
UC Berkeley
Research Reports

Title
Turning Movement Estimation In Real Time (TMERT)

Permalink
https://escholarship.org/uc/item/3rp1v8fs

Author
Martin, Peter T.

Publication Date
1995

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3rp1v8fs
https://escholarship.org
http://www.cdlib.org/

i

Turning Movement Estimation
in Real Time (TMERT)

Peter T. Martin

Department of Civil Engineering
The University of Utah

California PATH Research Report
UCB-ITS-PRR-95-29

This work was performed as part of the California PATH Program of the

University of California, in cooperation with the State of California Business,

Transportation, and Housing Agency, Department of Transportation; and the

United States Department of Transportation, Federal Highway

Administration.

The contents of this report reflect the views of the authors who are

responsible for the facts and the accuracy of the data presented herein. The

contents do not necessarily reflect the official views or policies of the State of

California. This report does not constitute a standard, specification, or

regulation.

Issue Date: September 1995

ISSN 1055-1425

ii

Turning Movement Estimation in Real Time (TMERT)

Abstract

The dramatic increase in the processing and communicating power of

computers, and the recent development of vehicle sensors and detectors,

offers exciting opportunities for real time traffic monitoring, management

and control. Conventional transportation planning models assume that travel

patterns are tangible, stable and predictable, and that movement demands are

directly related to the distribution and intensity of land uses. These do not

lend themselves to on-line traffic forecasting. This report describes the

development a new model that can monitor system performance and derive

management and control strategies in real time. The concept of the TMERT

(Turning Movement Estimation in Real Time) model, originated in the

United Kingdom. It offers a method of estimating turning movement flows

from link detected flows at small recurrent intervals, in real time.

California cities need better control and congestion management systems that

operate in real time. The development of this model contributes to the

management and control of congested urban traffic. It operates from real

time detector data and represents the stage of traffic control that operates

strategically and above the local level of adaptive signal control. It will

contribute, therefore, to the design of advanced traffic management through

the provision of more information.

The research reported here shows how the model has been refined with

improved data input and analysis of output. The model is shown to be

transferable through estimation of turning movements from a real Californian

City.

Keywords: real-time, detectors, intelligent transportation systems, adaptive

signal control

iii

Executive Summary

Modern adaptive traffic signal control systems rely on a continuous supply of

remotely detected traffic data to optimize signal settings. Signal co-ordination

is achieved by minimizing a performance measure which is a function of

such parameters as delay, journey time or vehicle stops. As a by-product of

traffic demand responsive control, a wealth of traffic data is available, on-line

for other uses.

Since the signal settings control flow capacity in urban traffic networks, the

capacity along any link can be measured in real time. If the turning

movement flows at junctions could also be identified, then the spare capacity

of routes could be derived in real time. This information would enable

alternative re-routing strategies to be defined and implemented in real time to

both alleviate congestion and divert traffic following incidents.

It has been shown (Martin and Bell 1991) that algorithms such as NETFLO

(Kennington and Helgason 1980) which solve minimum cost problems, can

be applied to the modeling of traffic flow. The input to the NETFLO

(NETwork FLOw) algorithm included link unit costs, upper and lower

bounds on link flows, demand at sources, supply at sinks, and constraints

which were governed by the observed link flows. The output consisted of a

set of turning movement flows which satisfied the demand and observed link

flow constraints and minimized some notion of cost which was embodied in

the form of an objective function. Employing Monte Carlo simulation

techniques to model traffic flow in a small network representation of a part of

Middlesborough (North East England), with a simple set of upper bounds,

lower bounds, link costs and detector link flows, the output turning

movement flows were compared with those anticipated. The investigation

concluded that before significant progress could be made in demonstrating

the application of NETFLO, a comprehensive set of real data was required.

Modeling of another English network (Martin and Bell 1992a) showed that

the method bore promise. This research applies and develops the model

through data drawn from a Californian City. The model uses actual data

collected from a real network in the city of San Luis Obispo in Southern

iv

California in February 1994. The NETFLO model is used as the tool to

achieve accurate correlation between observed and estimated turning

movement flows by constraining the model in a way that represents the state

of the control system at the time the link flows were measured, and in such a

way that it can be applied to different flow conditions. In this way, the

solution derived is system driven, and not user driven. A formal network

notation will be presented which will enable any urban street network to be

modeled.

In the first section, the role the TMERT model can play in Traffic Control is

defined through placing it in its broader context. The development of

Adaptive Signal Control systems from early isolated signal control to the

demand responsive systems of today is traced. A review of routing models

shows how the TMERT model's development relates to other work in the

field. The section concludes with an outline of the Research Plan as

proposed. The second section details the data collection procedure and sets

out how turning movement surveys were devised and implemented. In

section 3, the theoretical basis of the model is presented with a detailed

description of the Mathematical concepts which support the model. The

software development is discussed in section 4 which concludes with the

validation of the new code through the testing on the English data. In section

5, the theoretical basis for model improvement is detailed. The results of the

improved model are presented in section 6. The report concludes with a

critical appraisal of the effectiveness of the research and demonstrates that all

the objectives for the one year project have been met.

v

List of Figures

Figure 1.1: Four Generations of Signal Control 5

Figure 1.2: Research Plan 17

Figure 2.1: Network Location 19

Figure 2.2: San Luis Obispo Network 20

Figure 2.3: Intersection Designation 21

Figure 2.4: Booking Sheet 25

Figure 2.5: Turning Movement Labels 27

Figure 2.6: Revised Network 28

Figure 2.7: Computer Drawn Booking Sheet for Intersection G 29

Figure 2.8: Turning Movement Key 30

Figure 3.1: Kirchoff's Law 34

Figure 3.2: The Six Node Network 35

Figure 3.3: Six Node Network Constrained 36

Figure 3.4: Artificial Nodes 44

Figure 3.5: Six Node Network, Weight Change Test 45

Figure 3.6: Model Input and Output 46

Figure 3.7: Node Notation 46

Figure 3.8: Permissible Node Arc Connections 47

Figure 3.9: A Single Junction Network Representation 48

Figure 3.10: Final Network Configuration 49

Figure 4.1: Algorithmic Definition

55

vi

Figure 4.2: The Six Node Network 56

Figure 4.3: Performance Index Method 60

Figure 4.4: Street Layout - SCOOT Region R, Central Leicester 61

Figure 5.1: Detector Arc 62

Figure 5.2: Error Arc Configuration 63

Figure 5.3: Incremental Feasibility Method 65

Figure 5.4: Final Detector Layout 66

Figure 6.1: Overall Correlation for 2 hr Interval 72

Figure 6.2: Through Movement Correlation for 2 hr Interval 73

Figure 6.3: Right Movement Correlation for 2 hr Interval 73

Figure 6.4: Left Movement Correlation for 2 hr Interval 74

vii

List of Tables

Table 2.1 Survey Schedule 4

Table 2.2 Stop Sign Location Information 22

Table 2.3: Journey Time Observations December 17, 1993 23

Table 2.4: Survey Schedule 31

Table 3.1 Weight Test 45

Table 4.1 Unimproved Data Input Structure for the Six Node Network -

ASCII Format 57

Table 4.2 Improved Data Input Structure for the Six Node Network -

Spreadsheet Format 58

Table 4.3 Unimproved Data Output Structure for the Six Node Network -

ASCII Format 59

Table 4.4 Improved Data Output Structure for the Six Node Network -

Spreadsheet Format 59

Table 5.1: Incremental φ Factor 64

Table 6.1: Coefficient of Determination of Observed and Modeled Turning

Movement Flows, 2-hr aggregated, φ set to 0.025 67

Table 6.2: Arc Weights for each Trial

67

Table 6.3: Coefficient of Determination of Observed and Modeled Turning

Movement Flows, 2-hr aggregated, φ increasing for various weight regimes

- for all Turning Movements 68

viii

Table 6.4: Coefficient of Determination of Observed and Modeled Turning

Movement Flows, 2-hr aggregated, φ increasing for various weight regimes

- for Right Turns 70

Table 6.5: Coefficient of Determination of Observed and Modeled Turning

Movement Flows, 2-hr aggregated, φ increasing for various weight regimes

- for Left Turns

71

Table 6.6: Coefficient of Determination of Observed and Modeled Turning

Movement Flows, 2-hr aggregated, φ increasing for various weight regimes

- for Through Movements 71

Table 6.7: Maximum Model Performance by Turn, 2-hr Analysis 72

Table 6.8 Dynamic Modeling Analysis by 5 minute Interval - All Turning

Movements, Weighting Regime W0

Table 6.9: Average Max and Min r2 Value for the Movements of the 5

minute Intervals

ix

 Table of Contents
Abstract ii

Executive Summary iii

List of Figures v

List of Tables vii

Table of Contents ix

Section 1 Introduction 1

1.1 The Context of the TMERT Model 1

1.2 Adaptive Control Systems 3

1.3 Deficiencies in Current ATC 5

1.4 A Review of Routing Models 7

1.4.1 Static Methods 8

1.4.2 Dynamic Methods 14

1.5 Summary 15

Section 2 Turning Movement Survey, San Luis Obispo
18

2.1 Defining the Network 18

2.2 Pilot 1 Survey 20

2.3 Network Characteristics 21

2.4 Pilot 2 Survey 25

2.5 Data entry problems 26

2.6 Revised Turning Movement Notation 27

2.7 Improvements for Pilot 3 survey 27

2.8 Student Surveyors 30

2.9 Survey Proper 31

2.10 Summary
32

x

Section 3 The Theoretical Basis of the Model 33

3.1 Model Philosophy 33

3.2 A Linear Program 34

3.3 A Network form of a Linear Program 38

3.4 Defining Nodes & Arcs 46

3.5 Network characteristics 48

Section 4 Software Development 50

4.1 Code Development 50

4.1.1. Step by Step Code Analysis 52

4.2 The “Front - End” 56

4.3 The “Back - End”
59

4.4 Performance Index 59

4.5 Collection and Validation of English Data 60

Section 5 Model Development 62

5.1 Error Arc Definition 62

5.1.1 Detector Constraint 62

5.1.2 Error Arc Constraints 62

5.1.3 φ Factor Constraint 64

5.2 Detector Placement and Number 65

Section 6 Model Performance 67

6.1 Varying The Weights Of Arcs 67

6.2 Coefficient of Determination (r2) 68

6.3 Turning Movements 70

6.4 Dynamic 5-minute Modeling 74

Section 7 Discussion and Conclusion 77

xi

7.1 Model Formulation 77

7.2 Model Limitations 78

7.3 Applications of the TMERT Model 80

7.4 The Future of Area Traffic Signal Control 81

7.5 Conclusions 82

7.6 Suggestions For Future Work 85

References 86

Appendices 93

1

Section 1 Introduction

1.1 The Context of the TMERT Model

The supply of urban road facilities can be enlarged through increased urban

highway capacity. More roads is one way. Increasing the efficiency of the

existing urban highway infrastructure is another. In the four decades since

the Second World War, urban road building has been substantial. There is

little room left for new urban roads. So the challenge of increasing the

supply of road facilities lies with improving the capacity of the existing road

network. These measures have become known as traffic management.

Traffic signals at intersections control flow by sharing time between

competing streams. When signal installations are co-ordinated, the efficiency

of the traffic system is substantially improved. Selby and Powell (1985)

reported on the improvements in Southampton after the introduction of a

signal co-ordination system. They showed that journey times were reduced

by 18% in the morning and 26% in the evenings while delays were reduced

by 39% and 48% respectively. Such coordinated systems are referred to

Area Traffic Control (ATC).

There are two types of ATC system. Fixed-Time Systems are a set of pre-

designed plans while Demand-Responsive Systems adjust dynamically to

changing traffic patterns, either through traffic-responsive plan selection or

fully traffic-responsive control.

Regular daily changes of traffic characteristics are accommodated by a series

of plans. A set of pre-defined plans incorporates a series of co-ordinated

signal settings which are called by a command from a central control point at

fixed times throughout week days. Settings are fixed within a plan which

serves to accommodate a known traffic demand. A traffic signal plan is

implemented for a variety of different traffic conditions.

A study tool known as TRANSYT (T RA ffic N etwork S tud Y T ool,

Robertson, 1969) developed by the Transport and Road Research Laboratory

(TRL) is now in its ninth version, and has been used world-wide. It

calculates co-ordinated fixed-time signal settings by modeling traffic behavior

2

using histograms to represent arrival and departure patterns of traffic. The

tool determines a performance index which is a measure of queues, average

and random delays and stops on weighted links. Signal settings are defined

and then tested in its model to determine the minimum performance index.

The program rigorously checks data input and displays flow profiles

graphically.

Special event plans provide for known exceptional changes in traffic patterns

such as major sports events or Christmas shopping. Overnight, signals can

be made to revert to vehicle actuated operation. Optimal plans are often

constrained by policy. In Nottingham, for example, a maximum cycle time

of 60 seconds is imposed to minimize delay to pedestrians. When

implemented, adjustments have to be made to the settings defined by

TRANSYT for difficulties such as queues, or blocking-back. Adjustments

are sometimes necessary for road safety reasons. The process of adjustment

has become known as “tweaking”.

Bell and Gault (1982) showed that there is an optimum number of plans.

For most cities, three or four plans are adequate. Additional plans add to

maintenance costs. Furthermore, plan changes bring delay as traffic adjusts

to new flow conditions. Frequently, it is better to switch plan change time-

tables than introduce extra plans.

Signal plans age because of general changes in traffic behavior. Link flows

change when vehicles re-route in response to alterations to the street

network. Flow distribution can change following the introduction of a new

optimized plan. A route which has been relieved by a new plan can then

become attractive to traffic. Aging has been shown to contribute 3% per

annum to the deterioration of the efficiency of a set of plans (Bell and

Bretherton, 1986).

By the mid 1970's, many large cities had fixed time ATC systems. While

these systems improved the efficiency of traffic flow, as they aged, they

deteriorated. The limitations of fixed time ATC were recognized in the late

1960's and early 1970's with a substantial research effort pursuing the

development of demand responsive traffic control systems. However

3

Holroyd and Robertson (1973) suggested a means of enabling fixed time

ATC to respond to traffic changes, so that plans were automatically updated.

Early systems which respond to detected flow changes in real time were

shown to be difficult to develop, Humphrey and Wong (1976) and Rach

(1976). These systems failed for three main reasons. Short term changes in

traffic conditions could not be predicted, traffic was disrupted when changing

plans, and hardware was limited. Computers were too slow and traffic

detectors unreliable. As microprocessors became faster and cheaper and the

reliability of detectors improved, the design of fully automated dynamically

responsive systems matured.

1.2 Adaptive Control Systems

World-wide, many different systems have been installed. In the USA,

demand responsive traffic control is in its infancy with automated plan

selection providing a degree of self adjustment. The OPAC system

(Optimizing P olicies for A daptive C ontrol), see Gartner (1982) and (1983) is

based on dynamic programming. There is no central control, no common

cycling and while OPAC can be implemented across a network, it was

developed for isolated intersection control. In France, the city of Toulous has

the PRODYN system, see Henry and Farges (1989), which is also based on

dynamic programming. In Tokyo Japan, a master computer determines

control strategy with 20 subordinate computers setting signal timings. A

review of responsive ATC in Japan is provided by Koshi (1988).

Only two systems have been installed extensively worldwide: SCOOT

(S plit, C ycle and O ffset Optimization T echnique), Hunt, Robertson, et al

(1981) from the UK and SCATS (S ydney C o-ordinated A daptive T raffic

 S ystem) from Australia (Luk et al, 1982).

SCATS optimizes by balancing the degree of saturation on strategic links.

Offsets for all links in the network are pre-defined, based on historic data. A

set of offsets is selected from a library according to time of day, day of the

week etc. with detectors sited just over the stop line. The network is sub-

divided into autonomous sub-systems. Each installation has its own local

controller. Cycle by cycle, a strategic control algorithm selects appropriated

4

combinations of green splits, offsets and cycle times for each sub-system and

a set of offsets to apply between sub-systems. Single intersection sub-

systems are designated critical. The optimization algorithm seeks to balance

the degree of saturation with the flows on strategically defined approaches.

The combination of splits, offsets and cycle times is selected on a voting

system whereby each installation advocates its own preference. Three out of

four votes for the same combination in successive cycles will determine its

selection. The traffic engineer, on installing the system, defines the split

plans, offset plans, cycle times, strategic detector locations and the voting

rational.

SCOOT was introduced to the UK in the early 1980's. The detectors monitor

flow which enables the SCOOT system to model traffic flow to make

systematic adjustments to signal settings, in real time. It can be described as

"an on-line TRANSYT". The signal timings, namely green splits and

offsets, are adjusted by small amounts (typically four seconds) each cycle in

an optimum way. The signal plans are continuously adjusted in response to

demand, and are designed to minimize vehicle delay and stops. Signal plans

evolve by continuously responding to changing demands. They do not age.

Adjacent junctions are grouped into sub-areas which have a common cycle

time. At any instant, the cycle time, green durations and offsets between

signals are held in computer storeage. The traffic model uses information

from vehicle detectors on the approaches to each junction to predict the total

delay and stops expected for the current signal timings. The SCOOT model

then establishes whether any adjustments to these timings can reduce delay

and stops further. In this manner, frequent small alterations adapt the signals

to short term fluctuations in the traffic demand. Longer term trends are

satisfied by the accumulation of small changes over several minutes, so there

are no large disruptive alterations in timings.

SCOOT is quite different from SCATS. SCOOT is a system which has a

sound theoretical basis, having developed from the area wide fixed time

approach established through TRANSYT, while SCATS lacks such a

theoretical basis. SCOOT detectors are sited upstream of stop lines which

means that the model has to predict platoon dispersion, while SCATS with

detectors just after the stop line, has no need to implement a platoon

5

dispersion model. This means that SCATS optimized splits better than

SCOOT which in turn is better at queue prediction. A continuous range of

offsets is available to SCOOT while SCATS must select offsets from a

discrete library. Double cycling is permissible at all intersections in SCOOT

while SCATS permits double cycling only on minor junctions.

Technological developments in vehicle detection through video detectors

would enhance SCOOT's platoon dispersion prediction and its split

optimizing, while SCATS would be able to determine queue length and

would be better able to follow platoon progression. The overall development

of signal control from isolated junction control to adaptive or dynamic

responsive ATC is summarized in figure 1.1.

Pneumatic
detectionIsolated fixed time signal

control (1930)

Vehicle actuated control (1930)
GENERATION I

GENERATION II

GENERATION III

GENERATION IV

Linked signal systems:
simultaneous

alternating
flexible progressive

(1960's)

Fixed time area/urban traffic
control TRANSYT (1970's)

Dynamic Vehicle Responsive ATC
SCOOT & SCATS (1980's)

Expert Systems (1990's)

Electro-magnetic
detection (loops)

Main frame
computers

Micro-processors

 developing
technologies

Control Developments Technological Developments

 Figure 1.1 Four Generations of Signal Control

1.3 Deficiencies in Current ATC

6

Despite advances in urban control, however, both fixed-time and demand

responsive systems are limited to managing traffic in largely under-saturated

conditions and seek to minimize vehicle delay and stops. Accordingly,

provided over-saturation does not occur too often or persist for periods of no

longer than about five or ten minutes during the peak period, fixed time ATC

systems can usually cope. Although SCOOT has a congestion detection

algorithm which initiates shifts in signal split and offset to alleviate

congestion, it tends only to postpone the onset of congestion and does not

cater for system overload.

All adaptive signal control systems rely on extensive quantities of real-time

detection of link flows. All are sensitive to detector failure and all collect vast

quantities of information which are not fully exploited.

When networks become congested, ATC sub-area boundaries can lose their

significance as traffic redistribution occurs. Operator intervention relying on

data from Closed Circuit Television cameras (CCTV), allows changes in

offset which can relieve the congestion problem in the view of the CCTV, but

often creates problems elsewhere in the network. Dynamically responsive

ATC systems cannot deal with “incidents” such as sudden changes due to

accidents or break-downs and current systems are unable to model traffic

conditions across an entire city. Furthermore, ATC systems cannot

automatically recognize the onset or growth congestion over a network and

even if they could, current systems are incapable of assembling remedial

strategies which can respond in real time to the specific problem detected.

They operate tactically. The next, and fourth generation of traffic control will

also need to act strategically.

Euler (1988) identified the social, political and economic impedimenta to the

development of the fourth generation of traffic control. Among the technical

impedimenta, he identified the need to develop reliable models to predict

Origin and Destination Matrices (O-Ds), assign traffic, simulate traffic flow

and make sensible controlled decisions.

One of the most critical parameters in identifying the on-set of congestion

and its alleviation is the routes drivers take through an urban traffic network.

Shifts in traffic routes occur for many different reasons: following changes in

7

land use and implementation of new traffic management schemes, in

response to the build-up of recurrent congestion and incident, and because

drivers choice of route can vary from day to day. Routes can be identified by

the flow along links and the turning movement flows at junctions.

Automatic vehicle detectors supply link flows.

In designing a fourth generation of signal control, to monitor and control

congestion, it is necessary to identify shifts in traffic patterns in relation to

transient changes in traffic conditions. In other words, it is necessary to

define turning movement flows from detector flows on-line. By establishing

algorithms and calibrating methods which will predict changes in traffic

patterns, remedial congestion control strategies can be defined in real time.

