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Abstract

Software-Hardware Co-Defined Network Switch

(SHADES)

for a Label Switching Protocol

by

Turhan Karadeniz

The network switch is one of the core components of computer communications,

functioning as the interconnect among ever increasing number of nodes and a variety

of networks. Whether it is used in data centers for connecting large numbers of nodes

with high storage and computational capacities, or in the Internet backbone as a

core router carrying vast quantity of information among its users, or in medium to

large sized local area networks including educational campuses and companies, the

switches require ever increasing design needs for scalability, high delivery ratios, low

latencies, and quality-of-service (QoS) guarantees.

We believe that switch design should be evaluated as a holistic aspect of

network protocol design, since many metrics in protocol design and switch design are

closely correlated. Moreover, designing a switch requires the integration of hardware

and software, because different functionalities of the switch can be implemented in

hardware, software or both depending on different design considerations.

Rapid increase in Software Defined Networks (SDN) related research de-

notes that the approach of abstracting the data plane from the control plane, thus

xi



achieving higher flexibility and architectural simplicity, accounts for a notable re-

search problem. Furthermore, label switching based routing algorithms enable the

forwarding layer to be implemented at hardware and thus inflict less per-hop latency.

Introducing a hardware component into network protocol design might initially seem

to combine two orthogonal design components, however the outcome is an architec-

ture that achieves multiple levels of abstraction, flexibility, simplicity, scalability

and high performance at once.

In this thesis, we propose a novel architecture with an emphasis on hardware-

software co-design paradigm, resulting in a scalable, flexible and high performance

switch. We show that our design can be fully implemented on a Field-Programmable

Gate Array (FPGA) based platform. Our system demonstrates an attempt to im-

prove SDN, by taking the hardware component into account in the design flow,

resulting in our Software-HArdware co-Defined nEtwork Switch (SHADES) for a

label switched routing protocol, delivering load balancing, low latencies, and high

delivery ratios.
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Chapter 1

Introduction

In computer networks, the communication between nodes is realized by a

broad and diverse body of electronic and optical technology. The network switch is

one of the core components of computer communications, functioning as the inter-

connect among ever increasing number of nodes and in between a variety of networks

of various sizes and properties. Whether it is used in data centers for connecting

large numbers of nodes with high storage and computational capacities, as Internet

backbone core routers carrying vast quantity of information among its users, or in

medium to large sized local area networks including educational campuses or com-

panies, the switches require ever increasing design needs for scalability, flexibility,

high delivery ratios, low latencies, and load balancing properties.

We believe that switch design should be evaluated as a holistic aspect of

network protocol design, since many parameters in protocol and switch design are

closely correlated. Moreover, designing a switch requires the integration of hardware

1



and software, because different functionalities of the switch can be implemented in

hardware, software or in both depending on different design considerations. The

design of a smart switch capable of handling novel routing protocols as well as the

TCP/IP stacks, while still delivering high performance, is a problem that cannot

be handled in a software or hardware only solution. We perceive the switch as a

full embedded system, capable of running software on a microprocessor (µp), and

at the same time, able to handle time critical and computationally intensive tasks

in hardware.

Interval routing has been shown to minimize routing tables very effectively.

In Chapter 2, we propose a feasible multi-root approach for interval routing, by

electing the central node and the corner nodes in the network as roots. We show that

our BFS pruned/DFS labeled multi-root approach offers O(1) stretch. Furthermore,

we present performance evaluation of our algorithm through simulation of both static

and mobile ad-hoc networks. Multi-Root Interval Routing (MINT) achieves high

delivery ratios and low latencies comparable to shortest-path based MANET routing

protocol OLSR and much better than AODV, while reducing the routing table cost

more than an order of magnitude, despite using multiple roots [1].

Software Defined Networking (SDN), as exemplified by OpenFlow, has

been proposed as an approach that can simplify the way in which some wired net-

works operate and are managed. The topology of the network is virtualized at

a controller node, which computes routes from sources to destinations using its

network-wide view, and can instantiate the “flow state” at each switch of the net-

2



work. The advantages of SDN are that: (a) signaling is reduced drastically by

taking advantage of the global network view available at the controller; (b) switches

can be greatly simplified by implementing signaling at the controller; and (c) the

control plane is decoupled from the data plane, simplifying forwarding. However,

SDN approaches have focused on wired networks operating in server rooms, where

the controller is one link away from every switch, the signaling focuses solely on the

network layer, and do not address the dynamic placement of content and services.

We implement a centralized controller for wireless networks that uses MINT as the

underlying routing protocol. MINT enables compact routing tables that facilitate

the controller to download the flow state to every node in the network using wireless

links. In comparison to MINT, downloading full-size explicit routing tables would

be impossible due to wireless bandwidth, in a dynamic scenario.

In Chapter 3, we present our Software-Hardware Co-defined Network Switch

(SHADES) for a Label Switching Protocol. Our design is implemented for FPGA

platforms and successfully instantiates a switch that enables Layer 2 forwarding by

using the communication channels between software routing layer and hardware for-

warding logic. SHADES receives control packets including the flow state from the

MINT’s centralized controller, writes these to the flow tables, which can be then

retrieved by the hardware logic, thus enabling Layer 2 forwarding. In this work,

we use similar mechanisms to state of the art Cisco switches, which are used in

wired networks, where the topology change is not an inherent aspect. Our approach

is more dynamic, due to the mobile & dynamic nature of wireless routing, which

3



requires the routing control layer to modify the flow tables dynamically. We present

real-time emulation results that are in line with our claim that the point-to-point

delays inflicted by both the hardware and software layers between the NIC and

software routing layers can be avoided by integrating design principles from SDNs,

label switching and HW/SW co-design.

In wired networks, switching latency becomes a major bottleneck and as

a result needs to be handled at HW by using high cost specialized queueing and

scheduling mechanisms. We implement a mini-router grid (MRG) based switch

fabric architecture, which yields comparable performance to state-of-art crossbar

switch fabrics. MRG switch fabric are scalable in the sense that the can decouple

switch size from the cost growth, at the expense of performance, whereas crossbars

always inflict an exponential cost growth. Moreover, the architecture allows the use

of output queuing, by bounding the speedup by 3 and resulting in much smaller

queuing memory than the current state of the art. Also, MRs naturally provide a

highly pipe-staged structure, allowing very high frequency operation. The design

consideration for our switches include high delivery ratios, low latencies and load

balancing capabilities. In Chapter 4 and Chapter 5 we describe our Mini-Router

Grids (MRG) based switch fabric architectures, which deliver these metrics with

success [2][3].

Finally, Chapter 6 concludes the thesis.

4



Chapter 2

Multi-Root Interval Routing (MINT)

5



2.1 Introduction

Interval routing is a distributed approach in routing protocol design that

aims at storing routing tables at each node in a compact manner, by assigning labels

to nodes in such a way that the destination addresses that use the same output ports

are grouped together with consecutive labeling.

In [4], the authors distinguish between a valid interval labeling scheme and

an optimum one, stating that the latter can be achieved when all the paths are

shortest paths. Moreover, they describe a number of topologies for which an op-

timum interval labeling scheme exists. An optimum scheme valid for a uniformly

distributed random communication network, however, is far from being achieved.

Most of the current schemes use single root mechanisms, which result in low perfor-

mance due to increased total network distance resulting and high stretch.

In this work, we present the Multi-Root Interval Routing (MINT) algo-

rithm for uniformly distributed static and mobile ad-hoc networks of any size. MINT

achieves total network distance comparable to shortest path, and as a result, O(1)

stretch. Our approach improves upon the earlier works on interval routing by elect-

ing multiple roots, computing a BFS pruned/DFS labeled spanning tree for each

root, and assigning interval labels at each node per root, such that the optimal path

for forwarding the packets can be chosen from multiple sets of intervals.

Software Defined Networking (SDN), as exemplified by OpenFlow [5], has

been proposed as an approach that can simplify the way in which some wired net-

6



works operate and are managed. The topology of the network is virtualized at

a controller node, which computes routes from sources to destinations using its

network-wide view, and can instantiate the “flow state” at each switch of the net-

work. The advantages of SDN are that: (a) signaling is reduced drastically by

taking advantage of the global network view available at the controller; (b) switches

can be greatly simplified by implementing signaling at the controller; and (c) the

control plane is decoupled from the data plane, simplifying forwarding. However,

SDN approaches have focused on wired networks operating in server rooms, where

the controller is one link away from every switch, the signaling focuses solely on the

network layer, and do not address the dynamic placement of content and services.

We implement a centralized controller for wireless networks that uses MINT as the

underlying routing protocol. MINT enables compact routing tables that facilitate

the controller to download the flow state to every node in the network using wireless

links. In comparison to MINT, downloading full-size explicit routing tables would

be impossible due to wireless bandwidth, in a dynamic scenario.

The proposed approach of implementing Multi-Root Interval Routing to

enable compact routing tables attains comparable stretch to shortest path routing.

Additionally, it yields greater scalability and performance compared to single root

interval routing solutions. Using a centralized controller in order to virtualize the

global network view and to download the flow tables to the nodes reduce control

plane overhead and enable scaling to more than 500 nodes.

In Section 2, we outline the related literature. In Section 3, we describe the

7



controller operation and Multi-Root Interval Routing (MINT) algorithm. In Section

4, we present simulation results and compare MINT to other routing protocols such

as OLSR and AODV. Finally, Section 5 concludes the chapter.

2.2 Related Work

In [6], the authors discuss enabling compact routing tables by a-priori

labeling nodes and links, and compare their approach, namely implicit routing, to

maintaining detailed routing information for all destinations at every node, namely

explicit routing. In [7] and [4], Van Leeuwen and Tan explore the problem further

and describe optimal interval routing schemes for a number of topologies. These

approaches use depth-first-search (DFS) based ordering and labeling that implement

valid labeling schemes. However, the resulting spanning trees induce high stretch.

Similarly, in [8] and [9], Eilam et al. use DFS ordering, and by forcing extensive

topology restrictions and assumptions, they achieve a stretch of 3 to 5.

In [10][11], the interval routing is achieved using breadth-first-search (BFS)

ordering in order to improve the stretch. In comparison to shortest path routing,

this approach improves upon the earlier approaches, however still fails to achieve

low stretch.

In [12], [13] and [14], Tse and Lau provide analytical lower and upper

bounds for interval routing. Their results show that even with a relatively large

number of labels, interval routing still falls short of being optimal for arbitrary

8



graphs.

In [15], the authors provide lower bounds on routing table compactness for

interval routing, in an effort to relate the efficiency (measured by stretch factor) to

space requirements (measured by compactness or total memory bits). In [16], Bakker

et al. introduce multi-label interval routing schemes where links may contain more

than one label in an effort to improve routing efficiency.

A number of proposals on using multiple spanning trees, including [17][18],

use multiple roots in parallel, but they are not meant for interval routing nor similar

label switching based algorithms.

Software Defined Networking (SDN) emerged as a novel computer network-

ing paradigm to abstract the data plane from the control plane, and thus to achieve

higher flexibility and architectural simplicity, by using a centralized controller in

wired networks. OpenFlow [5][19] is one of the most renowned instantiations of

SDN. NetFPGA [20] demonstrates a successful implementation of OpenFlow on

FPGA based platforms.

In a number of works, including [21], [22], and [23], the authors propose

applying SDN approach to wireless networks, by using a centralized controller to

improve control plane overhead and increase scalability.

OLSR [24] is a shortest-path based MANET routing protocol that performs

better both in terms of delivery ratio and latency in comparison to AODV [25], when

network is composed of a large number of mobile nodes, whereas AODV is more

efficient with small number of nodes and resource critical environments. In this
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work, we compare our interval routing based algorithm to OLSR and AODV in

static and mobile scenarios with increasing number of nodes.

OLSR and AODV have been shown to be not loop-free in [26] and [27],

respectively. We claim that applying breadth-first-search (BFS) pruning would be

a better option for eliminating the looping edges. Moreover, BFS pruning results

in wider trees with much smaller total network distance, in comparison to thin and

long trees that would arise from DFS pruning. Latency, one of the most impor-

tant performance metrics of computer networks, is a function of the total network

distance. Takuya et al. [28] proposes a similar approach of network pruning.

In Garcia-Luna-Aceves et al. [29] and Sampath et al. [30], the authors

propose incremental routing algorithms that use compact routing tables based on

prefix labels rather than node identifiers. An important caveat of the algorithm is

that prefix labels grow larger at every hop further away from the root node. The

fact that the size of the prefix labels cannot be delimited as network size increases

renders the approach unscalable. In comparison, interval routing provide fixed-size

labels.

2.3 The Architecture & Algorithm

Algorithms that constitute Multi-Root Interval Routing (MINT) run on a

centralized controller, connected to every network node on a communication channel

orthogonal to the data channel. All nodes send HELLO messages to their 1-hop

10



neighbors for network discovery. Following the discovery stage, nodes report their

ID, GPS position and 1-hop neighborhood information to the controller, which in

return builds a complete graph of the network, assigns pre-order labels (DFS) to

nodes, computes intervals in a way that groups together all consecutively labeled

nodes, and finally downloads label and interval information to flow tables at every

network node.

In the following subsections, we describe the stages of the algorithm at the

controller, followed by the final stage of the algorithm, data plane forwarding.

