
UC Irvine
UC Irvine Previously Published Works

Title
A general statistic to test an optimally weighted combination of common and/or rare 
variants.

Permalink
https://escholarship.org/uc/item/3rq6r6mb

Journal
Genetic Epidemiology, 43(8)

Authors
Zhang, Jianjun
Wu, Baolin
Sha, Qiuying
et al.

Publication Date
2019-12-01

DOI
10.1002/gepi.22255
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3rq6r6mb
https://escholarship.org/uc/item/3rq6r6mb#author
https://escholarship.org
http://www.cdlib.org/


A General Statistic to Test an Optimally Weighted Combination 
of Common and/or Rare Variants

Jianjun Zhang1, Baolin Wu2, Qiuying Sha3, Shuanglin Zhang3, Xuexia Wang1,*

1Department of Mathematics, University of North Texas;
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Abstract

Both genome-wide association study and next generation sequencing data analyses are widely 

employed in order to identify disease susceptible common and/or rare genetic variants. Rare 

variants generally have large effects though they are hard to detect due to their low frequencies. 

Currently, many existing statistical methods for rare variants association studies employ a 

weighted combination scheme, which usually puts subjective weights or suboptimal weights based 

on some adhoc assumptions (e.g. ignoring dependence between rare variants). In this study, we 

analytically derived optimal weights for both common and rare variants and proposed a General 

and novel approach to Test association between an Optimally Weighted combination of variants 

(G-TOW) in a gene or pathway for a continuous or dichotomous trait while easily adjusting for 

covariates. Results of the simulation studies show that G-TOW has properly controlled type I error 

rates and it is the most powerful test among the methods we compared when testing effects of 

either both rare and common variants or rare variants only. We also illustrate the effectiveness of 

G-TOW using the Genetic Analysis Workshop 17 (GAW17) data. Additionally, we applied G-

TOW and other competitive methods to test disease associated genes in a real data of 

schizophrenia. The G-TOW has successfully verified genes FYN and VPS39 which are associated 

with schizophrenia reported in existing publications. Both of these genes are missed by the 

weighted sum statistic (WSS) and the sequence kernel association test (SKAT). Simulation study 

and real data analysis indicate that G-TOW is a powerful test.

Keywords

rare variants; common variants; optimal weights; association studies

Introduction

Genome-wide association studies (GWAS) have identified numerous common variants that 

are associated with complex human traits (Heid et al., 2010; Allen et al. 2010; Plenge et al., 
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2007; Saxena et al., 2007; Thomson et al., 2007; Zeggini et al., 2007). However, common 

variants that have been identified through GWAS can only explain small fractions of 

estimated trait heritabilities (Bansal et al., 2010; McCarthy et al., 2008; Schork et al., 2009). 

Rare variants may play an important role in studying the etiology of complex human 

diseases. Next-generation sequencing technology (Cirulli and Goldstein, 2010) provides 

potential opportunities to find the missing heritability due to rare genetic variants (Cohen et 

al., 2006; Ji et al., 2008; Manolio et al., 2009; Marini et al., 2008; Nejentsev et al., 2009; 

Zhu et al., 2010) since the new sequencing technology makes directly testing for rare 

variants possible (Andrés et al., 2007).

Due to allelic heterogeneity and the extreme rarity of individual variants, statistical methods 

used to detect common variants may potentially be unsuccessful when applied to detect rare 

variants unless sample sizes or effect sizes are very large (Li and Leal, 2008). Recently, 

several statistical methods for detecting associations of rare variants have been developed. 

Most of these methods can be divided into two classes: burden tests and quadratic tests. 

