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and HER2– Metastatic Breast Cancer by
Circulating Tumor DNA and Association of
Genetic Alterations With Therapeutic Response
to Endocrine Therapy and Ribociclib
Aditya Bardia, MD1; Fei Su, PhD2; Nadia Solovieff, PhD3; Seock-Ah Im, MD4; Joohyuk Sohn, MD5; Keun Seok Lee, MD6;

Saul Campos-Gomez, MD7; Kyung Hae Jung, MD8; Marco Colleoni, MD9; Rafael Villanueva Vázquez, MD10; Fabio Franke, MD11;

Sara Hurvitz, MD12; Nadia Harbeck, MD13; Louis Chow, MD14; Tetiana Taran, MD2; Karen Rodriguez Lorenc, MD2; Naveen Babbar, PhD3;

Debu Tripathy, MD15; and Yen-Shen Lu, MD16

abstract

PURPOSE This analysis evaluated the genomic landscape of premenopausal patients with hormone
receptor–positive and human epidermal growth factor receptor 2–negative advanced breast cancer and the
association of genetic alterations with response to ribociclib in the phase III MONALEESA-7 trial.

METHODS Premenopausal patients were randomly assigned 1:1 to receive endocrine therapy plus ribociclib or
placebo. Plasma collected at baseline was sequenced using targeted next-generation sequencing for ap-
proximately 600 relevant cancer genes. The association of circulating tumor DNA alterations with progression-
free survival (PFS) was evaluated to identify biomarkers of response and resistance to ribociclib.

RESULTS Baseline circulating tumor DNA was sequenced in 565 patients; 489 had evidence of ≥ 1 alteration.
The most frequent alterations included PIK3CA (28%), TP53 (19%), CCND1 (10%), MYC (8%), GATA3 (8%),
receptor tyrosine kinases (17%), and the Chr8p11.23 locus (12%). A treatment benefit of ribociclib was seen
with wild-type (hazard ratio [HR] 0.45 [95% CI, 0.33 to 0.62]) and altered (HR 0.57 [95% CI, 0.36 to 0.9])
PIK3CA. Overall, patients with altered CCND1 had shorter PFS regardless of treatment, suggesting CCND1 as a
potential prognostic biomarker. Benefit with ribociclib was seen in patients with altered (HR 0.21 [95% CI, 0.08
to 0.54]) or wild-type (HR 0.52 [95% CI, 0.39 to 0.68]) CCND1, but greater benefit was observed with altered,
suggesting predictive potential of CCND1. Alterations in TP53, MYC, Chr8p11.23 locus, and receptor tyrosine
kinases were associated with worse PFS, but ribociclib benefit was independent of alteration status.

CONCLUSION In this study—to our knowledge, the first large study of premenopausal patients with hormone
receptor–positive and human epidermal growth factor receptor 2–negative advanced breast cancer—multiple
genomic alterations were associated with poor outcome. A PFS benefit of ribociclib was observed regardless of
gene alteration status, although in this exploratory analysis, a magnitude of benefits varied by alteration.

JCO Precis Oncol 5:1408-1420. © 2021 by American Society of Clinical Oncology
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INTRODUCTION

Breast cancer is the leading cause of cancer-related
death in women worldwide.1 Approximately 20% of
breast cancer cases in the United States are diagnosed
in women under 50 years old.2 Globally, breast cancer
comprises almost half of all cancer diagnoses in women
under 50 years and the incidence of advanced breast
cancer (ABC) in premenopausal women is increasing.3

Approximately 65% of breast cancer cases in women
under 50 years old are hormone receptor-positive
(HR+) and human epidermal growth factor receptor

2–negative (HER2−).4 Premenopausal women with
HR+ tumors, especially younger women, typically have
a worse prognosis and are under-represented in clinical
trials compared with postmenopausal women.3,5,6

Consequently, treatment approaches for premeno-
pausal women with HR+ and HER2− ABC are usually
extrapolated from data for postmenopausal patients.