2.3.1 Centralized Controller

SDN topology comprises one controller node and other regular nodes, as

shown in Figure 2.1, where Node C represents the controller. In short, the topology

of the network is virtualized at the controller, which computes routes from sources

to destinations using its network-wide view, and can instantiate the flow stat at

each node/switch of the network. The advantages of SDN are that: (a) signaling

is reduced drastically by eliminating multiple protocols running in parallel among

peer nodes; (b) switches can be greatly simplified by having to implement only the

signaling with the controller; and (c) the configuration and management of the net-

work are simplified greatly by taking advantage of the global network view available

at the controller.

The system architecture has several major activities, which we outline here.
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Controller Node

Links

C
C

Nodes/Switches

Figure 2.1: Software Defined Network Topology

1. All nodes are assumed to be connected to the centralized controller, using a

communication channel orthogonal to data plane.

2. Network nodes monitor their one hop neighborhood information and period-

ically report it to the controller, as well as their global ID (GID) and global

position (GPS).

3. The controller generates a graph based on the information it receives from

the nodes, and then uses the algorithm outlined in the following subsections

in order to compute the node labels and intervals. The controller selects five

roots (four corners + the most central node) for building the spanning trees,

using the GPS locations.

4. The controller proactively computes intervals and downloads the flow tables

to the nodes.

12



II I
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Figure 2.2: Uniformly distributed random network, divided in quadrants.

5. The nodes issue a Route Request (RREQ) to the controller for the destina-

tion labels. The controller will issue a Route Reply (RREP) in return, with

destination label and root index.

6. The controller offloads most routing related signaling overhead from the net-

work and uses its centralized computing power to compute the intervals. The

controller also serves as the name/label resolution service.

2.3.2 Pruning of the BFS Trees

Upon building a complete undirected graph based on the neighborhood

information received from the nodes, our algorithm proceeds to electing five roots.

Please note that one assumption made here is that every node has reported their

GPS coordinates, such that the controller is able to compare the positions of the

nodes to the origin on a virtual Cartesian plane. In Figure 2.2, we show how the

13



A

B C D

E F G H

I J K L

M

Figure 2.3: Random uniform graph G

controller divides the area into four quadrants, and elects the node with the greatest

distance to the origin as a root in each quadrant. The origin is computed as the GPS

position of the most central node in the graph, following the centrality algorithm in

[31]; as a result it is not a spatial origin, but a logical one. The most central node

is also elected as the fifth root.

Using BFS pruning starting from the root nodes, our algorithm builds five

spanning trees. By using BFS pruning we achieve wide spanning trees yielding the

smallest cumulative network distance.

The rationale behind electing the corner nodes and the most central node

as the roots of the spanning trees is as follows:

Let’s consider a uniformly distributed random network G of size N in a

rectangular area, to be BFS pruned starting from a corner node r as the root,

14



resulting in the BFS tree T . Every node in G is also a node in T . The function

dN (T, u, v) describes the network distance between nodes u and v in the tree T . We

define

µ(T, u) =
∑
n∈T

dN (T, u, n) , (2.1)

where u ∈ T and the function µ(T, u) is the sum of all network distances

from node u to every other node in T.

The reason to define µ(u) lies in the fact that it is a part of the stretch

function,

STRETCH(u) =

(
µ(T, u)

µ(G, u)

)
, (2.2)

Because we are trying to show the effect of electing a node as the root of

a BFS tree T in a given network G, the only variable part in Def.(2.2) is µ(T, u).

Our initial claim to support our rationale is as follows: We claim that if

dN (T, u, r) ≤ dN (T, v, r), then µ(T, u) ≤ µ(T, v) would also hold true. This claim

implies that the nodes closer to the root retain more edges during pruning, and that

the further a node is from the root node r, the more stretch it would inflict upon

the tree and the network.

In Figure 2.4, let node c be the common ancestor of node u and v. More-
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over,

dN (T, u, r) = dN (T, u, c) + dN (T, c, r) , (2.3)

dN (T, v, r) = dN (T, v, c) + dN (T, c, r) , (2.4)

Out initial claim stated that

dN (T, u, r) ≤ dN (T, v, r) , (2.5)

From Defs.(2.3,2.4,2.5),

dN (T, u, c) ≤ dN (T, v, c) , (2.6)

Also, it follows from Def.(2.6) that the difference ∆ as in Def.(2.7) is non-

negative.

∆ = dN (T, v, c)− dN (T, u, c) , (2.7)

Computing µ(T,m),m ∈ T statistically requires us to know the distri-

bution of nodes over the tree. For example, if the size of the node cluster V ′′

in Figure 2.4 is much greater than cluster U and/or D, our initial claim would

not hold true; dN (T, v, v′′), v′′ ∈ V ′′ would not be effected by ∆, while every

dN (T, e, v), e ∈ T − V ′′ would incur ∆, resulting in nodes in U and/or D to have

greater µ()’s.
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Figure 2.4: Tree T , pruned from root node r, with nodes u, v, c and node clusters U , V ′,

V ′′ and D

In [32] and [33], the authors prove analytically and empirically that breadth-

first-search pruning results in a degree distribution of p̂k ≈ 1/kτ , where k is the node

degree and τ stands for the degree exponent of the network. The node distribution

probability has a decay of O(kτ ), which implies that V ′′ cannot be greater than U

and/or D in size. As a result, µ(T, e) is an increasing function, as node e is moved

further away from node r.

In order to capture this behavior, we simulate BFS pruning on a uniformly

distributed random network, starting from a corner node and the most central node,

as shown in Figure 2.5 and Figure 2.6, respectively. Empirical data is very much in

line with our formal proof, showing the radially increasing behavior of the function

µ().

When the resulting BFS pruned spanning trees are merged, by adding all
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Figure 2.5: Corner node as root. Heatmap shows empirical µ()
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Figure 2.6: Central node as root. Heatmap shows empirical µ()
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of the edges from the five trees into a new graph and annotating which BFS tree

they belong to, this juxtaposed graph would cover a greater percentage of the edges

from the original graph, approaching the total network distance of shortest path

routing (i.e. stretch ≈ 1), thus inflicting less latency at the forwarding layer.

2.3.3 DFS Ordering & Labeling

After the loop-free BFS trees are pruned by removing the looping edges,

the next step is to run DFS for labeling. DFS labels are required by the nature

of the interval routing, since intervals are assigned to node ports according to their

vertical positions with respect to the root node.

Figures 2.7-2.10 exemplify the procedure of BFS pruning and DFS ordering

on Figure 2.3. Corner nodes C1 to C4 are elected as D, B, I and M; BFS spanning

trees are ordered and pruned (removed looping edges are denoted by dashed lines);

and finally the nodes are assigned the DFS labels (shown in parenthesis). From here

and onwards, we will refer to these BFS pruned / DFS labeled trees as BFS/DFS

trees.

In order to formulate the problem, we introduce the following notation:

For each corner node C = {C1, C2, C3, C4}, we have a BFS/DFS tree with labels

L = {LC1, LC2, LC3, LC4} and for each port per node we have a set of intervals

I = {IC1, IC2, IC3, IC4}. These values are computed proactively at the controller

when there is a new update from the nodes. This computationally intensive task,

in return, is a trade-off for less signaling overhead within the ad-hoc network and
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Figure 2.7: Node D is elected as corner 1.
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Figure 2.10: Node M is elected as corner 4.
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much smaller routing tables.

2.3.4 Computing the Intervals

At this stage in the algorithm, five BFS/DFS trees have been generated,

which means each node has received five DFS labels, one per each root. Computing

the intervals requires the traversal of the trees, such that we can assign intervals

at each port of every node, per each root, as described in Algorithm 1. There can

be multiple intervals assigned at a port per root. Moreover, we allow forward and

reverse directions for intervals. All descendants will have forward intervals; whereas

the nodes connecting a node to the root might have reverse intervals.

Figure 2.11 demonstrates the intervals assigned to some of the ports of C1

tree.

2.3.5 Interval Table Minimization

The controller node will download a minimal set of intervals to the nodes,

instead of the full five sets of intervals. The size of the interval tables can be reduced

since some intervals are either exactly the same even in distinct trees, or they are a

subset of one another. In order to determine the redundant intervals, we compare

the set of intervals at each port of each node for each BFS/DFS tree, and if the

labels point to the same set of nodes, one of the intervals is removed; if one is a

subset of another, the smaller set is removed.

After the minimized interval information is downloaded to the nodes by
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Algorithm 1 Algorithm for computing the intervals

1: Let r be the index variable for BFS/DFS trees.

2: Let n be the index for nodes.

3: Let p be the index for ports.

4: Let interval[r][n][p] be the interval lookup table, a list of lists.

5: Let labelsfwd be a temporary list of labels.

6: Let labelsrev be a temporary list of labels.

7: Let currentNode be a temporary node pointer.

8: for r = BFS/DFS tree iterator; r++ do

9: for n = Nodes iterator; n++ do

10: for p = Ports iterator; p++ do

11: if p connects the node n to the lower levels then

12: Add all descendants through port p to labelsfwd. Sort. Append to

interval[r][n][p].

13: else

14: # comment: p points to n’s parent node.

15: currentNode = n

16: while currentNode is not root do

17: Iterate through lower-level ports of currentNode.parent, except the

port connecting to currentNode.

18: Add all descendants to labelsfwd. Sort. Append to interval[r][n][p].

19: Append currentNode to labelsrev. Reverse Sort.

20: currentNode = currentNode.parent()

21: end while

22: Group consecutive labels in labelsrev. Append each group to

interval[r][n][p].

23: end if

24: end for

25: end for

26: end for
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Figure 2.11: Intervals assigned to the ports of nodes B & G in C1 tree.

the controller, the packets are simply forwarded by following the multi-root interval

routing algorithm as explained in the next subsection.

2.3.6 Data Plane Forwarding

Having decoupled the control plane from the data plane, our forwarding

algorithm simply compares the destination label in the packet header to intervals

at every port of the current node. Next-hop is computed incrementally at every

node. The packet will either be in the source node, or a forwarding node in the

source-destination path.

When destination label is compared with the intervals, the next-hop algo-

rithm chooses between the five trees in order to forward the packet, by comparing
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the position of the destination label in the interval. In order to avoid loops, the

previously selected tree’s distance to destination is skewed to be one less than the

actual value. Moreover, if there is a tie, we modulo the destination label to the

number of trees and pick the closest tree whose index greater than or equal to the

modulo value, as a tie-breaker.

2.4 Simulation Results

We run our simulations using NS-3 discrete event network simulator [34]

and Boost Graph Library [35], on uniformly distributed mobile networks of various

sizes. We use IEEE 802.11ac as the underlying PHY/MAC layers. Our test scenarios

consist of networks with 50, 100, 250, 500, 1000, 2000 nodes, and were run over 10

distinct seeds. Finally, the simulation area has been expanded as the number of

nodes are increased, in order to keep the average network degree constant.

2.4.1 Efficiency of BFS Pruning/DFS Labeling

In this subsection, we present the impact of BFS pruning on the network

stretch, defined as the ratio of the total network distance of the subject algorithm

to the total network distance of shortest path routing. Latency is proportional to

the network stretch, which makes it an important metric in algorithm design.

In Figure 2.12-2.13, we present the comparison of the following schemes,

in terms of stretch:
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Figure 2.12: Comparison of various interval labeling schemes.

1. Shortest path: All edges are intact, and the distance between any two nodes

is equal to the shortest path.

2. Single-root (Central Node), DFS: The tree resulting from the DFS pruning

starting from the central node of the network.

3. Single-root (Random Node), BFS: The tree resulting from the BFS pruning

starting from a random node of the network.

4. Single-root (Central Node), BFS: The tree resulting from the BFS pruning

starting from the central node of the network.

5. Multi-root, BFS: Juxtaposition of BFS pruned trees resulting from choosing

the four corner nodes and the central node as roots

The greater the stretch is, the greater the total network distance and la-

tency are for the network. BFS pruned multi-root scheme has the smallest stretch
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Figure 2.13: Comparison of BFS and DFS pruning.

compared to the other schemes, and thus it would achieve the lowest latency. The

fact that the stretch saturates as the number of nodes is incremented is also a strong

indication that our algorithm is practical even for large size networks. Furthermore,

our results are in line with our findings in Figure 2.5 and Figure 2.6.

2.4.2 Interval Table Compactness

We present the number of interval entries in the flow tables and how much

they can be further minimized in Table 2.1 and Figure 2.14. The reported values

are the sum of all entries in all the network nodes. Percentage improvement after

minimization is between 28 to 44, with a standard deviation of 6.34%. The val-

ues demonstrate that the minimization algorithm effectively reduces the number of

interval entries in the flow tables.

In Figure 2.15 we compare the MINT to explicit routing algorithms (i.e.
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Table 2.1: Total number of interval entries.

Network Size Intervals Minimized Intervals Percentage Min.%

50 4033 2262 43.91

100 9625 6242 35.14

250 36156 26117 27.76

500 80271 55206 31.22

1000 235506 152204 35.37

2000 521177 297994 42.82

0.00e0

1.00e5

2.00e5

3.00e5

4.00e5

5.00e5

6.00e5

 0  500  1000  1500  2000
 0

 20

 40

 60

 80

 100

N
u
m
b
e
r
 
o
f
 
I
n
t
e
r
v
a
l
 
E
n
t
r
i
e
s

P
e
r
c
e
n
t
.
 