Also such algorithms can be further developed to define alternative routing

strategies which can be implemented to improve traffic flow following an

incident.

Traffic routes are described by O-D matrices, on a macro scale. On a micro

scale, traffic routes are defined by the flow along links and the turning

movement flows at junctions. Automatic vehicle detectors already provide a

measure of link flows. Automatic traffic counting is well advanced, Bell and

Martin (1990), McDonald et al (1987) and Davies et al (1982) with much

current research investigating data base manipulation of flows (Bell and

Kerridge, 1992).

Turning movement flows can be derived from a variety of transportation

planning models. A series of models are discussed. Using link flows, some

predict turning movement flows directly, while others predict O-D trip

matrices. An O-D matrix estimating model can supply turning movement

flows in real time, providing it is quick enough to generate the O-D matrices

with time left to assign trips to provide turning movement flows. The

models are described as static and dynamic. Static models consider flows as

a "snapshot" by modeling conditions from a single view or aggregate view of

flows.

1.4 A Review of Routing Models

8

The principle of entropy for O-D matrix estimation is introduced. Some

flow prediction models which serve isolated intersections are discussed. A

model which predicts route choice and therefore an O-D matrix from a

perceived cost of travel follows and several enhancements of the entropy

maximizing matrix estimation method are appraised. The review of so called

static models concludes with a discussion of how the transportation

community is attempting to standardize matrix estimation procedures.

The review of dynamic methods for route prediction, which make use of the

rhythmic nature of traffic flow data, begins with a description of a covariance

analysis of detector flows. The estimation of turning flows at an intersection

through a recursive algorithm is introduced. The development of the method

from a single intersection to a network is traced.

Conventional methods of studying route patterns in urban areas are by traffic

assignment techniques. These require knowledge of O-D matrices which are

expensive to define. However, even with up-to-date traffic data, assignment

techniques cannot provide enough accuracy to control traffic in real time.

Their use by traffic engineers is limited to giving an indication of shifts in

traffic that may be caused by a major change in traffic or network

characteristics. Rarely do absolute flows from assignment agree with those

measured on the street. Also, traffic assignment techniques are exhaustive on

computer time and in their present form are unlikely to have application for

the prediction of alternative routing strategies on-line.

The assignment process, which requires a matrix of origins and destinations,

defines the routes taken which then provides an estimate of the link volumes.

Matrix Estimation can be interpreted as the inverse of the assignment

process. Instead of an O-D matrix being used to estimate link flows, link

flows are used to provide an O-D matrix. On a larger scale, the process

seeks to provide an O-D matrix which provides movement relationships

between zones. On a smaller scale, the objective is to derive a schedule of O-

D matrices within a cordon, and thereby infer turning movement flows. A

set of observed traffic counts would give rise to a variety of O-D matrices.

The task is to select the right O-D matrix, called "the estimate".

 1.4.1 Static Methods

9

Willumsen (1981) provided a comprehensive review of simplified transport

models which predict routing information from traffic counts. He identified

three approaches: gravity models as developed by Robillard (1975),

equilibrium assignment approach as presented by Van Vliet and Dow (1979)

and Nguyen (1977), and entropy maximizing models such as those proposed

by Murchland (1977) and Van Zuylen and Willumsen (1980).

Wilson (1970) introduced the notion of entropy as a transport modeling tool

in his seminal work "Entropy in urban and regional modeling". In classical

physics, entropy is a measure of the unavailability of a systems thermal

energy for conversion into mechanical work. The state of a gaseous system

is fully specified when the co-ordinates and velocity of each particle in the gas

at any time are known. The state of a transport system is specified by the

number of people in a city, with a number of work places, leisure places, and

any other destination to which to travel. Entropy seeks to explain how

people behave. So the gaseous co-ordinates are analogous to origins and

destinations, while molecular velocity is analogous a set of trips. The O-D

matrix, therefore, describes the state of the system.

The states of a transport system are arranged in a three tier hierarchy:

Location, Distribution and Assignment. The number of states within each

tier increases with decreasing tier rank. At the top, Location states are trip

generators (origins) and trip attractors (destinations), and their associated cost

or penalty of travel. For the middle tier, there are many distribution states

which pair groups of generators with groups of attractors. These pairings are

represented by an origin and destination matrix. The bottom tier is the many

assignments of individual trip makers for each element of the origin and

destination matrix. Entropy is maximized by identifying the O-D matrix as

the one associated with the largest possible number of states.

Willumsen (1982) applied entropy principles to transportation planning with

the introduction of the Maximum Entropy Matrix Estimation (MEME or

ME2) model. Using independent flow paths, it produces better estimates of

the O-D matrix than “all-or-nothing”, equilibrium, or heuristic methods. The

results demonstrated that the method of estimating the proportion selecting

each path still needs improvement. The ME2 model does not require a full

set of counts and is geared to making maximum use of the information

10

available. The matrix generated reproduces observed counts when loaded

onto a network. However, the model relies on a prior O-D matrix. The

resultant matrix is highly dependent on the starting solution. This means that

it is a useful tool for updating O-D matrices but not very good at creating

them.

Van Zuylen (1981) and Bell (1983) modified the Willumsen model with a

log linear relationship which needs prior information of turning movement

flows. The model produces confidence intervals for fitting turning volumes.

A Newton Raphson method was applied. The problem presented by this

method is that it cannot model large networks because of the exhaustive

computer time needed for program execution.

Considering flows at a single junction only, Jeffreys and Norman (1977)

presented a method of deriving turning movement flows from flows using

the Elementary Rooks Tour. They gave conditions under which feasible

turning flows can be calculated and proposed various methods for generating

these turning flow patterns. These were usually based on a linear

programming approach which solves the equations subject to some linear

constraint, such as maximizing the smallest flow. Jeffreys and Norman felt

that such solutions were not necessarily the most likely and therefore that a

“statistical” solution was more desirable. The methods may help in selecting

one set of turning flows from all other possibilities but they failed to

recommend any particular method, nor provide a solution.

Van Zuylen (1979) introduced a means of estimating turning flows for

isolated intersections where “in” and “out” flows are known. The algorithm,

which is both simple and quickly converging, is based on the principle that

the turning flows should be compatible with the flows into and out of the

junction. From the set of feasible solutions, the most probable solution is

defined, therefore, as the solution that uses the minimum amount of

information. The weaknesses are that the method cannot accommodate noisy

data, and solutions fail to converge when routes and flows are inconsistent.

Fisk and Boyce (1983) proposed a network equilibrium approach for

estimating a trip matrix using link count data. The algorithm combines

distribution and assignment models in which observed link flow data serve to

11

furnish an estimate for the sum of the integrals of the link cost functions,

which can be described as cost perception parameters.

Bell (1983) presented a program called ODELV (O rigin and D estination

 E stimation from L ink V olumes) which produced estimates for the elements

of an O-D matrix from link volumes. It includes an explicit treatment of

errors in observed link counts. Like ME2, the model requires as input, a

prior estimate of an O-D matrix, and a matrix of route choice preferences

which have been derived from a traffic assignment model. The model

resembles entropy maximization and information minimization models.

Variances were derived from logarithms of the fitted values with the

parameters incorporating the prior information, treated as random variables.

Assuming that traffic streams are measured without error, for an isolated

junction, an O-D matrix was derived from flows on the entrance and exit as

column and row totals.

Hauer and Shin (1981) proposed a simple two stage manual method. In the

first stage, the known flow sums are set onto a matrix, making the last row

and last column flow totals, inserting summation values. There is a notation

of a simple system whereby all movements can be described on a matrix and

all cells which remain empty are assumed contiguous. In the second stage,

the shortest row is selected. Row sums are apportioned to the cells in that

row in proportion to the column sums. The estimates are subtracted from

column sums and the procedure is repeated until all estimates have been

derived. The arithmetic is checked to ensure all column and row sums are

satisfied. This approach is useful for the analysis of an isolated junction, but

cannot be applied to a network.

Echenique and Williams (1982) described the methodology to develop, test

and implement a suite of programs to process a freight flow survey for

Merseyside, again relying on prior information. The purpose of the study

was to take the file of information collected at the roadside interviews, giving

the origins and destinations of the sample of lorries interviewed, and then to

produce from this an estimated expanded matrix of freight flows between all

zone pairs in Merseyside. Having produced an expanded partial matrix, a

gravity-type model was calibrated for this partial matrix and then used to

produce estimates for the flows between the unobserved zone pairs in a

12

consistent fashion. They showed that where 27% of the zone pairs are

missing, the estimated trips suffer little in accuracy from those estimated

using the full matrix.

Mountain (1983) developed an algorithm which estimates turning flows off-

line, by taking junction flows and estimates of turning proportions to derive

improved estimates of turning proportions. Turning proportions were

estimated from both historical data and a sample of turning surveys. The

methods cannot be applied on-line as they are insensitive to changes in flow

patterns. Their merit is in reducing the surveying necessary for transportation

planning, providing estimates of reasonable accuracy. They provide a

cheaper method of obtaining data than the more conventional techniques.

The application of these methods, however is with large scale transportation

planning, and not traffic control.

Robertson (1984) presented a program called MODCOST (M odifying

 O rigin and D estination CO sts to S imulate T rips) which simulates driver

choice by a random number generator. Hyper-links accommodate perceived

costs of factors related to housing and employment while real links represent

time costs. The method estimates O-D trips by using observed flows to

calibrate a simulation of choices of individuals who are assumed to act to

minimize their perceived costs. These are behavioral assumptions. The

method rejects the abstract gravitational and entropy maximizing principles

and needs no initial estimate of an O-D trip table. The model combines trip

generation, trip distribution and trip assignment within a unified random

utility model framework, and assigns individuals to trips simulating the

choices of several thousand individuals. Trips are all assumed to flow from a

hypothetical source to a hypothetical sink. Route choice is available on a one

way network. The method uses a random utility model developed by

Williams (1976) and Sheffi and Daganzo (1979). A least cost algorithm

finds routes which are cheapest throughout.

Irving et al (1986) outlined the experience of practitioners of matrix updating.

They represent an alternative procedure employing maximum likelihood with

based weights which offers a logically appealing procedure for estimating

trip-end growths. With count data supplemented by a small amount of road-

side interview data, the resulting matrix retains the deterrence to travel of the

13

prior matrix, which is something not done in ME2. The method offers the

scope to add trip-end data if required and forces the process to match a

hierarchy of count sites.

By the late 1980's, the ME2 model had been tested with a variety of

experimental modifications. Deficiencies in the information maximization

and maximum entropy models were reported by Maher (1987). He argued

that when estimating trips from O-D pairs observed few times relative to

those which have been observed many times, a bias in the trip estimation

matrices was created. He compared the performance of maximum entropy

and information minimization. Each method was tested with artificially

generated data. He showed that for uniform overall growth, maximum

entropy gives positive correlation for the number of counts and for uniform

overall growth information minimization gives unbiased results. For an

unequal growth, however, for factors which are randomly drawn from the

same distribution, information minimization gives negative correlations for

the number of counts.

Spiess (1987) introduced another model which improved existing

information, for estimating an O-D matrix from an observed sample matrix,

when volumes on a subset of the links of the network or the total generation

and attraction of the zones are known. Borrowing from the ME2

philosophy, a maximum likelihood model estimates the means of the

independent Poisson distributed elements of the observed sample matrix.

Fisk (1988) combined maximum entropy trip matrix estimation with user

optimal assignment solving three problems simultaneously. He incorporated

the equilibrium conditions as a constraint in the ME2 model by adopting

inequality developed by Smith (1979). Oh (1989) proposed a method for

estimating trip matrices by solving entropy maximization and equilibrium

assignment simultaneously without using route choice proportions. Stark

(1989) addressed how the effectiveness of ME2 can be improved by

incorporating a mechanism to assess the accuracy of the changes it has

affected.

Maher (1983) and later Timms (1990) addressed the use of prior information

for the modeling of revised estimates by outlining a procedure, using

14

Bayesian statistics to subjectively assess the faith held in the quality of the

estimate. The procedure seeks to enable the planner to incorporate his degree

of skepticism into the estimation process. The modeling framework

facilitates the planner in quantitatively scoring the value of his prior

knowledge. Two extremes of skeptics are proposed: a “fundamentalist

authoritarian” and a “dedicated follower of fashion”.

The appeal of entropy maximizing and information minimizing models is

their generality, their capacity to make full use of the information contained in

the observed flows and their flexibility to use other information. However,

gravity models are not realistic for small urban areas. The Entropy

Maximization technique (ME2) has found a number of practical applications,

particularly for small-town traffic models and has been incorporated in traffic

assignment models such as SATURN (S imulation and A ssignment of

 T raffic in U rban R oad N etworks), see Hall et al (1980).

Transport practitioners had become so familiar with the estimation and

improvement of O-D matrices, that by the late 1980's, the first attempts at

standardizing matrix estimating procedures appeared. Cascetta and Nguyen

(1988) proposed a unified framework for estimating or updating O-D

matrices from traffic counts and Logie and Hynd (1989), working under

contract to the Dutch Ministry of Transport, proposed a framework for

estimating O-D matrices from flows. Stark (1989), addressing the

effectiveness of the ME2 method, provided guide-lines on the testing of

model reliability. This work indicates a trend towards standardizing the

various methods for estimating O-D matrices.

 1.4.2 Dynamic Methods

Static models ignore the rhythmic nature of flow data that traffic detectors can

supply. When considering their use on-line, static methods suffer other

disadvantages. They demand considerable computational effort, the solutions

give approximations to real values of turning proportions or O-D matrices

and it is difficult to give reliable statements about the quality of estimates.

Wright (1974) estimated journey time distribution by measuring the flows at

the beginning and end of an uninterrupted link. His method relies on the

15

propagation of variations in density from one observation point to the next.

The theoretical basis of the method is a covariance analysis. The technique

was developed by Jarrett and Wright (1990) in estimating O-D matrices,

traffic flows from the random variability in automatic detector counts.

Cremer and Keller (1981) showed how turning movement flows from

detector flows, at an intersection, can be estimated by making use of the

changing flows in time. The model works recursively by adjusting with flow

changes provided such changes occur gradually in practice. The estimation

algorithm relies on regular intervals. For each new interval, the change in

link in-flows and link out-flows generates and improves estimates of turning

proportions. Incremental flow changes are incorporated in a feedback

structure. The algorithm uses not only the sum of the accumulated traffic

volumes over a longer period, but also evaluates the time sequence of the

counted traffic volumes and thus received more information about the

process. This model relates to a single junction.

Ploss and Keller (1986) presented a dynamic algorithm which links the

causal dependencies of the volume profiles with entropy maximization

distribution models. The estimation procedure was compared with the

models presented by Cremer and Keller (1981). By introducing travel times

between the counting sites, time delays which occur in the progression of the

traffic through the network, are taken into consideration. Cremer and Keller

(1987) showed that short period exit flows depend by causal relationships,

upon the time variable sequences of entrance flow volumes. Unique bias free

estimates were derived without a priori information using four methods:

Least Square using cross correlation matrices after Cremer and Keller (1981),

Constrained Optimization, Recursive Estimation and Kalman Filtering. Bell

et al (1991) showed how these dynamic methods can be extended from

complex intersections to networks. Currently, dynamic methods are unable

to accommodate a city area, or an area the size of a typical urban traffic

control sub-area. The method must be extended to more complex groups of

intersections and then on to networks where travel time is greater and where

the causal dependency of exit flows on entry flows is less direct.

1.5 Summary

16

The aim of static models was to use detector flows to update O-D matrices

over a transportation study area. These models all stemmed from Newtonian

analogies and led to the key contribution of Van Zuylen and Willumsen

(1980) with models such as ME2. These rely on a prior estimate of the

matrix. The dynamic models, pioneered by Cremer and Keller (1981)

introduced a dynamic approach which rely on a time series relationship.

Today, we see a development of models which are emerging from the single

junction treatment to the network approach. The work continues, and is

closest in both its performance and scope to the kind of model that an expert

system will need.

Unfortunately, predicted flows from static models rarely agree with those

measured on the street. Transportation models are both slow and exhaustive

on computer time, and in their present form are unlikely to have application

for monitoring and control on-line. They were developed as off-line planning

tools. The development of dynamic models has potential to address traffic

control and monitoring.

The report details the progress made on a one year project which has tested

and developed a new model, Turning Movement Estimation in Real Time

(TMERT). The proposal set out to collect a meaningful set of data with

which to test the ability of the model to estimate turning movements on a

Californian network. The scope of the project extended to improving the

software so that data input and output would be easier. Collection and testing

of the data from the English research would demonstrate that the renewed

code was providing the same results as the FORTRAN original. Finally

testing the data on a Californian network would demonstrate the repeatability

of the model. Each of these objectives has been met. The report discusses

the elements of the project, objective by objective. The research planned for

the first year of the project is outlined below in figure 1.2.

17

Pilot Surveys

Survey Proper S.L.O.
Code Network

document survey

front end

Performance Index
back end

document software developments as TMERT1

collect English data
validate English data

test S.L.O. network
investigate theoretical basis to develope TMERT2

document TMERT2

'93 1994

O N D J F M A M J J A

 Figure 1.2 Research Plan

18

Section 2 Turning Movement Survey, San Luis Obispo

This section describes how a network was selected and surveyed to supply

the real-time data necessary for the testing and development of the TMERT

model. The methodology for the survey is traced through several Pilot

Surveys. The management and organization of the Survey Proper concludes

the section.

The survey process was developed over the course of several months . Pilot

2 survey was 3 separate surveys performed in early October of '93. Pilot 3

survey was 2 separate surveys performed in early February '94. Pilots 2 and

3 were transformed into laboratory exercises and performed by students of

an introductory transportation class in Civil Engineering at California

Polytechnic State University, San Luis Obispo (Cal Poly, SLO). The actual

data collection survey occurred on March 3rd, 1994 and utilized 38 surveyors

and 3 supervisors. The majority of these surveyors were students that had

performed the survey as a laboratory exercise and were familiar with the

survey process. The schedule of the three pilot and data collection surveys is

shown below:

Table 2.1 Survey Schedule
Survey Activity Date
Pilot 1 Walk Through September '93

Pilot 2 survey 3 Student Labs October '93
Pilot 3 survey 2 Student Labs February '94

Data Collection Data Collection March 3, 1994

2.1 Defining the Network

San Luis Obispo has a population of approximately 50,000 people and is

located on the central coast of California half way between Los Angeles and

San Francisco. Figure 2.1 shows the analyzed networks location within San

Luis Obispo, CA. This area was chosen because it encompasses a freeway,

arterials as well as feeder and secondary streets.

19

N

CAL POLY CAL POLY
STATE UNIVSTATE UNIV

San Luis ObispoSan Luis Obispo
 County Airport County Airport

SLO HIGH
 SCHOOL

San Luis
 Mission

G
rand A

ve

C
alifornia B

lvd

Santa R
osa B

lvd

Broad St

Monterey St

H
w

y
10

1

H
w

y 1

Foo
thi

ll
Blvd

Higuera St

Marsh St

H
w

y 227

T
o

Sa
n

Fr
an

ci
sc

o

Survey LocationSurvey Location

T
o

Sa
nt

a
B

ar
ba

ra

T
o M

orro B
ay

Tank Farm Rd

Fredricks St

To L
os

 O
so

s

Scale

0 1/2mile

 Figure 2.1: Network Location

Figure 2.2 shows the surveyed area network used for modeling. This is

referred to as the San Luis Obispo Network or the SLO Network.

20

N
Cal Poly

FREDERICKS

STAFFORD

TAFT

LOOMIS

ABBOTT

WILSON

HILLCREST

PHILLIPS

MILL

PALM

MONTEREY

C
A

LIFO
R

N
IA

101

101

G
R

A
N

DK
E

N
T

U
C

K
Y

C
H

A
P

LIN

A
LB

E
R

T

H
AT

H
AW

AY

GARFIELD

PAR
K

G
R

O
V

E

 Figure 2.2: San Luis Obispo Network

2.2 Pilot 1 Survey

Pilot 1 survey was a “walk-through” to define the network location and

obtain a preliminary assessment as to how many surveyors would be needed

at each location. Pilot 1 allowed for a viewing of the geometry of each

intersection so that unique data collection sheets could be developed which

included the allowed turning movements for each intersection. Each

intersection within the network was assigned a unique letter or combination

of letters designation as shown in Figure 2.3.

21

N Cal Poly

BB

AA

DD

EE

FF

GG

HH

JJ

KK

LL MM

NN

PP

QQ

RR

SS

TTUU

VV

WW

XXYY

ZZ

A BA B

A CA C

A DA D

A EA E

A FA F

CC

 Figure 2.3: Intersection Designation

2.3 Network Characteristics

Intersection geometry, journey times, stop sign locations and orientation, and

signalized timing throughout the network were recorded. These data

provided flow capacity. The upper bound capacity flows for the internal links

and the turning movements were found using the Highway Capacity Manual

(1985) and Highway Capacity Software (1992). The stop sign and signalized

intersection locations are shown below.

