permutations, compute the bth combined test statistic

as

T (b)
ω = ω(p̂

(b)
1,2, p̂

(b)
1,3, ..., p̂

(b)
G,G−1)

where p̂(b)
u,v = p̂u,v(d(Σ̂

(b)
u , Σ̂

(b)
v )).

7. Compute the estimated global p-value of the combined test

p̂ω =

∑
b 1[T

(b)
ω ≥ T

(0)
ω ]

B
.

8. Reject H0 if p̂ω ≤ α.
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Based on the simulation studies and application results of Cabassi et al. [90], we used the

square root distance for d(·, ·) and the max T combining function for Tω. Here, the square

root distance can be defined as the square root mapping of two covariance operators Σ1 and

Σ2 to the space of Hilbert-Schmidt operators

d(Σ1,Σ2) = ||Σ1/2
1 − Σ

1/2
2 ||HS

In the case of imbalance between groups, the permutation test procedure would

not yield accurate partial p-values when performing permutations for the whole dataset.

Therefore, we conducted paired permutations, or permutation tests for each pair of groups

independently. Here, the partial tests would be exact, which would allow for two-sample

inference of covariance functions. We set 1000 permutation replicates for this test and the

significance level at 5%.

4.3.4 Comparing goodness-of-fit between models

It is of interest to determine if an overall model, trained on all individuals irre-

spective of subgroup (e.g., albuminuria category), is sufficient for predicting the long-term

outcome trajectory for individuals. If not, we consider separate group-level models, fitted

using only individuals belonging to the same group, to prospectively predict group-specific

outcome trajectories for new individuals.

To formally test whether the group-level approach is needed, we propose a

goodness-of-fit procedure, inspired by 5-fold cross-validation, to compare the prediction

error of our overall model and multiple group-level models. Specifically,

1. Divide the overall cohort of individuals into 5 folds of approximately equal size,

ensuring that each fold contains approximately the same proportions of individuals

in each group as that of the overall cohort.
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2. For the overall model, treat the 1st fold as the test set, and fit the model on the other

4 folds, the training data.

3. The model will predict the trajectories for individuals in the test set and we calculate

the average curve squared error for the ith test individual as

ACSEi =

ni∑
j=1

[Xij − X̂i(tij)]
2

ni

where

• ni is the number of outcome observations for ith individual

• Xij is the observed outcome for the jth observation of the ith individual

• X̂i(tij) is the predicted outcome value at tj where tj is the time grid point clos-

est in proximity to the individual’s jth observation time. The (FPCA) predicted

outcome X̂i(tij) is calculated as the sum of both the trained model’s mean func-

tion and the product of the trained model’s FPCs and predicted FPC scores for

the ith individual.

4. The mean average curve squared error MACSEd is then computed as the arithmetic

mean of ACSEi values of the test set.

5. We repeat Steps 3-5 for each of the other 4 folds as the test set.

6. Our goodness-of-fit test statistic for the model is computed as the average of the

MACSEd estimates from each fold:

GoF =
1

5

5∑
d=1

MACSEd
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7. We repeat Steps 2-6 to calculate the goodness-of-fit test statistic for each of the group-

level models. Except each of these group-level models will only be trained on the

portion of individuals belonging to their respective groups across all 4 folds and;

likewise, the mean average squared curve error MACSEd is calculated for only the

individuals belonging to the model’s group in the test set.

To estimate variability in the mean average curve squared error MACSEd, we

repeat the above procedure to calculate 100 iterations of the goodness-of-fit statistic for

the overall and group-level models. Lower goodness-of-fit statistic values are indicative of

better model fit.

4.3.5 Study Cohort and Outcome

Our study cohort consisted of 2641 participants with diabetes enrolled in the

Chronic Renal Insufficiency Cohort (CRIC) Study. Details on the rationale and design

of the CRIC Study have been previously published [25, 29, 30, 31]. To summarize, the

CRIC Study recruited a racially and ethnically diverse patient population aged 21 to 74

years with varying CKD stages 3a (eGFR 45-60), 3b (eGFR 30-45) and 4 (eGFR 20-30).