M
i
n
i
m
i
z
a
t
i
o
n

Number of Nodes

Before Minimization
After Minimization

Percent. Improvement

Figure 2.14: Total number of interval entries before and after minimization.

in each node, there is an entry for every other node), in terms of number of routing

table entries. In order to emphasize the overhead of our approach using multiple

roots, we also include a single-root (central node) scenario. Both single root and five

roots scenarios induce flow tables with only a fraction of the size explicit routing

algorithms yield.
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Figure 2.15: Comparison of MINT vs. explicit routing algorithms.

2.4.3 Interval Distribution per Root

Another important design metric for our interval routing algorithm is how

balanced the distribution of intervals are per root. The distribution is a strong

indicator of how well the load is distributed on various paths available within the

network.
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Figure 2.16: Percentage Distribution of Intervals over Roots.

In Figure 2.16, we present the distribution of minimized intervals over
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roots. Our simulations show that the interval distribution is independent of the

network size and has very small standard deviation.

2.4.4 Performance: Delivery Ratio & Latency

In this section, we present the performance evaluation in terms of delivery

ratio and latency, by comparing MINT to routing protocols such as OLSR and

AODV. MINT achieves high delivery ratios and low latencies comparable to OLSR,

while performing much better than AODV, as presented in Figure 2.17 and 2.18

MINT incurs slightly higher end-to-end latency for data delivery compared

to OLSR as the number flows increase, which is mostly due to the fact that packets

may take routes that are slightly longer than the shortest paths attained with OLSR.

However, as the mobility increases, MINT achieves slightly better latency.

2.5 Conclusion & Future Work

Interval routing is an approach in routing protocol design that aims at

storing routing tables at each node in a compact manner. A number of topologies

that have an optimum interval labeling scheme are described in various publications,

however an optimum scheme for uniformly distributed random networks is far from

being achieved.

In this work we proposed a feasible multi-root approach for interval routing,

by electing the central node and the corner nodes as roots. Starting from each root

we used BFS pruning and DFS labeling in order to assign labels to the network
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Figure 2.17: Performance Evaluation, Delivery Ratio
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nodes, as well as intervals to each port of every node. We showed that our BFS

pruned/DFS labeled multi-root approach offers O(1) stretch, by improving upon

the single root interval routing approaches in earlier works.

We implemented a centralized controller for wireless networks that uses

MINT as the underlying routing protocol. MINT enabled routing tables an order of

magnitude smaller than explicit routing, that facilitate the controller to download

the flow state to every node in the network using wireless links. In comparison to

MINT, downloading explicit routing tables would be impossible due to the wireless

bandwidth in a dynamic scenario. Using a centralized controller in order to virtualize

the global network view and download the flow tables to the nodes reduced control

plane significantly and enabled scaling to more than 500 nodes.

Furthermore, we presented performance evaluation of our algorithm on NS-

3 simulator. Multi-Root Interval Routing (MINT) achieves high delivery ratios and

low latencies comparable to shortest-path based MANET routing protocol OLSR

and much better than AODV, while reducing the routing table size more than an

order of magnitude.

For future work, we plan to incorporate an analytical model of routing

tables compactness induced by our approach, in order to demonstrate the efficiency,

in terms of the performance to compactness ratio, an important aspect of the interval

routing design as described in [36].
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Chapter 3

Software-Hardware Co-Defined

Network Switch (SHADES) for a

Label Switching Protocol
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3.1 Introduction & Related Work

In this chapter, we present our Software-Hardware Co-defined Network

Switch (SHADES) for a Label Switching Protocol. By taking the hardware compo-

nent into account in the design flow, our system demonstrates a successful attempt

to implement an Hardware-Software co-design embedded system instantiation for

network switches.

Software Defined Networking (SDN) emerged as a novel computer network-

ing paradigm to abstract the data plane from the control plane, and thus to achieve

higher flexibility and architectural simplicity. This is implemented by computing

the forwarding tables at the controller node, which are then disseminated to the

other nodes. The data can be forwarded from a node to the next hops using these

flow tables. In Section 2.3.1, we have explained in detail how a centralized controller

can virtualize the network in order to compute the routes, thus remove the control

plane overhead from the data plane links.

By using interval routing we have achieved compact routing tables, that can

actually be disseminated to the flow tables in a wireless scenario. Other approaches

using explicit routing tables dictate an order of magnitude more information to

be downloaded over wireless links, which is not feasible given the low bandwidth of

wireless communication. The benefits of using a multi-root interval routing approach

has been described in detail in Chapter 2. Figure 2.15 clearly demonstrates that

compact routing tables require much less information exchange, which makes this
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approach ideally suited to mobile scenarios. Using interval labels would enable

forwarding to be handled at lower layers (Layer 2), instead of having to transmit

the packet to the upper layers of hardware/software and examine the next hop

information. IP (or any other routing protocol) data packets can be wrapped into

label switched protocol packets, which then are forwarded to the next hops dictated

by the label switched protocol.

Our proposal is to merge the SDN philosophy with label switching, which

would enable the architecture to be implemented in a hardware-software co-design

fashion. Introducing a hardware component into network protocol design might

initially seem to combine two orthogonal design components, however the outcome

is an architecture that achieves multiple levels of abstraction, flexibility, simplicity,

scalability and high performance at once.

Kempf et al. [37] and Das et al. [38] describe extensions on OpenFlow

that incorporate MPLS, and propose modification on NetFPGA [20] in order to

implement a router for MPLS networks. Please note that this approach serves a

different purpose than what we are trying to achieve by using label switching in

order to introduce forwarding at lower layers and enable hardware acceleration.

State of the art switches use similar hardware-software co-design techniques

for the implementation. In [39][40], Cisco Systems engineers describe the design ef-

fort that goes into Cisco switches, which rely on using flow tables written at the

software routing layer; these flow tables then can be read by hardware logic com-

ponents, and used for forwarding packets at Layer 2. Cisco switches also rely on
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FPGAs for easier hardware reconfigurability of some components; time-to-market is

also another important reason for the use of these easily reconfigurable ICs. More-

over they implement Layer 2 processing of packet headers in order to retrieve the

destination address and search for the next-hop information in the flow tables.

Another important aspect of using MINT as the underlying routing layer

presents itself when the destination address is searched in the flow tables. Comparing

the destination address to all entries in an explicit routing algorithm would be costly,

either in terms of time (i.e. CAM) or hardware cost (i.e. TCAM). By using smaller

routing state, MINT improves the cost and power for forwarding.

Please note that the software control of the flow tables in Cisco switches is

different from what we want to achieve in our work, despite the fact that we are using

similar mechanisms to implement it on hardware. Cisco switches are used in wired

networks, where the topology change is not an inherent aspect. Our approach is more

dynamic, due to the mobile & dynamic nature of wireless routing, which requires the

routing control layer to modify the flow tables dynamically. Undoubtedly, achieving

Layer 2 processing and forwarding is the common element between our work and

state of the art switches.

Hardware-software co-design enables communication channels between hard-

ware components and software that does not exist in regular computing systems.

Our System-on-Chip (SOC) is implemented on an Altera Field-Programmable Gate

Array (FPGA), using the soft core microprocessor NIOS II with MMU, such that

our system supports multiprocessing capabilities at software networking stack. The
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operating system (OS) is a variant of uClinux [41] with MMU support and it has

been modified and recompiled by our team in order to achieve a fully functional

switch with four network interfaces (NIC).

We show that the point-to-point delay caused by both hardware and soft-

ware components from the NIC to the software routing layers can be avoided by

forwarding on Layer 2. Moreover, we validate that SHADES successfully supple-

ments the controller and routing layer algorithm described in Chapter 2 by using

the control packets received from the controller to populate the flow tables for data

plane forwarding.

In Section 2, we describe SHADES architecture and its building blocks.

In Section 3, we present our results and describe how SHADES perform better

in comparison to components that constitute it. Finally, Section 4 concludes the

chapter.

3.2 Implementation

3.2.1 Label Switched Routing

In Chapter 2 we show that multi-root approach has a stretch of O(1) and

proves to attain high delivery ratios and low latencies comparable to shortest path

routing, both in static and dynamic networks. By computing the compact routing

tables (i.e. intervals) at the controller node and disseminating them at every node,

we achieve abstraction of the forwarding plane from control. The ability to realize
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Figure 3.1: Comparison of Traditional Forwarding and SHADES

forwarding at the hardware layer has multiple benefits, such as low latency through

the system, more computational resources for other tasks including control plane

handling, and less congestion through the SOC bus (Figure 3.1).

Our architecture enables the forwarding function to be handled at the

hardware layer by using a dual port/dual clock domain flow table memory, which

contains the mapping of the intervals/labels to the next hop ports of the switch.

In this way, we allow the software routing layer to modify the flow tables, while

enabling the hardware forwarding layer to retrieve the next hop information without

transmitting the frames/packets to higher layers.

Figure 3.2 demonstrates the interval label/port information within a node
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NodeA. When a new data packet arrives at the switch, SHADES engine deter-

mines if the frame (1) is intended for the current node/switch, and thus the packet

is forwarded to upper software layers, (2) if it needs to be forwarded to another

node/switch, or (3) if it is simply dropped. As for forwarding, the next-hop node

will be determined by comparing the destination label to the intervals in the flow

tables. Finally, the frame will be delivered through the corresponding port.
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20
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Next-Hop Intervals Switch Port Index

0-7 0
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Figure 3.2: NodeA Flow Table for HW Forwarding

When a packet is received by the destination node, SHADES engine for-

wards it to the software layers, where the original Layer 3 packet is stripped from

the label switching encapsulator.

3.2.2 SHADES Top-Level System Architecture

In this subsection, we present the top-level system design for SHADES.

Figure 3.3 is the system-on-chip (SOC) block diagram that depicts the integration
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of various components of our switch.
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Figure 3.3: Hardware-Software Co-defined Network Switch (SHADES), Abstract

Our understanding of a switch design requires a full system integration,

capable of running software in a microprocessor (µp), while still being able to handle

time critical and computationally intensive tasks in hardware. If a switch could

distinguish control plane and data plane packets at the hardware, it would gain the

capability of taking the decision to deliver them to higher layers or forward them

to the next hop nodes/switches. This would enable hardware layer forwarding, thus

greater performance. The imagining of such a switch necessitates the incorporation

of a complete system-on-chip (SoC) approach, which consists of a µp, main memory,

various accelerators, a mac controller, and routing related algorithms at both the

software and hardware layers.

We implemented a four port switch using a Terasic DE4 board [42] with an
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for Altera FPGA

Altera Stratix IV GX FPGA (EP4SGX230KF40) [43] and we validated the compo-

nent connectivity and functionality of all hardware components and software layers.

We used the soft core microprocessor NIOS II with MMU to ensure that our sys-

tem supports multiprocessing capabilities at software networking stack. Figure 3.4

demonstrates the same components from the previous figure, with the emphasis on

design for FPGA environment.

We have used several reference designs from Altera, Terasic and other third

parties, including [44], [45], [46], [47], [48], [49], [50], [51], and [52]. The operating

system (OS) is a variant of uClinux [41] with MMU support and it has been modified
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and recompiled by our team in order to achieve a fully functional switch with 4

network interfaces (NIC). We have used tools such as SOPC Builder for system-level

design, Quartus II for synthesis of the hardware, Modelsim for hardware simulation,

Wireshark for capturing network packets, and GCC for miscellaneous compilation

tasks, among a number of other tools.

3.3 Performance Results

We have carried out a number of performance evaluation tests with our

hardware-software co-designed components, in order to demonstrate that our ap-

proach yields considerable improvements over current solutions. In Subsection 3.3.1

we implement a reverse loopback test in order to measure the delay our system

would help avoiding when a frame is switched at the hardware layer.

3.3.1 Point-to-Point Round-Trip Delay Time

Forwarding the data packets at the hardware layer makes it possible to

avoid the latency that would otherwise be inflicted by various hardware and software

layers. The signals that are received by the PHY are deserialized into a frame at

the MAC component. MAC Component will write the frame into the temporary

Queueing Memory. SHADES Controller determines if the frame should be forwarded

to the next hop or if it should be sent to the software layers.

If SHADES Controller did not exist, the frame would need to be trans-

mitted to the DDR2 Memory by the Receive DMA component, through the BUS
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and the main memory controller. MAC would issue an interrupt to the micropro-

cessor (NIOS II), and the interrupt would trigger the OS/driver routines, and that

would initiate the reading of the packet from the main memory. Software Routing

Layer would examine the header, make a routing decision, pass the command to

the driver/OS layer that would in return issue an interrupt to the MAC component.

DMA Transmit component would read the packet from the main memory (via the

BUS) into the temporary Queueing Memory, from where the MAC component would

serialize the frame and transmit it to the PHY.

In order to measure the latency through the components/layers explained

in the last paragraph, we execute the following scheme: We connect a computer

NodeC to SHADES from one of the four ports, establishing a point-to-point con-

nection. (i) Measuring the Round-Trip Delay Time (RTT) initiated from NodeC

to SHADES and back, including all layers, (ii) Measuring the RTT initiated from

NodeC to SHADES and back, bouncing the packet back at SHADES Controller

using a reverse loopback mechanism, and finally (iii) computing the delta, we would

obtain the latency through the aforementioned components/layers.