22

Table 2.2 Stop Sign Location Information
Intersection way-stop Direction of Stop

B 2 N-S Grove

CP 1 ER Palm

D 1 E Mill Street

E 2 N-S Grove

F 2 E-W Palm

H 2 N-S Grove

J 2 E-W Phillips

K 2 E-W Phillips

L, M, N NONE

Q 2 E-W Garfield/Wilson

R 2 E-W 101 Off/Abbott

S 2 E-W 101 On/Loomis

T 1 E Frederick's

U 2 S Albert / S Chaplin

V 2 N-S Kentucky

W 2 E-W Stafford

X 1 S Kentucky

Y 1 W Taft

AB 1 W Hathway

AC 1 W Frederick's

AD 1 W Stafford

Signalized
Intersections
A 4 4-Way Intersections

C 4 4-Way Intersections

G 4 4-Way Intersections

Journey times were measured to ensure that the modeling interval would not

be smaller than the journey time necessary to transverse the network as this

would be attempting to model traffic activity which is changing faster than

the interval permits. The measurements were made by driving across the

network by car. The mean of three journeys for each of the alternative trips

across the network provided a set of journey times. The results of the

journey time surveys are summarized in below.

23

Table 2.3: Journey Time Observations December 17, 1993
Route Trial Time of Day

(min:sec)
Journey Time

(min:sec)
Avg. Time

AB-A 1 15:57 1:07

2 16:02 1:08 1:12

3 16:08 1:21

A-AB 1 15:27 1:00

2 15:32 1:24 1:13

3 15:41 1:15

T-C 1 15:30 0:44

2 15:39 0:44 0:44

3 15:44 0:44

C-T 1 15:54 0:35

2 15:59 0:42 0:38

3 16:05 0:38

AC-T 1 15:29 1:11

2 15:34 1:13 1:12

3 15:43 1:14

T-AC 1 15:55 1:02

2 16:00 1:00 1:01

3 16:05 1:03

A-C 1 15:54 0:34

2 15:59 0:35 0:31

3 16:04 0:26

C-A 1 15:31 0:33

2 15:40 0:34 0:45

3 15:45 1:10

T-Q-N-L-B-A 1 13:08 2:06

2 13:15 1:59 2:08

3 13:22 2:20

A-B-L-N-Q-T 1 13:11 2:19

2 13:19 2:05 2:07

3 13:25 1:58

AB-J-K-B-C 1 12:45 2:23

2 12:53 2:01 2:08

3 12:59 2:02

C-B-K-J-AB 1 12:50 1:52

2 12:56 1:52 1:51

3 13:02 1:51

Of the 3 signalized intersections located within the network, only the

intersection of Mill Street and California Boulevard is operated on a fixed

time plan. Two others, located at the intersections of California Boulevard

and Monterey Street and Monterey Street and Grand Avenue, are vehicle

actuated. Large attractors or generators are referred to as sources or sinks.

24

During the pilot 1 survey the location and size of sources or sinks existed

within the network were noted.

2.3.1 Booking Sheets

The data collection sheets for the survey were referred to as "Booking

Sheets". These booking sheets were developed to collect the turning

movements of each intersection. The primary purpose of the pilot surveys

was to ensure that the booking sheets were properly designed and clear to

understand. The data collection sheets were intersection specific. They

included the configuration of the intersection and only the movements to be

recorded for that surveyor. Some intersections could be accommodated by

one surveyor, others needed two or more. For single person intersections,

the turning movements included all possible legal movements. For dual

person intersections, the turning movements would be split between the two

surveyors. By not including all the turning movements for the intersection,

but only the ones desired to be recorded by the specific surveyor, the

possibility of recording the wrong movements was reduced.

A North arrow was placed on the booking sheet for orientation of the

surveyor to the intersection. Street names were provided to prevent the

surveyors from recording turning movements with the data collection sheet

rotated 90 degrees but the north arrow was provided such that the surveyors

were not recording turning movements with the booking sheet rotated 180

degrees.

Each booking sheet represented 5 minutes of the data collection. Counting

was recorded by tick marks. One tick mark represented one vehicle making

one turning movement. Observers were encouraged to apply the five bar

gate method. For each turning movement, a box was provided so that each

group of tick marks had its own box. This made the counting of the tick

marks easier. It also allowed the next step in the data analysis process, the

data entry, more efficient because it allowed the individuals in-putting the data

to identify the corresponding counts and movement on the data collection

sheet.

25

Figure 2.4 shows the different aspects of the data collection sheets described

above for intersection of California Boulevard and Mill Street.

Name

Date

Time

California & Mill (G)

N

C
al

ifo
rn

ia
Mill

Tick Mark Box

5:30-5:35

Tick Marks

North Arrow

5 min Time interval

 Figure 2.4: Booking Sheet

2.4 Pilot 2 Survey

Pilot 2 survey was the preliminary group of surveys in which the preliminary

surveying techniques were implemented by surveyors in the field. The

survey, which was developed into a laboratory exercise for was performed

by 3 different class sections of undergraduate civil engineering students

enrolled in the Fundamentals of Transportation class at Cal Poly on 3

different days during early October of 1993. The three pilot 2 surveys - 2a,

2b, 2c were independent of each other. However, there were not enough

students to provide full coverage of the entire network so each survey

covered a separate portion of the network.

A briefing of the survey techniques and explanation of the booking sheets

was given before the survey. The students were told before they left the

26

briefing room to perform the survey that they would be asked 5 questions

when they returned. The questions asked were:

• Did you rotate the booking sheets to record the movements and if

so, how? (i.e. clockwise, counterclockwise, or upside down).

• Were you able to accurately count the movements? Does the

intersection need another person or was it excessively slow?

• Could you orient yourself adequately?

• Were the booking sheets clear as to which movements you were

asked to record?

• Did you notice any sources or sinks in your area?

From these questions, several lessons were learned from the three Pilot 2

surveys. These lessons resulted in changes to the data collection sheets,

collection methods, and surveyor location. Surveyors indicated the locations

of intersections that contained heavy flow.

The booking sheets used for the pilot 2 survey were hand drawn intersections

and included only the turning movements to be recorded. The surveyors

were responsible for drawing their own tick mark boxes for each movement.

This led to the problem of not everyone putting the tick boxes in the same

location which obstructed the smooth process of data entry. The combination

of hand drawing and the tick boxes being located in a variety of places, made

entering the observed turning movement flows into spreadsheets both

difficult and time consuming.

Although each booking sheet had a north arrow to help the surveyors orient

themselves, many surveyors failed to identify north. Since all of the

surveyors were students at Cal Poly and familiar with the Universities

relative location, an arrow indicating the direction to Cal Poly provided an

additional orienting device.

2.5 Data entry problems

27

The majority of the data entry problems resulted from poor organization of

the booking sheets. As the surveyors returned, they were asked how they

held the booking sheets. It was noted if they rotated them 90 degrees

clockwise, 90 degrees counterclockwise, or 180 degrees, so that the booking

sheets orientation could be changed.

2.6 Revised Turning Movement Notation

The turning movements were labeled sequentially in a clockwise direction

starting at movement "a" to movement "n", with "i" and "l" being eliminated

due to their likeness with the number 1. This key allowed data entry to

ensure that each movement was consistently identified (i.e. "f" was always

the left turn from the West bound approach and "h" was always the through

movement of the North bound approach). Figure 2.5 shows how the turning

movements were labeled.

a b c

d

e

f

ghj

k

m

n

 Figure 2.5: Turning Movement Labels

2.7 Improvements for Pilot 3 survey

The pilot 3 surveys tested the Pilot 2 generated improvements. To ensure

that the students were familiar with the entire network instead of just their

intersection, maps of the network were provided which included the street

names, North direction, Cal Poly's location as well as the letter designations

for each intersection. One change in the designation of the intersection was

28

made. Location U was divided into the two “T” intersections of UC (for U

at Chaplin St.) and UA (for U at Albert St.). This eased data entry. Figure

2.6 shows the revised intersection regime.

N Cal Poly

AA

DD

EE

FF

GG

HH

JJ

KK

LL MM

NN

PP

RR

SS

TTU AU A

VV

WW

XXYY

ZZ

A BA B

A CA C

A DA D

A EA E

A FA F

U CU C

QQ

CC

BB

FREDERICKS

STAFFORD

TAFT

LOOMIS

ABBOTT

WILSON

HILLCREST

PHILLIPS

MILL

PALM

MONTEREY
C

A
LIFO

R
N

IA

101

101

G
R

A
N

D

K
E

N
T

U
C

K
Y

C
H

A
P

LIN

A
LB

E
R

T

H
AT

H
AW

AY

GARFIELD

PAR
K

G
R

O
V

E

 Figure 2.6: Revised Network

To eliminate some of the clarity problems associated with the hand drawn

booking sheets, computer generated booking sheets were drawn. The sheets

were customized for each intersection and contained the north arrow, the

direction to Cal Poly, and pre-drawn tick mark boxes. Each bore a precise

location for the surveyors to stand at the intersection. This spot was

designated by a circled "X". Figure 2.7 shows an example of an improved

booking sheet.

29

Name

Date

Time

California & Mill (G)

N Cal Poly

C
al

if
or

ni
a

Mill

X

Cal Poly location

Surveyors Location

 Figure 2.7: Computer Drawn Booking Sheet for Intersection G

The direction of how the booking sheet was held varied by surveyor. So the

notion of attempting to orient each sheet to suit each surveyor was

abandoned. North was drawn so that it always pointed upward. Therefore,

during data entry it was not necessary to determine which way to rotate the

data sheets so that north was at the top. This meant that reliability of data

entry is deemed more important than customizing sheets for each individual's

orientation preference.

Since the tick mark boxes were already provided, their location was constant

and the need to determine which turning movements correlated to which tick

mark boxes was no longer necessary. Instead of the data entry personnel

summing the tick marks, the surveyors, after the survey was completed,

summed the tick marks in each turning movement box, putting the numerical

value next to the box. This reduced the time taken over the data input

process. Random checks of observers arithmetic reassured their reliability.

30

The turning movement labels (a - n) were found to be confusing and added

an unnecessary complexity to the interpretation of the data. Figure 2.8 shows

the modified labels with the approach direction and the movement (i.e.

"WR" is a right turn from the west bound approach and "ST" is the through

movement of the south bound approach).

N Cal Poly

WR

WT
WL

SL
ST

SR

EL

ET

ER

NL
NT

NR

X

 Figure 2.8: Turning Movement Key

2.8 Student Surveyors

From the pilot surveys the names of those students that were interested in

taking part in the actual survey were identified. It was desired to obtain as

many students as possible due to their prior experience in the survey,

however, Student reliability varied. It was not clear as to how many of the

students that said they were going to participate in the survey would actually

show up. To try and avoid this problem, two surveyors were employed as

alternates in the event of "no shows". In case more than two student did not

show, a contingency list of low priority locations was established in order to

reduce the network size if needed. In order of elimination, the intersections

were AB, AC, AD, V, W. Alternatively, flexibility for over-provision was

31

provided by identifying low priority peripheral intersections. There included

the intersections in order of descending priority as Intersections B, J, F, G, Z,

AE, AF.

The surveyors were predominately selected from the students that had

participated in the pilot surveys. For the survey proper, 36 surveyors and

two alternates were selected. On the survey proper, two of the surveyors did

not show, but two unexpected student did, so the desired total of 38

surveyors was still achieved. Supervisors were necessary to ensure that the

surveyors understood their duties and correctly recorded the turning

movements. The supervisors were also available for any questions that the

surveyors raised or if temporary relief was required.

2.9 Survey Proper

Before each survey began, a briefing was given to explain the layout of the

network, its location, the booking sheets, the method of counting, and to

synchronize watches so that the common disaggregating survey interval of

five minutes would be consistent. Administrative chores such as the

completion of time cards, tax forms, and insurance waivers completed the

briefing. The surveyors were instructed to measure turning movements from

4:00 PM to 6:30 PM, to return to the briefing room and count their tick

marks for each box, and write the numerical equivalent next to each box.

Table 2.4 is the schedule of the survey proper.

Table 2.4: Survey Schedule
Time Activity

3:00 - 3:45 briefing and form filling-PIF, Timecards, Waivers
3:45 - 4:00 Campus to survey site
4:00 - 6:30 survey
6:30 - 6:45 survey site to campus
6:45 - 7:00 data return & de-brief

Although the survey was planned to run from 4:00 - 6:30 PM, the briefing

session overran and therefore many of the surveyors did not get to their

locations until 4:05 or even 4:10. However, the original intentions was to use

only the data from 4:30 to 6:30. This half hour of "warm-up" time would

allow the surveyors to become comfortable with their intersections and the

32

counting procedure. It also allowed time for the supervisors to visit each

surveyor and ensure that they were recording properly.

Appendix C is a record of all turning movement observations recorded by arc

label and observation interval.

2.10 Summary

Section 2 has explained the method of collecting the validation data for the

model. The process used to attempt to acquire as error free data as possible

has been explained as has the improvement of the survey method as the pilot

surveys were completed, and how the survey was organized and the method

of obtaining the surveyors. Having collected and stored a reliable data set, the

research proceeded with the coding of the network.

33

Section 3 The Theoretical Basis of the Model

Section 3 describes how a network composed of streets links connected by

intersections into a network of nodes connected by arcs.

3.1 Model Philosophy

Conventional transportation models which predict flows seek optimality by

maximizing or minimizing an objective function which usually has a

behavioral basis. An objective function can take the form of the sum of a

series of costed links. Costs reflect some form of physical travel

characteristic such as journey time, distance or other perceived journey cost.

An equilibrium model, for example, would suggest that drivers re-route

when links approach capacity, minimizing journey length or travel time.

Usually, there is a notion of cost implicit in the objective function which is

minimized for optimality.

TMERT has no behavioral basis, because its purpose is to infer traffic

movements from a limited set of detected link flows. A weight function is

introduced which serves as a model controlling mechanism rather than a cost

function. Some weights deter, whilst others encourage and no cost is

minimized. The model does not seek to imitate drivers route choice. In

principle, it seeks to estimate the state of the traffic system (i.e. derive turning

movement flows and unknown flows) from geometric and traffic data. For

this reason, the objective function plays a subordinate role. It is a mechanism

for identifying the one solution from the many possible solutions and has no

physical meaning. Since each flow inference is associated with a set of

constraints, the aim here is to establish a constraint regime, so that the

minimized objective function is associated with a particular solution, whereby

unknown flows are reliably inferred. The model can be described as a traffic

flow curve fitting device.

It stands apart from other models in two ways. Firstly, its route logic is node

oriented. It moves through the network node by node, seeking to satisfy

continuity by balancing in-flows with out-flows. The flow on consecutive

links are effectively defined independently. Secondly, it has been structured

34

to draw on real-time detector flows which is the hallmark of an adaptive

signal control system.

3.2 A Linear Program

The network is modeled as a series of nodes connected by arcs which

represent homogeneous stretches of road between interruptions such as

junctions and car parks. Network entry and exit points are represented as

external arcs where vehicles are simulated to enter and leave as Requirement

Flows. Kirchoff's Law for the flow of electricity states that the sum of

electrical flows entering a node must equal the sum of flows leaving that

node, as shown below:

qq
1 3

q
2

 Figure 3.1 Kirchoff's Law

q1 + q2 = q3

The same principle can be applied to traffic flow once links are represented as

arcs and the intersection of links are represented as nodes. Often more than

three arcs meet at a node.

35

supply
node1

demand
node6

demand
node2

demand
node5

demand
node3

supply
node4

q q q

q q

q q

r = 120 r = 30 r = 40

r = 40 r = 40 r = 30

1 2

6 7 3

5 4

1 2 3

456

 Figure 3.2 The Six Node Network

Consider a Six node, seven arc, six external arc network shown in Figure 3.2.

The nodes are loaded by a series of external node loads shown as r. Traffic

flow into and out of the network can be modeled as a set of requirement

flows, r, which enter the network as a positive value at a supply node and

leave the network as a negative value at a demand node. Kirchoffs Law

connotes nodal continuity which sets up the flow continuity equations:

q1 + q6 = r1________________(node 1)

-q1 + q2 + q7 = -r2________________(node 2)

-q2 - q3 = -r3________________(node 3)

q3 + q4 = r4________________(node 4)

-q4 - q5 - q7 = -r5________________(node 5)

q5 - q6 = -r6________________(node 6)

In reality, traffic flows cannot increase beyond a certain flow level. Signal

controlled junctions impose a constraint. Accordingly, each arc can be

constrained by a capacity value, shown as u. The capacity constraints supply

a further six equations for each node:

q1 ≤ u1_____________(node 1)

" "
q6≤ u6_____________(node 6)

36

Each arc can be constrained by a flow minimum value, shown as v. Flow

minima provides a further six equations:

q1 ≥ v1_____________(node 1)

" "
q6 ≥ v6_____________(node 6)

The cost or attractiveness of flow along an arc can be modeled by providing

each arc with a weight value shown as w. Then the sum of the product of

each flow with its weight provides an objective function F which is

minimized:

F= q1w1 + q2w2 + q3w3 + q4w4 + q5w5 + q6w6 + q7w7

or more generally, minimize F = Σqiwi

Substituting the given requirement flows:

1 2 3

6 5 4

q q q

q q

q q

r = 120 r = 30 r = 40

r = 40 r = 40 r = 30

1 2

6 7 3

5 4

1 2 3

456

u =100, w =2 u =100,w =2

u =100,w =4 u =100,w =5

u =100,w =2

u =100,w =4 u =100,w =5
1 1 2 2

5 5 44

66 77 33

 Figure 3.3 Six Node Network Constrained

q1 + q6 = 120________________(1)

-q1 + q2 + q7 = -30________________(2)

-q2 - q3 = -40________________(3)

q3 + q4 = +30________________(4)

-q4 - q5 - q7 = -40________________(5)

q5 - q6 = -40________________(6)

37

Setting arc capacity constraints to 100, provides capacity equations:

q1 ≤ 100________________(7)

q2 ≤ 100________________(8)

q3 ≤ 100________________(9)

q4 ≤ 100_______________(10)

q5 ≤ 100_______________(11)

q6 ≤ 100_______________(12)

q7 ≤ 100_______________(13)

The inequalities of equations (7) to (13) are addressed by introducing slack

variables (qs1 to qs7) which remove the in-equalities:

q1 + qs1 = 100________________(7a)

q2 + qs2 = 100________________(8a)

q3 + qs3 = 100________________(9a)

q4 + qs4 = 100_______________(10a)

q5 + qs5 = 100_______________(11a)

q6 + qs6 = 100_______________(12a)

q7 + qs7 = 100_______________(13a)

The application of arc weights as defined above in Figure 3.3 to predicted

flows provides an objective function F:

F= 4q1 + 5q2 + 2q3 + 5q4 + 4q5 + 2q6 + 2q7

These equations may be solved by the “Simplex Method” (Danzig et al,

1951), which solves the series of inequality equations. If a set of solutions to

the series of equations exists, then such solutions are said to be feasible. The

one solution which results from the optimization of a weighted flow function,

or objective function, is known as the optimum solution. The Six Node

Network generates 13 equations and 14 unknowns. Setting a number of

variables n, to zero, such that:

n = number of unknowns - number of equations,

provides a basic solution which is a basic feasible solution providing each

solution q has a positive value. The objective function is evaluated by

applying the weights to the solution variables. The next variable is selected

and set to zero, and the process repeated. When the objective function cannot

38

be reduced with further starting values, then the optimum feasible solution

has been reached. For the six node network, the optimum feasible solution is

given by:

q =

40

10

30

0

40

80

0

where q is the vector of solution flows. The slack variables represent the

unused capacity on each arc. They are given by:

qk =

60

90

70

100

60

20

100

where qk is the vector of solution slack variables.

The optimal feasible solution objective function has a value of 590. It has no

numerical importance, it simply identifies the optimal solution. Its numerical

value has no use as a system deterrence measure and does not represent cost

in the conventional route choice manner.

3.3 A Network form of a Linear Program

A set of linear equations accompanied by an objective function constitutes a

linear program. When such a program is set up to model a series of

variables, such as flow, there are three components: a system, a problem, and

a solution. Here, the system is the network represented by a series of nodes

connected by arcs with a structure defined by the geography of the town or

39

city which it represents. Each arc accommodates a traffic commodity or

flow. (The term “arc” is used in relation to a network, while the use of

“link” is kept for the description of a road). The signal timings quantify the

control environment, i.e. the capacities of both nodes and arcs. The problem

is to infer a comprehensive set of turning flows from a sparse set of

measured detector data which correspond to the measured link flows. The

solution is the feasible solution which satisfies the constraints of the signal

control and detector flows such that turning movement flows are inferred to

match the actual turning flows with acceptable accuracy.

An Integer Linear Program forms the structure of a network model. An

Integer model enables the passage of individual vehicles to be modeled. The

method applies a single commodity network to a multi-commodity problem,

which appears prima facie as inappropriate. Here traffic movements are

modeled devoid of a behavioral influence. Detector flow information

supplies the constraint to a flow minimization problem. The objective is not,

however, to minimize flow; it is rather to influence the optimization to

converge onto that particular solution which most closely resembles the

observed flows.

The flows at the intersections are left turns, right turns and straight on

maneuvers. These are termed turning movements. The model supplies a set

of these turning movements, that are consistent with the link flows that are

supplied through detectors. Simple imposition of a set of limited link

detector flows as constraints cannot provide feasible solutions. Flexibility is

provided by the incremental substitution of theoretical arcs, or "error" arcs,

which are attached to each link represented by a detector arc. The linear

programming algorithm provides flow estimates by the imposition of

detector constraining flows on a sparse number of links. The program,

“NETFLO”, which is written in FORTRAN is the Simplex Method (see

Danzig et al, 1951) that is fast enough to permit “on-line” application. At

each iteration, sparse matrices hold the minimum of information in a more

compact form, and therefore the procedure requires less computer storage.