To date, there is a lack of biomarker profiling, espe-
cially genomic profiling of premenopausal ABC, and
the limited biomarker data available have been spe-
cific to the early disease setting.7 Previous gene
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expression, whole-exome, and transcriptome studies of
early breast cancer from pre- and postmenopausal
HR+ patients have shown that the molecular characteris-
tics of premenopausal tumors are distinct from those of
postmenopausal tumors.7 Understanding the genomic
landscape of HR+ and HER2− ABC in premenopausal
patients could inform treatment strategies in this group.

Ribociclib, a cyclin-dependent kinase (CDK) 4/6 inhibitor, is
established as an effective treatment for many patients with
HR+ and HER2− ABC; however, there are patients who
exhibit de novo and/or acquired resistance to CDK4/6 in-
hibitors or endocrine therapy (ET), which may result from
several mechanisms.8,9 ET resistance can be driven by
dysregulation of the estrogen receptor (ER) pathway via
modulation of receptor tyrosine kinase (RTK) signaling,
which affects ER activity; alteration of GATA3, which can
drive aberrant ER-mediated transcriptional activities; or
dysregulation of FGFR1 signaling.10-17 Additionally, a study
profiling the genomic landscape of endocrine-resistant
ABCs indicated that genes involved in ER transcriptional
machinery, including MYC, were enriched in endocrine-
resistant tumors.9 Because various mechanisms can cause
resistance to ET or CDK4/6 inhibition,8 identifying bio-
markers predictive of sensitivity to these therapies can in-
form treatment decisions and future research. Thus, a key
objective has been to identify biomarkers of resistance or
response to ribociclib.

To our knowledge, the phase III MONALEESA-7 trial was
the first trial of a targeted therapy performed exclusively in
premenopausal patients with HR+ and HER2– ABC. The
results of this trial demonstrated that treatment with ribo-
ciclib plus ET resulted in significantly longer median
progression-free survival (PFS) and overall survival versus
ET alone.18,19 Here, we report the results from the first (to
our knowledge) analysis dedicated to characterizing the

genomic landscape of premenopausal patients with HR+
and HER2– ABC. In this analysis, we evaluated molecular
alterations detected in circulating tumor DNA (ctDNA)
collected at baseline and their impact on PFS in
MONALEESA-7. This is the largest data set of premeno-
pausal patients with ABC receiving first-line endocrine-
based therapy in the metastatic setting.

METHODS

Trial and Patients

The study population consisted of premenopausal patients
enrolled in MONALEESA-7, the details of which have been
previously published.18,19 In brief, MONALEESA-7 is a
randomized, placebo-controlled, international, double-
blind, phase III study evaluating ribociclib plus ET and
goserelin versus placebo plus ET with goserelin in pre- or
perimenopausal women with HR+ and HER2– ABC. The
primary end point was investigator-assessed PFS, and the
key secondary end point was overall survival; the results for
these analyses were previously reported.18,19 In this analysis,
PFS was defined as the time from random assignment to the
first documented progression per local radiology assessment
(RECIST version 1.1) or death from any cause. Genomic
profiling by next-generation sequencing was an exploratory
end point to characterize molecular alterations in ctDNA and
correlate these alterations with outcomes in MONALEESA-7.

Biomarker Sample Collection and Assessment of

Genetic Alterations

Baseline (before study treatment initiation) plasma samples
were collected from 632 patients, and cell-free DNA was
extracted. Total extracted cell-free DNA was used to gen-
erate next-generation sequencing libraries, which were
enriched for a specific 2.9-Mb region of the human genome
designed to contain approximately 600 genes relevant to
cancer. Single-nucleotide variants were identified using

CONTEXT

Key Objective
Premenopausal patients with hormone receptor–positive (HR+) and human epidermal growth factor receptor 2–negative

(HER2–) advanced breast cancer (ABC) typically have a worse prognosis compared with postmenopausal women. Here, we
sought to characterize genomic alterations detectable in plasma circulating tumor DNA and to determine their relationship
with ribociclib treatment benefit in premenopausal patients with HR+ and HER2– ABC in the MONALEESA-7 trial.

Knowledge Generated
A progression-free survival benefit was observed with ribociclib treatment regardless of genomic alteration status, although a

magnitude of benefits varied on the basis of specific alterations. Several were associated with a worse outcome in
premenopausal patients with HR+ and HER2– ABC including alterations in TP53, MYC, Chr8p11.23 locus, and receptor
tyrosine kinases.