In many prominent publications including Carter and Crovella [53], Brik

et al [54], and Obraczka and Silva [55], the authors rely on ICMP packets (PING

tool) for RTT measurements. Especially in [55], the authors discuss how PING

tool consumes few resources and is fast, and as a result it is a good candidate for

reporting RTT.

We implement the reverse loopback mechanism based on the reference
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design in [45]. In both cases, we use Wireshark to monitor the packets and measure

RTT. In the first test, the RTT values are exactly the same as reported by PING. In

the second test, we observe that Wireshark catches the packets that were “bounced”

by the reverse loopback circuitry, however PING will not accept them as reply

packets, and as a result we only report the Wireshark measurements for both cases.

In Figure 3.5 we present the RTT measurements as well as the improvement delta in

milliseconds. As one can easily observe, most of the delay is caused by components

above the MAC layer, and by combining label switching and hardware forwarding

capabilities, this delay can be avoided. Please note that the reported value is per

point-to-point connection, thus the approach would improve each hop through which

a packet is forwarded. Also note that FPGA systems are slower in terms of clock

frequency, and as a result this improvement would be a smaller value in an ASIC

system, but would still remain a major percentage of the overall delay.
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3.4 Conclusion

SHADES exploits the hardware-software co-design paradigm in order to

enable Layer 2 forwarding using MINT routing and a centralized controller to dis-

seminate flow tables to the nodes. We are using similar mechanisms to state of

the art network switches in order to implement Layer 2 processing and forwarding

capabilities in our switch.

Our approach enables dynamic modification of flow tables that is inherent

to the mobile wireless routing. By using interval routing we have achieved compact

routing tables, that can actually be disseminated to the flow tables in a wireless sce-

nario. Other approaches using explicit routing tables dictate an order of magnitude

more information to be downloaded over wireless links, which is not feasible given

the low bandwidth of wireless communication.

We have showed that our design can be implemented and prototyped on

a Field-Programmable Gate Array (FPGA) based platform. We present real-time

emulation results that are in line with our claim that the point-to-point delays

inflicted by both the hardware and software layers between the NIC and software

routing layers can be avoided by integrating design principles from SDNs, label

switching and HW/SW co-design.
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Chapter 4

Hardware Design and Implementation

of a Network-on-Chip Based Load
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4.1 Introduction

In today’s world, billions of users all over the world are connected through

networks of different sizes, purposes and scopes. A network host might be one of

the nodes in a local area network (LAN), the Internet backbone, the infrastructure

nodes of a wireless network, or mobile devices in an ad-hoc network.

The communication between the nodes in a network is realized by a broad

and diverse body of electronic and optical technology. The network switches in

wired networks carry out the task of connecting two or more nodes (or networks),

and perform the important functions of (i) determining the next destination of a

packet that has been received by the router (control), and (ii) forwarding the data

packets to the destination (forwarding). The switch fabric is a key building block of

hardware based high-performance network switches, and they implement the second

function. When a packet is injected into the router, it is stored in a buffering

memory; the output port corresponding to the packet’s destination is computed;

and finally the packet is forwarded through the output port to its next hop in the

network by following the rules in a scheduling algorithm. A switch fabric consists

of buffering memories for temporary storage, scheduling unit(s) for forwarding, and

other computational components that facilitate these tasks.

A high-performance switch for wired networks is required to support high

bandwidths, in order not to become the bottleneck in the communication themselves.

The switch fabric, being the key component in a router, constitutes an important
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part of the router design effort, and therefore it remains to be an open research

problem. The switch fabric design consists of architectural design and scheduling

algorithm design. The architectural design incorporates the interconnect topology

and the buffering memory organization. The scheduling algorithm carries out the

task of deciding which packet is to be forwarded, in case a number of packets com-

pete for the same output port, resulting in contention; one of these packets will be

forwarded, whereas others will need to be stored in the buffering memory, until later

rounds.

In this chapter, we propose two Mini-Router Grid based switch fabric ar-

chitectures to replace the current state of the art crossbar architectures. Crossbars

require both input queuing and crosspoint queuing, and as a result they have very

high costs, despite the performance. Moreover, both the input and crosspoint queues

are shown to require large size memories. Our proposal replaces the crossbar by fol-

lowing the Network-on-Chip (NOC) approach, in which the switch fabric resembles

to a grid network that consists of tiny 3 input/output port Mini-Routers (MR). The

connection links between MRs are very small, and the control signals that implement

back-pressure are pipelined automatically due to the nature of the point-to-point

communication between MRs. In this way, the critical path is very short, yielding

high frequencies and throughput.

Our architectures, Unidirectional Network-on-Chip (UDN) and Multidirec-

tional Network-on-Chip (MDN) require very small buffer sizes compared to cross-

bars, achieves 100% throughput for admissible traffic, and are at least as scalable as
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other architectures in terms of hardware cost. The switch fabric grid is composed

of N rows, one for each input/output port, and M columns of MRs. The number of

columns can be decreased at the expense of performance, and as a result the switch

size is decoupled from the cost growth, which constitutes the main advantage of

UDN and MDN over crossbars.

We (1) carry out feasible hardware implementations of the MRG switch

fabrics for FPGAs; (2) execute performance tests, both via RTL simulations and

actual execution on FPGA, under uniform traffic flows; and (3) present results in

terms of throughput, average latency, and average bitrate.

The rest of the chapter is organized as follows: in Section 2, we present

the background information and the related literature. This section includes the in-

formation on various architectures that historically have been the milestones in the

network switch design. Also, the Network-on-Chip (NOC) related concepts are de-

scribed. Moreover, we describe the rationale behind how our architecture compares

to these milestone architectures. In Section 3, we present our switch fabric archi-

tecture and its corresponding hardware implementation; the organization of com-

ponents such as the buffering memory, Network Interfaces (NI) and Mini-Routers

(MR); the routing algorithm (among MRs); and finally the scheduling algorithm. In

Section 4, we present the RTL synthesis, RTL simulation and the actual execution

results on FPGA. Section 5 concludes the chapter.
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4.2 Related Work

4.2.1 The Switch Fabric

The switch fabric is one of the most important building blocks of a net-

work router. Moreover, it requires the implementation of a scheduling unit, which

regulates and grants permission for the pairing of input-output ports and buffers in

between.

The FIFO scheduling, perhaps the simplest scheduling scheme for input

buffering suffers head-of-line (HOL) blocking, where a packet at the head of the

queue cannot be delivered, and therefore blocks the others behind it, resulting in

throughput decrease (58.6%), increased delays, and congestion. A number of algo-

rithms/architectures were proposed in order to remediate this shortcoming, includ-

ing PIM, RRM, iSLIP [56][57][58], based on virtual output queues (VOQ), claiming

a theoretical 100% throughput.

Another proposal, the load-balancing switch [59], claims greater scalabil-

ity. VOQ architectures do not scale optimally as the number of ports is increased,

and therefore become impractical. The load-balancing switch architecture does not

have a scheduler, at the cost of duplicating the packets within the switch fabric.

The main design challenges for implementing switch fabrics include band-

width, latency, scheduling algorithms, interfacing, and routing algorithms as in NOC

based solutions. Several switch fabric architectures have been proposed, including

the crossbar [60], shared-bus [61] and shared-memory [62] switches, which deal with
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these design challenges in various ways. The crossbar switch is the dominant archi-

tecture in today’s high-performance switches, due to a number of reasons: crossbar

switch is more scalable than the shared-bus and shared-memory; this is due to the

limitations in bus transfer bandwidth and memory access bandwidth, respectively.

Crossbar switch provides point-to-point connections and non-blocking properties,

as well as supporting multiple simultaneous transactions, increasing the bandwidth

and speed of the router.

Various queuing schemes have been proposed for implementing a crossbar

switch. Switch fabrics has evolved from the Output Queued (OQ) to Combined

Input and Output Queued (CIOQ) and then to the Combined Input and Crosspoint

Queued (CICQ) architecture. This is exemplified by the three generations of the

IBM Prizma switch [63]. Also there are a number of other works that combine

various queueing schemes, including [64], [65], and [66].

Output queues require a speedup of N, denoting the number of input/out-

put ports, which does not scale with the switch size. CIOQ use complex centralized

scheduling units that are not feasible implementation-wise. A number of crossbar

switch implementations implement queueing memories only at the crosspoints [67],

which proves to require more queuing memory than Combined Input and Crosspoint

Queued (CICQ) architectures [68]. CICQ implements smaller crosspoint queues in

conjunction with large input queues (usually replaced by large VOQs), which is

shown to require smaller memory space with respect to queues at the crosspoint

only [69]. CIOQ or CICQ, crossbar switch architecture also require N 1xN demulti-
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plexers and N Nx1 multiplexers for crosspoints, which are very high-cost are logics

and make the design unscalable. Moreover, multiplexers and demultiplexers are con-

trolled by a centralized logic component, which yields N2 complexity for the decision

logic. In [70], the authors demonstrate that 20-25 packet-sized queuing memory at

each crosspoint is required to achieve 100% delivery ratio, under admissible traffic.

MRG based switch implements distributed control. Buffering and schedul-

ing is handled within MRs. The only control is the backpressure mechanism that

signalize the predecessor if there is an available buffer in the next MR; please note

that this signal is the critical path of our design, and it is very short. Our archi-

tecture does not require any buffers outside the grid, unlike CIOQ or CICQ, and

the buffer size is much smaller. In our simulations, every MR has 9 packet-sized

queuing memory in total, and in Chapter 5 we analytically reaffirm our simulation

results.

A number of papers analyze the power consumption in switch fabrics by

analytical methods [71] and by simulation [72][73]. In [72], the breakdown of the

power consumption is as follows: 33% for clocking, 22% for buffering memories,

17% on the links, and 15% for the switching activity. Clocking and link power is

frequency and technology dependent, and as a result cannot be improved much by

architectural design. However, by decreasing the buffering memory size, the system’s

power consumption can be improved. Our buffering mechanism would definitely be

a step in the right direction.
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4.2.2 Network-on-Chip

1

N

Link Router
Network
Interface

Figure 4.1: NOC Switch Fabric

Network-on-chip, a relatively new concept that emerged as a system-on-

chip (SOC) communication methodology, borrows many ideas from the computer

networks, the domain in which the research on routers and packet switching has

matured. However, they need to be adapted, since there is no direct translation of

these methodologies.

Figure 4.1 represents a NOC router, in the form of a regular N-by-N mini-

router (MR) grid. Computational cores in a SOC are connected to each other via

this communication fabric, composed of network interfaces (NI), and MRs.

The NIs act as an abstraction layer between the computational cores and

MRs. The data to be communicated in between these cores are packetized in NIs
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and transmitted to the next-hop router, in equally sized flits.

An MR might have multiple packets in the buffers competing for the same

output port, resulting in contention. A scheduling algorithm computes which packet

has to be forwarded prior to the other packets. The arbiter, the hardware embod-

iment of the scheduling algorithm, makes a link in between the chosen buffer and

output port, such that the packet is forwarded. In this chapter, the scheduling and

arbitration terms are used interchangeably. Round Robin offers fair scheduling, as-

signing each resource equal usage in circular order, which results in a starvation-free

system.

The communication through the NOC is pipelined automatically due to

the nature of the point-to-point communication in between MRs. In this way, the

critical path is restricted to the control signals in the switch NOC fabric, improving

the scalability and throughput.

Some other important concepts in NOC are topology, routing, flow control,

buffer management, quality of service and network interfaces and they have been

studied in acclaimed proposals such as Aetherial [74], Nostrum [75], Xpipes [76],

Intel 80 Core NOC [77], and Mango [78]. They all make different design decisions,

to achieve their design goals.

Mesh-based NOC architectures and NOC routing algorithm have been dis-

cussed in various other publications, including [79, 80, 81, 82].
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4.2.3 Network-on-Chip Based Switch Fabric

Recently, functional-level designs of two novel Network-on-Chip (NOC)

based switch fabric architectures were proposed: Unidirectional NOC (UDN) and

Multidirectional NOC (MDN) [83][84], as a replacement of the buffered crossbar

switch fabric architecture (Figure 4.2), targeting greater scalability and flexibility,

as well as greater performance per hardware cost, compared to buffered crossbar

switch fabric.
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Figure 4.2: Buffered Crossbar and NOC Based Crossbar Switch Architectures

The crossbar-based switch fabric architectures offer very high performance
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and are widely used in high-performance routers. However, their cost grows quadrat-

ically with the input/output port count, since they require internal crosspoints (and

buffers) for every input/output port pair. The UDN proposal decouples the number

of ports from the cost growth, and therefore is able to achieve subquadratic growth.

The MDN, in return, is quadratic, however it achieves greater performance/cost

ratio, for smaller number of ports. Both of the proposals introduce load-balancing

without duplicating the packets, which in return improves the throughput and la-

tency.

NOC, a paradigm of on-chip communications, with its basic concepts bor-

rowed from computer networks, is proposed to be applied back to its original do-

main, to remedy some shortcomings in the switch fabric design. In regard to this

matter, the basic building blocks of NOC, including the buffers, flow control, ar-

bitration and routing decision units need to be used in the correct combination of

schemes/specifications, to be able to provide a competitive solution.