As a result larger network problems can be solved.

40

The network is modeled as a series of nodes connected by arcs. Each link

flow and turning movement is represented by its own unique uni-directional

arc.

The minimizing of an objective function which is influenced by weights is a

special form of linear program known as the minimum cost flow problem.

The need to solve the equations quickly in real time, leads to the choice of a

network approach to their solution. The first data structure for a network

approach to the solution of a linear program was suggested by Johnson

(1966). The first implementations were by Srinivasan and Thompson (1973)

and Glover et al (1974). The first computer coding of the network approach,

which was reported by Glover et al (1977) was shown to be 100 times faster

than a general linear programming code. The program NETFLO (NET work

 FLO w).

NETFLO is the Simplex Method in matrix form which serves to streamline

the original method considerably. Its computational speed provides its

potential for on-line application. At each iteration, sparse matrices hold the

minimum of information:

1. The coefficients of the non-basic variables in the objective function.

2. The coefficients of the entering basic variable in the other linear
equations.

3. The right hand side of the linear equations.

As these essential data only are carried, in a compact form, the procedure

requires less computer storage and therefore has the potential to solve much

larger network problems. An algebraic procedure, the algorithm moves at

each iteration from the current basic feasible solution to a better adjacent

feasible solution by choosing both an entering basic variable and a leaving

basic variable. Then, the system of linear equations are solved using

gaussian elimination. When the current solution cannot be improved, it is

deemed optimal and the algorithm stops. Mathematically, the problem

reduces to minimizing an objective function F, which when written in matrix

notation takes the form:

F = w q
_

41

The node continuity equations, when written in matrix notation take the form:

A q
_

 = r
_

subject to the capacity constraints:

0 ≤ v
_

 ≤ q
_

 ≤ u
_

where,

A is an [i x j] node-arc incidence matrix, which defines the network

structure, where the nodes are numbered from 1 to i, and arcs are

numbered from 1 to j

w is a [1 x j] vector of unit weights associated with each arc - this

denotes an arc weighting which can be given any set of values

r
_

 is an [i x 1] vector of flows which enter and leave the network at the

periphery, known as the requirement vector - internal nodes are given

zero values

v
_

 is a [j x 1] vector of arc lower bounds - this denotes minimum arc

flow

u
_

 is a [j x 1] vector of arc upper bounds or arc capacities

q
_

 is a [j x 1] vector of arc flow - the decision variable, i.e. the unknown

quantity

The node-arc incidence matrix, A can be likened to a circuit diagram or pipe

network drawing. The unit weight component, w can be loosely equated to

electrical resistance measured in ohms or pipe roughness measured in

millimeters. The analogy, however is tenuous because the traffic model

applies w as a deterrent device. The requirement vector r
_

 can be compared

to the potential difference, measured in volts or hydraulically as head

measured in units of length. The minimum flow vector v
_

 will in most cases

42

represent zero flow, in traffic terms. Some water supply systems rely on a

flow minima for pipe-works to self cleanse. The vector u
_

 can represent the

saturation flow at a non-signalized junction or reflect the maximum possible

departures during a green time, or stop-line capacity. The hydraulic

equivalent is a combination of pipe diameter and gradient. The arc flow

vector q
_

 denotes the output traffic volume in number of vehicles for a given

period. The electrical equivalent is current measured in coulombs, the

hydraulic equivalent is water volume measured, say, in liters for a known

flow interval.

The node arc incidence matrix A identifies the direction of travel of traffic at

each node. The element Aij of the array takes a value +1 if arc j is directed

away from node i, and a value of -1 if arc j is directed towards node i. The

value 0 is applied if arc j and node i do not meet.

The node-incidence matrix for the Six Node Network is given by:

A =

1 0 0 0 0 1

-1 1 0 0 0 0

0 -1 -1 0 0 0

0 0 1 1 0 0

0 0 0 -1 -1 0

0 0 0 0 1 -1

0

1

0

0

-1

0

The requirement vector r
_

 specifies the traffic flow into and out of a

network. If for node i, r > 0, the node i is a supply node where traffic flows

into the network, and supply is equal to r. If for node i, r < 0 the node i is a

demand node and traffic flows out of the network. Internal nodes or turning

points at a junction have r = 0, which are known as trans-shipment points.

Therefore, for the Six Node Network example, these matrices are given by:

w =[4 5 2 5 4 2 2]

43

 r
_

 =

+120

-30

-40

+30

-40

-40

 v
_

 =

0

0

0

0

0

0

0

 u
_

 =

100

100

100

100

100

100

100

The decision variable vector of unknowns is given by: q
_

 =

q1

q2

q3

q4

q5

q6

q7

In order to transform the lower bound vector, v
_

 , to a zero vector, four new

vectors are introduced. The vectors r, u, q, and α are defined by:

r = r
_

 - A v
_

u = u
_

 - v
_

q = q
_

 - v
_

α = w v
_

As the lower bounds are reduced to zero, then the objective function reduces

to:

F = wq + α

such that Aq = r

and 0 ≥ q ≥ u

The NETFLO model applies a heuristic procedure by quickly finding paths

through the network which satisfy node continuity. Spanning trees are

44

supplemented by artificial arcs. A spanning tree is a subsidiary network

which is set up to contain all the nodes but a reduced number of arcs to

eliminate loops. Part of a spanning tree is formed to satisfy the induced

supply and induced demand. For each supply node s, an artificial node y is

set up, connected by an artificial arc (s,y) of infinite weight and capacity, and

flow tsy satisfying node continuity. For each demand node (d), where flow

leaves the network, an artificial node, p is set up connected by an artificial arc

(p,d) of infinite weight and capacity, and flow tpd satisfying node continuity.

The use of spanning trees which are supplemented by artificial arcs where

necessary, makes the algorithm quick. The artificial nodes are illustrated

below.

s y

p d

supply node

demand node

r t

t r

s sy

pd p

artificial node

artificial node

 Figure 3.4 Artificial Nodes

Since the artificial arcs are given such high weights, the optimum solution is

dominated by a set of flows whereby all artificial arcs are assigned zero flow.

This approach is similar to the "Big-M" method, see Hillier and Lieberman

(1990), whereby the objective function is supplemented with an additional

term M, which denoting a very large positive number carries an

overwhelming penalty. The objective function now becomes:

F = wq + α + Mt

where t is an [m x 1] vector of artificial arc flows, where m is the number of

artificial arcs generated by the particular network. The spanning trees are

completed with the addition of more artificial arcs and basis exchanges are

performed to achieve optimality.

45

The data input is in two parts. First, the Node Precedence Data specifies the

relationship between each node. NETFLO requires this information in the

form of an [8 x i] matrix, which gives the number of times each node

appears as a downstream node. Second, the Arc Oriented Data show how

nodes are connected, define weight loadings and give upper and lower bound

flow limits.

Weights have a strong influence on the flow solution, providing a control

mechanism for flow prediction. Consider the effect of a weight variation for

the first arc of the Six Node Network. For a weight reduction from 4 to 1,

the new optimum solution shows that flow is diverted along the central arc.

The weights and solutions are given in Table 3.1, and represented in Figure

3.5.

 Table 3.1 Weight Test
Arc Test 1 Test 2

Weight Flow Weight Flow
w q w q

1 4 40 1 80
2 5 10 5 10
3 2 30 2 30
4 5 0 5 0
5 4 40 4 0
6 2 80 2 40
7 2 0 2 40

120 30 40

40 40 30

120 30 40

40 40 30

q=80

q=40

q =30

Arc 1
q= 40
w=4

q=10

q=40 q=40 q =30

q=10

Test 1: w=4

Arc 1
q= 80
w=1

Test 2: w=1

no flow

no flow

no flow no flow

46

 Figure 3.5 Six Node Network, Weight Change Test

Since the flows entering the network, and the network structure itself are

fixed, the remaining parameters of capacity, flow minima and weight are the

manipulative devices. The combination of capacities, flow minima and

weights which are defined by the control system parameters can be described

as the Constraint Regime. The emerging model input and output

specification are summarized in Figure 3.6.

The Model
Network
Structure

Arc
Capacities

Flow
Minima

Weight

External
Loading

Output
arc flows

A

u v w

r

q

Constraint Regime

 Figure 3.6 Model Input and Output

3.4 Defining Nodes & Arcs

Supply and demand nodes are described as Cordon Nodes. Those internal

nodes with zero requirement flow are described as Trans-shipment Nodes.

Nodes

internal

trans-shipment

external

cordon

real virtual

artificial

47

 Figure 3.7 Node Notation

Four types of arc are defined. An Internal Arc transmits flows from any

node type to any other node type. The External Arcs represent entry and exit

flows, and are not afforded a label. An Internal Detector Arc models the site

of a SCOOT detector, within the network. An External Arc is a virtual arc

which signifies the entry or exit flow into or out of the cordon. The model

does not assign flow along External Arcs because one end of the arc is free.

Two types of real node are defined. A Cordon Node marks an entry or exit

point to the network. Each is associated with an External Arc and is

connected to any number of Internal arcs and/or Detector Arcs. Trans-

shipment Nodes are not connected to External arcs. They have any number

of inflow arcs (Internal or Detector), and any number of outflow arcs

(Internal or Detector). The various combinations of nodes and arcs are

illustrated below.

trans-shipment

cordon

48

 Figure 3.8 Permissible Node Arc Connections

Each turning movement at an intersection is represented as its own unique

arc. Arcs present represent the turning movements available at an

intersection and banned turning movements are described by their absence

from the network. Figure 3.9 shows how a 4 way intersection is modeled.

Grove Street

Detector

Arc

Node Label

Road Layout

Network Representation

Junction
Link

turning movements

Arc Label

Node

Grove Street

Mill StreetH

155 156

159

160

153

154

157 158

273

272270

271

262 263

281280

51

57

5356

47
50

48 54 49

58

55

52

Mill Street

 Figure 3.9 A Single Junction Network Representation

3.5 Network characteristics

The network was built in stages with increasing complexity. Appendix D

contains representations of the various stages of network development. The

final configuration, the one used for analysis of the network, is shown in

Figure 3.10

49

1

2

3 4

5 6

7

8

9

10

11

12

13

14

1516

1718
1920

21
22

23

24

25

26

27

28

29

30

3132

33 34

35

36

37 38

39 40

41 42

43 44

45

46

47 48

49 50

51

52

53 54

55 56

57

58

59

60 61

62 63

64

65

66 67

68

69

70

71 72

73 74

75

76

77 78

79

80

81 82

83

84

85 86

87

88

89
90

91

92

93

94
95

96

97
98

99

100

101 102

103 104

105

106

107 108

109 110

111

112

113

114

115 116

117

118

119 120

121

122

123 124

125 126

127

128

129

130

131

132

133 134

135

136

137 138

139 140

141

142

143

144

145 146

148147

1

2 3

4

5

6
7

8
9

10

11

12

25

26 27

28

29

30
31

3233

34

35

36

41

42
43

44
45

46

71

72 73

74

75

76
77

7879

80

81

82

143 144

145

146
147

148

158 159

160

161
162

163

164

165

166

167

168 169

170

171

172
173

174175

176

177
178179

180

181

194

195 196

197

198

199
200

201202

203

204

205

218

219

220

221

222

223

224
225

226

227
228

229

230

231

232

233
234

235

236 237

238

239
240

241

149

150 151

152

153

154

83

84
85

86

87

88
89

9091

92

93

94

19

20

21

22

23

24

206

207 208

209

210

211
212

213
214

215

216

217

244

245
246

39242
243

95

96 97

98

99

100
101

102
103

104

105

106

111

112
113

115

116

117

107

108 109

110

114

118

254257

265286

289

294

297

305

318

342

345

346

349

353

354

357358

362 369

373
374 378

381382

385

386

389

398

401

402

404

406

408

409

414

415 416

419

421

423

424

427

278

248

293

290

338

339

306

262
261

247

253

341

301302
317

298

310

309

361

350

370

377

365

366

A

CM

D

G

P

R

S

X

Y

AB

AC
V

T

QW

H

BN

J

K

AD

W

Hwy 101

G
ra

nd
 A

ve

Fredrick St

C
al

if
or

ni
a

B
lv

d

Mill St

Monterey St

H
at

hw
ay

 S
t

Taft

K
en

tu
ck

y

G
ro

ve
 S

t

Network Codename: Final-26C

Philli
ps

Staf
ford

Wilson

 Figure 3.10: Final Network Configuration

50

Section 4 Software Development

4.1 Code Development

Software development began by analyzing the original FORTRAN code of

NETFLO. The FORTRAN code was written in a pre-structured or

"spaghetti" FORTRAN manner, so it was thought that flowcharting the code

may show some of the algorithmic properties, that were not readily apparent.

Flowcharting the code showed that the code contained no complex data

structures and that there were no complex flow control constructs. The

possibility of moving code to a traditional spreadsheet format, such as that

offered by Microsoft Excel looked enticing. Excel’s macro language

(version 4.0) supports a subset of the traditional Pascal type languages and it

was the case that this subset would be sufficient.

Since the first goal was to replicate the original "Notttingham" code, it was

essential to maintain the integrity of the original FORTRAN code. So the

FORTRAN code was translated into structured "Excel" code. In converting

from FORTRAN to Excel there were few difficulties in the actual languages.

Excel’s support for arrays was one major weakness (especially arrays with

variable lower bounds).

Before the laborious process of setting down the Excel code it was necessary

to break the 1200 line algorithm into logical subroutines, to make a structured

piece of code. Logical subroutines were imposed and redundant code was

eliminated.

The code was tested. There were major bugs that related to array access.

Repeated attempts to overcome these difficulties failed. So, the original

FORTRAN code was compiled and executed step by step simultaneously

with the Excel code. Several tests checking at various breakpoints

determined the location of the bugs. The "XOR approximation function"

proved the source of the bug. Its purpose is to return a value greater than

zero if the XOR(a, b) is greater than zero, or return less than zero if XOR(a,

b) is less than zero, and zero if otherwise. Unfortunately it was returning

51

zero on several occasions when it should not have. Here is an extract of the

defective code:

XOR(arg_1, arg_2)

=RESULT(1)

temp = arg_1 * arg_2

=IF(temp = 0, temp = arg_1 + arg_2)

=RETURN(temp)

This is how the code was written in the original FORTRAN code. The first

bug is that the code fails to approximate the XOR function properly. When

arg_1 equals arg_2 the function should return 0. The next bug came from the

Excel application. Excel fails to evaluate the boolean expressions in an IF

statement that takes the form:

=IF(bool, statement)

Excel will evaluate that boolean to FALSE on some occasions when TRUE

should the value of the boolean expression. This was overcome by simply

removing the embedded statement, such that the IF constructs appear as:

=IF(bool)

statement_list

=END.IF()

The code produced the correct results, but in an unacceptable amount of time

on a Macintosh IIci, with a 68030 processor running at 25MHz. Moving the

code to the Macintosh Quadra 840AV (68040 at 66MHz) improved the

speed but the time to run the code still lagged at 37 minutes for the English

network. Looking ahead to several hundred test runs of the program, it was

imperative that this process be speeded up. That Excel is an interpreted

language meant that even though the code had been extensively restructured,

it was clear that it was not possible to reduce the running time by any order of

magnitude. It was an essential principle of the project that the spreadsheet

52

front end and back end be maintained. The internal engine, however, could

be implemented any way necessary. Code resources would have offered the

most elegant solution, but the unavailability to the Excel 4.0 Software

Developers Kit, meant that it was necessary to rewrite the application in C,

using the application "Think C".

The final code is approximately 1750 lines and is shown in Appendix B. It

maintains as much of the flavor from the Excel code as possible. The

English network took approximately 1.5 seconds to run which is nearly 1500

times faster than the code in Excel.

The new application when executed prompts the user to enter an input file

and an output file. The input file is opened and read. The NETFLO

algorithm runs on this input, then opens the output file and writes to the

output. To maintain the integrity of the front and "back-end", the application

is written so that it accepts the input in an Excel spreadsheet. The intput file

is saved as a text file and can be read by the NETFLO application. Reading

the output file is just as simple. When the output file is opened from Excel, it

opens into a spreadsheet that has been properly laid out. A great convenience

with this method is that it can move to real time mode easier, since the C

code has already been written.

 4.1.1. Step by Step Code Analysis

A step by step analysis of how the all-artificial start is implemented in

NETFLO follows:

1. Retrieve the first node in the demand list. If the demand list is empty
then goto step 17.

2. If the unsatisfied demand of the node from the demand list is zero,
goto step 12.

3. Find the set of arcs, S, such that they may be set to upper bound. S is
such that each arc end at q.

4. Find the set of arcs, T, such that they may become basic. T is such
that each arc end at q.

5. If S + T is empty then goto step 8.

53

6. Compute the minimum of cost (p, q) such that min{cost(p, q) : (p, q)
is an element of S + T}. Call the minumum (p, q), m(p, q).

7. If the m(p, q) is an element of S then:
a. Set the flow of m(p, q) to the upper bound of m(p, q).
b. Subtract the upper bound of m(p, q) from the unsatisfied

demand of q.
c. The flow from the minimum node p (see above) flow to the

artificial node is equal to itself minus the upper bound of m(p,
q).

d. Goto step 1.
Else:
a. Set the flow of m(p, q) to the satisfied demand of q.
b. Set the flow of minimum node p to the artificial node equal to

itself minus the unsatisfied demand of q.
c. Set the unsatisfied demand to q to 0. Remove q from list of

nodes with induced demand.
d. Goto step 1.

8. U is the set of arcs (p, q) that go to q and have a flow from root to p
of 0.

9. If |U| = 0 then goto step 12.

10. Compute the minimum of cost (p, q) such that min{cost(p, q) : (p, q)
is an element of U}. Call the minumum (p, q), m(p, q).

11. If the upper bound of m(p, q) is less than the unsatisfied demand of
q:
a. Assign the upper bound of m(p, q) to the flow of m(p, q).
b. Assign the unsatisfied demand of q minus the upper bound of

m(p, q) to the unsatisfied demand of p. Place the p of m(p, q)
onto the front of the list of nodes with induced demand.

c. Goto step 1.
Else:
a. Set the flow of m(p, q) equal to the unsatisfied demand of q.
b. Remove q from the list of nodes with induced demand.
c. Place the p of m(p, q) onto the front of the list of nodes with

induced demand.
d. Set the unsatisfied demand of the above (11c) p to equal the

unsatisfied demand of q. Then set the unsatisfied demand of
q equal to 0.

e. Goto step 1.

12. Remove q from the list of nodes with induced demand.

13. Create an artificial arc (a, q).

14. Set the cost and upper bound of (a, q) to infinity.

54

15. Assign the unsatisfied demand of q to the flow of (a, q).

16. Goto step 1.

17. Set q to 1. (This starts the node counter).

18. If all the node are connected to the tree then END.

19. Assign q to q’.

20. Let V be the set of arcs (p, q) such that p or q is not connected to the
tree.

21. If the set V is empty then goto step 25.

22. Compute the minimum of cost (p, q) such that min{cost(p, q) : (p, q)
is an element of V}. Call the minumum (p, q), m(p, q).

23. Assign a flow of 0 to the arcs of m(p, q) and then add the arcs of
m(p, q) to the tree.

24. Increment the node counter (q). If q is greater than the number of
nodes than set the node counter to 1 and goto step 18.

25. Increment the node counter (q) and then check if the node counter is
greater than the total number of nodes. If so, then set the node
counter to 1.

26. If all the nodes have not been examined goto step 20.

27. Let H be the set of nodes such that the nodes are an element of the
network and not connected to the tree.

28. For every node that is in H, p, create an artificial arc from the
artificial node to p with the cost of this arc equal to the upper bound
which is set to the biggest value possible. The flow in this arc will
then be zero.

This is the complete algorithm for the All-Artificial arcs method. By

examining this algorithm alongside with the code, the logic of the program is

evident. Figure 4.1 shows how the Artificial Arcs provide the final basis

tree.

55

{0}

{12} {-4}

{-6}

{requirements}

1

2

3

4

{0}

{12} {-4}1

2

3

4

Original Network

[0,inf]

[inf,inf]

[inf,inf]

{-6}

{-2}

This is the Network with
The Artifical Arcs added.

[cost, bound]

1

2

3

4

5

[12]

[0]

[6]

[4]

[flow]

This is the final basis tree

 Figure 4.1: Algorithmic Definition

In its current form, a flexibility factor generates a series of upper and lower

bound constraints to the detector arcs. Beginning with a restrictive regime,

the NETFLO code is repeatedly run until a feasible solution is derived. This

iterative procedure whereby the flexibility factor is systematically reduced has

been demonstrated to be effective in increasing the accuracy of turning

movement flow estimation (see Martin 1992).