Relevance
Understanding the impact of genomic alterations on prognosis or sensitivity to therapies could potentially inform treatment

decisions in premenopausal patients with HR+ and HER2– ABC, and further confirmatory studies are warranted for clinical
utility.
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MuTect.20 Copy number variants were called using
PureCN, and indels were called using PINDEL.21,22

Germline mutations and artifacts were filtered out using
publicly available databases dbSNP and ExAC and an
internal database (Novartis Institutes for Biomedical Re-
search) of normal circulating free DNA samples from
healthy individuals without cancer.

Statistical Analysis

Correlative analyses with PFS were performed for genes
altered in ≥ 8% of patients (leading to approximately 20
patients/arm), RTK genes, and the Chr8p11.23 amplicon
(ZNF703, WHSC1L1, and FGFR1). Alterations in RTKs
(FGFR1, EGFR, ERBB2, ERBB3, ERBB4, IGF1R, IGF1,
KDR,KIT,PDGFRA,PDGFRB, and VEGFA) were grouped to
evaluate infrequently altered genes with similar downstream

signaling. The Chr8p11.23 amplicon was analyzed after a
strong overlap of ZNF703, WHSC1L1, and FGFR1, which
are known to be on the same amplicon, was observed.

For each gene or group in ctDNA, patients were classified as
altered if ≥ 1 alteration, defined as the presence of a copy
number alteration, short insertion or deletion, or mutation,
was detected and as wild-type (WT) if no alterations were
detected (excluding patients with zero alterations detected
per assay limitation). Kaplan-Meier curves were generated,
and median PFS (95% CI) was estimated by treatment and
biomarker status. A Cox proportional hazards (PH) model
was used to estimate the hazard ratios (HRs) of treatment
benefit (ribociclib v placebo) for PFS by biomarker status. To
test for a difference in treatment benefit by biomarker status,
a gene-treatment interaction term was included in a Cox PH
model. Cox PHmodels were stratified by the presence of liver

Assessed for eligibility
(N = 905)

Baseline ctDNA samples excluded because
 of no evidence of ctDNA in circulation

(n = 76)

Randomly assigned
(n = 672)

Allocated to ribociclib plus ET
(ITT population; n = 335) 

Evaluable samples
(biomarker subset; n = 240)

Evaluable samples
(biomarker subset; n = 249)

Excluded
    Did not meet inclusion criteria
    Declined participation

(n = 233)
(n = 208)
(n = 25)

Allocated to placebo plus ET
(ITT population; n = 337)

Baseline ctDNA samples excluded because
 of poor quality

(n = 67)

Baseline ctDNA samples collected
(n = 632)

Baseline ctDNA samples sequenced
(n = 565)

FIG 1. CONSORT diagram of ctDNA sample collection
and analysis. Baseline ctDNA was sequenced from 565
patients. All analyses focused on patients with evidence
of tumor DNA in circulation with the presence of ≥ 1
genetic alteration. In all, 489 of 565 patients met all
criteria and were subject to downstream analysis.
ctDNA, circulating tumor DNA; ET, endocrine therapy;
ITT, intention to treat.
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TABLE 1. Patient’s Baseline Characteristics: Biomarker Population (n = 489) Versus ITT Population (N = 672)

Category

Biomarker Population (ctDNA) ITT Population

RIB PBO RIB PBO

No. Percent No. Percent No. Percent No. Percent

Race

Asian 84 34 77 32 99 30 99 29

Black 7 3 6 2 10 3 9 3

White 126 51 138 57 187 56 201 60

Others or unknown 32 13 19 8 39 12 28 8

ECOG PS

Missing 1 0 3 1 3 1 3 1

0 178 71 176 73 245 73 255 76

1 70 28 60 25 87 26 78 23

2 0 0 1 0 0 0 1 0

Disease-free interval

Existing . 12 months 134 54 137 57 176 53 190 56

Existing ≤ 12 months 14 6 9 4 23 7 13 4

Newly diagnosed 101 41 94 39 136 41 134 40

Previous neoadjuvant or adjuvant ET

Missing 2 1 NA NA 2 1 1 0

None 151 61 140 58 208 62 196 58

Yes; progression . 12 months after the end of ET 16 6 22 9 25 7 35 10

Yes; progression on or within 12 months of the end of ET 80 32 78 32 100 30 105 31