4.3 Hardware Design

4.3.1 UDN and MDN Architectures & Algorithms

The block diagrams for UDN and MDN switch architectures are presented

in Figure 4.3 and Figure 4.4. The main difference among the two switch fabrics

is how their input/output pins are placed in the layout. In UDN, the input pins

are placed on the west side of the layout, whereas the output pins are on the east
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side. On the other hand, in the MDN switch, the pins are placed all around the

peripheral, where input and output pins are next to each other. UDN MRs have

either 2 or 3 I/O ports, whereas MDN MRs have 4 I/O ports.

RInput 1 R R R

R R R R

R R R R

R R R R

NI

NI

NI

NIInput N

Output 1

Output N

NI

NI

NI

NI

M Router Columns

Figure 4.3: UDN Architecture

The UDN and MDN switch architectures have the same NOC specifica-

tions. The switching mode is store and forward. We choose to apply buffered

flow control, implemented by FIFO input buffers. Buffered flow control requires a

(buffer management/backpressure) mechanism, which we choose to be the valid/ac-

cept scheme, instead of the credit-based scheme in the original proposal [83], in order

to decrease inter-MR communication overhead. The buffer size is four packets. The

scheduling is based on iSLIP [58]. XY Modulo Algorithm allows deterministic and

adaptive routing within the MR mesh, where routing path decision is made in an

incremental fashion, at each MR. We choose to implement our switch fabric for
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Figure 4.4: MDN Architecture

fixed-length packets, for simplicity.

The size of the UDN switch, as shown in Figure 4.3, is defined by the 2-

tuple (N, M), where N denotes the number of input-output ports, and M denotes

the number of MR columns. Some restrictions apply to (N, M) values: N ∈ N, and

N≥ 2; M ≤ N and M = 2m, where m ∈ N0. The restrictions on M are caused by

the routing algorithm involving Modulo M operations (See Section 4.3.6 and [83]).

Because Modulo M operation requires division in case M 6= 2m, but it is a simple

bit-selection operation in case M = 2m, we can avoid the extra cycles caused by the

division operation by applying this restriction. With some minor modification in

the routing algorithm, M = N - 1 ⇒ N = 2n, where n ∈ N1 is also a possible (N,
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M) combination. The number of routers in the UDN switch is equal to N × M.

The size of the MDN switch, as shown in Figure 4.4, is a function of N,

which denotes the number of input/output ports. Because the input/output ports

are placed around the peripheral of the switch, some restrictions apply to N: N = 4

× n, where n ∈ N1 . The input/output ports are placed counter-clockwise, starting

from the West side of the layout. The ports in between 1 and (N/4) are placed on

the West; (N/4 + 1) and (N/2) on the South; (N/2 + 1) and (3N/4) on the East;

and (3N/4 + 1) and N on the North side of the layout. The number of routers is

equal to (N/4)2.

In the UDN and MDN switch design, the same network interface, flow

control unit, and buffering memory modules are used. The UDN and MDN MRs

are different, due to the different number of ports.

The UDN is a deadlock-free architecture due to its unidirectional nature,

whereas the possibility of deadlocks in MDN are avoided with the use of virtual

channels [85].

4.3.2 Input Buffers (FIFOs)

The input buffer is implemented as a circular queue. The read/write regis-

ter positions are marked by the Read Pointer (RP) and Write Pointer (WP). During

a write operation, the data is written into this register, and the WP is incremented.

In the same way, after a successful read operation, the RP is incremented to point

to the following data. Status register (SR) is incremented after each write operation
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and decremented after each read operation. If SR = 0, then the buffer is empty

(Empty Status Signal is set); therefore there cannot be made any read operations.

If SR = Buffer Size, then the buffer is full (Full Status Signal is set); therefore no

more write operations are allowed until SR is decremented. The Empty Status Sig-

nal informs the packet forwarding unit (PFU) in the current module (NI or Routers)

about the availability of a valid packet for a read operation. The Full Status Signal

generates Accept Signal, which informs the previous module’s (NI or MR) PFU

about the availability of buffer space.

4.3.3 Network Interface (NI)

The Network Interface (NI) is the module that acts as an abstraction layer

in between the network protocol and internal UDN/MDN switch protocols. There

are two types of NI: Input NI (INI) (Figure 4.5) and Output NI (ONI). When a

packet is injected into the switch, INI encapsulates (packetizes) them into U(M)DN

packets, and transmits them to the next router, in equally sized flits. ONI, in

return, receives the U(M)DN flits, strips (depacketizes) the original packet, and

ejects it from the switch.

4.3.4 UDN 3 I/O MR

The block diagram for a 3 I/O Port Router is given in Figure 4.6. There

are 3 input ports, West, North and South; and there are 3 output ports, East, North

and South. The router input buffer modules are placed at each input port, whereas
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Figure 4.5: Input Network Interface Block Diagram

the PFUs are placed at each output port. At each round, the arbiter virtually

connects input ports to output ports, according to the scheduling algorithm.

4.3.5 MDN 4 I/O MR

The MDN architecture is based on UDN; therefore, most of the UDN

modules are also being used in the MDN switch, including NIs, PFUs and Input

Buffer. The arbiter is also very similar in terms of basic principles, however it is more

complex due to handling the connectivity between four input buffers and four PFUs.

Moreover, MDN requires virtual channels to avoid deadlocks: WEST, NORTH and

SOUTH input ports of the WEST-most MR column; EAST, NORTH and SOUTH

input ports of the EAST-most MR column; and NORTH and SOUTH ports of the

other MDN MRs have a pair of buffers, demuxed at their input and muxed at their

output (Figure 4.7). In the functional-design proposal [83], the virtual channels are

not muxed; however this results in the arbiter handling seven pairings, rather than
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Figure 4.6: 3 I/O Port UDN Router, Top-Level Block Diagram

four, and thus not feasible in terms of an actual hardware implementation.

4.3.6 Modulo XY Routing Algorithm

Both UDN and MDN routing algorithms are based on modulo operation.

The algorithms make a balanced distribution of the traffic over the columns or rows,

thus earning its name XY Modulo; this means that the modulo operation is applied
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if the communication is on the X axis (from MR’s West Input Port to MR’s East

Output Port as in UDN and MDN, or from MR’s East Input Port to MR’s West

Output Port or vice versa as in MDN) or on the Y axis (from MR’s North Input

Port to MR’s South Output Port, or vice versa, as in MDN). In Figure 4.8, we

exemplify the XY Modulo routing on the X axis, where packets are injected into the

switch from i0 input port, with destinations to the o0 - o3 output ports. The packets

are routed on different router columns per input/output port pairs, distributing the
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load on the switch.

4.3.7 Scheduling Algorithm

INPUT PORTS OUTPUT PORTS

W

N

S

E

N

S

Figure 4.9: Bipartite Graph Matching Problem in UDN

The scheduling unit resolves the contention among the input buffers of a

router, competing for the same output port, as well as controlling the arbiter to

virtually connect the chosen input buffer to the output port.

The scheduling of the UDN switch is a bipartite graph matching problem.

This can be formulated as G = (I, O, E) where I denotes input ports (W, N, S), O

denotes output ports (E, N, S) and E denotes the edges. The graph is a directed

graph. The unmatched graph is presented in Figure 4.9. Similarly, MDN scheduling

is a H = (I’, O’, F); I’ = (W, E, N, S), O’ = (W, E, N, S) and F denotes the edges.

The scheduling is based on the iSLIP algorithm [58] running a single round.
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4.4 Simulations, Execution & Results

4.4.1 RTL Synthesis

The RTL synthesis is carried out on Xilinx ISE 11.1, using Xilinx Synthesis

Technology (XST) tool, with the settings ‘Optimization Goal: Speed’, ‘Optimization

Effort: Normal’ and ‘Keep Hierarchy: No’. The specific FPGA device is Virtex 5 -

XC5VTX240T, FF1759, -2.

The XST tool reports the area results in terms of ‘Number of Slice LUTs’

and ‘Number of Slice Registers’, unlike the results for older platforms like Virtex

4, which reported a single value for slice usage; therefore, all the performance &

cost analysis will be reported in 2-tuple. We do not present the results in metrics

such as logic cell count, gate count or ASIC area size, since the design is made

for the reconfigurable platforms, and the conversions from FPGA metrics are not

meaningful, even in terms of providing estimates.

The modules that constitute the UDN/MDN switches have different tasks

and therefore different weights on the combinational and sequential circuits. This

can be observed by comparing the weights of the number of LUTs and Registers for

any module. The synthesis results of the individual modules are given in Table 4.1.

Synthesis results show that the frequency of the UDN switch fabric is

independent of M. In Table 4.2 we present frequency results for various (N, 1) UDN

and (N) MDN switches. (N, N-1) UDN has higher operational frequencies than the

corresponding (N) MDN switch, at the expense of greater cost per port number.
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Table 4.1: Synthesis Results for individual UDN/MDN Modules

Module Name Size (# of Slice LUTs) Max Frequency

as LUTs as Regs (MHz)

NI Buffer 1278 853 734.7

Input NI 359 857 597.229

Output NI 450 857 510.843

XY MODULO 2 - -

Router Buffer 531 1016 508.414

Virtual Channel 532 1016 508.414

Router (2 I/O Port) 1679 2045 269.485

Router (3 I/O Port) 3073 3073 257.107

Router (4 I/O Port) 6197 4112 255.115
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UDN arbiter is responsible for three I/O ports, whereas MDN’s is responsible for

four ports, resulting in longer critical path. The (8, 7), (16, 15), (32, 31) UDN

switches require more than 100% of the resources on a Virtex-5 (XC5VTX240T,

FF1759, -2), and therefore cannot be placed on the FPGA. On the other hand, only

(32) MDN switch cannot be placed on the FPGA.

Table 4.2: Comparison of Synthesis Results, I

Switch Sizes # of Slice LUTs # of Slice REGs

UDN MDN UDN MDN UDN MDN

(4, 3) 4 31759 8933 37590 10969

(8, 7) 8 179978 30387 171508 30153

(16, 15) 16 762421 108996 734114 93203

(32, 31) 32 3137269 410697 3039532 318016

Switch Sizes Frequencies

UDN MDN UDN MDN

(4, 3) 4 290.252 250.591

(8, 7) 8 283.168 240.667

(16, 15) 16 252.139 212.227

(32, 31) 32 220.146 173.214

The UDN vs. MDN switches comparison is tabulated in Table 4.3. The

cost of the UDN switch is a function of the product of N and M, with M varying
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from any small number to N-1. The UDN cost growth is only quadratic in the worst

case of M = N-1 (yielding the greatest throughput); however keeping M small, it’s

possible to keep the growth subquadratic, unlike the crossbar switch fabric, while

achieving acceptable throughputs. The MDN yields quadratic growth of (N/4)2.

Even though the 4 I/O Port MDN MR consumes twice the amount of resources as

the 3 I/O Port UDN MR, and 3.5 times as the 2 I/O Port UDN MR, the comparison

of the overall UDN and MDN switch fabrics show that MDN is more cost efficient,

for small N values. On the other hand, the operational frequencies of the MDN

switches of various sizes are below the operational frequencies of the UDN switches,

which would affect the performance.

Table 4.3: Comparison of Synthesis Results, II

Arbiter Size MR Size MRs Cost Increase

(LUTs/REGs)

UDN 3 3073/3073 N×M Subquadratic

MDN 4 6197/4112 (N / 4)2 Quadratic

4.4.2 On-Chip Packet Switching Latency

We have validated the UDN switch (N, M) = (4, 3) on FPGA. Each input

port of the switch fabric is connected to a linear feedback shift register (LFSR) based

pseudo-random packet generator [86], as shown in Figure 4.10 and Figure 4.11.

The packet generators and switch fabric are initially idle. Once the CPU
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is initiated and our validation software starts to run, a trigger register is set to 1,

which starts the packet generation. The headers of the incoming packets are written

on a dual port RAM, which can be accessed by the CPU, after the packet generation

comes to an end. When the packets are transmitted through the destination output

port, their headers are also written to a dual port RAM. In this way, the validation

software can compare the inbound and outbound packets, and verify if the system

works correctly. With this approach, we were able to validate that all the packets

have been switched correctly.

Using this system, we also carried out some performance analysis. Once

the system runs for a certain period of time (i.e. cold start), the trigger register

is reset, stopping the packet generation. Measuring the time period (in terms of

cycles) in between the set and reset of the trigger register, it has been observed

that the performance on the FPGA matches the simulation results. The error

percentage is 5% to 9% for both latency and delivery ratio in all of the tests we

have run, which confirms the validity of our approach. The error percentage can be

attributed mainly to the fact that pseudo-random generation based on LFSR suffers

from generating exactly one more 1 than 0s (or viceversa), and as a result traffic

flows are not perfectly uniform. Additionally, software timers are not very accurate,

inflicting extra latency themselves, which might be a minor factor in the error [87].
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4.4.3 Simulation

The simulations were carried out on RTL descriptions of hardware com-

ponents, with functional models of traffic generators/sinks. For the UDN, M=N-1

yields the greatest throughput for all N values; therefore, in this section M is always

chosen to be N-1. The throughput for (N, N-1) UDN switches, under uniform traf-

fic, is 99.54% and 97.34%, where N=4 and N=32 respectively. The throughput for

(N) MDN switches, under uniform traffic, is 98.23% and 96.12%, where N=4 and

N=32 respectively. The average latency for (N, N-1) UDN switches, under uniform

traffic, is 10.8 and 94.7 cycles/‘Number of flits a packet is divided to’, where N=4

and N=32 respectively. The average latency for (N) MDN UDN switches, under

uniform traffic, is 14.2 and 126.7 cycles/‘Number of flits a packet is divided to’,

where N=4 and N=32 respectively.