56

The NETFLO algorithm needs "front end" and "back end" interfaces so that

the whole of the TMERT model is coded. Hitherto, all input data had to be

prepared at a preliminary stage. Spreadsheets have been used to calculate the

various parameters needed by the model: network flow imbalances and error

arc upper bound constraints. For each run of NETFLO, spreadsheets have

been used to compare the turning movement arc output flows with those

observed. This is a cumbersome and time consuming process. A "back

end" will speed the efficiency of model testing to such an extent that larger,

more complex networks will be evaluated. The validation of the model will

be automated by coding the comparison of observed and modeled turning

flows to provide a performance measure in the form of a correlation

coefficient. The code which invokes the NETFLO algorithm, therefore, will

be sandwiched between these two automatic procedure components. Large

supplies of data, transmitted electronically from the University of

Nottingham in England will serve to verify the reliability of the software

improvements.

4.2 The “Front - End”

The “front-end” improvements all follow from the ease with which a

spreadsheet format can be applied to the input data structures, a substantial

advance from the former ASCII type files. Duplication, copying and pre-

processing of repeated data sets could now be speedily implemented. Table

4.1 below shows the unimproved data structure for the Six Node Network.

It lacks notation. The node-arc incidence matrix is an (8xn) matrix which is

not easily comprehended.

supply
node1

demand
node6

demand
node2

demand
node5

demand
node3

supply
node4

q q q

q q

q q

r = 120 r = 30 r = 40

r = 40 r = 40 r = 30

1 2

6 7 3

5 4

1 2 3

456

57

 Figure 4.2 The Six Node Network

58

 Table 4.1 Unimproved Data Input Structure for the Six Node Network -

 ASCII Format
7
6
1 120
2 -30
3 -40
4 30
5 -40
6 -40

0 0
0 1 2 0 3 1
1 1 2 4 60 0
2 2 3 5 15 0
3 4 3 2 35 0
4 4 5 5 25 0
5 6 5 4 30 0
6 1 6 2 60 0
7 2 5 2 15 0
0 0 0 0 0 0

Table 4.2 shows how a spreadsheet input data structure has made the input

both more easily interpreted and manipulated. Note that the awkward (8xn)

node-arc incidence matrix has been replaced by a new “Node Precedence”

column which is aligned with the node and requirement columns.

59

Table 4.2 Improved Data Input Structure for the Six Node Network -
Spreadsheet Format

Number of
arcs

7

Number of
Nodes

6

Node Requirement,
r

Node
Precedence

1 120 0
2 -30 1
3 -40 2
4 30 0
5 -40 3
6 -40 1

check sum r = 0
Terminator

Card
0 0

check sum
node prec = nr

arcs
Arc from to c u v
1 1 2 4 60 0
2 2 3 5 15 0
3 4 3 2 35 0
4 4 5 5 25 0
5 6 5 4 30 0
6 1 6 2 60 0
7 2 5 2 15 0

Terminator
Card

0 0 0 0 0 0

Appendix A contains a comprehensive example of model input and output in
spreadsheet format.

60

4.3 The “Back - End”

Table 4.3 shows the unimproved output format for the Six Node Network.

Note that the flows are output in an arbitrary order without arc labels.

 Table 4.3 Unimproved Data Output Structure for the Six Node Network -

 ASCII Format

FROM TO COST FLOW
1 1 0 0
1 2 240 60
2 3 75 15
4 3 50 25
4 4 0 0
4 5 25 5
6 5 80 20
2 5 30 15
1 6 120 60
0 0 0 0
0 0 0 0
0 0 0 0

Table 4.4 shows how the Improved data output structure in spreadsheet form

with an Arc Label column to make the output more accessible.

 Table 4.4 Improved Data Output Structure for the Six Node Network -

 Spreadsheet For mat
Arc Num From To Weight Flow

1 1 2 240 60
2 2 3 75 15
3 4 3 50 25
4 4 5 25 5
5 6 5 80 20
7 2 5 30 15
6 1 6 120 60

4.4 Performance Index

The conversion to a spreadsheet structure for both input and output has

permitted faster analysis of model performance through easier data input

manipulation and faster output validation. Figure 4.3 depicts a graphical

61

representation of how output analysis has been streamlined through

immediate automated spreadsheet analyses.

Arc Label observed modeled flow modeled flow
flow (test 1) (test 2)...Arc Label observed modeled flow modeled flow

flow (test 1) (test 2)...Arc Label observed modeled flow modeled flow
flow (test 1) (test 2)... Observed/Modeled flow Correlation

test 1 test 2

by turn type

by Intersection by interval

by flow level

test n

Disaggregate Flow

Interval 1

Interval i

1

2

.

 Figure 4.3 Performance Index Method

The output flows that the model provides are compared to the observed flows

to determine the correlation of the values through the coefficient of
determination (r2%). Table 4.5 shows the vastly different flows that could be

the actual flows of the network which also satisfy the external load

constraints. This is why internal link detectors are needed to add another

constraint. The number and location of the internal detectors needed to

provide acceptable correlation between the modeled and observed flows is

suspected to be related to the network size and the number of entrance and

exit locations to the network.

4.5 Collection and Validation of English Data

62

The English Network is a SCOOT sub-area Region “R” of the City of

Leicester in the heart of England. It had been selected because it has a spatial

geometry which offers alternative routes to traffic both when entering and

leaving the City Center. Figure 4.4 shows the Street Layout of the network

with six signal controlled junctions.

STH ALBION ST

LO
N

D
O

N
 RD

W
A

TE
R

LO
O

 W
A

Y

LANCASTER RD

PRINCESS RD EAST

CONDUIT
 ST

PREBEND S
T

SAXBY ST

M
IL

L H
IL

L L
ANE

EVINGTON
RD

N
EL

SO
N

 S
TR

EE
T

REGENT ROAD

U
N

IV
E

R
SI

T
Y

 R

O
A

D

R
EG

EN
T

ST
R

EE
T

W
E

ST
 W

A
L

K V
IC

TO
RIA

PA

SS

SALISBURY
 AVE

HIG
HFIE

LD S
T

G
R

A
N

V
IL

LE
 R

D

Leicester
Railway
Station

D
EM

O
N

TF
O

R
T

 S

TR
EE

T ST

ALBANS

RD

SALISBURY
 ROAD

to the City

Centre

A6(T) to M
arket

Harborough

Sub Area
Boundary

Signal
Controlled
Junction

Closed
Circuit TV

WA

DR

UR

WR

GL

UL

This drawing is not to scale;
the area shown is about one
square killometer, the Railway
S t a t i o n i s a p p r o x i m a t e l y
750m from the Pavilion

 Figure 4.4 Street Layout - SCOOT Region R, Central Leicester

63

Input files from surveys made in May of 1990 and 1991 in Leicester were

collected and tested with the renewed code. Output files from the earlier

work were compared to those provided by the renewed code. The two sets

of output proved identical.

64

Section 5 Model Development

5.1. Error Arc Definition

 5.1.1. Detector Constraint

Fixing internal flows by constraints on the upper and lower bounds simulates

the flow measured by the detector. The known detector flow is forced along

the arc.

Let qd = detected flow

and qm = predicted flow

then the flows along this arc can be constrained thus:

vd = qd = ud

where vd = detector arc lower bound,

and ud = detector arc upper bound,

so that qd = qm

qd

 Figure 5.1 Detector Arc

 5.1.2. Error Arc Constraints

The weight on each internal arc was set to unity and the minimum flow on

each arc was fixed at zero. Each chain of arcs connecting junctions contains a

detector arc which effectively controls the upper bounds of each of these

internal arcs. NETFLO, however, must have an upper bound specified for

each arc. The detector arcs are constrained by fixing upper and lower bounds

thus:

vd = qd = ud

Given the large number of constraints imposed by the more complex

geometry of the real network, NETFLO was unable to find a feasible

65

solution. Bell et al (1987) proposed a method of introducing a flexibility

system by introducing two additional “error arcs” (e+ and e-) alongside the

arc representing the detected flow as shown below.

e+

e-

qd

error arcsdetector arc

a b

 Figure 5.2 Error Arc Configuration

Flexibility is provided by two virtual arcs, or error arcs, which permit

additional flows along arc e+ or a reverse flow along arc e- so that the detector

flow from node a to node b is represented as:

q(a to b) = [qd + q(e+) - q(e-)]

where qd = known detector flow

and [qd + q(e+) - q(e-)] = modified detector flow

where q(e+) and q(e-) are defined as error arc flows. The model is

constrained to allocate flows, so that:

Σ(q(e+) - q(e-)) is a minimum, for all arcs in the network.

The error arcs provide flexibility and a means of achieving a feasible solution.

The manipulation of the upper and lower bounds and weights of the error

arcs provide a control mechanism to ensure a feasible solution. The

following sections describe the set of tests which were carried out to assess

the influence of error arc upper bound, lower bound and weight. The

modified detector flows are compared with the detector flows.

The parameter, φ , is defined such that,

φ =
ue

qd

where ue is the upper bound of each error arc.

66

 5.1.3. φ Factor Constraint

The model is constrained tighter by the reduction of the amount of flow

allowed to flow along the error arcs. This is accomplished through
incremental reduction of the φ factor. The upper bounds of the error arc, ue,

for any φ value is found by multiplying the φ factor value by the detector arc

flow.

Ue = φ ∗ qd

The φ factor values were calculated using an inverse square relationship.

The φ factor value is defined by Φ = 1
δ2

where δ takes the values tabulated below:

Table 5.1: Incremental φ Factor
increment δ φ

1 1.00 1.000
2 1.15 0.750
3 1.33 0.563
4 1.54 0.422
5 1.78 0.316
6 2.05 0.237
7 2.37 0.178
8 2.74 0.133
9 3.16 0.100

10 3.65 0.075
11 4.21 0.056
12 4.87 0.042
13 5.62 0.032
14 6.49 0.024
15 7.49 0.018
16 8.65 0.013
17 9.99 0.010

Figure 5.3 indicates the path of the incremental feasibility method used to

tighten the constraint on the model by lowering the upper bounds limit of the

error arcs through a step interval in which the φ factor is reduced.

67

output turning
flows

increment φ
δ = δ + 1

check interval
t = 25

?
increment interval

t = t + 1

select max r2

store r2

for t

stop

correlate
qo & qm

yes

no

feasible
solution

?

no: select
best solution

yes:
measure

performance

initialise interval
t = 0

initialise φ
δ = 0

start

for all detector
arcs, calculate
upper bounds

check
flexibility

factor
δ = 17

?

no

yes

run NETFLO

 Figure 5.3 Incremental Feasibility Method

5.2. Detector Placement and Number

The City of San Luis Obispo neither has nor needs the high degree of

detection associated with an adaptive signal control system. For model

development, therefore, on-street flow detection was simulated. Links were

identified as detector links on the assumption that the network was a sub-area

of a SCOOT controlled network. Intersection turning movement flows were

then aggregated to provide simulated detector flows from selected links.

The final detector layout configuration and network used for the remainder of

the analysis, is seen in Figure 5.4.

68

1

2

3 4

5 6

7

8

9

10

11

12

13

14

1516

1718
1920

21
22

23

24

25

26

27

28

29

30

3132

33 34

35

36

37 38

39 40

41 42

43 44

45

46

47 48

49 50

51

52

53 54

55 56

57

58

59

60 61

62 63

64

65

66 67

68

69

70

71 72

73 74

75

76

77 78

79

80

81 82

83

84

85 86

87

88

89

90

91

92

93

94
95

96

97
98

99

100

101 102

103 104

105

106

107 108

109 110

111

112

113

114

115 116

117

118

119 120

121

122

123 124

125 126

127

128

129

130

131

132

133 134

135

136

137 138

139 140

141

142

143

144

145 146

148147

1

2 3

4

5

6
7

8
9

10

11

12

25

26 27

28

29

30
31

3233

34

35

36

41

42
43

44
45

46

71

72 73

74

75

76
77

7879

80

81

82

143 144

145

146
147

148

158 159

160

161
162

163

164

165

166

167

168 169

170

171

172
173

174175

176

177
178179

180

181

194

195 196

197

198

199
200

201202

203

204

205

218

219

220

221

222

223

224
225

226

227
228

229

230

231

232

233
234

235

236 237

238

239
240

241

149

150 151

152

153

154

83

84
85

86

87

88
89

9091

92

93

94

19

20

21

22

23

24

206

207 208

209

210

211
212

213
214

215

216

217

244

245
246

39242
243

95

96 97

98

99

100
101

102
103

104

105

106

111

112
113

115

116

117

107

108 109

110

114

118

254257

265286

289

294

297

305

318

342

345

346

349

353

354

357358

362 369

373
374 378

381382

385

386

389

398

401

402

404

406

408

409

414

415 416

419

421

423

424

427

278

248

293

290

338

339

306

262

261

247

253

341

301302
317

298

310

309

361

350

370

377

365

366

A

CM

D

G

P

R

S

X

Y

AB

AC

V

T

QW

H

BN

J

K

AD

W

Hwy 101

G
ra

nd
 A

ve

Fredrick St

C
al

if
or

ni
a

B
lv

d

Mill St

Monterey St

H
at

hw
ay

 S
t

Taft

K
en

tu
ck

y

G
ro

ve
 S

t

Network Codename: Final-26C

Philli
ps

Staf
ford

Wilson

430 431

432
433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449
450

451 452

453

454

455

456

457

458

459

460

461

462
463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

 Figure 5.4: Final Detector Layout

69

 Section 6 Model Performance

The SLO network was modeled. Observed turning movements were

compared to observed. The Performance Index supplied coefficient of

determination (100r2%) for the constraint regime established for the English

network (see Martin and Bell 1992a). The flows for the full two hour

intervals were aggregated with an error arc upper bound constraint factor φ
of 0.025. The correlations are summarized below:

 Table 6.1: Coefficient of Determination of Observed and
 Modeled Turning Movement Flows, 2-hr aggregated, φ set to

 0.025

r2 (%)
Turn English Network SLO Network

Overall 92% 90%
Through 94% 89%

Cross-flow (Left US) 83% 66%
With-flow (Right US) 2% 67%

6.1 Varying The Weights Of Arcs

Model development continued with an investigation into the effects of

applying different weights to the different arc types. Four different weighting

schemes were used in the analysis of TMERT. The more difficult

movements were weighted higher than the simpler movements. The order

from least weighted to most was determined to be: Link, straight, protected

left, right, permitted left, error arcs with left protected and right equivalent for

all cases but W3 weighting regime. Table 6.2 shows the weight assigned to

each arc type for each of the different trials and the maximum r2 value

obtained for that weight case.

Table 6.2: Arc Weights for each Trial
Arc W0 W1 W2 W3
Link 1 1 1 1

Through 1 2 3 2
Left Protected 1 3 6 3

Right 1 3 6 4
Left Permitted 1 5 9 7

Error 3 15 30 20

2 hr--r2 % 90.37 96.65 96.31 96.60

70

The logic applied to the weighting schemes was that driving on a link was the

least difficult of all the maneuvers. The next simplistic maneuver was a

through movement at an intersection. A protected left and unprotected right

were considered to be of the same difficulty except for W3 were the

unprotected right was given a 4 weighting while the protected left was given a

weight of 3. Left permitted turns were weighted most heavily of all turning

movements because of the conflict with both oncoming vehicles and crossing

pedestrians. Error arcs were the most weighted arc being approximately 3

times the value of the next highest arc as set forth by Martin and Bell

(1992b).

6.2 Coefficient of Determination (r2)

The Performance Index supplied analyses of the models overall performance,

intersection by intersection, and by turning movement. A two hour aggregate

test, from 4:30-6:30 PM, was performed on the four different weighting

schemes. The incremental increase of the error arc upper bound factor φ
was applied. This overall performance of the model is shown in Table 6.3.

 Table 6.3: Coefficient of Determination of Observed and Modeled Turning

 Movement Flows, 2-hr aggregated, φ increasing for various weight regimes

 - for all Turning Movements
All Turns

φ W0 W1 W2 W3

1.000 87.47% 95.64% 96.31% 96.60%

0.750 89.58% 96.65% 96.31% 96.52%

0.563 87.89% 96.49% 96.31% 96.57%

0.422 88.31% 95.39% 94.90% 95.11%

0.316 87.55% 95.64% 95.33% 95.55%

0.237 85.94% 95.39% 94.90% 95.14%

0.178 88.71% 95.59% 94.90% 95.14%

0.133 90.20% 95.39% 94.90% 95.12%

0.100 89.06% 95.66% 95.14% 95.14%

0.075 90.29% 95.70% 95.15% 95.15%

0.056 90.37% 95.52% 94.96% 95.17%

0.042 89.84% 95.55% 95.18% 95.19%

0.032 88.30% 95.74% 95.35% 95.35%

0.024 Infeas Infeas Infeas Infeas

Infeas = Infeasible

71

Underlined values are the maximum r2 obtained associated with φ

These results show:
• the higher the weighting regime, the better the correlation between

observed and modeled flows
• some form of weighting is better than none
• the incremental increase of φ has a marginal impact upon model

performance

72

6.3 Turning Movements

Tables 6.4 to 6.6 represent how the right and left turns were modeled. They

all indicate improved model performance with higher weighting regimes.

 Table 6.4: Coefficient of Determination of Observed and Modeled Turning

 Movement Flows, 2-hr aggregated, φ increasing for various weight regimes

 - for Right Turns
Right Turns

φ W0 W1 W2 W3

1.000 51.74% 80.37% 79.92% 82.60%

0.750 63.12% 85.69% 79.92% 80.83%

0.563 50.36% 84.01% 79.92% 82.56%

0.422 62.76% 76.98% 71.42% 72.31%

0.316 53.18% 80.37% 76.03% 76.88%

0.237 48.18% 76.98% 71.42% 72.35%

0.178 58.43% 77.73% 71.42% 72.35%

0.133 65.77% 76.98% 71.42% 72.25%

0.100 62.06% 77.96% 72.39% 72.39%

0.075 63.25% 77.97% 72.29% 72.27%

0.056 63.51% 77.08% 71.31% 72.14%

0.042 51.66% 76.14% 72.57% 72.51%

0.032 50.65% 77.89% 74.06% 74.05%

0.024 Infeas Infeas Infeas Infeas

Infeas = Infeasible
Underlined values are the maximum r2 obtained associated with φ

The right turning movements obtained a maximum r2 term of 65% when no

weighting method was applied to the network but an 80% r2 term was found

for all three weighting schemes.

73

 Table 6.5: Coefficien t of Determination of Observed and Modeled Turning
 Movement Flows, 2-hr aggregated, φ increasing for various weight regimes
 - for Left Turns

Left Turns r2(%)
φ W0 W1 W2 W3

1.000 46.49% 30.33% 46.05% 53.41%

0.750 61.15% 52.19% 46.05% 54.95%

0.563 52.70% 44.88% 46.05% 53.19%

0.422 51.28% 30.33% 30.46% 39.46%

0.316 42.74% 30.33% 30.46% 39.46%

0.237 18.89% 30.33% 30.46% 39.46%

0.178 12.13% 39.36% 30.46% 39.46%

0.133 15.38% 30.33% 30.46% 39.46%

0.100 11.72% 39.24% 39.29% 39.29%

0.075 13.38% 39.17% 39.11% 39.12%

0.056 13.44% 30.20% 30.03% 39.01%

0.042 67.06% 36.59% 37.89% 38.02%

0.032 11.68% 38.28% 39.20% 39.19%

0.024 Infeas Infeas Infeas Infeas

Infeas = Infeasible

Underlined values are the maximum r2 obtained associated with φ
The aggregate test on the left turning movements indicates that the models
ability to estimate left turns is poor. An average of 50% r2 was obtained for
the weighted schemes while the non weighted scheme produced a 67% r2.

 Table 6.6: Coefficient of Determination of Ob served and Modeled Turning
 Movement Flows, 2-hr aggregated, φ increasing for various weight regimes
 - for Through Movements

Through r2(%)
φ W0 W1 W2 W3

1.000 86.42% 95.76% 96.39% 96.44%

0.750 87.70% 96.33% 96.39% 96.39%

0.563 86.43% 96.43% 96.39% 96.39%

0.422 87.08% 95.63% 95.34% 95.34%

0.316 85.81% 95.76% 95.63% 95.65%

0.237 85.38% 95.63% 95.34% 95.38%

0.178 87.80% 95.64% 95.34% 95.38%

0.133 88.21% 95.63% 95.34% 95.35%

0.100 88.33% 95.72% 95.39% 95.39%

0.075 89.05% 95.79% 95.43% 95.43%

0.056 88.96% 95.84% 95.47% 95.47%

0.042 87.63% 95.83% 95.52% 95.53%

0.032 87.33% 95.97% 95.66% 95.67%

0.024 Infeas Infeas Infeas Infeas

Infeas = Infeasible
Underlined values are the maximum r2 obtained associated with f

74

The through turning movements are by far the most accurately estimated

movement. The non weighted scheme produced results of 89% for the r2

term and above 96% for each of the weighted schemes. Table 6.7

summarizes the maximum 2 hour aggregated model performance by turning

movement.

Table 6.7: Maximum Model Performance by Turn, 2-hr Analysis
Turn W0 W1 W2 W3

Overall 90.37 96.65 96.31 96.60
Through 89.05 96.43 96.39 96.44
Right 65.77 85.69 79.92 82.60
Left 67.06 52.19 46.05 54.95

The results indicate that a logical weighting method is desirable. The overall

inference performs well with a 96% correlation between the observed and

modeled flows. The through movements were also highly inferred by the

model achieving a 96% correlation. The right turns were fairly accurately

estimated with a 85% correlation. The left turns were less accurately

estimated with a 52% correlation. The results indicate that the optimum r2

value does not occur when the model is most constrained (φ is the smallest).