Participants underwent annual assessments on medical and family history, cognitive and

behavioral health, anthropometric measures (weight, height), resting blood pressure, and

heart rate. Blood specimens and 24-h urine samples were also collected. Baseline charac-

teristics of our overall CRIC study cohort is displayed in Table 4.1.

Our main outcome is repeated measures of eGFR over time, calculated using the

Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) creatinine equation [13].

The measures were observed to be sparse and irregularly spaced, with a median of 3.92

(range: 0-15.29, IQR: 2-6.98) years among participants.
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Table 4.1: Baseline clinical characteristics of 2641 participants with diabetes in the
Chronic Renal Insufficiency Cohort (CRIC) Study.

Age (years) 60.67 ± 9.48
Race

White 1105 (42)
Black 1248 (47)
Other 288 (11)

Sex
Male 1551 (59)
Female 1090 (41)

Smoked >100 cigarettes
Yes 1500 (57)
No 1141 (43)

BMI (kg/m2) 34.08 ± 7.77
HbAlc (%) 7.62 ± 1.63
Diastolic BP (mmHg) 69.12 ± 12.36
Systolic BP (mmHg) 132.31 ± 21.76
Mean Arterial Pressure (mmHg) 90.19 ± 13.43
Serum Creatinine (mg/dL) 1.74 ± 0.61
Urine Creatinine (mg/dL) 81.1 ± 51.76
Urine PCR (mg/g) 1294.33 ± 2696.16
Predicted Urine ACR (mg/g)∗

<30 965 (37)
30-300 768 (29)
>300 908 (34)

Baseline eGFR (ml/min/1.732) 46.95 ± 15.23
Hypertension

Yes 2445 (93)
No 194 (7)

ACE Inhibitor or ARB use
Yes 2089 (79)
No 537 (20)

Values are expressed as mean ± SD or N (%).
BMI, body mass index; HbA1c, hemoglobin A1c; BP, blood pressure;
PCR, protein-creatinine ratio; ACR, albumin-creatinine ratio;
eGFR, estimated glomerular filtration rate;
ACE, angiotensin-converting enzyme; ARB, angiotensin-receptor blocker.
∗Converted from Urine PCR by using the crude model in Sumida et al. (2020).
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Table 4.2: Correspondence between predicted ACR and PCR for CRIC participants.

Predicted ACR (mg/g)
PCR (mg/g) < 30 (Normo) 30-300 (Micro) > 300 (Macro)

< 150 965 34 0
150-500 0 620 0
> 500 0 114 908

PCR, protein-creatinine ratio; ACR, albumin-creatinine ratio

4.3.6 Albuminuria Groups

We assign the CRIC participants to albuminuria groups in CKD based on their urine

albumin-creatinine ratio (ACR) values at baseline, the point of study entry. The albuminuria

groups are defined to be normo (ACR< 30 mg/g), micro (30-300 mg/g), and macro (> 300

mg/g). However, 842 of the 2641 individuals did not have observed baseline ACR values,

while all had urine protein-creatinine ratio (PCR) baseline data. Thus, to avoid omitting a

quarter of our sample, we propose employing a novel equation for converting urine PCR

to urine ACR using mg/g units [92]. In particular, we use their crude model for calculating

predicted ACR

pACR = exp

(
5.3920 + 0.3072 ∗ log

(
min
(PCR

50
, 1
))

+ 1.5793

∗ log
(

max
(

min
(PCR

500
, 1
)
, 0.1

))
+ 1.1266 ∗

(
min
(PCR

500
, 1
)))

Hence, the albuminuria groups for our study cohort of 2641 individuals will be based on

predicted ACR values converted from their observed PCR values. The numbers in each

group are listed in Table 4.2 as a cross-tabulation with their respective PCR categories

noted in the Kidney Disease Improving Global Outcomes (KDIGO) guidelines [88]. Here,

we see that a total of 2493 (94%) of our study cohort are in albuminuria groups based on

predicted ACR values that correspond to their observed PCR categories.
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4.3.7 Implementation of statistical methods

All statistical analysis was conducted using the R (version 4.0.3) programming en-

vironment [93]. The R package fdapace [94] was used for the estimation of the model

components of FPCA. We use the fanova.tests function from the fdANOVA package [95]

to test for equality of mean functions and the ksample.perm function from the fdcov pack-

age [96] to test for equality of correlation functions.