Burden tests collapse rare variants in a genomic region into a single burden variable by using 

weighted combination and then testing the association between a phenotype and the single 

burden variable. Choosing appropriate weights is critical to the performance of the burden 

tests. Different weights reflect different burden test methods, such as the cohort allelic sums 

test (CAST) (Morgenthaler and Thilly, 2007), the combined multivariate and collapsing 

(CMC) method (Li and Leal, 2008), the weighted sum statistic (WSS) (Madsen and 

Browning, 2009), and the variable threshold (VT) method (Price et al., 2010). However, 

burden tests could suffer a loss of statistical power if different directions of effects exist at 

causal variants. Quadratic tests include tests with statistics of quadratic forms of the score 

vector such as the sequence kernel association test (SKAT) (Wu et al., 2011), data-adaptive 

sum (aSUM) (Han and Pan, 2010), adaptive weighting (AW) methods (Sha, Wang, and 

Zhang, 2013), and weighted sum of squared score (SSU) method (Pan 2009). Even though 

quadratic tests are robust to the directions of the effects of causal variants, they could be less 

powerful due to the large number of degrees of freedom of the test statistics when we 

consider large amounts of rare variants, because the degree of freedom of the quadratic tests 

depend on the number of rare variants where the quadratic tests usually follows a chi-square 

distribution with degree freedom related to the number of variants in the considered region.

Sha et al., (2012) proposes a method to detect disease associated rare variants by testing an 

optimally weighted combination of variants (TOW), in which they derives optimal weights 

by maximizing the score test statistic. There are similarities between the TOW method and 

the burden tests regarding weights. The TOW method chooses optimal weights under a 

certain criterion, whereas the traditional burden test methods give a subjective weight 

directly. The TOW can also be viewed as a quadratic test from the form of the test statistic. 

Sha et al., (2012) points out that TOW is related to the sequence kernel association test 

(SKAT) proposed by Wu et al., (2011) and the weighted sum of squared score (SSU) 

proposed by Pan (2009), which are both quadratic tests. This property means that the TOW 

method can combine the advantages of both burden tests and quadratic tests, making it 

robust to the directions of effects of causal variants and the large number of rare variants.
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Due to low minor allele counts of rare causal variants, rare variants are often assumed to be 

independent, either implicitly or explicitly in the development of association test methods. 

The TOW method is derived under the independent assumption among rare variants. 

However, simulations based on coalescent models have shown that two variants with low 

MAFs are likely to be negatively correlated with a negative linkage disequilibrium (LD) 

value (Hudson, 1985), and ignoring such correlations can reduce the power of aggregation 

based rare variant association tests (Kinnamon, Hershberger, and Martin, 2012). Talluri and 

Shete (2013) propose a method for detecting rare variants that utilizes the information of LD 

between variants (measured by R2) to select the best subset of rare variants, subsequently 

improving the power of detecting association. Turkmen and Lin (2017) show that two 

commonly used LD measures are not capable of detecting LD when rare variants are 

involved and proposed a new LD measure method.

In this paper, we develop a General and novel approach to Test association between an 

Optimally Weighted combination of variants (G-TOW) between common and/or rare 

variants in a gene or pathway and a complex trait of interest. The optimal weights are 

analytically derived and can be estimated from sampled genotypes and phenotypes under a 

certain criterion while we consider the correlations among variants in the considered region 

simultaneously. G-TOW can be applied to both quantitative and qualitative traits, allows 

covariates, and is robust to directions of effects of causal variants. Extensive simulation 

studies and applications to the Genetic Analysis Workshop 17 (GAW17) data were used to 

compare the performance of G-TOW with that of three existing methods (TOW, WSS, and 

SKAT). Results show that G-TOW is a valid method and consistently more powerful than 

the other three methods. Additionally, we applied all the four methods to a verification study 

for schizophrenia. Results show that G-TOW verified more important schizophrenia 

associated genes than other methods.

Dependence between genetic variants

The correlation between two SNPs are often denoted as LD, which plays a fundamental role 

in genetic association studies that map genes associated with specific traits of interests. 