For the bitrate computations, we use both the frequency results of the RTL

synthesis, as well as the RTL simulation results. The UDN offers 6.56 and 42.12

Gbytes/sec aggregate bandwidth for (4, 3) and (32, 31) UDN switches; which imply

1.64 and 1.32 Gbytes/sec bandwidth per port, respectively. On the other hand, the

MDN offers 5.22 and 21.36 Gbytes/sec aggregate bandwidth for (4) and (32) switch

sizes; which imply 1.31 and 0.67 Gbytes/sec bandwidth per port, respectively. High

performance Ethernet cables offer 1.25 Gbytes/sec bandwidth; therefore, the UDN

switch proves to be a competitive architecture to comply with the market products,

whereas MDN’s performance does not match this bandwidth, as the number of
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input/output ports is increased.

4.5 Conclusion

In this chapter, we proposed the hardware design and implementation of

the two NOC based switch fabric architectures (UDN and MDN) for FPGA. We

further improved the routing and scheduling algorithms, for the feasibility of their

hardware design. The synthesis and RTL simulations are carried out over a range

of switch sizes. The simulation results are also validated on FPGA, with pack-

ets generated by LFSR based pseudo-random traffic generators. The results show

that UDN outperforms MDN in terms of throughput, whereas MDN offers greater

performance-cost ratio. UDN’s high performance makes it suitable for performance

critical cases, whereas MDN is a better solution for cases that require cost efficiency.

Both architectures offer scalability, flexibility and high performance, supporting our

claims.

The results show that our architecture 1) performs as good as other buffer-

ing schemes/scheduling algorithms that theoretically achieve 100% throughput, 2)

is at least as scalable as other architectures in terms of hardware cost, 3) is per-

fectly implementable, 4) implements load-balancing by nature and 5) introduces

NOC concepts, which have originally been borrowed from computer networks, back

into computer networks.

The UDN and MDN NOC switches would benefit from fault-tolerance,
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which can be implemented by exploiting FPGAs’ property of dynamic reconfig-

urability. In case of a malfunctioning MR, other UDN and MDN MRs could be

reconfigured to route the packets through an alternative path. This is left as future

work, to improve the systems’ performance, reliability and service capability further.
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Chapter 5

A New Approach to Switch Fabrics

based on Mini-Router Grids and

Output Queueing
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5.1 Introduction

Whether it is used in routers for computer communications or in the

system-on-chip domain as a replacement of buses, switch fabric design is an im-

portant part of the effort carried out for packet-switched information transmission

paradigm. The switch fabric is the hardware component that acts as the interme-

diate connection point of ingress ports to egress ports in the aforementioned and

other similar information systems.

From the computer networks perspective, the routers require ever increas-

ing need for scalable switch fabrics with high delivery ratios and low latencies.

From the system-on-chip (SoC) perspective, using packet switched communication

remedies the difficulty of interconnecting components with heterogeneous interfaces,

thus abstracting data from the signaling interface, while offering high degree of par-

allelism and pipelining, which results in greater throughput.

A switch fabric consists of queueing memories and memory controllers for

temporary storage of the packets, scheduling unit(s) to avoid contention, and other

computational components that facilitate these tasks. Switch fabrics need to support

high delivery ratios, in order not to become the bottleneck in the communication

themselves, and therefore their design remains to be an open research problem.

In Chapter 4, we proposed a feasible hardware design and implementation

of two Mini-Router Grid (MRG) based switch fabric architectures (UDN and MDN)

for FPGA platforms. Our results point to a high performance switch fabric, that
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decouples switch size from the cost growth, at the expense of performance. We also

demonstrated that UDN and MDN switch fabrics are comparable to crossbar switch

fabrics in terms of performance.

In this chapter we improve upon our work in Chapter 4, by adding wraparound

links between North and South Mini-Router (MR) rows, changing from Virtual-

Output Queueing to Output Queueing, which results in a highly homogenized fabric

with improved load balancing and uniformity. Furthermore we present an analytical

model for the switch fabric that closely matches the simulation results, supporting

our hypothesis.

The rest of the chapter is organized as follows: in Section 2, we outline

the related literature. In Section 3, we describe a novel switch fabric architecture.

In Section 4 we describe its analytical model and in Section 5, correlate the model

to the simulation results. In Sections 6 and 7, we discuss a possible placement and

comparison to other switches, respectively. Finally, Section 8 concludes the chapter.

5.2 Related Work

The switch fabric is one of the most important building blocks of commu-

nication related hardware, and various architectures have been proposed for both

packet-switched computer networks and system-on-chip communication. Most of

these architectures require a combination of queueing units, scheduling units and

various other hardware components.
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The main design challenges for a switch fabric include delivery ratio, band-

width, latency, scheduling algorithms, interfacing, and routing algorithms as re-

quired in grid-based solutions. Several switch fabric architectures have been pro-

posed, including the crossbar, shared-bus and shared-memory switches, which deal

with these design challenges in various ways. The crossbar switch is the domi-

nant architecture in today’s high-performance switches, due to a number of reasons:

crossbar switch is more scalable than the shared-bus and shared-memory; this is due

to the limitations in bus transfer bandwidth and memory access bandwidth, respec-

tively. Crossbar switch [60] provides point-to-point connections and non-blocking

properties, as well as supporting multiple simultaneous transactions, increasing the

bandwidth and speed of the router. However, their cost grows quadratically with

the number of ports, since they require internal crosspoints and queues for every

input/output port pair.

Recently, there have been a number of proposals on Mini-Router Grid

(MRG) based switch fabric architectures for system-on-chip communication as a

replacement of bus (a paradigm also referred to as network-on-chip), as well as for

routers used in computer communications as a replacement of crossbars, including

[83, 2, 79, 81].

Goossens et al [83] and Karadeniz et al [2], as described in the previous

chapter, propose the UDN switch fabric, its functional model and the hardware

design respectively, with the premise that they provide i) high throughput due to

their pipelined nature, ii) low latencies, iii) ability to decouple switch size from cost
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growth, and iv) load balancing properties. UDN is in the form of an N ×M MRG,

where the input ports are placed on the West of the grid, and output ports are

placed on the East, as shown in Figure 5.1. These proposals achieve sub-quadratic

cost growth by decoupling the number of ports from the switch cost, at the expense

of performance. Moreover, they introduce load-balancing without duplicating the

packets, which in return improves the delivery ratio and latency. Goossens et al [83]

describe the aforementioned architecture, presents some limited analytical modeling

and functional level simulations. Karadeniz et al [2], as described in the previous

chapter, propose a feasible hardware implementation and cost analysis; however,

both lack an in-depth analytical model correlating the design parameters to each

other, as well as to the performance metrics.

A number of architectures based on virtual output queues (VOQ) were
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proposed in order to remediate head-of-line (HOL) blocking of FIFO scheduling,

including PIM, RRM, iSLIP [56][57][58], claiming a theoretical delivery ratio of

100%. However, VOQs do not scale optimally as the number of ports is increased,

and therefore they are impractical. Another proposal, the load-balancing switch

[59], claims greater scalability, by eliminating the need for a scheduler at the cost of

duplicating the packets.

Output queueing (OQ) provides high performance, due to the fact the

ingress packets are forwarded to the output queues without any delays, and as a

result they achieve a theoretical delivery ratio of 100%. However, OQ suffers from

the speedup problem, which means if there are N contending packets, they need to

be written to the queue in the same time cycle requiring a frequency speedup of N,

as described in [88]. Prabhakar and McKeown [89] propose a combined input and

output queued (CIOQ) architecture, which bounds speedup by 4. We replace VOQs

we have used in our switch fabric design (as described in Chapter 4) by OQs. Our

MRG architecture bounds the speedup by 3 due to the use of 3 I/O MRs, which

is the lowest speedup bound for any switch size when using only output queues, to

our knowledge. Other approaches of bounding speedup include using input-output

buffering, that can bound the speedup by blocking some of the HOL packets at the

input queues, however this approach induces HOL blocking and increased delays; as

a result, it suffers from reduced delivery ratios, as described in [90][91].

By adding wraparound links between North and South Mini-Router (MR)

rows, we enable using the same exact 3 I/O port MR component, increasing the
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implementability and homogeneity in our design. Furthermore, wraparound links

between North and South MR rows improve the average and maximum latency by

50%, in addition to improved load balancing and uniformity.

In this work, we present the first in-depth analytical model of switch fab-

ric architectures based on OQ MRG and validate our model with register-transfer

level (RTL) simulations in the synthesizable subset of SystemC by showing that

the analytical and simulation results have close correlation over a range of design

parameters.

5.3 MRG Based Switch Fabric Architecture

5.3.1 Architecture Design Parameters

In this work, we propose an output-queued, wraparound version of UDN

(WUDN), where the North ports of the North-most row are connected to South

ports of the South-most row, reducing the maximum vertical packet transmission

from N hops to N/2 hops, and increase the load balancing and traffic uniformity

further. The comparison of the UDN and WUDN architectures are presented in

Figure 5.1.

The size of the WUDN switch is defined by the 2-tuple (N,M), where N

denotes the number of input-output (I/O) ports. M denotes the number of MR

columns. The number of MRs in the WUDN switch is equal to N ×M , and they

all have 3 I/O ports. Hardware design constraints and the modulo based routing

81



algorithm (Subsection 5.3.4) inflict some restrictions to the (N,M) values:

• N ∈ N, and N ≥ 2, trivial restriction that ensures the number of ports is

greater than or equal to 2.

• M ≤ N and M = 2m, where m ∈ N0 : The restrictions on M are inflicted

by the routing algorithm involving Modulo M operations (See Section 5.3.4).

Because Modulo M operation requires division in case M 6= 2m, but it is a

simple bit-selection operation in case M = 2m, we can avoid the extra cycles

caused by the division operation by applying this restriction.

• M | N : This ensures that the load is distributed uniformly on M columns,

in order to avoid congestion due to structural non-uniformity.

The WUDN switch architecture has the wormhole switching mode, buffered

flow control implemented by output queueing scheme, Modulo XY Algorithm allows

deterministic-uniform routing within the MRG, and incremental routing path deci-

sion. For simplicity, we use fixed-length cells.

The data delivery through the MRG is pipelined due to the point-to-point

nature of MRs. This restricts the critical path to the control logic in a single MR

and improves the scalability and throughput. WUDN is a deadlock-free since it is

unidirectional.

By introducing output queuing (OQ) scheme to MRGs, we show that the

speedup problem can be bounded by 3 and therefore be feasibly implemented in
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Figure 5.2: 3 I/O Port WUDN MR, Top-Level Block Diagram

hardware. Our architecture offers a theoretical throughput of 100%, smaller queue

sizes, and QoS guarantees, while not suffering from unscalability due to speedup.

The cost of WUDN is a function of N and M , and it is directly proportional

to the number of MRs. As N is increased, more MR columns would be required to

support the traffic; however the architecture permits M to be decoupled from N ,

trading performance for lower cost. For constant performance, M is a function of

N .
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5.3.2 WUDN 3 I/O Port Mini-Router

The block diagram for a 3 I/O Port WUDN MR is given in Figure 5.2.

There are 3 input ports, West, North and South; and there are 3 output ports,

East, North and South. The output queues and memory controllers are placed at

each output port, whereas the next-hop logic and demultiplexers are placed at the

input ports. Packets are transmitted in equally size flits in between MRs.

5.3.3 Memory Organization for Output Queues

MRs require a maximum speedup of 3, which is the number of MR I/O

ports. In order to overcome the speedup problem that affects only the write op-

erations, we use a dual clock-domain memory controller and dual-port queues, as

shown in Figure 5.4.

First, the next-hop port for the ingress packets are computed, which gen-

erates the signal to demultiplex the packet into the appropriate output queue con-

troller; then, within the memory controller for write operation, contending packets

are multiplexed and serially written to the queueing memory that is on the higher

frequency clock domain. We use a Round Robin (RR) based scheduling algorithm

to multiplex and serialize the packets into the output queues. The priorities of the

three input ports are shifted in a circular fashion, and the present contending packets

are serialized according to these priorities. The output queue control is implemented

in a circular fashion.
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Figure 5.3: Modulo XY Routing for WUDN

5.3.4 Modulo XY Routing in the Mini-Router Grid

We present Modulo XY Routing algorithm for WUDN (Algorithm 2), a

special case of Manhattan routing, which makes a balanced distribution of the ver-

tical traffic over the MR columns by using the modulo operation. The algorithm

is applied to each packet at each MR, thus implementing an incremental routing

scheme. Figure 5.3 exemplifies 4 packet transmissions from I1 to O1−4. The packets

are routed on different MR columns per I/O port pairs, distributing the load on the

switch. A turning point MR (MRTP ) denotes an MR in which a horizontal flow

is directed into a vertical one (MRTP,H→V ), or vice versa (MRTP,V→H). TPH→V

occurs when the algorithm chooses the column for vertical transmission. Vertical
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Algorithm 2 Modulo XY Algorithm for WUDN

1: Let inputPort denote the input port of the MR.