4.4 Results

The overall (FPCA) model, fitted to our entire cohort (N=2641) of CRIC patients,

estimated three leading FPCs were optimal, together capturing 98.5% of the variation in

eGFR trajectories. These estimated FPCs and their associated scores are displayed Figure

4.2. The first FPC determined that 81.3% of the variation is explained by a magnitude shift

from the overall model’s mean eGFR trajectory. Thus, a large majority of the variation in

eGFR trajectories can be traced to patients’ measured eGFR at study entry, which lends

to the idea that the first FPC behaves like a model intercept. The first FPC scores signifi-

cantly differed by albuminuria group both globally and pairwise (all p < 0.001). Patients

in the normo group tended to have higher scores and a greater proportion of patients in

this group have positive valued scores than the other two groups. Hence, resting solely on

the first FPC, the normo patients are more inclined to have consistently increased eGFR

compared to micro and macro patients. A notable proportion of macro patients have nega-

tive valued first FPC scores along with mostly lower scores than those of normo and micro

patients. Accordingly, the first FPC exerted that macro patients are more inclined to have

consistently decreased eGFR.

The second FPC accounted for 13.5% of the variation and captured varying rates

67



0 5 10 15

−1.0

−0.5

0.0

0.5

1.0

Overall Model − Leading 3 FPCs

Year

V
a

lu
e

(a)

FPC 1 (PVE 81.3%)

FPC 2 (PVE 13.5%)

FPC 3 (PVE 3.7%)

Normo Micro Macro

−200

−100

0

100

200

300

Albuminuria

F
P

C
 1

 S
c
o

re

Normo Micro Macro

−200

−100

0

100

200

300

Albuminuria

F
P

C
 2

 S
c
o

re

Normo Micro Macro

−200

−100

0

100

200

300

Albuminuria

F
P

C
 3

 S
c
o

re

Figure 4.2: (a) Leading three FPCs for our overall model with proportion of eGFR vari-
ance explained (PVE %). (b) Box plots of the scores for the leading FPCs by albuminuria
group. The three FPC scores significantly differed by albuminuria group both globally and
pairwise (all p < 0.001, except normo vs micro for FPC 2 scores has p = 0.013).
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of change in eGFR in the first and second halves of our follow-up time frame. Similar

to how the first FPC is like a surrogate to a model intercept, the behavior of the second

FPC is akin to that of a model slope. The second FPC scores significantly differed by

albuminuria group both globally and pairwise (all p < 0.001, except normo vs micro p =

0.013). Here, the distribution of the second FPC scores for the normo and micro groups

are alike with one another, while the macro patients tended to have slightly lower scores.

Therefore, the rate of change in eGFR for macro patients are more differentiated from that

of normo and micro patients. Finally, the third FPC explained 3.7% of the variation and

also captured varying rates of change in eGFR although with different inflection points. The

third FPC scores significantly differed by albuminuria group both globally and pairwise (all

p < 0.001). Much like the second FPC scores, the distribution of the scores here for the

normo and micro groups are more alike with one another. In contrast to before, now the

macro patients tended to have higher third FPC scores than normo and micro patients,

although the difference is less notable compared to the second FPC scores comparison.

Taking both the second and third FPCs and their scores into account, the eGFR trajectories

of macro patients are more prone to having various rate of changes throughout the follow-

up period than those of normo and micro patients.