GWAS often relies on high LDs to identify markers that are associated with traits where 

identified common variants are often in LD with causal variants. However, due to low minor 

allele frequencies, rare variants are often assumed to be independent. Understanding 

precisely the LD structure in the human genome including both rare and common variants 

may lead to better-formed statistical tests that could improve the power of association 

studies.

Two commonly used statistical measures have been proposed to quantify the degree of LD 

between a pair of variants: D′ and R2, which have different properties and may be applied 

for different application purposes (Hill and Robertson, 1968; Lewontin, 1964). Specifically, 

consider two loci, locus A with minor allele A and locus B with minor allele B. Then D′ 
and R2 are defined as:
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R2 = D2

pApB 1 − pA 1 − pB
(1)

and

D′ =

D
max − pApB, − 1 − pA 1 − pB

 i f   D < 0

D
min pA 1 − pB , pB 1 − pA

 i f   D > 0
(2)

where D = pAB – pApB and pA, pB, pAB denote the frequencies of allele A, allele B, and 

haplotype AB, respectively. Hudson (1985) showed that two low frequency variants are 

likely to be negatively correlated by simulations based on coalescent models, that is D < 0 

for two rare variants. If locus A and locus B are both rare variants, we can see that the 

numerator and denominator are approximated by (pApB)2 and pApB in equation (1), 

respectively, and the numerator and denominator are all approximated by −pApB in equation 

(2). This means that regardless of whether these two rare variants are related to each other, 

the value of R2 always tends to be zero and the value of D′ tends to be 1. Turkmen and Lin 

(2017) showed that the results from these two measurements are especially sensitive to the 

selection of tolerance cutoffs for pairs with small MAFs, where the tolerance cutoffs are set 

in the optimization function to obtain the maximum likelihood estimate of frequencies with 

the genetic package (Warnes 2013). They also showed that D* = sign(D)D′ will likely 

attenuate the boundary value to −1, while R =  sign (D) R2 will likely be close to 0 for rare 

variant pairs even if they come from similar (small) MAFs.

From the aforementioned, we can see that two commonly used LD measures are not capable 

of quantifying LD when rare variants are involved. The limitations of these two traditional 

LD measurements lead us to assume that rare variants are independent. Turkmen and Lin 

(2017) proposed an alternative measure of LD method, the polychoric correlation (PCor), 

and showed that rare variants in close physical proximity can show strong patterns of local 

correlation/LD when such variants are located on just a few haplotypes. Dickson et al, 

(2010) showed that some of the signals that have been detected from common variants could 

come from the effect of rare variants. Correctly utilizing existing LD among rare variants or 

between common and rare variants can help researchers to understand the genetic 

architecture of the human genome and improve power for detecting causal genetic variants. 

In this study, we propose a novel genetic association test in which we fully consider the 

correlation situation as either dependent or independent between variants.

Method

Consider a sample of n individuals and each individual has been genotyped at M variants in 

a genomic region. Denote yi as the trait value of the ith individual for either a quantitative 

trait or a qualitative trait (1 for cases and 0 for controls for a qualitative trait) and denote Xi 

= (xi1, ⋯, xiM)′ as the genotypic score of the ith individual, where xim ∈ {0, 1, 2} is the 

number of minor alleles that the ith individual has at the mth variant.
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Without loss of generality, we first describe our methods without considering covariates and 

then extend it to incorporate covariates naturally, following Sha et al., (2011). We use the 

generalized linear model to model the relationship between trait values and genotypes 

(Nelder and Wedderburn, 1972):

g 𝔼 yi | Xi = β0 + β1xi1 + ⋯ + βMxiM (3)

where g(·) is a monotone link function and β = (β0, ⋯, (βM) are parameters. Two commonly 

used models under the generalized linear model framework are the linear model with the 

identity link for continuous or quantitative traits and the logistic regression model with the 

Logit link for a binary trait. Under the generalized linear model, the score test statistic to test 

the null hypothesis H0 : β = 0 is given by Sha et al., (2011):

S = U′V−1U

where U = ∑i = 1
n yi − y Xi − X  and V = 1

n ∑i − 1
n yi − y

2∑i = 1
n Xi − X Xi − X ′. The statistic 

S asymptotically follows a chi-square distribution with k = rank(V) degrees of freedom (df). 