2: Let nexthop denote the output port of the MR & return value of the algorithm.

3: Let IDX denote the row index of the current MR.

4: Let IDY denote the column index of the current MR.

5: Let source denote the input port of the switch fabric the packet has entered the

switch.

6: Let destination denote the output port of the switch fabric the packet is destined

to.

7: Let N denote the number of switch fabric input ports.

8: Let M denote the number of MR columns.

9: Let RR denote one bit round robin alternator variable.

10: if inputPort is NORTH then

11: if IDX is destination then

12: nexthop← EAST # Turning point MR

13: else

14: nexthop← SOUTH # Keep moving vertically

15: end if
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Algorithm 2 Modulo XY Algorithm for WUDN (continued)

16: else if inputPort is SOUTH then

17: if IDX is destination then

18: nexthop← EAST # Turning point MR

19: else

20: nexthop← NORTH # Keep moving vertically

21: end if

22: else if inputPort is WEST then

23: if IDX is destination then

24: nexthop← EAST # Keep moving horizontally

25: else if (destination+ source)%M == IDY then

26: if abs(IDX − destination) > (N/2) then

27: if (IDX − destination) < 0 then

28: nexthop← NORTH # Turning point MR

29: else

30: nexthop← SOUTH # Turning point MR

31: end if
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Algorithm 2 Modulo XY Algorithm for WUDN (continued)

32: else if abs(IDX − destination) == (N/2) then

33: if RR == 0 then

34: nexthop← NORTH # Turning point MR

35: else

36: nexthop← SOUTH # Turning point MR

37: end if

38: RR←!RR # Alternate RR

39: else if abs(IDX − destination) < (N/2) then

40: if (IDX − destination) < 0 then

41: nexthop← SOUTH # Turning point MR

42: else

43: nexthop← NORTH # Turning point MR

44: end if

45: end if

46: else

47: nexthop← EAST # Keep moving horizontally

48: end if

49: end if
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transmission is either South-bound or North-bound according to the vertical hop

count to the destination row; if the distances are equal, one is intermittently cho-

sen. TPV→H occurs when the packet arrives to the destination row. If the packet’s

source and destination are the same (e.g. I1 to O1), a single horizontal tranmission

will be made through a single MR row, and no TPs will be elected by the algorithm.

In the Algorithm 2, there can be observed some computational operations,

including modulo (Line 25), absolute value (Line 26, Line 32, Line 39), sign function

(Line 27, Line 40), subtraction (Line 26, Line 32, Line 39), and comparison (Line 26,

Line 32, Line 39). With the restrictions we have defined in Subsection 5.3.1, the

modulo operation is reduced to a simple bit shift, and the remaining operations are

interrelated such that they can be computed in fewer number of operations, using

2’s complement algebra.

5.4 Analytical Model

In this section, we present a mathematical analysis of WUDN switch fabric

that provides useful insights into evaluation of the performance and scalability of

the proposed architecture.

In this section, we use notation Rxy to denote the MR at coordinate (x, y)

on the grid. Is and Ot are used when referring to input port s and output port t,

respectively. Further, s  t is to denote the path between Is and Ot found by the

modulo algorithm and |s− t| denotes the lattice distance between Is and Ot.
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5.4.1 Analysis of the Modulo Routing Algorithm

We begin with characterization of the routing algorithm. Modulo routes

exhibit some useful properties that make the analysis of the system easier. In the

sequel, we review some of these properties.

Property 1. For any given source-destination pair, modulo routing finds the short-

est path between the two end.

Proof: The modulo routing is a greedy forwarding scheme in a

taxicab geometry in which at each hop, the lattice distance between the packet and

destination is decremented by one. This is, indeed, the maximum the grid structure

can offer and thus, guarantees that the routing is performed over the shortest path.

Such a path, however, is not necessarily unique.

An immediate deduction from Property 1 is that the length of the modulo

route between an arbitrary choice of Is and Ot is indeed |s − t|, that is the lattice

distance between source and destination. On a N ×M grid and with a uniform and

independent selection of source and destination, every path is comprised of an exact

number of M horizontal and an average of N/4 vertical transmissions. The latter

can be inferred noting the fact that |s− t|v takes on values between 0 and N/2 with

equal probability. Therefore, the average path length is M + N/4 hops. We shall

use this fact later on when proving Property 3.

Property 2. Modulo routes are loop-free.

Proof: The previous property also implies that modulo routes
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cannot contain cycles.

Property 3. Under a uniform and independent selection of source-destination

pairs, modulo routing maintains a uniform distribution of traffic across all MRs

throughout the grid.

Proof: We quantify the fraction of transmissions contributed by

each MR in the grid. In a general case and on a N ×M grid, the modulo algorithm

can generate a total of N2 deterministic paths connecting every source to every

destination port. Assuming that source-destination pairs are chosen uniformly and

independently, then the choice of every path is also uniform; that is, all paths are

equally utilized.

Suppose that every source deterministically generates a packet for every

destination. From Property 1, we recall that a modulo path comprises an average

of M +N/4 hops. Thus, the total number of transmissions, T , to be made over the

entire grid is given by

T = N2
(
M +

N

4

)
. (5.1)

Consider the xth row, denoted by Rx∗, on the grid. We enumerate the

total number of horizontal transmissions over Rx∗. Note that such transmissions

are either from the traffic originated from Ix or destined at Ox. We consider each

case separately.

1. Traffic originated from Ix (but not destined at Ox): There are N packets

coming out of Ix, each of which takes between 0 to M − 1 horizontal hops on
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Rx∗ with equal probability before getting to the turning point. That makes a

total of N(M − 1)/2 horizontal transmissions on Rx∗.

2. Traffic destined at Ox: There are N such packets each taking between 1 to

M horizontal hops on Rx∗ with equal probability. This adds up to a total of

N(M + 1)/2 horizontal transmissions on Rx∗.

The total number of horizontal transmissions across Rx∗ is thus given by

Th(x) = NM . (5.2)

In order to enumerate the vertical transmissions across rowRx∗, we perform

a transformation on the grid. Let us assume that the grid is horizontally contracted

such that all MRs in every row are consolidated into a single MR. This transforms

the original N ×M grid into a N × 1 layout. This transformation is safe, in the

sense that it does not affect the number of vertical transmissions. In fact, all vertical

transmissions that were supposed to be carried out across Rx∗ will now take place

on Rx ≡ Rx1. Therefore, the number of vertical transmissions across row Rx∗ is

now equal to the number of individual paths intersecting Rx.

We take advantage of the symmetry of vertical connections on the grid to

enumerate all such paths. To that end, note that Rx is used on every s  t where

|s − x| + |x − t| = |s − t|. By Property 1, |s − t| ≤ 1 + N/2. However, where

|s − t| = 1 + N/2, there are exactly two such paths between s and t, only one of

which uses Rx if s 6= x. In that case, the grid uses both paths alternatively to

maintain a fair balance of traffic over all MRs. In our analysis, we count such cases
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as half-paths. It is easy to observe that there are exactly N half-paths that cross

through any given Rx. Offsetting all such paths that are double-counted, we obtain

the following equation for the total number of paths intersecting Rx∗

Tv(x) = 2

N
2
−1∑

i=0

(
N

2
− i
)
− N

2
=
N2

4
, (5.3)

which is indeed equivalent to the number of vertical transmissions carried out across

Rx∗.

From Equations (5.1), (5.2) and (5.3), we realize that Rx∗ handles 1/N of

the total transmissions. For uniformly and independently chosen Is and Ot, choice

of the turning point column (i.e., (Is + Ot)%M) is also uniform (see [92] for the

actual theorem and a rigorous proof). This implies that every column also carries

equal share of the traffic. Therefore, the total number of horizontal transmissions,

T̄h, and vertical transmissions, T̄v, contributed by each MR is

T̄h = N , T̄v =
N2

4M
. (5.4)

Overall, each MR transmits a total of N + N2/4M packets, which is in

fact 1/MN of the total traffic given by Equation (5.1).

In the following, we use the foregoing discussion to obtain a detailed char-

acterization of the dynamics of the proposed architecture.

5.4.2 Detailed Characterization of Traffic Distribution for MRs

Inside an individual MR, let us denote with PE , PN and PS the proba-

bilities of sending a packet on the east, north and south ports, respectively. Using
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Property 3, we note that these probabilities are identical for all MRs throughout

the grid. From Equation (5.4) and the facts that

T̄h
T̄v

=
PE

PN + PS
, PN = PS (5.5)

we readily obtain that

PE =
4

β + 4
, PN = PS =

1

2

( β

β + 4

)
, (5.6)

where β := N/M is the grid’s aspect ratio.

As seen, these probabilities depend on number of inputs N and number

of layers M only through β. In fact, grids with similar aspect ratio exhibit similar

behavior in terms of traffic distribution. We call such grids isomorphic and shall

further investigate on their properties later in Section 5.5.

A second important observation from Equation (5.6) is that when β = 8,

we have PE = PN = PS . In that case, all three queues are equally utilized and there

appears a balanced distribution of traffic across all directions on the grid.

5.4.3 Incoming Traffic Rate and Stability

For a switch with infinite capacity queues, using Equation (5.6), we find

the maximum rate of incoming traffic (denoted by λ) under which the switch would

be stable. Let us denote with λ∗ the total input rate to an arbitrary edge MR, Rx1.
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In the steady state, the output rate is equal to the input rate. Thus,

λ∗ = λ+ 2× 1

2

( β

β + 4

)
λ∗

= λ
(

1 +
β

4

)
. (5.7)

The stability condition requires to maintain a utilization factor ρ := λ∗/µ of less

than one. Therefore, the sufficient condition for stability is to maintain

λ <
4µ

β + 4
= λmax . (5.8)

The service rate, µ, is deterministic and is equal to 3, since MR is able

to transmit 3 packets every round. Thus, the maximum tolerable input rate is 2.4

when β = 1 (i.e., perfect square grids). The switch would only be able to handle

lower rates as β increases. Of course, with finite capacity queues, irrespective of

the queue size, the switch would always remain stable; yet certain fraction of the

incoming traffic would be blocked and the system would inevitably be subject to

packet losses should the system is loaded with a rate higher than λmax.

5.4.4 State Distribution and Optimal Queue Size

The incoming traffic being a memory-less process, a WUDN switch can

effectively be modeled as a Jackson network of MX/DY /1/N queues1. Due to the

architectural symmetry and traffic uniformity (Property 3), most of the analysis of

1MX/DY /1/N is Kendall’s notation describing memory-less batch arrival and deterministic
batch service distributions, single server, with queue size of N − 1. Here M and N are part
of a standard notation and should not be confused with what we have used for specifying grid
dimensions.
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such a complex system can be well reduced to the analysis of a single M/D/1/N

queue.

Even in finite capacity systems, a delivery ratio of close to 1 is often desired.

In order to obtain insights into finding the optimal queue size, we concentrate on the

analysis of the more generic case of M/D/1 with infinite capacity and characterize

the state distribution. The state distribution, P (i), for M/D/1 queues can be

computed according to Fry’s derivation [93] when n = 1, as follows:

P (i) = (1− ρ)
i∑

j=0

eρj

(
(−ρj)i−j

(i− j)!
− (−ρj)i−j−1

(i− j − 1)!

)
. (5.9)

Using that, we readily compute the cumulative state distribution, S(i), as follows.

S(i) =

i∑
j=0

P (j) = (1− ρ)

i∑
j=0

(
ρ(j − i)

)j
j!

· eρ(i−j) . (5.10)

In Figure 5.7, the dashed lines illustrate S(i), the probability of having at

most i packets in each MR. In the actual M/D/1/N architecture, there is a chance

of packet loss due to blocking at the queues. By numerical evaluation of S(i) for a

given utilization factor, we are able to pinpoint the optimal queue size by looking

at the kth-percentile on the cumulative distribution, when a steady-state delivery

ratio of k% is expected.
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5.5 The Model & Simulations

5.5.1 RTL & Functional Models

The switch fabric model and simulations are implemented in SystemC [94].

SystemC is an event-driven simulation library for C++ that imitates Hardware

Description Languages (HDL) by simulating concurrent events. SystemC provides

a synthesizable subset to approach RTL design languages like Verilog [95] or VHDL

[96] further.

Source
1

Source
2

Source
3

Source
N

Sink
1

Sink
2

Sink
3

Sink
N

MR Grid-Based
Switch Fabric

Figure 5.5: Concurrent Source & Sink Modules, connected to the Switch Fabric

We implement most of our switch fabric components, including queue mem-

ory controllers, Modulo XY Routing unit, and other forwarding related circuitry in

synthesizable SystemC, whereas clock generation,Source and Sink modules are func-

tional models. The Source module is instantiated N times, once per ingress port,

and it generates random traffic according to a Poisson distribution. Similarly, the

Sink module is instantiated N times, once per egress port, and it is responsible for
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performance reporting. In Figure 5.5 we present a schematic view of the simulation

components.