The predicted eGFR trajectories for all the CRIC patients from the overall model

are illustrated in Figure 4.3. The mean eGFR trajectories for the albuminuria groups were

calculated by taking the sample means of the FPCA-predicted eGFR at each time grid

point (years) of the group-specific patients and connecting these sample means to form

that group’s trajectory. By Gorecki-Smaga et al.’s permutation test [89], the mean eGFR

trajectories for the albuminuria groups differed both globally (FP = 318.86, p < 0.001) and

pairwise (normo vs micro FP = 74.13, normo vs macro FP = 641.34, micro vs macro FP =

239.27, all p < 0.001). The normo group’s mean eGFR trajectory was consistently greater

than those of the other groups by an increased magnitude shift, largely attributed to the first
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FPC and the associated scores for the normo patients being notably higher than the other

groups of patients. The micro group’s mean eGFR trajectory, although a downward shift

from that of the normo group, had a similar rate of decline over time. As mentioned before,

the second and third FPCs captured the varying rates of change in eGFR for our overall

cohort and both their associated scores are extremely similar in distribution for the normo

and micro groups, which led to similar observed rates of change in eGFR for both groups.

The macro group’s mean eGFR trajectory differed from the other group’s mean trajectories

in both magnitude shift and rates of change. In particular, the trajectory has a steeper initial

decline than the normo and micro groups and a noticeable rebound of the trajectory for later

follow-up period is owed to both the second and third FPCs. Here, the second FPC was

negative along much of the same late follow-up period as the eGFR rebound, and with the

macro patients having more negative valued scores, contributed to a positive rate of change

in eGFR. The third FPC was positive for the similar follow-up period as the eGFR rebound

and the macro patients having more positive valued scores further pitched in to the increase

in eGFR towards the end of follow-up.

The estimated correlation functions of the eGFR trajectories for each albuminuria

group are presented in Figure 4.4. Here, the correlation at any two time points is not lower

than 0.55 for any group. By Cabassi et al.’s permutation test [90], the correlation functions

of eGFR for the albuminuria groups differed both globally (p< 0.001) and pairwise (normo

vs micro p = 0.028, normo vs macro p < 0.001, micro vs macro p < 0.001), although

accounting for multiple comparisons via a Bonferroni correction, the normo and micro

groups would not differ. We observed that the macro group contained a wider area of

correlations < 0.7 than the other groups. This particular area is largely concentrated on the

correlations between eGFR at the earlier time period < 5 years and that of the later time

period > 5 years. Within this area, the macro group correlations between baseline, year 0,

and > 5 years was mostly lower than those of the normo and micro groups, indicated by
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values < 0.65 in the dark blue region.

The albuminuria-specific (group) models, each fitted using only data from CRIC

patients of a particular albuminuria group, estimated varying leading FPCs for capturing at

least 95% of the variation in the eGFR trajectories of each group and are displayed in Figure

4.5. In addition, the same estimated FPCs from the overall model, displayed in panel (a) of

Figure 4.2, are overlaid on these plots for comparison with those of the group models. The

first FPC for the normo model was similar to that of the overall model; however, the micro

and macro models did not have as consistent a magnitude shift over time from their mean

eGFR trajectories. In fact, the first FPCs for the micro and macro models did not account

for as much variation in their patients’ trajectories (< 80%) and are also approaching the

value 0 with greater follow-up time, which could simply reflect fewer samples at later

time-points. Inversely, the second FPC for these models explained more variation (> 17%)

compared to the overall and normo models (< 14%). The second FPCs for the four models

captured varying rates of eGFR change, although those of the micro and macro models

closely resemble reflections of the overall and normal models about the value 0, with the

macro model having a more steady rate of change towards the last few years of follow-up,

again possibly simply reflecting sparse data in this group at later follow-up years. If we

take a look at the second FPC plots around the mean for our models in Appendix Figures

A.8-A.11, we can deduce that except to the reflection of the second FPCs, the micro and

macro models yield similar rates of change in eGFR as that of the overall and micro models

with their second FPCs. Finally, we note (Figure 4.5) that the normo model only estimated

two leading FPCs while the other models contained three, with the macro model’s third

FPC undergoing a sharp decline near the last years of follow-up.