Previous CT

For advanced disease 33 13 32 13 47 14 47 14

Neoadjuvant or adjuvant only 105 42 101 42 138 41 138 41

None 111 45 107 45 150 45 152 45

No. of metastatic sites

, 3 156 63 153 64 219 65 216 64

≥ 3 93 37 87 36 116 35 121 36

Site of metastases

Soft tissue

Yes 22 9 14 6 25 7 21 6

Bone

Yes 188 76 185 77 251 75 247 73

Bone only

Yes 60 24 60 25 81 24 78 23

Visceral

Yes 142 57 126 52 193 58 188 56

Lymph nodes

Yes 108 43 115 48 142 42 158 47

Skin

Yes 8 3 5 2 8 2 8 2

Age, median (range), years 43 (25-58) 45 (29-58) 43 (25-58) 45 (29-58)

Abbreviations: CT, chemotherapy; ctDNA, circulating tumor DNA; ECOG PS, Eastern Cooperative Oncology Group performance status; ET, endocrine
therapy; ITT, intent-to-treat; NA, not achieved; PBO, placebo; RIB, ribociclib.
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or lung metastases, previous chemotherapy for advanced
disease, and endocrine combination partner (tamoxifen or
nonsteroidal aromatase inhibitor).18,19 No adjustments for
multiple testing were made, as these analyses were hy-
pothesis generating. Statistical analyses were performed
using the R package.23

RESULTS

Patient Characteristics and Sample Collection

and Analysis

Between December 17, 2014, and August 1, 2016, 672
premenopausal patients underwent 1:1 random assignment
to receive ribociclib (n = 335) or placebo (n = 337).18,19

Baseline characteristics were balanced among treatment
groups.18,19

Baseline ctDNA was successfully sequenced in 565 pa-
tients (Fig 1); 489 patients with HR+ and HER2– ABC
had ≥ 1 genetic alteration and were included in this
analysis. The demographic and baseline characteristics of
the biomarker population were balanced and generally
representative of the intent-to-treat population (Table 1).

Genomic Landscape of Premenopausal Metastatic HR+

and HER2− Breast Cancer in ctDNA

In these 489 patients, 32 genes were altered in ≥ 5% of
patients (Fig 2). PIK3CA was the most frequently altered

gene (28%), followed by TP53 (19%). Other frequently
altered genes of interest, including CCND1, MYC, and
GATA3, were altered in 10%, 8%, and 8% of patients,
respectively (Fig 2). CCND1, FGF4, FGF3, and FGF19 were
localized on Chr11q13.3 and were coamplified in 48 of 489
patients (10%; data not shown). FGFR1, ZNF703, and
WHSC1L1 were localized on Chr8p11.23 and were altered
in 12% of patients and coamplified in 28 of 489 patients
(6%). Alterations in other genes of interest, including NF1
(6%), PTEN (4%), AKT1 (3%), ESR1 (3%), ERBB2 (3%),
CDKN2A (3%), and RB1 (2%), were also identified (Fig 2).

Association of PFS With Genes Involved in Cell

Cycle Regulation

Median PFS was determined for each genetic subgroup,
and a corresponding HR was calculated (Fig 3).

CCND1. Patients with altered CCND1 had a shorter PFS
regardless of treatment (the median PFS in patients with
WT and altered CCDN1 for ribociclib v placebo was 22.1 v
12.9 months and 11.3 v 5.5 months, respectively). Benefit
with ribociclib was observed in both altered CCND1 andWT
groups; although the magnitude varied, benefit with ribo-
ciclib appeared greater in patients with altered CCND1
(HR, 0.21 [95% CI, 0.08–0.54]) than in those with WT
CCND1 (HR 0.52 [95% CI, 0.39 to 0.68]; P value of gene-
treatment interaction = .047; Fig 4A).