5.5.2 Simulation Parameters & Performance Metrics

The input parameters to our simulation experiments are switch size N ,

number of MR layers M , maximum queue size QS, incoming traffic rate λ, and the

simulation runtime duration T .

The performance metrics of interest are as follows:

• Delivery Ratio (DR): Ratio of the packets successfully delivered to the des-

tination ports. We analyze this metric under variable input rate and queue

size;

• Local traffic distribution: Fraction of packets being sent over each output port

within MRs. For this measure, we only evaluate PE , probability of transmit-

ting over east port. PS and PN provide no further insight and can be computed

accordingly;

• Global distribution of traffic across the entire MR grid.

5.5.3 Delivery Ratio under Variable Traffic Rates

Our first experiment examines the impact of increasing traffic rate on

the overall delivery ratio. We simulate the performance of a switch with 64 in-

put ports, where the number of layers M are {1, 8, 64}. For this analysis, we use
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Equation (5.10) to anticipate and employ a queue capacity for which a delivery ratio

of close to 1 is achieved when the system is highly loaded. Note that the optimal

queue size also depends on the grid’s aspect ratio as seen in Section 5.4. Therefore,

the queue sizes used on each of the three individual grid layouts are different.

Figure 5.6 shows how the delivery ratio decays with an increasing load of

traffic over the x-axis. λmax for β = {1, 8, 64} are {2.4, 1, 0.176}, respectively. As

clearly seen, a delivery ratio of 1 is obtained in all cases when λ < λmax. Recall from

Section 5.4 that this corresponds to a utilization factor (ρ) of 1. The utilization fac-

tor, in fact, determines the fraction of time that the system is busy (i.e., non-empty

MRs). Having ρ ≥ 1 results in instability (infinite queue size and waiting time) in

infinite capacity systems and packet drops in finite capacity queues. This behavior is

accurately captured both by model and simulations. Even though reporting results

for ρ ≥ 1 might seem futile, it’s actually useful to take into account how the system
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would react to bursty traffic or unexpected high loads of short durations.

5.5.4 Delivery Ratio as a Function of Queue Size

We study the impact of changing the queue size on the overall delivery ratio.

In every experiment, the queue size is fixed and identical for all MRs throughout

the grid. Also, the queue sizes for north, east and south ports are the same and are

equal to one-third of the total MR capacity. This, in fact, justifies the reason why

we have used queue sizes that are multiples of 3.

In order to conduct a fair experiment, we have used a 64×8 grid to maintain

an aspect ratio (β) of 8 for which all queues are equally utilized.

Figure 5.7 demonstrates how increasing the system capacity enhances over-

all delivery ratio. The solid curves show the simulation results, while dotted lines

correspond to theoretical values obtained by Equation (5.10). As seen, the behavior

of the system is accurately predicted by the model.

5.5.5 Impact of Grid’s Layout on Local Traffic Distribution

In this subsection, we verify the property captured by Equation (5.6) that

the within-MR distribution of traffic across all ports depends on N and M only

through β. More precisely, grids with similar aspect ratios (isomorphic grids) result

in similar traffic distributions across their output ports.

For this experiment, we generate multiple grid instances of different sizes

that have identical aspect ratios. For every layout, we calculate the fraction of
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packets transmitted through the east port (i.e., PE). Figure 5.8 demonstrates that

the simulation results (solid line) accurately support our theoretical analyses (dashed

line). The simulation results, in fact, are the average values for different isomorphic

grids. The standard deviations, shown as error bars, are so small that are barely

visible on the graph.

According to Figure 5.8, the more the aspect ratio is, the lighter becomes

the eastbound traffic. This behavior is intuitive noting the fact that for a fixed M

(say, M = 1), a larger β corresponds to having a larger number of sources (N). In

that case, higher proportion of traffic should be carried through a fixed number of

columns (M), which results in a lower PE . This also points out to the fact that

isomorphic grids provide identical distributions of traffic across output ports.
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5.5.6 Global Distribution of Traffic Across the Grid

We provide experimental results to demonstrate the uniformity of the traf-

fic across the entire grid. This is, indeed, an attribute of the XY modulo routing

that we discussed earlier as Property 3 of the routing algorithm.

We run extensive simulations on three different grid layouts and quantify

the portion of traffic handled by each MR. We illustrate the traffic through individual

MRs in the grid using heatmaps in Figure 5.9. Lighter colors represent higher load

intensity.

As illustrated in Figure 5.9, the load range is very tight all over the grid, and

the varying colors on the heatmap only point to very small variances. Therefore, in

all scenarios, the traffic distribution is very balanced and the grid allows fair routing.

A slight pattern can be observed in Figure 5.9c, but the variance between the limiting

values within the colormap is so low that the pattern is virtually negligible.
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5.6 Placement Considerations

The block diagram of WUDN Figure 5.1 might incorrectly imply that the

wraparound links connecting North ports of the North-most MR row to South ports

of the South-most MR row are implemented as long buses, which in return would

inflict asymmetric delays between the MRs, requiring the clocking to be slowed

down. Moreover, having a long bus proportional to N would render the switch

fabric unscalable due to the propagation delay of O(N). On the contrary, WUDN

can be placed on the chip in such a way that the wraparound links are not longer

than the other vertical or horizontal links, preventing such issues from arising.

The idea behind WUDN placement is “folding” the columns in the mesh

such that each column has the “U” shape, as opposed to “I”. This is shown in Fig-

ure 5.10, where wraparound links are not a function of switch size N anymore. Since

the topology and the architecture remain the same, the descriptions and analysis in

the previous sections hold.

Please note that, with this approach the area of the switch fabric remains

the same; the height is halved and the width is doubled. After the placement,

WUDN has longer horizontal links that connect every other column, but the total

link length throughout the switch fabric remains the same. In addition, to our

advantage, the length of any link between the MRs is now decoupled from the

switch size N (as well as, number of layers M), to yield a scalable and low delay

architecture.
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Figure 5.10: Placement of WUDN

5.7 Comparison & Discussion

Crossbar, in terms of many performance aspects, resemble MRG based

UDN and WUDN, supporting point-to-point connections and non-blocking prop-

erties that allows multiple simultaneous transactions. However, their cost grows

quadratically with the number of ports, since they require internal crosspoints and

queueing memories for every input/output port pair. MRG based switches improve

upon crossbar switches for their ability to lower switch cost growth from O(N2)

at the expense of performance. This is due to their ability to add or remove MR

columns (or layers) as necessary.

UDN inflicts increased congestion in the central regions, since there is

more traffic towards the center due to its lack of uniformity. UDN’s non-uniformity

is captured in Figure 5.11, emphasizing the need for distributing the load better.

WUDN improves upon the uniformity by adding the wraparound links that balances

the traffic over all of the rows, resulting in less congestion, as presented in Figure 5.9.
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Moreover, the wraparound links decrease the vertical latency by a factor of 2.

0-0.01 0.01-0.02 0.02-0.03 0.03-0.04 0.04-0.05

Figure 5.11: UDN, Non-uniform Traffic

It should be mentioned that WUDN is more cost efficient for larger switch

sizes. For example, in the case of a switch with 4 ports, it would be more efficient

to remedy a speedup of 4 instead of implementing it using 16 3-port mini-routers,

which is clearly inefficient. However, as the switch size increases, the speedup cannot

be remedied by a single switch, and WUDN becomes a viable option.

Another important point that the reader should note is that we chose

to carry out in-depth analysis and simulations assuming uniform all-to-all traffic.

[83] reports good performance for unbalanced and bursty traffic patterns, and our

proposal with wraparound links and OQ would only improve those results further.

WUDN has queuing memory at every output port for each MR; however,

observing Figure 5.7 (where values are provided in terms of the total queueing

memory size per MR) it’s possible to deduce that the WUDN requires very small
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queue sizes, and thus that this does not in fact issue a threat on the cost.

5.8 Conclusion

In this chapter, we have proposed a novel switch fabric based on OQ MRGs,

which offers promising delivery ratios, small queue sizes, and low latencies. More-

over, we showed that the speedup problem introduced by OQ can be bounded by

3 by using MRGs. We have presented the first in-depth analytical model of switch

fabric architectures based on OQ MRs, where we correlate design parameters to sev-

eral performance metrics, such as the maximum supportable input rate λmax, the

optimal queue size, and local and global distributions of traffic. We have supported

and validated our model with RTL simulations and showed that the simulation re-

sults closely match the analytical model. Finally, we have shown that WUDN does

not inflict additional delays over UDN due to the wraparound links, by describing

a feasible placement on-chip. Power profiling and comparison to other architectures

in terms of power consumption remain as future work. Analytical modeling under

unbalanced traffic patterns would also be beneficial to this work.
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Chapter 6

Conclusion
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In this thesis, we described an embedded switch architecture for label

switched networks with an emphasis on hardware-software co-design paradigm, re-

sulting in a scalable, flexible and high performance switch. We have proposed im-

provements over both wireless and wired network scenarios.

For wireless networks we have proposed a multi-root interval routing algo-

rithm (Chapter 2) that yields routing tables more than an order of magnitude smaller

than explicit routing algorithms. Moreover, by using multiple roots, we achieve a

stretch of O(1) and comparable latencies and delivery ratios to shortest path based

routing algorithms like OLSR. Small routing tables enable us to use a centralized

controller that can compute all the routes and download them to individual nodes,

thus eliminating a major part of the control plane overhead. Our embedded switch

(Chapter 3), implemented on FPGA, retrieves the flow table information that comes

from the controller at the software routing layer; it writes the flow state to memory

that can be read by hardware logic, so that data forwarding can be carried out at

Layer 2. SHADES significantly improves point-to-point latencies more than 1ms

per link.

In wired network switches, the switch fabric is the key components that

queues the incoming packets and schedules them for delivery. The design effort

includes the interconnect topology, queueing memory organization and scheduling

logic design and a successful design should yield high delivery ratios, low latencies

and load balancing capabilities. In Chapter 4 and Chapter 5 we described our Mini-

Router Grid (MRG) based switch fabric architectures, which successfully delivers
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these metrics. Our proposal is to replace the current state of the art crossbar archi-

tectures that require both input queuing and crosspoint queuing, inducing high costs

for the performance. Using both input and crosspoint queues are shown to require

large size memories. Our proposal uses Network-on-Chip (NOC) approach, in which

the switch fabric resembles to a grid network that consists of tiny 3 input/output

port Mini-Routers (MR). The connection links between MRs are very small, and the

control signals that implement back-pressure are pipelined automatically due to the

nature of the point-to-point communication between MRs. In this way, the critical

path is very short, yielding high frequency and throughput. The switch fabric grid

is composed of N rows, one for each input/output port, and M columns of MRs.

The number of columns can be decreased at the expense of performance, and as a

result the switch size is decoupled from the cost growth, which constitutes the main

advantage of UDN and MDN over crossbars.

The research we have carried out has been published in the following con-

ference proceedings:

[1] T. Karadeniz, L. Mhamdi, K. Goossens, and J. J. Garcia-Luna-Aceves, “Hard-

ware design and implementation of a Network-on-Chip based load balancing switch

fabric,” in 2012 International Conference on Reconfigurable Computing and FPGAs

(ReConFig), 2012, pp. 1 7.

[2] T. Karadeniz, A. N. Masilamani, and J. J. Garcia-Luna-Aceves, “Neighbor Dis-

covery Using Galois Fields and its Hardware Implementation,” presented at the
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Milcom 2013, San Diego, CA, 2013.

[3] T. Karadeniz, A. Dabirmoghaddam, Y. Goren, and J. J. Garcia-Luna-Aceves, “A

New Approach to Switch Fabrics based on Mini-Router Grids and Output Queue-

ing,” presented at the International Conference on Computing, Networking and

Communications, Communications QoS Workshop (ICNC, CNC 2015), Anaheim,

California, USA., 2015.

In addition, the following papers are on submission or yet to be submitted

to various international conferences:

[4] M. Mosco, A. N. Masilamani, T. Karadeniz, and J. J. Garcia-Luna-Aceves, “To-

wards Software-Defined MANETs”

[5] T. Karadeniz, M. M. Barijough, and J. J. Garcia-Luna-Aceves, “Multi-Root In-

terval Routing (MINT)”

Table 6.1 summarizes our contributions, describing the mapping of the

logical components in the system to the physical components. Moreover, it shows

whether each component was implemented in software, hardware or as a co-design.

Also, the rationale behind implementing each component is presented in the last

column.
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Table 6.1: Contributions, Summary

Logical Component Physical Component HW/SW Reason

Interval Routing MINT Routing Layer SW Scalability

SDN (Flow Based Routing) Flow Tables CO Abstraction/Flexibility

Label Switching MINT/Flow Tables CO Abstraction/Flexibility

Top-Level System SHADES on FPGA CO Integration/Performance

Switch Fabric/Forwarding Switch Fabric, Q Memory HW Scalability/Performance

My doctoral journey has been a long winding road [97], and it required

distilling the right steps from all the wrong ones I took. I believe I have achieved

the research tasks described in my research proposal, presented on 10 September,

2013 as a part of the advancement to candidacy.

Santa Cruz, CA, June 2015 �
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