As a preliminary visual assessment of model fit, we compared the mean fitted tra-

jectories for the overall and group-specific models (Figure 4.6). The predicted mean eGFR

trajectories of normo patients were similar when using an overall or normo model; while
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the mean trajectories of micro and macro patients differed with various degrees when using

an overall or that respective group model. Specifically, the micro model predicted lower

mean eGFR than that of the overall model after a few years of follow-up, while, the macro

model showed a more glaring difference in mean eGFR than that of the overall model. The

mean trajectories for micro and macro groups rebounded over the last few years, likely due

to sparse data at follow-up.

To further explore these differences at the individual level, a sample of patients

in each albuminuria group (N=5) were selected for comparison of their predicted eGFR

trajectories to their observed eGFR measures from the overall model vs their albuminuria

group-specific model as displayed in Figure 4.6. While the overall and group-specific mod-

els tracked the observed data reasonable well, there are, nevertheless, notable differences

which are apparent through visual inspection as well as via the root average curve squared

error (ACSE), introduced in Section 4.3.4. Compared to the group-specific models, we see,

based on the root ACSE metric, the overall model tends to predict better for the normo

patients, predict similarly for the micro patients, and can predict worse for macro patients.

However, these results may be over optimistic, since these patients were also used to train

the models. Thus, we next investigated cross-validated prediction error using the goodness-

of-fit statistic as outlined in Section 4.3.4.

The results of 100 iterations of our proposed goodness-of-fit procedure for com-

paring between the single overall model and three albuminuria-specific models are pre-

sented in Figure 4.7. Our goodness-of-fit procedure is based on prediction error of eGFR

and lower values are indicative of better model fit. The overall model (OV-NO) displayed

largely better prediction performance for normo patients than the normo model (NO). With

more severe albuminuria groups, we see the micro and macro models (MI, MA) had bet-

ter prediction performance for their respective group patients than using the overall model

(OV-MI, OV-MA). Despite the MA model mostly having the least prediction error, the MI
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and MA models’ prediction estimates also have the most variability. Furthermore, the gap

in prediction performance is largest between the OV-NO and NO models, with the OV-NO

model showing a clear advantage. Finally, the range of prediction estimates across all three

groups of patients in using the single overall model [21.21-31.47] was also less than using

three albuminuria-specific models [15.72-34.97].

4.5 Discussion

We applied FPCA methodology to model long-term eGFR trajectories for diabetic

patients that accounted for nonlinear, sparse, and irregularly spaced eGFR time series. The

first two leading FPCs, accounted for 95% of the variation in eGFR patterns, and behaved

similarly to a model’s intercept and slope respectively. To examine whether the longitu-
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dinal eGFR patterns significantly varied between albuminuria groups, a clinical subgroup

of interest in the renal disease context, we tested for differences in mean and correlation

functions. As mentioned in the discussion of Dong et al. [87], it may be of great inter-

est to predict the future eGFR for patients of different clinical subgroups. One of their

proposed solutions to this is fitting separate FPCA for each subgroup much like our group-

level approach. However, we further extend this idea by incorporating a goodness-of-fit

procedure that uses cross-validated leave-a-curve-out prediction errors to decide between

fitting separate albuminuria group-specific FPCA models and using a single overall FPCA

model.

We found that the most dominant mode of eGFR variation was a magnitude shift

from the mean eGFR for all groups whether fitting an overall or group model, having

explained > 70% of the variability. Lesser dominant modes involved varying rates and

time-intervals of eGFR change; these modes were pertinent for modeling trajectories for

patients in the micro and macro groups than those in the normo group, with the second

FPCs explaining > 17% of the eGFR variation for just the micro and macro groups versus

≈ 9% for the normo group. This is further compounded by a third FPC not required for the

normo group, in contrast to the micro and macro groups, in which the third FPC explained

4% of the variation in eGFR trends. Mean and correlation eGFR functions significantly dif-

fered between albuminuria groups. Upon further inspection, we found that the correlations

between eGFR at the earlier time period < 5 years and that of the later time period > 5

years are noticeably lower for the macro patients, suggesting more diffuse, i.e., less tightly

linked long-term eGFR trajectories in patients with more severre kidney disease. Results

from our goodness-of-fit procedure of prediction performance comparison between FPCA

models indicated that the choice of a single overall model is a viable option to predicting

long-term eGFR trajectories for different albuminuria groups. In particular, although micro

and macro specific models had lower prediction error compared to the overall model, these
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group-specific models also had more variability in prediction error suggesting the class

tradeoff between low bias (group-specific models) versus low variance (overall model).