However, for rare variants, the score test may suffer power loss due to the sparse data and a 

large df. To solve this issue, we can develop methods to test the genetic association in the 

considered region by testing the effect of a weighted combination of variants, ∑m = 1
M wmxim, 

where wi are the weights that will be given later. That is, the model is written as:

g 𝔼 yi | Xi = β0 + β ∑
m = 1

M
wmxim (4)

Under this model, to test the genetic association in the considered region is equivalent to test 

the null hypothesis H0 : β = 0.

Let X = (X1, ⋯, Xn)′ and Y = (y1, ⋯, yn)′. To test the effect of the weighted combination of 

variants Xi′W where W = (w1, ⋯, wM)′, let P = In − 1
n1n1n′  where 1n represents a column 

vector containing all ones. Then, the score test statistic S as a function of W can be written 

as:

S w1, ⋯, wM = n (PY)′PXW(PY)′PXW
(PY)′PY(PXW)′PXW

= nW′X′PYY′PXW
Y′PYW′X′PXW

= nW′X′PYY′PXW
W′X′PXY′PYW

where the second equation holds because we have P = P′ and PP′ = P and the third 

equation holds because Y′ PY is a constant.

When E = X′ PX is positive definite, maximizing S(w1, ⋯, wM) is equivalent to maximizing
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S w1, ⋯, wM = W′X′PYY′PXW
W′X′PXW

=
W′LL−1X′PYY′PX L−1 ′L′W

W′LL′W

where L is the lower triangular matrix obtained from the Cholesky decomposition of E = LL
′. However, when the matrix of E is not full rank, it may cause the matrix E to be not 

positive definite (semi-positive definite). If the matrix is not positive definite, we consider 

two options. First, we can perform correlation pruning so that all pairwise correlation 

between SNPs is less than 1. Second, we can introduce a ridge parameter λ0, for which we 

suggest λ0 = 1/n (referred to Baker et al. 2018), where n is the number of individuals in the 

data. This modification, E = X′ PX + λ0I, allows us to mitigate the flaw of the non-positive 

matrix E in order to avoid the instability. We adopt the first option in the following 

simulation study and real data analysis if the matrix is not positive definite.

To maximize S(w1,⋯, wM), let us denote C = L−1 X′ PYY′ PX (L−1)′, and c be the 

eigenvector corresponding to the largest eigenvalue of the matrix C, then 

S w1, ⋯, wM = W′LCL′W
W′LL′W  reaches its maximum when L′W = c. Therefore, we obtain the 

optimal weight W = (L′)−1c. Specially, when we assume that the genetic variants are all 

independent, the weight of the mth variant can be expressed as

wm =
(PY)′ PXm ⋅
PXm ⋅ ′ PXm ⋅

=
Y′PXm ⋅

Xm ⋅′ PXm ⋅
(5)

This is the same as the optimal weight in the TOW method (Sha et al., 2012), where Xm· = 

(xm1, ⋯, xmn). The equation (5) is equivalent to wm =
 Corr Y , Xm ⋅

Xm ⋅′ PXm ⋅
 where the numerator is 

the correlation coefficient between phenotype Y and the mth variant genotypic score Xm· and 

the denominator can be viewed as the variance of the Xm·. This means that wm has the same 

direction as the correlation between the phenotype Y and the mth variant Xm·, and puts big 

weight to the variant that has strong association with the trait of interest and to the variant 

with low variance which is usually a low frequency variant.