Known SV Likely SV Unknown SV Amplification Deletion Translocation

Alterations

CR PR SD PD NCRNPD UNK RIB PBO PFS long PFS moderate PFS short

BOR
Arm
PFS
PIK3CA
TP53
FGF4
FGF3
FGF19
CCND1
ZNF703
ANO1
DNMT3A
WHSC1L1
ADGRA2
INTS4
RICTOR
GATA3
TACC1
MYC
ATAD2
RPS6KB1
GAB2
FGFR1
RAD21
TUBD1
KMT2C
SNX31
RNF19A
PRKDC
ZNF704
RSPO2
NF1
ZNF217
STK3
PREX2
PTEN
CDH1
ERBB2
AKT1
CDKN2A
ESR1
CDKN2B
MTAP
RB1
ERBB3

28%
19%
11%
11%
11%
10%
10%
10%
10%
9%
9%
9%
9%
8%
8%
8%
8%
8%
8%
7%
7%
7%
7%
6%
6%
6%
6%
6%
6%
6%
6%
6%
4%
4%
3%
3%
3%
3%
2%
2%
2%
1%

FIG 2. Genomic landscape of advanced breast cancer in premenopausal women. Oncoprint depicting the results of patient’s ctDNANGSdata. MONALEESA-
7 cfDNA at screening: Genes with frequency. 5% or genes of interest are included. BOR, best overall response; cfDNA, circulating free DNA; CR, complete
response; ctDNA, circulating tumor DNA; NCRNPD, neither complete response nor progressive disease; NGS, next-generation sequencing; PBO, placebo;
PD, progressive disease; PFS, progression-free survival; PR, partial response; RIB, ribociclib; SD, stable disease; SV, structural variations; UNK, unknown.
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TP53. A similar PFS benefit of ribociclib was observed in
patients with WT TP53 (HR 0.48 [95% CI, 0.36 to 0.65])
and altered TP53 (HR 0.47 [95% CI, 0.27 to 0.82]; P = .98;
Fig 4B). Although TP53 was not predictive of response to
ribociclib, median PFS in patients with altered TP53
(ribociclib v placebo, 9.2 v 7.2 months) was numerically
shorter than that in patients with WT TP53 (24.7 v
13.0 months, respectively) in both arms.

Association of PFS With Genes Relevant to the

ER Pathway

GATA3. Alterations in GATA3 were identified in 41 of 489
patients (8%) in this analysis.24 Alterations in GATA3 were
associated with a shorter PFS in patients receiving placebo
plus ET than in patients withWTGATA3 (themedian PFS for
WT v altered with placebo was 12.9 v 5.52 months). These
findings suggest that patients with alteration of GATA3
might be resistant to ET and have a worse outcome than
patients with WT GATA3. However, a PFS benefit of
ribociclib was observed among patients with both WT
(HR 0.52 [95% CI, 0.39 to 0.68]) and altered GATA3 (HR
0.18 [95% CI, 0.05 to 0.62]; P = .17; Fig 5A).

MYC. Alterations in MYC were observed in 39 of 489 pa-
tients (8%).25,26 Patients with altered MYC had shorter PFS
regardless of treatment, suggesting that these patients have
a worse outcome (the median PFS in patients with WT and
altered MYC for ribociclib v placebo was 24.7 v
12.9 months and 7.3 v 7.2 months, respectively; Fig 5B);
these results were consistent with other studies in ABC
demonstratingMYC as a prognostic marker.27 A similar PFS
benefit of ribociclib was observed in patients with WT (HR
0.49 [95% CI, 0.37 to 0.65]) and altered MYC (HR 0.57
[95% CI, 0.25 to 1.31]; Fig 5B) on the basis of HRs
(P = .67).