Figures 6.1 to 6.4 illustrate the correlation relationship for the 2 hour interval

of the W3 weighting scheme. Figure 6.1 depicts the models overall

correlation of the modeled turning movements and the observed turning

movements. A 96% r2 correlation exists for the overall comparison.

qo (Observed)

0

500

1000

1500

0 500 1000 1500

 Figure 6.1: Overall Correlation for 2 hr Interval

Figure 6.2 shows the through correlation which acquired a 96% r2 term.

75

qo (Observed)

0

500

1000

1500

0 500 1000 1500

 Figure 6.2: Through Movement Correlation for 2 hr Interval

Figure 6.3 shows the right r2 correlation of 85% is less accurate than

TMERT's modeling of the through movements.

qo (Observed)

0

500

1000

1500

0 500 1000 1500

 Figure 6.3: Right Movement Correlation for 2 hr Interval

Figure 6.4 shows that the model's ability to estimate the left movements was

poor with an r2 of 52% correlation.

76

qo (Observed)

0

500

1000

1500

0 500 1000 1500

 Figure 6.4: Left Movement Correlation for 2 hr Interval

6.4 Dynamic 5-minute Modeling

TMERT's quick execution time is what allows it to be a real time application.

Two hours and 25 minutes, Twenty-nine 5 minute intervals, of data were

analyzed for the W0 and W3 weighting regimes. The W1 and W2 weighting

regimes were evaluated for 1/2 of an hour, (six 5 minute intervals from 4:55

- 5:25), to look at how they compared with W3. The model was again

evaluated for its overall correlation and its performance by turning

movement.

Table 6.8 depicts the overall 5 minute analysis for the non weighted hierarchy

(W0). A maximum difference of 14% is found between the maximum and

minimum r2 terms. Of the 29 intervals, in 7 the maximum r2 correlation

occurs at the last φ factor interval before unfeasibility occurs. Of the twenty-

nine, seven of the time intervals also produce the minimum r2 term for the

first φ factor interval. 0 maximum r2 terms appear in the first φ factor

interval and 3 r2 minimums occur last. In only seven of the twenty-nine time

intervals is the first r2 term larger than the last r2 term.

77

 Table 6.8 Dynamic Modeling Analysis by 5 minute Interval -
 All Turning Movements, Weighting Regime W0

r2
(%)

 Int φ =
1.00

φ =
.750

φ =
.563

φ =
.422

φ =
.316

φ =
.237

φ =
.178

φ =
.133

φ =
.100

φ =
.075

φ =
.056

φ =
.042

φ =
.032

φ =
.024

φ =
.018

φ =
.013

φ =
.010

Max Min

4:05 86% 86% 86% 85% 86% 89% 89% 89% 88% Inf Inf Inf Inf Inf Inf Inf Inf 89%85%
4:10 86% 86% 89% 86% 90% 87% 89% 87% 84% 88% 87% 87% Inf Inf Inf Inf Inf 90%84%
4:15 85% 84% 84% 88% 89% 86% 88% 88% 93% Inf Inf Inf Inf Inf Inf Inf Inf 93%84%
4:20 81% 81% 83% 83% 82% 87% 85% 85% 87% 85% 85% 84% Inf Inf Inf Inf Inf 87%81%
4:25 82% 82% 84% 83% 87% 82% 85% 84% 85% 86% 84% 85% Inf Inf Inf Inf Inf 87%82%
4:30 81% 81% 82% 90% 89% 91% 83% 83% 82% 78% 84% 93% 93% Inf Inf Inf Inf 93%78%
4:35 88% 90% 86% 92% 94% 92% 92% 87% 87% 91% 91% Inf Inf Inf Inf Inf Inf 94%86%
4:40 91% 91% 91% 92% 91% 93% 93% 92% 93% 94% 94% 95% 95% Inf Inf Inf Inf 95%91%
4:45 90% 90% 87% 86% 87% 88% 90% 92% 91% 91% 90% 91% 91% Inf Inf Inf Inf 92%86%
4:50 85% 85% 88% 87% 86% 87% 85% 88% 87% 88% 88% 85% 84% 86% 85% Inf Inf 88%84%
4:55 79% 83% 78% 85% 85% 88% 85% 86% 87% 82% 81% Inf Inf Inf Inf Inf Inf 88%78%
5:00 87% 88% 87% 92% 88% 88% 89% 89% 89% 88% 88% 86% Inf Inf Inf Inf Inf 92%86%
5:05 87% 85% 88% 90% 89% 89% 90% 88% 90% 92% Inf Inf Inf Inf Inf Inf Inf 92%85%
5:10 85% 85% 94% 90% 87% 91% 88% 86% 87% 90% 88% 88% 88% Inf Inf Inf Inf 94%85%
5:15 87% 87% 87% 87% 85% 86% 87% 86% 89% 89% 92% Inf Inf Inf Inf Inf Inf 92%85%
5:20 85% 83% 87% 81% 82% 86% 89% 90% 91% 87% 88% 87% 82% 80% 82% 84% Inf 91%80%
5:25 78% 78% 83% 79% 77% 83% 85% 84% 85% Inf Inf Inf Inf Inf Inf Inf Inf 85%77%
5:30 86% 86% 86% 85% 88% 85% 87% 88% 92% 90% 91% Inf Inf Inf Inf Inf Inf 92%85%
5:35 88% 88% 87% 88% 85% 84% 83% 86% 85% 86% 87% Inf Inf Inf Inf Inf Inf 88%83%
5:40 84% 88% 91% 90% 84% 89% 88% 86% 92% 91% Inf Inf Inf Inf Inf Inf Inf 92%84%
5:45 88% 90% 89% 88% 88% 87% 87% 87% 88% 86% 88% 88% 86% Inf Inf Inf Inf 90%86%
5:50 87% 89% 87% 88% 88% 89% 89% 88% 90% 90% 90% 91% 91% 91% Inf Inf Inf 91%87%
5:55 90% 89% 89% 91% 93% 93% 90% 90% 90% Inf Inf Inf Inf Inf Inf Inf Inf 93%89%
6:00 90% 90% 89% 91% 92% 87% 87% 88% 88% 87% Inf Inf Inf Inf Inf Inf Inf 92%87%
6:05 89% 89% 85% 86% 90% 89% 90% 88% 88% 90% 90% 90% Inf Inf Inf Inf Inf 90%85%
6:10 83% 83% 84% 84% 84% 85% 84% 84% 86% 84% 83% 83% 83% 83% Inf Inf Inf 86%83%
6:15 88% 87% 89% 88% 88% 88% 92% 88% 90% 90% Inf Inf Inf Inf Inf Inf Inf 92%87%
6:25 84% 86% 87% 90% 87% 89% 85% 88% 85% 88% 87% 89% 89% 91% Inf Inf Inf 91%84%
6:30 88% 88% 86% 90% 83% 88% 85% 88% 82% 84% 83% Inf Inf Inf Inf Inf Inf 90%82%

4:30 87% 90% 88% 88% 88% 86% 89% 90% 89% 90% 90% 90% 88% Inf Inf Inf Inf 90%86%
6:30

mea
n

91%84%

Table 6.9 shows the mean maxima and mean minima for the 5 minute

intervals of each of the 4 weighting schemes, 3 weighted and 1 non weighted.

The overall and each individual turning movement, Left, Through, and Right,

are calculated. The means for the W0 and W3 weighting regimes are

presented for the entire 29 intervals analyzed. The means for the W1 and W2

weighting regimes are obtained from the six 5 minute intervals investigated

from the intervals modeled between 4:55-5:25.

78

Table 6.9: Average Max and Min r2 Value for the Movements of the 5

minute Intervals

r2(%) r2(%)
Movement Weighting Max Min

W0 90.65% 84.14%
Overall W1 94.69% 92.26%

W2 94.42% 92.46%
W3 94.45% 92.58%

W0 52.00% 21.72%
Left W1 44.88% 24.08%

W2 45.25% 27.61%
W3 48.92% 32.82%

W0 67.68% 41.43%
Rights W1 77.62% 62.25%

W2 71.40% 60.22%
W3 72.53% 61.02%

W0 89.97% 82.85%
Through W1 93.60% 91.67%

W2 93.55% 92.02%
W3 93.87% 92.24%

The dynamic modeling indicates that TMERT has the ability to infer turning

movement flows in real time. Every 5 minute time interval has a maximum

r2 value of above 90%. The largest change between maximum and

minimum r2 was less than 5 % indicating that changing the φ factor value

has little effect on the model. The 5 minute detailed analyses of the individual

turning movements: Through, Right, and Left, for each of the W0, W1, W2

and W3 weighting regimes can be found in Appendices E through G.

79

Section 7 Discussion and Conclusion

In Section 7 the model performance is critically examined. The principal

findings of the research are summarized. The report closes with suggestions

for future work.

7.1. Model Formulation

As with all models which are based on a linear program, the real question is

one of problem formulation, rather than the mathematical solution. The

TMERT model has the NETFLO algorithm, which is a network form of a

minimum cost flow problem, at its mathematical core because it is

computationally very quick. The assumptions and approximations which

clothe the NETFLO code formulate the problem to constitute the TMERT

model. The formulation encompasses a network notation, detector flow

simulation, flow modeling of internal sources and sinks and a means of

constraining flow throughout. The method of constraining the network,

called the constraint regime, is at the heart of the TMERT model.

When the constraint regime is too severe, no feasible solution can be found.

When the constraint regime is lax, feasibility is readily accomplished, but a

lax constraint regime estimates flows which do not correlate well with

observed flows. So the challenge of the research presented here has been to

constrain the model as tightly as possible while retaining a feasible solution.

This had to be done in such a way that all the information available was used

in a correct and sensible way so that a particular feasible solution was

derived.

It is important that this constraint mechanism conforms to some logical

structure which will enable the model to be both repeatable and transferable.

The model should perform consistently on different data sets for it to be

repeatable. For a model to be transferable, it should perform consistently for

a different network. Repeatability has been demonstrated. The TMERT

model been shown to perform consistently on data from English surveys in

1990 and 1991, for both aggregated one hour flows, and pseudo-

dynamically using five minute flows for both years. It has now been shown

80

to be transferable, through its ability to estimate turning movement flows on

a completely different US network surveyed in 1994.

7.2. Model Limitations

There are several limitations associated with the assumption that a linear

relationship prevails between traffic flows on arcs which enter and leave

nodes. The formulation of the model assumes that arcs accept and discharge

flows with infinite elasticity. There is no recognition of the time taken for an

arc to discharge a queue. So the nodal continuity principle can be accepted

provided the modeling interval is long enough to permit flows to be absorbed

and discharged before the onset of the next modeling interval. The longest

arc, therefore will govern the minimum interval. Furthermore, as the

modeling interval is reduced, it approaches the journey time across the

network. In the limit, TMERT could be trying to model a picture of traffic

activity which is changing more rapidly than the small time frame permits.

At this point, the modeling intervals can no longer be regarded as

independent populations. Intuitively, an interval shorter than say 30 seconds,

would not be sensible. While the model can fairly be described as a real-time

model, therefore, a stepped or interval approach must be preserved with

flows estimated pseudo-dynamically. It could not perform continuously.

The TMERT model was fed simulated detector flows every five minutes.

The turning movement capacities are derived from signal timings which are

calculated from fixed parameters such as saturation flows and lost times, and

variable parameters such as cycle time and green time. A five minute

modeling interval will inevitably give on-line turning movement capacities

which include truncated cycles. This means that a truncated cycle time is

likely to contain a truncated green time and a missing portion of lost time

from either the start or end of one stage. The turning movement capacities,

therefore, suffer cyclic irregularities which depend upon the temporal

relationship between the modeling interval and the cycle time encompassed.

This problem could be obviated by synchronizing the modeling interval with

the cycle time or multiples of the cycle time. For an adaptive signal control

system such as SCOOT, this would mean that the model would have to

follow changing cycle times and, like SCOOT, operate for groups of signals

81

with common cycle times. The TMERT model could be set up to estimate

turning movement flows in a cellular structure relating to SCOOT sub-areas,

but this would detract from its strategic application.

The external flows entering and leaving the network, modeled as Cordon

Node flows, were supplied by survey data. A practical demonstration of the

TMERT model in real time, would need detectors associated with each

cordon node, including side roads. However, the TMERT model could be

applied to an extended network with a cordon which circumscribed a whole

city, crossing arterial roads with detectors, whereby lower status roads could

be avoided.

The flows which are generated and attracted internally, are mostly due to

small local parking facilities. Their magnitude relates to parking capacity. A

large capacity office car park, for example, would generate high flows, while

a small group of on-street parking spaces with short stay parking restrictions

would earn low flows. If the large car park were to fill up during the

morning peak and empty during the evening peak, with no activity during the

day, while the on-street parking spaces were busy all day with short stay

visitors, then unrealistic flows would be estimated. So, further developments

of the model would implement some form of energy index as a measure of

the liveliness of a parking facility to simulate source and sink flows more

reliably.

The flows and constraints within the SLO network are subject to

inconsistencies because of averaging data over modeling intervals. Internally

generated flows are approximations, while detected flows have to co-exist

with turning movement capacities which are derived from variable signal

settings. The error arcs associated with each detector seek to accommodate

these inconsistencies enabling feasible solutions to be found. In its working

form, TMERT would be installed so that its error arcs would also have to

absorb the effect of noisy calibrated detector flows. While the model

presented has been shown to cope with the inconsistencies turning movement

capacities, the simulation of detector flows means that it has yet to be

burdened with real detector irregularities. Furthermore, in its current state of

development, there is no means of either identifying or quantifying the degree

of inconsistency generated by each of the foregoing disruptive elements. The

82

optimum error arc upper bound factor, however, provides an indication of the

degree of adjustment which has been necessary to provide a particular

feasible solution.

7.3. Applications of the TMERT Model

As technology advances with more sophisticated communication methods,

data monitoring in co-ordinated signal control is increasing in volume and

accuracy. The manipulation of information through relational data bases is

developing in its range and subtlety so that processed data is readily available

in real time. The research presented here provides a mechanism which

enables these developing technologies to be exploited.

The TMERT model could not only take information from a database such as

flow and capacity, but could continually feed a database with turning

movement flow estimates. This long term collection of link flows,

supplemented by estimated turning flows, could provide flow patterns which

could be continuously compared with on-line flows and estimates. This

could lead to the identification of the onset of congestion. With knowledge of

link and turning movement capacities supplied through flow data and signal

settings, the turning movement estimates could enable alternative routes to be

identified. At this point, traffic could be controlled by route guidance through

variable message signs, in-car guidance, radio broadcasts or even mandatory

signal control.

The TMERT model could be used as a modeling component of an on-line

traffic control device. As the model uses flows, capacities and estimates of

turning movement flows, it could then enable the identification of the spare

capacity in a network which would prove valuable for re-routing vehicles.

There could be a quick source of advice on optimum routes for diversions

following an incident. These would be derived immediately before the

incident. Since the estimates would be no older than the modeling interval of

five minutes or perhaps a multiple of cycle time, then a traffic control center

could relay alternative routes to drivers, in real time. In the early

implementation of a prototype TMERT model, this information could be

advisory, to drivers of emergency services and later to all drivers.

83

Alternatively, as an off-line tool, the knowledge base could be used to model

both recurrent congestion and to develop a set of remedial fixed-time signal

plans for sudden incident response which could be set up with TRANSYT

using link flows from SCOOT and turning proportions supplied by the

TMERT model.

7.4. The Future of Area Traffic Signal Control

Traffic control has developed from the simple expedient of keeping drivers to

one side of the road, through isolated signal control to dynamically

responsive systems which respond to the demand for travel made by drivers.

Perhaps Area Traffic Signal Control is an inappropriate term because the

widely implemented dynamically responsive UTC Systems such as SCOOT

and SCATS monitor link flows and respond, rather than control. While

drivers may be delayed by red signal aspects to optimize network

performance, their choice of route remains sovereign. In contrast to this type

of control philosophy, commercial air traffic, for example, is quite different.

Airline pilots have no route choice, except in emergencies, and are controlled

from the ground by a series of Air Traffic Control Centers. Responsibility

for the height, speed and bearing of the aircraft is passed from one air traffic

control center to the next.

The research detailed in this report shows that turning movement flows may

be estimated in real time without the need to identify individual vehicles.

This could become an essential component of a new generation of traffic

control system. This contributes vital information to significantly the

enhance traffic monitoring, which in time could lead to better control, and

perhaps provides the foundation for a fourth generation of traffic control

systems. These advanced systems would need a complete description of the

signals and other traffic control devices over an entire city network and

surrounding area and a comprehensive set of criteria and rules defining traffic

constraints and policy. Prior to congestion, dynamically responsive systems

would provide control, while beyond congestion, TMERT could be

implemented to control through route guidance and restraint, through ramp

and meter implementation, with traffic restrained from using critical links and

junctions.

84

However, the enthusiasm for improving the capacity of urban traffic

networks through optimizing time and space, with ever more sophisticated

flow optimization techniques must be tempered with caution. By

maximizing the volume of traffic in an urban network, there is a danger that

incidents could lead to catastrophic congestion within what can be described

as a "highly strung" network. The congestion following an incident in a

maximized network could lock up an entire traffic system for hours giving

rise to the "super-jam".

7.5 Conclusions

The model has shown its ability to apply the NETFLO algorithm to

minimize a weighted objective function to balance nodal continuity

throughout a network and accurately estimate turning movements. TMERT

has also shown it repeatability on a second network producing correlation

coefficients of determination (r2) of above 90%. This correlation varies

between 90 and 96% depending on the weighting hierarchy used in

describing the network. The analysis showed that all 3 of the different

weighting systems produced maximum correlation of 96% which was

approximately 6% better than the no weighting hierarchy with a correlation of

90.4%. This indicates that some type of weighting system should be applied

to the network to differentiate the difficulties of the various maneuvers.

Martin (1992) had obtained an overall correlation of 92% on a 1 hour

aggregate test of flow data. This study provided correlations of up to 96.65%

between observed and modeled turning movement flows depending on the

weighting hierarchy. The current analysis also provided higher results for the

pseudo-dynamic modeling of 5 minute data. The model further showed its

performance and flexibility by providing these results without the need for

internal source or sink constraint loads as further data input.

This research has demonstrated how a turning movement traffic survey has

supplied enough information to test the TMERT model on a US network.

The principal findings of the research are summarized as follows:

1. The model proposed by Martin (1993) has been applied to a US

traffic network using actual traffic data, to demonstrate that turning

85

flows can be estimated reliably, in real time from flows simulated to

be detected on links.

2. The model can be constrained by a combination of arc upper bounds,

arc lower bounds, arc weights and detector flows in a systematic way

whereby each constraint relates to measurable system parameters.

3. The reliability of turning flow estimation improves with the severity

of constraint.

4. Flow inconsistencies associated with noisy traffic data, can be

overcome by using virtual "error arcs" which can be controlled

through a network wide constraint parameter, φ , the error arc upper

bound constraint factor. However, the lowest φ factor value, where

the model is most constrained, does not always provide the best

correlation of observed and modeled flows.

5. The model can predict flows over five minute intervals thereby

simulating a pseudo-dynamic environment.

4. TMERT has now been shown to work on two networks: a US and

UK and thus has demonstrated that it is a repeatable model.

5. TMERT performs as well on a US network as it did on a UK

network.

6. The TMERT model can now accept and supply its Input and Output

in an easily manipulated spreadsheet format. Future modeling will be

quicker. The model now has "front end" and "back end" interfaces so

that the whole of the TMERT model is coded.

6.1 The "front-end" pre-processing calculates the various

parameters needed by the model: error arc upper bound

constraints from the assigned constraint factor and detector

flows, and turning movement arc capacities from signal data.

6.2 The "back end" speeds the efficiency of model testing so that

larger, more complex networks can now be evaluated. The

process is now automated by coding the comparison of

86

observed and modeled turning flows to provide a

performance measure in the form of a correlation coefficient.

7. The code which invokes the NETFLO algorithm, which is

sandwiched between the two automatic procedure components has

been re-written in a structured form in C.

8. When turning movement arcs were weighted, the observed to

modeled turning movement flows were highly correlated (96% r2).

Correlation deteriorated when weights were removed (90% r2).

Therefore, turning movement weighting, by type of turn is desirable.

9. In both the UK and the US network, approximately 15% of the

internal links were detected. This suggests that a minimum number

of detectors is necessary for reliable model performance.

87

7.6 Suggestions For Future Work

For future modeling, a network should be configured before data collection to

stream line data management.

TMERT's effectiveness should be examined on a large, heavily congested

network with actual detector flows. A large city with more signal controlled

intersections and flows operating closer to capacity, with an adaptive control

system would provide a full scale demonstration of the model's flow

estimating ability.

A link analysis would determine TMERT's ability to estimate the internal link

flows which has practical value. In this way, the model could be configured

to supply real-time link flows from a large set of detector flows in place of a

small number of defective detectors.

Validation into TMERT's ability to work on several different networks is

needed to ensure that the model is capable of working on any detector layout

as the model will be used in conjunction with existing detectors of a network.