We acknowledge the strengths and limitations in our work and potential future di-

rections to explore. First, for strengths. Our CRIC study cohort of diabetic patients is

one of the largest in the U.S., with extensive clinical profiles and extended longitudinal

data of kidney function. FPCA has the advantage of predicting non-linear trajectories and

investigating for their leading modes of variation, all the while overcoming sparsity and

irregularly spaced trends. This approach, thus permits a nuanced assessment of long-term

disease progression as evidenced in our findings. In addition, inference for mean and cor-

relation functions between groups were based on permutation tests and are therefore robust

to misspecification of distribution. Our goodness-of-fit procedure gauges the variability of

curve prediction error via repeated cross-validated measures which reduces overfitting and

avoids optimistic prediction performance for the overall and group-level models. Now, for

limitations. From a clinical perspective, assignment of albuminuria groups to our CRIC

patients was based on converting urine PCR to urine ACR. Although the equation for con-

version is cutting-edge [92] and requires further testing to assess its robustness and utility

in predicting ACR, we found that close to 94% of our CRIC patients were in albuminuria

groups that corresponded to their PCR categories by the KDIGO guidelines [88]. Further-

more this conversion is easy to implement, and importantly allowed us to retain our full

sample of 2641 CRIC patients. We conducted sensitivity analyses using the PCR categories

and achieved similar results. Second, data were sparse at later follow-up times, especially

for the macro group, hence any conclusions for later times need to be interpreted with cau-

tion. Third, although our proposed goodness-of-fit procedure for FPCA model comparison

in predicting long-term outcome trajectories is relatively novel, more work in this area is

needed. We aim to further its methodological developments. For instance, to investigate

the precision of our model-driven estimate for prediction error, we would like to explore
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bootstrap resampling techniques for deriving an empirical distribution of the standard error

of our estimates, rather than using cross-validated estimates which could suffer from small

test sample-size.

To our knowledge, ours is the first application of functional data methods to exam-

ine kidney disease progression in diabetic patients. Dong et al. [87] had previously applied

FPCA to model kidney disease progression and investigate for dominant modes of varia-

tion in kidney transplant recipients; however, our study different in that we examined and

compared longitudinal patterns and different model fits for long-term DKD progression

in different albuminuria groups. More specifically, the first two leading FPCs essentially

mimic intercept (i.e., starting eGFR value) and slope (i.e. linear rate of change of eGFR),

suggesting that standard statistical approaches such as linear mixed models would be suf-

ficient for capturing the majority of variation in kidney disease patterns. Nevertheless, the

more subtle variations captured by the third FPC, albeit only explaining 4% of the varia-

tion, may still be important for individual patients, especially those with more advanced

albuminuria stage. Similarly, while the full cohort model fit the data well and had low pre-

diction error overall, there were differences in performance based on albuminuria severity,

with group-specific models being more advantageous in the macro group. The decision of

training a single model over multiple models to model long-term trajectories is a question

of parsimony versus complexity, i.e., the overall model is simpler, computationally less

demanding, and more generalizable since it applied to the entire spectrum of albuminuria.

Thus a single FPCA model, or even a more traditional intercept and slope model, can be

recommended in population settings where the goal is to model population level trends, and

test broad brush differences between groups. However, in a clinical setting group-specific

models may offer better predictive performance and offer the opportunity for personalized

recommendations for individuals presenting with more advanced disease.
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Chapter 5

Conclusions and Future Work

In this dissertation, we implemented, developed and compared statistical ap-

proaches for (i) modeling disease progression using longitudinal biomarkers and (ii) build-

ing useful and interpretable prognostic models in the context of diabetic kidney disease.