Association of PFS With Genes in the RTK Pathway

PIK3CA. PIK3CA was altered in 139 of 489 patients (28%).
The median PFS in patients with WT PIK3CA receiving
ribociclib versus placebo was 24.7 (95% CI, 22.1 to not
achieved) versus 12.2 months (95% CI, 9.2 to 14.6); in
patients with altered PIK3CA, it was 14.8 (95% CI, 11.0 to
19.4) versus 12.9 months (95% CI, 7.4 to 15.0), re-
spectively. A PFS benefit of ribociclib was observed in
patients with WT (HR 0.45 [95% CI, 0.33 to 0.62]) and

Gene

RIB PBO

HR by Gene and Alteration Statusa HR (95% CI)

P of Gene-

Treatment

Interactionn/N
mPFS,

mo
n/N

mPFS,

mo

PIK3CA

WT 68/180 24.7 98/170 12.2 0.45 (0.33 to 0.62)
.090

Alt 38/69 14.8 46/70 12.9 0.57 (0.36 to 0.9)

TP53

WT 78/203 24.7 109/194 13.0 0.48 (0.36 to 0.65)
.98

Alt 28/46 9.2 35/46 7.2 0.47 (0.27 to 0.82)

CCND1

WT 91/221 22.1 126/217 12.9 0.52 (0.39 to 0.68)
.047

Alt 15/28 11.3 18/23 5.5 0.21 (0.08 to 0.54)

MYC

WT 90/229 24.7 125/221 12.9 0.49 (0.37 to 0.65)
.67

Alt 16/20 7.3 19/19 7.2 0.57 (0.25 to 1.31)

GATA3

WT 96/226 22.1 131/222 12.9 0.52 (0.39 to 0.68)
.17

Alt 10/23 NR 13/18 5.5 0.18 (0.05 to 0.62)

RTKsb
WT 76/198 27.5 114/206 14.5 0.5 (0.37 to 0.67)

.11
Alt 30/51 14.6 30/34 5.7 0.26 (0.14 to 0.47)

8p11.23

WT 84/215 23.0 124/214 12.8 0.47 (0.36 to 0.63)
.75

Alt 22/34 12.5 20/26 9.1 0.51 (0.26 to 1)

Favors RIB Favors PBO

0 1 2

WT Alt

FIG 3. PFS by genetic subgroup. Forest plot analysis of PFS benefit from treatment with ribociclib. aStratified by the presence of lung or liver metastases,
previous CT, and combination partner (NSAI/tamoxifen). bReceptor tyrosine kinase genes include EGFR, ERBB2, ERBB3, ERBB4, FGFR1, IGF1, IGF1R,
KDR, KIT, PDGFRA, PDGFRB, and VEGFA. Alt, altered; CT, chemotherapy; HR, hazard ratio; mPFS, median PFS; n/N, events/total; NR, no response;
NSAI, nonsteroidal aromatase inhibitor; PBO, placebo; PFS, progression-free survival; RIB, ribociclib; WT, wild-type.
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altered PIK3CA (HR 0.57 [95% CI, 0.36 to 0.90]; P = .09;
Fig 6A).

Receptor tyrosine kinases. RTK gene alterations (Fig 6B)
were identified in 17% of patients. A PFS benefit was
observed with ribociclib among patients with WT (HR 0.50
[95% CI, 0.37 to 0.67]) and altered RTKs (HR 0.26 [95%
CI, 0.14 to 0.47]; P = .11; Fig 6C). Median PFS generally
favored patients with WT versus altered RTKs (the median
PFS in patients with WT and altered RTKs for ribociclib v
placebo was 27.5 v 14.5 months and 14.6 v 5.7 months,
respectively).

Chr8p11.23. Previous studies demonstrated frequent am-
plification of the Chr8p11.23 locus driven by the FGFR1,
ZNF703, and WHSC1L1 genes in patients with breast
cancer.10 Alterations (mainly amplification) of FGFR1,
ZNF703, andWHSC1L1were identified in 60 of 489 patients
(12%; Fig 6D). Alterations in Chr8p11.23 were prognostic of
shorter PFS overall, irrespective of treatment (the median
PFS for WT and altered Chr8p11.23 for ribociclib v placebo
was 23.0 v 12.8 months and 12.5 v 9.1 months, respec-
tively); these findings were in accordance with other studies
demonstrating their prognostic relevance in HR+ ABC.28,29

However, on the basis of HRs, a similar PFS benefit of
ribociclib was observed in patients with WT (HR 0.47 [95%
CI, 0.36 to 0.63]) or altered Chr8p11.23 locus (HR 0.51
[95% CI, 0.26 to 1.0]; P = .75; Fig 6E).