The relationship between the number and location of detectors and their effect

on TMERT's ability to estimate turning movements should be explored.

A series of traffic incidents could be simulated so that spare capacity routes

could be identified and the effect of diverting flows along spare capacity

routes could be compared to the performance of a remedial fixed-time signal

plan.

TMERT has shown its potential as an on-line traffic monitoring tool that can

be used for congestion or incident alleviation. The future direction of the

model is clear, an analysis of the model's performance involving a large

urban network with congestion flow levels at or near capacity is needed.

88

References

Bell Margaret C., Bretherton R.D. (1986) "Ageing of fixed-time traffic signal

plans"; paper presented to the IEE international conference on Road Traffic

Control, 15 - 18 April 1986.

Bell Margaret C., Gault H.E. (1982) "An empirical study of plan change

algorithms for area traffic control systems"; Paper presented at the I.E.E.

International conference on road traffic signalling, London 30 March - 1

April.

Bell Margaret C., Irvine M., Geary G (1987) "The use of automatic control

algorithms to define urban traffic routes", Paper presented to the 19th annual

UTSG Annual Conference, University of Sheffield, January 1987,

(unpublished).

Bell Margaret C., Kerridge J. (1992) "COMIS - a real time transportation

management system"; Paper presented to the 24th UTSG conference at The

University of Newcastle -Upon-Tyne, January.1992, unpublished.

Bell Margaret C., Martin P.T. (1990) "The Use of Traffic Detector Data for

Traffic Control Strategies"; The Institution of Electrical Engineers, May

1990.

Bell M.G.H. (1983) "The estimation of O-D flows and their confidence

intervals from measurements of link volumes: a computer program"; Traffic

Engineering and Control, April 1983.

Bell M.G.H., Inaudi D., Lange J., Maher M. (1991) "Techniques for the

dynamic estimation of O-D Matrices in traffic networks"; Proceedings of the

DRIVE Conference: Advanced Telematics in Road Transport, 4-6 February

1991, Brussels, pp 1040.

Cascetta E., Nguyen S. (1988) "A unified framework for estimating or

updating origin/destination matrices from traffic counts"; Transportation

Research, 22B(6), pp 437-455.

89

Cremer M., Keller H. (1981) "Dynamic identification of flows from traffic

counts at complex intersections"; Proceedings of the eighth international

symposium on transportation and traffic theory, pp 121 - 142, Toronto,

Canada, June 24 - 26 1981.

Cremer M., Keller H. (1987) "A new class of dynamic methods for the

identification of origin-destination flows". Transportation. Res.-B, Vol 21B,

No 2, pp. 117-132.

Danzig G.B., Orden A., Wolfe P. (1951) "The Generalised Simplex Method

for Minimizing a Linear Form under Linear Inequality Restraints"; Pacific

Journal of Mathematics, 5, 2, 183-195.

Davies P., Salter D.R., Bettison M. (1982) "Loop sensors for vehicle

classification"; Traffic Engineer and Control, February, pp55 - 59.

Echenique M.L., Williams J. (1982) "O-D matrix production from cordon

survey data"; Traffic Engineering and Control, Dec. 82, 584-589.

Euler G. (1988) "Issues in real time control of traffic"; Workshop Report.

Management and Control of Urban Traffic Systems. US Engineering

Foundation Press, New York, pp 53-63.

Fisk C.S. (1988) "On combining maximum entropy trip matrix estimation

with user optimal assignment"; Transportation Research, 22B(1), pp 69-79.

Fisk C.S., Boyce D.E. (1983) "A note on trip matrix estimation from link

traffic count data"; Transportation Research, 17B(3), pp 245-250.

Gartner N.H. (1982) "Development and testing of a demand responsive

strategy for traffic signal control"; Proc. 1982 Americal Control Conf. pp

578-83.

Gartner N.H. (1983) "OPAC: A demand-responsive strategy for traffic

signal control"; Trans. Res. Rec. 906, 75-81.

Glover F., Hultz J., Klingman D.(1977) "Improved Computer-Based

Planning Techniques"; Research Report CCS 283, Center for Cybernetic

Studies, The University of Texas, Austin, Texas.

90

Glover F., Karney D., Klingman D., Napier A. (1974) "A Computational

Study on Start Procedures, Basis Change Criteria, and Solution Algorithms

for Transportational Problems"; Management Science, 20, 5, 793-813

Hall M.D., Van Vliet D., Willumsen L.G. (1980) "SATURN - a

simulation-assignment model for the evaluation of traffic management

schemes"; Traffic Engineering and Control, April 1980.

Hauer E., Shin B-Y. T.(1981) "Origin-destination matrices from traffic

counts: application and validation on simple systems"; Traffic Engineering

and Control, Vol 22, No 3, pp 118-121.

Henry J.J., Farges J.L.(1989);"PRODYN"; Proc., 6th IFAC-IFIP-FORS

Symp. Transportation. Pergamon, Oxford, pp.505-7.

Highway Capacity Manual (1985), Special Report 209, Second Edition,

Revised, Transportation Research Board, Washington, DC., 1992.

Highway Capacity Software (1992) Rd. 1.30, Distributed by McTrans Center

for Federal Highway Authority.

Holroyd J., Robertson D.I. (1973) "Strategies for area traffic control

systems: present and future"; TRRL Report LR 569, Crowthorne.

Humphrey T.L., Wong, P.J. (1976) "Improved control logic for use with

computer-controlled traffic"; NCHRP Report 3-18 (1)/1 by Stanford

Research Institute, March 1976.

Hunt P.B., Robertson D.I., Bretherton R.D., Winton R.I. (1981) "SCOOT

- A traffic responsive method of coordinating signals"; TRRL Report

LR1014, Crowthorne.

Irving J.M., Oakley, C.F., Ramsey J.B.H. (1986) "The updating of an O-D

matrix: a maximum likelihood approach"; Traffic Engineering and Control,

27(9), pp442-446, September 1986.

Jarrett D.F., Wright, C.C. (1990) "Estimating Origin-Destination traffic

flows from the random variability in automatic detector counts: a preliminary

analysis"; PTRC Summer Annual Meeting, September 1990.

91

Jeffreys M., Norman M. (1977) "On finding realistic turning flows at road

junctions"; Traffic Engineering and Control, 18(1), January 1977, 19-21, 25

(an addendum to this article was published in the April 1977 issue p. 207).

Johnson E. L. (1966) "Networks and Basic Solutions"; Operational

Research, 14, 619-623.

Kennington,J.L., Helgason R.V. (1980) "Algorithms for network

programming"; A Wiley Inter-Science Publication, John Wiley and Sons.

Koshi M. (1988) "An overview of area control systems and motor vehicle

navigation/ route guidance developments in Japan"; Setember 1988.

Logie M., Hynd A. (1989) "Trip matrix estimation from varied data

sources"; Proceedings of Seminar C, PTRC 17th Summer Meeting,

University of Sussex, September 1989.

Luk J.Y.K., Sims A.G., Lowrie P.R. (1982) "SCATS - application and field

comparison with a TRANSYT optimized fixed time system"; Paper

presented to the IEE international conference on Road Traffic Signalling, 3

March - 1 April 1982.

Maher M.J. (1983) "Inferences on trip matrices from observations on link

volumes: a Bayesian statistical approach"; Transportation Research B, Vol

17B, No 6, pp 435-447.

Maher M.J. (1987) "Bias in the estimating of O-D flows from link counts";

Traffic Engineering and Control, 28(12), pp 624-627.

Martin P.T. and Bell Margaret C. (1991) "Turning Movements from

Detector Flows Using State Estimation Theory: Some Early Findings" ,

Universities Transport Study Group (UTSG) Annual Conference, University

of Nottingham, January 1991.

Martin P.T. and Bell Margaret C.(1992a) "Linear Programming and Flow

Detection", Universities Transport Study Group Annual Conference,

Universities of Newcastle, January 1992.

92

Martin P.T. and Bell Margaret C.(1992b) "Network Programming to Derive

Turning Movements from Link Flows", Transportation Research Board

Record 1365, 147-154, 1992

Martin P.T.(1992) "Urban Traffic Movement Prediction From Automatic

Flow Detectio," PhD thesis, University of Nottingham, March 1992.

Martin P.T.(1993) "Can Operational Research Tackle Traffic Congestion?",

Operational Research Insight, volume 6, issue 1, pp 4-9, January 1993.

McDonald M., Hounsell,N.B., Sittampolam, N., McLeod F.N. (1987)

"Traffic Incidents and route Guidance in a SCOOT Network"; Final Report

to the SERC, Contract No. GR/D/36824.

Mountain L.J. (1983) "The accuracy of turning flows estimates at

intersections"; Presented at the 15th UTSG Conference 1983.

Murchland J. (1977) "The multi-proportional problem"; Research Note

JDM 263, Transport Studies Group, University College, London.

Nguyen S. (1977) "Estimating an O-D matrix from network data, a network

equilibrium approach. Publication no. 60"; Center de recherche sur les

transports, Universite of Montreal.

Oh J. (1989) "Estimation of trip matrices in networks with equilibrium

flows"; Proceedings of Seminar C, PTRC 17th Summer Meeting, University

of Sussex, September 1989.

Ploss G., Keller,H. (1986) "Dynamic Estimation of Origin and Destination

Flows from Traffic Counts in Networks". Transportation System Analysis

and Policy Studies. Proc. of the Int. Conference on Transportation System

Studies (P S Satsangi, A L Agarwal Ed), Tata McGraw-Hill, Delhi, pp. 211-

221.

Rach L. (1976) "The development and evaluation of Metropolitan Toronto's

read time program for computerised traffic control devices"; Paper to the 3rd

IFAC International Symposium on Control in Transportation Systems,

Columbus, Ohio. August 1976.

93

Robertson D.I. (1969) "TRANSYT: A Traffic Network Study Tool"; Road

Research Laboratory Report LR 253, Crowthorne, Berkshire.

Robertson D.I. (1984) "Estimating origin-destination flows by simulating

trip choice"; Traffic Engineering and Control, July 1984.

Robillard P. (1975) "Estimating the origin-destination matrix from observed

link volumes", Transportation Research 9, pp 123-128.

Selby D.L., Powell R.J. (1985) "SCOOT in Southampton", PTRC,

Procedings of the Annual Summer Meeting, pp 97-109.

Sheffi Y., Daganzo C. (1979) "Hypernetworks and supply / demand

equilibrium obtained with disaggregate demand models"; Transport

Research Record 673, Transport Research Board, Washington DC, 1979,

113-120.

Smith M.J. (1979) "Traffic control and route choice: a simple example";

Transportation Research, 13B, pp289-294.

Spiess H. (1987) "A maximum likelihood model for estimating origin-

destination matrices", Transportation Research -B Vol 21B, No 5, pp 395-

412.

Srinivasan V., Thompson G.L. (1973) "Benefit-Cost of Coding Techniques

for the Primal Transportational Algorithm" Journal for the Association for

Computing Machinery, 20, 194-213.

Stark D.C. (1989) "Estimating trip matrices from traffic counts",

Proceedings of Seminar C, PTRC 17th Summer Meeting, University of

Sussex, September 1989.

Timms P. (1990) "The estimation of origin-destination matrices using link

counts and "old" matrix information"; Universities Transport Study Group

Annual Conference, Hatfield Polytechnic, January 1990 (unpublished).

Van Vliet D., Dow P.D.C. (1979) "Capacity-restrained road assignment";

Traffic Engineering and Control, June, 296 - 305.

94

Van Zuylen H.J. (1979) "The estimation of turning flows on a junction";

Traffic Engineering and Control, Vol 20, pp 539-541.

Van Zuylen H.J. (1981) "Some improvements on the estimation of an

origin-destination matrix from traffic counts"; Proceedings of the 8th

International Symposium on Transportation and Traffic Theory, Toronto

University, June 1981.

Van Zuylen H.J., Willumsen L.G. (1980) "The most likely trip matrix

estimated from traffic counts"; Transport Research B, Vol 14B, pp 281-293.

Williams H.C.W.L. (1976) "On the formation of travel demand models and

economic evaluation measures of user benefit."; SRC Transport Study

Working Paper 80, Institute of Transport Studies, University of Leeds

Willumsen L.G. (1981) "Simplified transport models based on traffic

counts"; Transportation Research, 10, 257-278

Willumsen L.G. (1982) "Estimation of trip matrices from volume counts

validation of a model under congested conditions"; PTRC 10th Summer

Annual Meeting, 12-15 July 1982, Transportation Analysis and Models

Seminar.

Wilson A.G. (1970) "Entropy in urban and regional modeling"; Pion,

London 1970.

Wright C.C. (1974) "A second method of estimating traffic speeds from

flows observed at the ends of a road link"; Traffic Engineering and Control,

15, 9, 432-434.

95

Contact Author for Appendix information

Appendix

Appendix A Input and Output Files for overall 2-hr Modeling

Appendix B NETFLO Code

Appendix B: NETFLO Code

NetTest.c

/* TMERT
rewritten by Kang Su Gatlin
5/24/94
THINK C 6.0

This program utilizes the algorithm outlined by JL Kennington and
RV Helgason

from their text "Algorithms for Network". This network uses an All-
Artificial

Start heuristic. (See corresponding TMERT paper for more in-depth
explanation).

It uses an input that is readable and writable from MS-Excel in text
format.

for Dr. Peter Martin
*/

#include <stdio.h>
#include <math.h>
#include "NetTest.h"

#define MAX_ARCS 500
#define MAX_NODES 150
#define FALSE 0
#define TRUE1
#define BIG 9000 /* Simply just a big number that can be
doubled and still be an int */
#define SLACK 1024
#define ARTIF 2048
#define DUMMY 4096

96

#define XCESS 8182

/* This huge amount of global variables has been used for simplicity. This is
a port

from Excel where all variables are global and the function calls
change a huge number

of values. There wasn't enough time to make logical structures.
*/
FILE *fp;
int fnode[MAX_ARCS+1], tnode[MAX_ARCS+1], carc[MAX_ARCS+1],
uarc[MAX_ARCS+1],flow[MAX_NODES+1];
int lwarc[MAX_ARCS+1], named[MAX_ARCS+1], narc, mnode, i, j, l,
cat[MAX_NODES+1], lnodp1, mnodp2;
int lnode, down[MAX_NODES+1], next[MAX_NODES+1],
level[MAX_NODES+1], arcid[MAX_NODES+1];
int dual[MAX_NODES+1], larc, marc, from[MAX_ARCS+1],
cost[MAX_ARCS+1], capac[MAX_ARCS+1];
int flor[MAX_ARCS+1], name[MAX_ARCS+1], to, price0, too, cst,
mnodp1, k, mtree, mslk;
int try, price, newarc, newpr, newfrm, newto, thd, dw[3], ch[3], dwn,
chg, theta;
int net, i200, nxt, nstop, mreg, msorc, iarc, m, n, ii, jj, kk, inod;
int jtheta, ktheta, poss, jposs, frm, lvj, fm, lst, dwe, flw, aid, q1, q2, dir,
ref;
int counti, countj, iter, larcp1, ldiff, countk, countl, itheta,
copy_from[MAX_ARCS+1];
int lstar, lsave, ideg, kdeg, iwarn, counter, j80, i70, k70,
copy_to[MAX_ARCS+1];
long kost, kost0;
char skipalot, loop, input_name[20], output_name[20];
char infeas, optim, stuffthenbig, bigloop, skipit, loopagain, alldone, skipit2;

void main()
{

/* Gets the names of the input */

printf("NETFLO\n");
printf("Enter the name of the file with the input data\n");
scanf("%s", input_name);
printf("Enter the name of the desired output file. If it exists it

will be overwritten.\n");
scanf("%s", output_name);
fp = fopen(input_name, "r");

/* Gets the number of arcs and nodes. */

fscanf(fp, "%d%d", &narc, &mnode);
for(;;)

97

{
fscanf(fp, "%d ", &i);
if(i == 0)

break;
fscanf(fp, "%d", &j);
flow[i] = j;
fscanf(fp, "%d", &cat[i]);

}

i = 0;
for(i = 1; ;i++)
{

fscanf(fp, "%d%d%d%d%d%d", &named[i],
&fnode[i], &tnode[i], &carc[i], &uarc[i], &lwarc[i]);

copy_to[i] = tnode[i];
copy_from[i] = fnode[i];
if(fnode[i] == 0)

break;
}
netf();

}

/* This is the main network flow algorithm. This is essentially the main
part of the
code. */
void netf()
{
/* Initialize all the node sets */

iwarn = 0;
lnode = MAX_NODES;
larcp1 = MAX_ARCS;
larc = larcp1 - 1;
lnodp1 = lnode + 1;
i = mnode;
nstop = 3;
if(i <= 0)

end_code();
mnodp1 = mnode + 1;
mnodp2 = mnode + 2;
nstop = 4;
if(mnodp1 > lnode)

end_code();
for(counter = 1; counter <= mnodp1; counter++)
{

down[counter] = 0;
next[counter] = 0;
level[counter] = 0;

98

arcid[counter] = 0;
}

/* Here we initialize the artificial arcs */
initialize_artf();

 /* This part right here is the basic feasibility test */
 nstop = 8;
 if(net < 0)
 end_code();
 nstop = 10;
 i = 1;
 j = 0;
 for(j80 = 1; j80 <= mnode; j80++)
 {
 i = -i;
 k70 = max(1, cat[j80]);
 if(j+k70 > larc)
 end_code();

cat[j80] = isign(j + 1, i);
for(i70 = 1; i70 <= k70; i70++)
{

j++;
from[j] = isign(j80, i);
cost[j] = 0;
capac[j] = -BIG;
flor[j] = 0;
name[j] = DUMMY;

}
}
marc = j +1;
if(marc > larc)

end_code();
from[marc] = isign(mnodp1, -i);
kost0 = 0;
iarc = 0;

/* We now move the arcs to prepare for the artificial arcs */
move_arc();

eliminate_arcs();

/* Add the artificial arcs */
add_excess_arc();

/* link the arcs to the tree */
set_link();

99

/* Expand the tree if necessary */
set_expansion();
clear_stuff();
while(TRUE)
{

while(TRUE)
{

while(TRUE)
{

skipalot = FALSE;

/* Do the incremental Flow change */
flow_change();

if(skipalot)
break;

/* Check the ratios of the new set of flows.
Check if the new flows

are optimal (check the objective
function */

ratio_test();
/* Update the flow */
update_flow();
if(jtheta != 0)

break;
capac[newarc] = -capac[newarc];

}
if(skipalot)

break;
/* Set the new flow if it seems satisfactory */
setnflow();

/* Change the tree based on star structure */
dostar();

/* Get the next node ready */
next[k] = nxt;
next[thd] = next[q2];
next[q2] = q1;
down[q1] = q2;

}
skipalot = FALSE;
infeas = FALSE;
/* Compute the final kost of the network */
kost = kost0;
for(counti = 1; counti <= mnode; counti++)
{

i = abs(arcid[counti]);

100

if(flow[counti] != 0 && cost[i] == BIG)
infeas = TRUE;

kost = kost + cost[i] *flow[counti];
}
for(counti = 1; counti <= mslk; counti++)
{

if(capac[counti] >= 0)
continue;

countj = -capac[counti];
kost = kost + cost[counti]*countj;

}

/* Check to make sure the network isn't funny! */
if(infeas)
{

if(optim)
printf("\nUh oh there is an error here.

Infeasible but yet optimal!\n");
nstop = 20;

}
if(!optim)
{

iter--;
continue;

}
if(infeas)
{

printf("\nThe Network is infeasible, and not
optimal.\n");

end_code();
}

/* Sends the output data the final arrays */
flows2cells();
/* End of the code and the final output */
end_code();

}
}

/* Name: flows2cells
This function computes the final flows and costs of the arcs. It

moves the data
to new arrays to do this. Essentially simple computational.

*/
void flows2cells()
{

for(counti = 1; counti <= mnode; counti++)
{

countj = abs(arcid[counti]);

101

capac[countj] = -flow[counti];
}
to = 1;
try = 1;
frm = from[try];
while(TRUE)
{

lst = isign(lnodp1, frm);
while(TRUE)
{

if(0 > -capac[try])
flw = 0;

else
flw = -capac[try];

flw += flor[try];
fm = abs(frm);
cst = flw * cost[try];
fnode[try] = fm;
tnode[try] = to;
carc[try] = cst;
uarc[try] = flw;
try++;
frm = from[try];
if((frm ^ lst) > 0)

continue;
break;

}
to++;
if(to != mnodp1)

continue;
break;

}
}

/* Name: end_code
This code is at the end of the program. It prints out the output data to

an output
file and ends the program.