The human metabolome holds high promise for uncovering biomarkers sensitive to detec-

tion of rapid DKD progression. In assuming linear rate of kidney function decline, the

linear mixed model and two-stage methods are classic candidates for developing prognos-

tic models for DKD progression using metabolite predictors. Notably, we also proposed

using TSP-based methods to identify metabolite-pair markers that best discriminate be-

tween DKD severity stages. FPCA accounts for nonlinear and other complexities in curve

estimation that linear mixed model and two-stage methods otherwise could not. By predict-

ing long-term trajectories and detecting major modes of curve variation, the use of FPCA

strengthens our understanding of patterns DKD progression, especially across different di-

abetic subpopulations. Thus, metabolomic markers and functional data methods exhibit

strong potential for uncovering the characteristics of and predicting DKD progression.

The choice between linear mixed model and two-stage methods is ultimately dic-

tated by the goals of the analysis, i.e., whether to minimize overall prediction error vs
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unbiased estimation of associations between metabolite predictor and eGFR slope out-

come. While the linear mixed model is the more conventional modeling approach of the

two, two-stage methods proved to be viable alternatives for several study design scenar-

ios, which would allow applied researchers to use slope outcomes. TSP-based methods

identified the top-scoring metabolite-pairs for which an observed ordering of the two fea-

tures is more common in one class than in the other, i.e., early-stage vs advanced-stage

DKD, which makes them not only easily biologically interpretable as a “reversal” from

one class to another based on feature ordering, but also has TSP as parsimonious models

for discriminating severity in disease. We proposed our residualizing approach for TSP

that helps in identify top-scoring pairs largely liberated from clinical covariate informa-

tion, which could motivate further follow-up studies on these largely “cleaner” biomarker

pairs. In applying FPCA to model long-term DKD progression via eGFR trajectories, the

leading dominant modes of eGFR behaved much like a model’s intercept (i.e., starting

eGFR value) and slope (i.e., linear rate of change of eGFR), which raises the appeal of

using a linear mixed model or two-stage methods; however, FPCA also accounts for sparse

and irregularly spaced eGFR time series. Longitudinal eGFR patterns significantly varied

between albuminuria groups of diabetic patients and our proposed goodness-of-fit proce-

dure indicated that the choice between fitting separate albuminuria group-specific models

or a single overall model for predicting long-term eGFR trajectories resembles a tradeoff

between low bias (group-specific models) versus low variance (overall model).

Our dissertation opens several opportunities for future methodological and applied

work. The simulations comparing the linear mixed model and two-stage approaches are

based on N=200 subjects and additional analysis with different N could provide further

insight on the optimal choice of methods for smaller and larger sized cohorts. These ap-

proaches were also compared only under a single missing data mechanism, MCAR, and

other mechanisms, MAR and MNAR, require further investigation. The results for our
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TSP-based methods were from using a binary outcome of DKD severity stage and multi-

class approaches can be considered. We would also like to include metabolite ions highly

associated with DKD and part of pathways informative of therapeutic targets for DKD

back into the pool of metabolites after statistical filtering for top-scoring pair selection.

Furthermore, more complex statistical models could be fitted to obtain the residuals al-

though our usage of linear regression models have ease of implementation for having the

residuals independent of clinical covariates. Our proposed goodness-of-fit procedure for

comparing cross-validated prediction error of FPCA models is relatively novel and, to in-

vestigate the precision, we would like to incorporate bootstrap resampling techniques for

deriving an empirical distribution of the standard error of our estimates, rather than using

cross-validated estimates which could suffer from small test sample-size.