Prognosis and Treatment Benefit in Patients Without

Detectable Alterations

Compared with the biomarker population (patients with ≥ 1
alteration; n = 489), patients with no detected alterations
(n = 76) had better Eastern Cooperative Oncology Group
performance status and were less likely to progress on or
within 12 months of completing ET (Data Supplement).
Additionally, patients without detectable alterations
exhibited a trend toward improved PFS with ribociclib and
placebo compared with the biomarker population (Data
Supplement). These findings suggest a better prognosis in
patients without detectable alterations.30

DISCUSSION

Before this study, there were limited clinical trials with a
focus on premenopausal patients with breast cancer and
analyses of the association of genomic profiles with clinical
outcomes in this patient population; thus, there was little
information regarding biomarkers that were prognostic and/
or predictive of sensitivity or resistance to therapies in
premenopausal women with HR+ and HER2– ABC. To our
knowledge, MONALEESA-7 was the first trial conducted
exclusively in premenopausal patients with HR+ and
HER2– ABC, and therefore, this is the first large-scale
genomic biomarker profiling study to date. Frequent al-
terations were identified in genes that regulate the cell
cycle, the endocrine pathway, and RTK pathways. These
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FIG 4. Association of PFS with genes involved in cell cycle regulation: (A) PFS by CCND1 alteration status and (B) PFS by TP53 alteration status. Kaplan-
Meier curves of PFS in patients who exhibited alterations in the indicated genes in circulating tumor DNA. PFS in patients in the ribociclib treatment arm
is shown in red; in patients in the placebo treatment arm, it is shown in blue. The WT subgroup is indicated by a solid line, and the altered subgroup is
indicated by a dashed line. HR (95%CI) estimates andmedian PFS (95%CI) values are shown in the corresponding tables. Alt, altered; HR, hazard ratio;
NA, not achieved; PBO, placebo; PFS, progression-free survival; RIB, ribociclib; WT, wild-type.
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results indicate that an increase in PFS with ribociclib plus
ET versus ET alone was observed regardless of biomarker
alteration status. Particularly, the PFS benefit of ribociclib
treatment is independent of alteration status of TP53, MYC,
and genes on the Chr8p11.23 locus. Additionally, patients
with WT and altered PIK3CA exhibited a PFS benefit with
ribociclib. The ctDNA biomarker data presented here pro-
vide insight into the genomic landscape of premenopausal
HR+ and HER2– ABC and impact on clinical outcomes.

CCND1 and TP53 are regulators of the cell cycle, and in this
analysis, alterations in CCND1 and TP53 were frequent
(10% and 19%, respectively) and associated with a worse
outcome. CCND1 amplification and/or overexpression has
been associated with ER+ breast cancer and was reported
to render ER+ cancer cell lines more sensitive to CDK4/6
inhibition.31-33 Although data from PALOMA-1 and
PALOMA-2 indicate that expression levels of cyclin D1 or
CCND1 amplification were not associated with benefit from
CDK4/6 inhibition by palbociclib in these studies, which
comprised postmenopausal patients,34,35 our results sug-
gest that premenopausal patients with an alteration of
CCND1 experience a more pronounced PFS benefit with
ribociclib, with a 79% difference in relative risk of pro-
gression with ribociclib versus placebo with altered CCND1
(HR 0.21 [95% CI, 0.08 to 0.54]) and only a 48% differ-
ence in relative risk of progression with ribociclib versus
placebo with WT CCND1 (HR 0.52 [95% CI, 0.39 to 0.68]).

Thus, it is possible that there may be a greater treatment
interaction with CCND1 in premenopausal versus post-
menopausal patients, but this requires confirmation.

TP53 has been established as a prognostic biomarker in
breast cancer.36 In this analysis, there was a PFS benefit of
ribociclib regardless of TP53 alteration status; however,
patients with altered TP53 (19% of patients) versus WT
TP53 had a shorter PFS regardless of treatment. In post-
menopausal patients in MONARCH 3, there was a PFS
benefit with abemaciclib plus nonsteroidal aromatase in-
hibitors in patients with WT and altered TP53 (26% of
patients), but a greater benefit was observed in patients with
WT TP53.37 In postmenopausal patients in MONALEESA-2,
a PFS benefit with ribociclib was observed in patients with
WT or altered TP53 (12% of patients), although a nu-
merically shorter PFS was observed in patients with altered
versus WT TP53 irrespective of treatment.38 Thus, TP53
represents a prognostic biomarker for ABC in both pre- and
postmenopausal HR+ patient populations.