*/
void end_code()
{

FILE *wfp;
int arc_num[MAX_ARCS+1];
char dupl_arc[MAX_ARCS+1];
int temp;

if(infeas)
printf("\nThe Network is infeasible\n");

else

102

printf("\nThe Network is feasible\n");

if(optim)
printf("\nThe Network is optimal.\n");

else
printf("\nThe Network is NOT optimal.\n");

for(temp = 0; temp <= MAX_ARCS+1; temp++)
dupl_arc[temp] = 0;

fclose(fp);
wfp = fopen(output_name, "w");
fprintf(wfp,"Cost = %ld\n", kost);
fprintf(wfp, "Arc Num\tFrom\tTo\tCost\tFlow\n");
for(n = 1; n <= marc; n++)
{

if(fnode[n] == tnode[n])
continue;

arc_num[n] = find_arc(fnode[n], tnode[n]);
temp = arc_num[n];
dupl_arc[temp] = dupl_arc[temp] + 1;
if(dupl_arc[temp] > 1)

arc_num[n] = find_arc_nextn(fnode[n], tnode[n],
dupl_arc[temp]);

}

sort_arcs(arc_num);

for(n = 1; n <= marc; n++)
{

if(fnode[n] == tnode[n])
continue;

fprintf(wfp,"%d\t%d\t%d\t%d\t%d\n", arc_num[n], fnode[n],
tnode[n], carc[n], uarc[n]);

}
printf("\nALL DONE!\n");
fclose(wfp);
exit(0);

}

/* Name: find_arc_nextn
This function will find the nth arc in the list that has a fnode equal to

from and
a tnode equal to 'to'.

*/
int find_arc_nextn(int from, int to, int arcs)
{

int counter;
for(counter = 1; counter <= marc; counter++)

103

{
if(from == copy_from[counter] && to == copy_to[counter])
{

arcs--;
if(arcs == 0)

return(named[counter]);
}

}
}

/* Name: sort_arcs
This sorts the list of arcs and the corresponding data.
Currently this uses the slow bubblesort.

*/
void sort_arcs(int arc_name[])
{

int a, b;
int temp1, temp2, temp3, temp4, temp5;
for(a = 1; a <= marc; a++)

for(b = 1; b <= marc; b++)
{

if(arc_name[a] < arc_name[b])
{

temp1 = arc_name[b];
temp2 = fnode[b];
temp3 = tnode[b];
temp4 = carc[b];
temp5 = uarc[b];
arc_name[b] = arc_name[a];
fnode[b] = fnode[a];
tnode[b] = tnode[a];
carc[b] = carc[a];
uarc[b] = uarc[a];
arc_name[a] = temp1;
fnode[a] = temp2;
tnode[a] = temp3;
carc[a] = temp4;
uarc[a] = temp5;

}
}

}

/* Name: find_arc
This will find the first arc in the list that corresponds to from, to.

*/
int find_arc(int from, int to)
{

int counter;
for(counter = 1; counter <= marc; counter++)

104

if(from == copy_from[counter] && to == copy_to[counter])
return(named[counter]);

}

/* Name: ratio_test
This ratio_test function will check the ratio's of the newly computed

arcs to
see if the new flows have helped improve the network

*/
void ratio_test()
{

newfrm = abs(from[newarc]);
theta = abs(capac[newarc]);
jtheta = 0;
ch[2] = isign(larcp1, capac[newarc]);
ch[1] = -ch[2];
dw[1] = newfrm;
dw[2] = newto;
ldiff = level[newfrm] - level[newto];
ktheta = 1;
if(ldiff == 0)

goto fourfifty;
if(ldiff > 0)

goto threeninety;
ktheta = 2;

threeninety:
dwn = dw[ktheta];
chg = ch[ktheta];
countk = abs(ldiff);
for(counti = 1; counti <= countk; counti++)
{

if((chg ^ arcid[dwn]) > 0)
goto fourten;

i = abs(arcid[dwn]);
poss = capac[i] - flow[dwn];
jposs = -dwn;
goto fourtwenty;

fourten:
poss = flow[dwn];
jposs = dwn;

fourtwenty:
if(theta <= poss)

goto fourthirty;
theta = poss;
jtheta = jposs;
if(theta == 0)

return;
fourthirty:

dwn = down[dwn];

105

}
dw[ktheta] = dwn;

fourfifty:
foursixty:

if(dw[1] == dw[2])
goto fivetwenty;

for(countl = 1; countl <= 2; countl++)
{

dwn = dw[countl];
if((ch[countl] ^ arcid[dwn]) > 0)

goto foureighty;
i = abs(arcid[dwn]);
poss = capac[i] - flow[dwn];
jposs = -dwn;
goto fourninety;

foureighty:
poss = flow[dwn];
jposs = dwn;

fourninety:
if(theta <= poss)

goto fivezero;
theta = poss;
jtheta = jposs;
ktheta = countl;
if(theta == 0)

return;
fivezero:

dw[countl] = down[dwn];
}
goto foursixty;

fivetwenty:
dwe = dw[1];

}

/* Name: dostar
This function continuously updates the duals and creates a star like

structure
(where all the nodes eventually have arcs to the root)

*/
void dostar()
{

if(theta != 0)
{

chg = isign(theta, ch[ktheta]);
while(TRUE)
{

updatedual();
if(i == itheta)

return;

106

flw = n - chg *dir;
aid = -isign(ref, dir);
next[k] = nxt;
next[thd] = j;
k = i;
i = j;
j = down[j];
down[i] = k;
lstar++;

}
}
while(TRUE)
{

updatedual();
if(i == itheta)

return;
flw = n;
aid = -isign(ref, dir);
next[k] = nxt;
next[thd] = j;
k = i;
i = j;
j = down[j];
down[i] = k;
lstar++;

}
return;

}

/* Name: updatedual
Simply updates the duals as we tighten the tree into the star.

*/
void updatedual()
{

dual[i] = dual[i] + newpr;
n = flow[i];
flow[i] = flw;
dir = isign(1, arcid[i]);
ref = abs(arcid[i]);
arcid[i] = aid;
lsave = level[i];
ldiff = lstar - lsave;
level[i] = lstar;
thd = i;
while(TRUE)
{

nxt = next[thd];
if(level[nxt] <= lsave)

break;

107

level[nxt] = level[nxt] + ldiff;
dual[nxt] = dual[nxt] + newpr;
thd = nxt;

}
k = j;
while(TRUE)
{

l = next[k];
if(l == i)

return;
k = l;

}
}

/* Name: setnflow
Set the negative flows so that we can't send flows through an arc

more than
can be contained in the arc.

*/
void setnflow()
{

itheta = abs(jtheta);
if(jtheta <= 0)
{

j = abs(arcid[itheta]);
capac[j] = -capac[j];

}
flw = theta;
if(capac[newarc] <= 0)
{

capac[newarc] = -capac[newarc];
flw = capac[newarc] - flw;
newpr = -newpr;

}
if(ktheta == 2)
{

q1 = newto;
q2 = newfrm;
aid = newarc;

}
else
{

q1 = newfrm;
q2 = newto;
aid = -newarc;
newpr = -newpr;

}
i = q1;
j = down[i];

108

lstar = level[q2] + 1;
}

/* Name: update_flow
This function updates the flows in an incremental manner. This is

defined
by the chg variable.

*/
void update_flow()
{

ideg++;
if(theta != 0)
{

ideg--;
if(iter < kdeg)

kdeg = iter;
dw[1] = newfrm;
dw[2] = newto;
if(jtheta != 0)

dw[ktheta] = abs(jtheta);
for(counti = 1; counti <= 2; counti++)
{

dwn = dw[counti];
chg = isign(theta, ch[counti]);
while(TRUE)
{

if(dwn == dwe)
break;

flow[dwn] = flow[dwn] - chg * isign(1,
arcid[dwn]);

dwn = down[dwn];
}

}
}

}

/* Name: flow_change
This function changes the flows depending on the weights. It does

this by changing
the newxxx variables and then later applying them to the arrays.

*/
void flow_change()
{

iter++;
too = to;
newpr = 0;
while(TRUE)
{

109

price0 = -dual[to];
lst = isign(lnodp1, frm);
while(TRUE)
{

fm = abs(frm);
price = dual[fm] + price0 - cost[try];
if(capac[try] < 0)

price = -price;
if(capac[try] != 0)
{

if(price > newpr)
{

newarc = try;
newpr = price;
newto = to;

}
}
try++;
frm = from[try];
if((frm ^ lst) > 0)

continue;
break;

}
to++;
if(to == mnodp2)
{

to = 1;
try = 1;
frm = from[try];

}
if(newpr != 0)

return;
if(to != too)

continue;
optim = TRUE;
skipalot = TRUE;
return;
break;

}
}

/* Name: clear_stuff
Just initializes alot of the arrays. Either sets them to zero or

someother well
defined value (like the BIG value or its negation)

*/
void clear_stuff()
{

for(counti = 1; counti <= mnode; counti++)

110

{
countj = abs(arcid[counti]);
capac[countj] = -capac[countj];

}
for(counti = 1; counti <= marc; counti++)
{

if(capac[counti] + BIG == 0)
capac[counti] = 0;

}
capac[0] = BIG;
capac[marc] = BIG;
to = 1;
try = 1;
frm = from[try];
iter = 0;
optim = FALSE;
ideg = 0;
kdeg = BIG;

}

/* Name: set_expansion
Here is where we expand the tree to add all of the nodes that may not

have got
connected to the artificial arc directly.

*/
void set_expansion()
{

loop = FALSE;
to = 1;
try = 1;
frm = from[try];
while(TRUE)
{

if(mtree == mnode)
return;

too = to;
newpr = BIG;
while(TRUE)
{

lvj = level[to];
lst = isign(lnodp1, frm);
while(TRUE)
{

while(TRUE)
{

loop = FALSE;
if(capac[try] <= 0)

break;
m = cost[try];

111

if(newpr < m)
break;

fm = abs(frm);
if(level[fm] == 0)
{

if(lvj == 0)
break;

i = to;
j = fm;
k = -m;
l = -try;

}
else
{

if(lvj != 0)
break;

i = fm;
j = to;
k = m;
l = try;

}
newpr = m;
break;

}
try++;
frm = from[try];
if((frm ^ lst) > 0)

continue;
break;

}
to++;
if(!(to != mnodp1))
{

to = 1;
try = 1;
frm = from[try];

}
if(newpr != BIG)
{

arcid[j] = l;
down[j] = i;
next[j] = next[i];
next[i] = j;
level[j] = level[i] + 1;
dual[j] = dual[i] - k;
newarc = abs(l);
capac[newarc] = -capac[newarc];
mtree++;
loop = TRUE;

112

break;
}
if(to != too)

continue;
break;

}
if(loop)
{

loop = FALSE;
continue;

}
for(counti = 1; counti <= mnode; counti++)
{

if(level[counti] != 0)
continue;

if(!(arcid[counti] == -1))
{

countj = cat[counti];
if(!(abs(from[countj]) != counti))
{

printf("\nWe have an isolated NODE
in the Network\n");

iwarn = 1;
}

}
arcid[counti] = 0;
flow[counti] = 0;
next[counti] = next[mnodp1];
next[mnodp1] = counti;
down[counti] = mnodp1;
level[counti] = 1;
dual[counti] = -BIG;
loop = FALSE;

}
break;

}
}

/* Name: unavailable
If the flow in a particular arc is negative, then it is unavailable then
we must find alternate routes for the flow. This function works on

the
alternative routes.

*/
void unavailable()
{

while(TRUE)
{

113

skipit2 = FALSE;
if(capac[try] > 0)
{

fm = abs(frm);
if(level[fm] == 0)
{

price = cost[try];
if(price < newpr)
{

newarc = try;
newpr = price;
if(newpr == 0)

skipit2 = TRUE;
}

}
}
if(!skipit2)
{

try++;
frm = from[try];
if((frm ^ lst) > 0)

continue;
if(newarc == 0)
{

k = 0;
addchain();
bigloop = TRUE;
return;

}
}
break;

}
fm = abs(from[newarc]);
if(capac[newarc] <= flow[to])
{

flw = capac[newarc];
capac[newarc] = -flw;
flow[fm] = flw;
flow[to] -= flw;
down[fm] = to;
down[mnodp1] = fm;
level[fm] = -1;
bigloop = TRUE;
return;

}
capac[newarc] = -capac[newarc];
flow[fm] = flow[to];
down[fm] = down[to];
down[to] = fm;

114

down[mnodp1] = fm;
next[fm] = to;
arcid[to] = newarc;
level[fm] = level[to] - 1;
dual[to] = newpr;
mtree++;
bigloop = TRUE;

}

/* Name: setfrom
This function just checks the last node and the from node aren't on
the same side.

*/
void setfrom()
{

try++;
frm = from[try];
if((frm ^ lst) > 0)

loopagain = TRUE;
else
{

skipit = FALSE;
loopagain = FALSE;

}
}

/* Name: enoughsupply
enough supply set will set a newpr and arc based upon where more

flow is going
, to the 'to' node or the 'from' node.

*/
void enoughsupply()
{

if(flow[fm] < flow[to])
{

setfrom();
return;

}
newarc = try;
newpr = price;
if(newpr == 0)
{

skipit = TRUE;
alldone = TRUE;
return;

}
setfrom();

}

115

/* Name: nomarc
This applies negative flows to an arc that is filled to capacity.

*/
void nomarc()
{

capac[newarc] = -capac[newarc];
fm = abs(from[newarc]);
flow[fm] -= flow[to];
k = BIG;

}

/* Name: addchain
addchain will add the new arcs to the tree. This is relatively

straightforward.
*/
void addchain()
{

bigloop = FALSE;
down[mnodp1] = down[to];
fm = abs(from[newarc]);
arcid[to] = newarc;
dual[to] = newpr;
down[to] = fm;
i = next[fm];
next[fm] = to;
j = level[fm] - level[to] + 1;
thd = fm;
while(TRUE)
{

thd = next[thd];
l = level[thd];
level[thd] = l + j;
k -= dual[thd];
dual[thd] = k;
if(l != -1)

continue;
break;

}
next[thd] = i;
mtree++;
bigloop = TRUE;

}

/* Name: set_link
This will set up the links to the newly created artificial nodes.
See the algorithm as outlines in the corresponding paper by Martin

and Gatlin.

116

This part is very complex and can't be given justice in the code.
*/
void set_link()
{

while(TRUE)
{

stuffthenbig = FALSE;
to = down[mnodp1];
if(to == mnodp1)

break;
while(TRUE)
{

skipit = FALSE;
stuffthenbig = FALSE;
bigloop = FALSE;
newarc = 0;
newpr = BIG;
if(flow[to] == 0)
{

k = 0;
addchain();
bigloop = TRUE;
break;

}
try = cat[to];
frm = from[try];
lst = isign(lnodp1, frm);
check_all();
if(!skipit)
{

if(newarc == 0)
{

stuffthenbig = TRUE;
bigloop = FALSE;
break;

}
}
if(newarc <= 0)
{

newarc = -newarc;
fm = abs(from[newarc]);
flw = capac[newarc];
capac[newarc] = -flw;
flow[fm] -= flw;
flow[to] -= flw;
continue;

}
nomarc();
addchain();

117

bigloop = TRUE;
break;

}
if(bigloop)

continue;
if(!stuffthenbig)

break;
stuffthenbig = FALSE;
try = cat[to];
frm = from[try];
unavailable();

}
}

/* Name: check_all
This function will check the negatives in the matrix and the objective
function to see if we have improved.

*/
void check_all()
{

while(TRUE)
{

loopagain = FALSE;
alldone = FALSE;
skipit = TRUE;
if(capac[try] <= 0)
{

setfrom();
if(loopagain)

continue;
return;

}
fm = abs(frm);
if(level[fm] != 1 || arcid[fm] == 0)
{

setfrom();
if(loopagain)

continue;
return;

}
price = cost[try];
if(price >= newpr)
{

setfrom();
if(loopagain)

continue;
return;

}

118

if(capac[try] > flow[to])
{

enoughsupply();
if(loopagain)

continue;
return;

}
if(flow[fm] < capac[try])
{

setfrom();
if(loopagain)

continue;
return;

}
newarc = -try;
newpr = price;
if(newpr == 0)

return;
setfrom();
if(loopagain)

continue;
return;

}
}

/* Name: add_excess_arc
Add the new arcs to the new excess node. This becomes the
basis of the artificial arcs heuristic.

*/
void add_excess_arc()
{

mslk = marc;
marc++;
from[marc] = isign(mnodp2, -i);
cost[marc] = BIG;
capac[marc] = 0;
flor[marc] = 0;
name[marc] = XCESS;
net = 0;
mtree = 0;
thd = mnodp1;
for(i200 = 1; i200 <= mnode; i200++)
{

j = flow[i200];
net += j;
if(j < 0)
{

flow[i200] = -j;

119

dwn = mnodp1;
while(TRUE)
{

nxt = down[dwn];
if(flow[nxt] + j <= 0)

break;
dwn = nxt;

}
down[dwn] = i200;
down[i200] = nxt;
level[i200] = -1;

}
if(j > 0)
{

mtree++;
arcid[i200] = -marc;
flow[i200] = j;
next[thd] = i200;
down[i200] = mnodp1;
next[i200] = mnodp1;
level[i200] = 1;
dual[i200] = BIG;
thd = i200;

}
}
nstop = 16;
if(net < 0)

end_code();
nstop = 0;

}

/* Name: eliminates_arcs
Despite the name, what we are actually doing is changing a portion of

the
arcs to SLACK or DUMMY arcs. This in effect eliminates arcs

from the actual
network.

*/
void eliminate_arcs()
{

int j190;

i = lnodp1;
k = 0;
l = 0;
marc--;
for(j190 = 1; j190 <= marc; j190++)
{

j = from[j190];

120

if(!(((i ^ j) > 0) && (abs(j) == l)))
{

if(!((i ^ j) > 0))
{

i = -i;
l++;
cat[l] = k + 1;

}
k++;
if(k != j190)
{

from[k] = from[j190];
cost[k] = cost[j190];
capac[k] = capac[j190];
flor[k] = flor[j190];
name[k] = name[j190];

}
}

}
marc = k;
mreg = k;
nstop = 15;
if(marc + max(1, msorc) + 1 > larc)

end_code();
i = -from[marc];
thd = next[mnodp1];
next[mnodp1] = mnodp1;
if(!(thd != mnodp1))
{

marc++;
from[marc] = isign(mnodp1, i);
cost[marc] = 0;
capac[marc] = -BIG;
flor[marc] = 0;
name[marc] = DUMMY;

}
else
{

while(TRUE)
{

marc++;
name[marc] = SLACK;
from[marc] = isign(thd, i);
cost[marc] = 0;
capac[marc] = level[thd];
level[thd] = 0;
flor[marc] = 0;
nxt = next[thd];
next[thd] = 0;

121

thd = nxt;
if(!(thd != mnodp1))

break;
}

}
}

/* Name: move_arc
The arcs in the original network may have to be moved to allow for
proper formation of the artificial arcs. This is done here. The setting
of n to 'a' in the code is actually setting n to the designation 'arc'.

*/
void move_arc()
{
int j120, m120, l120, j130, k120;

while(TRUE)
{

iarc++;
if(iarc > narc)

break;
n = 'a';
i = fnode[iarc];
j = tnode[iarc];
k = carc[iarc];
l = uarc[iarc];
m = lwarc[iarc];
nstop = 12;
if((i <= 0) || (i > mnode) || (j > mnode) || (j <= 0))

end_code();
nstop = 13;
if(l >= BIG)

end_code();
if(l < 0)

l = 0;
if((m >= BIG) || (m < 0) || (m > l))

end_code();
ii = cat[j];
jj = abs(ii);
kk = isign(lnodp1, ii);
if(!((kk ^ from[jj]) > 0))
{

nstop = 14;
if(marc == larc)

end_code();
marc++;
k120 = marc - jj;
m120 = marc;
for(j120 = 1; j120 <= k120; j120++)

122

{
l120 = m120 - 1;
from[m120] = from[l120];
cost[m120] = cost[l120];
capac[m120] = capac[l120];
flor[m120] = flor[l120];
name[m120] = name[l120];
m120 = l120;

}
for(j130 = j; j130 <= mnode; j130++)

cat[j130] += isign(1, cat[j130]);
}
from[jj] = isign(i, ii);
cost[jj] = k;
kost0 = kost0 + k * m;
capac[jj] = l - m;
flor[jj] = m;
flow[i] -= m;
flow[j] += m;
name[jj] = n;
cat[j] = isign(jj+1, ii);
arcid[i] = -1;

}
}

/* Name: isign
Computes and returns the sign of 'b' times the absolute value of 'a'.

*/
int isign(int a, int b)
{

if(b == 0)
return(abs(a));

if(b > 0)
return(abs(a));

return(-abs(a));
}

int max(int a, int b)
{

if(a > b)
return(a);

return(b);
}

/* Name: initialize_artf
The function will create the artificial arc at position 0 in the arrays.
This artificial arc becomes the starting point of the heuristic.

*/
void initialize_artf()

123

{
from[0] = mnodp1;
cost[0] = BIG;
capac[0] = 0;
flor[0] = 0;
name[0] = ARTIF;
net = 0;
msorc = 0;
marc = 0;
next[mnodp1] = mnodp1;
down[mnodp1] = mnodp1;
inod = 0;
while(TRUE)
{

inod++;
if(inod > mnode)

break;
i = inod;
j = flow[i];
net += j;
if(j <= 0)

continue;
msorc++;
level[i] = j;
next[i] = next[mnodp1];
next[mnodp1] = i;

}
}

Appendix C Observed 2 hour and 5 minute Flows

Appendix D Basic Building Configurations and Arc Detector

Locations

Appendix E 2 hr Intersection Analysis for W1 and W2 weighting

regimes

Appendix F 5 min. Analysis for Overall for W1, W2

Appendix G 5 min. Right, Left, Through Analysis for W1, W2,

W3 weighting regimes