In summary, our works provide a framework of statistical approaches for modeling

kidney function decline for diabetic patients using metabolomic markers and functional

methods. Our methods and results are easily generalizable to other disease prognostic

modeling studies which offer opportunities for future methodological research and clinical

applications beyond the metabolite-DKD setting.
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Appendix

Vary metabolite SD σM

Complete Data MCAR 50%
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Figure A.1: Performance in bias, SD, and SE of our methods in estimating the association
between annual rate of eGFR change and metabolite for the linear mixed model (β̂3) versus
two-stage methods (α̂1) as a function of metabolite SD for the regularly and irregularly
spaced cases of Complete Data and MCAR 50%.
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Vary random slope SD ω1

Complete Data MCAR 50%
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Figure A.2: Performance in bias, SD, and SE of our methods in estimating the association
between annual rate of eGFR change and metabolite for the linear mixed model (β̂3) versus
two-stage methods (α̂1) as a function of random slope SD for the regularly and irregularly
spaced cases of Complete Data and MCAR 50%.
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Vary random effects correlation ρω

Complete Data MCAR 50%
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Figure A.3: Performance in bias, SD, and SE of our methods in estimating the association
between annual rate of eGFR change and metabolite for the linear mixed model (β̂3) versus
two-stage methods (α̂1) as a function of the correlation between random intercept and slope
for the regularly and irregularly spaced cases of Complete Data and MCAR 50%.
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Vary random intercept SD ω0

Complete Data MCAR 50%
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Figure A.4: Performance in relative bias (%) and root MSE of our methods in estimating
the association between annual rate of eGFR change and metabolite for the linear mixed
model (β̂3) versus two-stage methods (α̂1) as a function of random intercept SD for the
regularly and irregularly spaced cases of Complete Data and MCAR 50%.
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Vary random intercept SD ω0

Complete Data MCAR 50%
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Figure A.5: Performance in bias, SD, and SE of our methods in estimating the associa-
tion between annual rate of eGFR change and metabolite for the linear mixed model (β̂3)
versus two-stage methods (α̂1) as a function of random intercept SD for the regularly and
irregularly spaced cases of Complete Data and MCAR 50%.
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Vary error SD σerr

Complete Data MCAR 50%
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Figure A.6: Performance in relative bias (%) and root MSE of our methods in estimating
the association between annual rate of eGFR change and metabolite for the linear mixed
model (β̂3) versus two-stage methods (α̂1) as a function of error SD for the regularly and
irregularly spaced cases of Complete Data and MCAR 50%.
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Vary error SD σerr

Complete Data MCAR 50%
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Figure A.7: Performance in bias, SD, and SE of our methods in estimating the association
between annual rate of eGFR change and metabolite for the linear mixed model (β̂3) versus
two-stage methods (α̂1) as a function of error SD for the regularly and irregularly spaced
cases of Complete Data and MCAR 50%.
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Figure A.8: The FPCs, with their proportion of eGFR variance explained (%), around the
mean eGFR trajectory (black) for the Overall model. The green and red shaded areas show

the range of variation around the mean: +/−Q×
√
λ̂k×φ̂k(t), where φ̂k(t) is the estimated

kth FPC and λ̂k is its eigenvalue. The green edge corresponds to Q = 2 and the red edge
corresponds to Q = −2.
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Figure A.9: The FPCs, with their proportion of eGFR variance explained (%), around the
mean eGFR trajectory (black) for the Normo model. The green and red shaded areas show

the range of variation around the mean: +/−Q×
√
λ̂k×φ̂k(t), where φ̂k(t) is the estimated

kth FPC and λ̂k is its eigenvalue. The green edge corresponds to Q = 2 and the red edge
corresponds to Q = −2.
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Figure A.10: The FPCs, with their proportion of eGFR variance explained (%), around
the mean eGFR trajectory (black) for the Micro model. The green and red shaded areas

show the range of variation around the mean: +/−Q×
√
λ̂k × φ̂k(t), where φ̂k(t) is the

estimated kth FPC and λ̂k is its eigenvalue. The green edge corresponds to Q = 2 and the
red edge corresponds to Q = −2.
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Figure A.11: The FPCs, with their proportion of eGFR variance explained (%), around
the mean eGFR trajectory (black) for the Macro model. The green and red shaded areas

show the range of variation around the mean: +/−Q×
√
λ̂k × φ̂k(t), where φ̂k(t) is the

estimated kth FPC and λ̂k is its eigenvalue. The green edge corresponds to Q = 2 and the
red edge corresponds to Q = −2.
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