ESR1 mutations were only observed in 13 of 489 patients,
and thus, a correlation between ESR1 alteration status and
PFS could not be evaluated. GATA3 has been implicated in
breast cancer development and ET resistance by driving
ER-mediated transcriptional regulation of downstream
gene expression.12 Our findings suggest that patients with
altered GATA3 derived a more pronounced PFS benefit
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with ribociclib than patients with WT GATA3, although this
difference was not statistically significant. Thus, GATA3
status may be predictive of response to ribociclib in pre-
menopausal patients.

Previous studies have shown that patients with altered
RTKs have poor outcomes with ET alone, as RTK pathway
dysregulation can drive resistance to ET.11,14,15,39 The HRs
from this analysis indicate that patients with altered RTKs
derived a PFS benefit from ribociclib, suggesting that
ribociclib was able to overcome ET resistance in patients
harboring RTK gene alterations. Further investigation is
needed to identify the specific RTK genes that are driving
this effect. Additionally, because FGFR1, WHSC1L1, and
ZNF703, located on Chr8p11.23 locus and mostly
coamplified in this cohort, have been reported separately to
play a role in mechanisms of resistance to ET,14,16,17 we

investigated the association between treatment benefit and
alterations of this Chr8p11.23 locus. Our results indicate
that patients with WT and altered genes at the Chr8p11.23
locus had a similar PFS benefit with ribociclib. However,
patients with gene alterations at the Chr8p11.23 locus
appeared to have a poorer outcome overall, as these pa-
tients had a shorter PFS irrespective of treatment, high-
lighting the prognostic potential of this amplicon in
HR+ ABC. Since the genes at the Chr8p11.23 locus are
mostly coamplified, further research is needed to identify
which individual genes are driving this effect.

In this study, PIK3CA was altered in 28% of patients,
whereas a higher incidence of PIK3CA mutations (30%-
40%) was reported in studies of CDK4/6 inhibitors in
postmenopausal patients.37,40-42 The improvement in me-
dian PFS for ribociclib versus placebo was more
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pronounced in patients with WT versus altered PIK3CA (HR
0.45 [95% CI, 0.33 to 0.62] v 0.57 [95% CI, 0.36 to 0.9];
interaction P value = .09), although this difference was not
statistically significant. However, studies in postmeno-
pausal patients with ribociclib, palbociclib, and abemaci-
clib have shown increased benefit of study treatment
versus ET alone regardless of PIK3CAmutation status, with
the exception of MONARCH 3, which showed a more
pronounced benefit in patients with WT PIK3CA.

This study has several limitations. First, this is a retro-
spective exploratory analysis. Second, some subgroup
analyses included very small sample sizes, and the results
have not been adjusted for multiple testing. Third, these
analyses are hypothesis generating and should be con-
firmed in additional studies. Fourth, the sensitivity to detect
DNA alterations is higher in samples with more tumor DNA
in circulation, which has itself been shown to be

prognostic.30 Finally, this study does not address acquired
resistance and the role of other biomarkers, including
epigenetic alterations and RNA and protein expression.
Thus, further biomarker analyses are ongoing.

This analysis provides insight into the genomic landscape of
premenopausal women with HR+ ABC and potential dif-
ferences in the genetic landscape of HR+ andHER2– ABC in
pre- and postmenopausal women. This study uncovered
biomarkers associated with worse outcomes overall, but
ribociclib treatment resulted in increased PFS benefit re-
gardless of alteration status of these biomarker genes, al-
though the magnitude of this benefit varied across subsets.
Altogether, these findings highlight the potential role of
genomic alterations in modulating clinical outcomes in
premenopausal patients with ABC although these results
are hypothesis generating and require confirmation in
larger data sets.
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