We define the General statistic to Test the effect of the Optimally Weighted combination (G-

TOW) of variants, XW, as:

TG − TOW = W′X′PYY′PXW
W′X′PXW (6)

We use permutation methods to evaluate the P-value of TG-TOW. Based on an assumption 

that rare variants are independent, TOW derives the optimal weights in order to maximize 

S(w1, ⋯, wM). As we mentioned above, correlations between variants play an important role 

for association analysis and ignoring such correlations can reduce the power of association 

tests, especially those low frequent variants based association tests.
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The G-TOW method can be extended to incorporate covariates. Suppose that there are p 
covariates. Let zil denote the lth covariate of the ith individual. We adjust both trait value yi 

and genotypic score xim for the covariates by using linear regression models. That is,

yi = α0 + α1zi1 + ⋯ + αpzip + ϵi and xim = α0m + α1mzi1 + ⋯ + αpmzip + τim

Let yi and xim denote the residuals of yi and xim, respectively. We incorporate the covariate 

effects in G-TOW by replacing yi and xim in equation (6) by yi and xim. With covariates, the 

statistic of G-TOW is defined as:

TG − TOW = TG − TOW yi = yi, xim = xim

Comparison of tests

We compared our method, (G-TOW) with three other approaches: 1) Weighted Sum Statistic 

method, (WSS), (Madsen and Browning 2009); 2) Testing the effect of the Optimally 

Weighted combination of variants, (TOW), (Sha et al., 2012); 3) Sequence Kernel 

Association Test, (SKAT), (Wu et al., 2011).

Simulation

Gene TP53 is crucial in multicellular organisms as it prevents cancer formation, thus 

functioning as a tumor suppressor. In simulation studies, we generate genotype data using 

the haplotypes of gene TP53 obtained from the 1000 Genome Project http://

www.sph.umich.edu/csg/abecasis/MACH/download/1000G-2010-08.html. This dataset 

contains 566 hyplotypes for 74 variants (27 common variants and 47 rare variants). Here, we 

divide variants into rare (MAF<the rare variant threshold (RVT)) and common 

(MAF>RVT), and consider RVT as 0.05. In our simulation studies, we generate genotypes 

for individuals based on this haplotype pool. To generate the genotype of an individual, we 

select two haplotypes according to the haplotype frequencies.

Correlation analysis of the gene TP53

To be able to empirically illustrate the effects of varying values of MAF on correlation 

measures, we classified SNPs into five index groups using the following cutoffs: Index 1 

(MAF≥0.05), Index 2 (0.03≤MAF<0.05), Index 3 (0.0≤ MAF<0.03), Index 4 

(0.01≤MAF<0.02) and Index 5 (MAF<0.01). Here, Index 1 represents common variants, 

whereas the remaining indices represent rare variants. Index 5 depicts the most extreme rare 

scenario. Detailed information for this classification and the number of SNPs in each index 

set for the dataset is summarized in Table 1.

For illustration purpose, we have chosen several SNP pairs from the TP53 Data to 

demonstrate the specific effects of varying values of MAF on R2, D′, R, D* and PCor 

(Turkmen and Lin 2017). Table 2 summarizes the results reported with different LD 

measures and indicates the limitations of existing LD measures for rare variants. As shown 
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in Table 2, if a SNP is rare, it is very likely that the frequency of the haplotype carrying the 

minor allele can not be estimated accurately, whereas the two known popular LD measures 

R2 and D′ are calculated under the assumption that the population distribution of haplotypes 

is known. This will lead to D′ attaining 1 or R2 tending to equal 0 regardless of the level of 

real LD. From the values of PCor, we can see that these correlations/LD exist between rare 

variants or even rare and common variants in the gene TP53 data.

Simulation setting

To assess the performance of the proposed method G-TOW, we conduct extensive simulation 

studies based on the gene TP53 data. We compare the performance of G-TOW with the 

existing methods TOW, WSS, and SKAT.

To evaluate type I error rates of the four methods, we generate 1000 trait values which are 

independent of genotypes by using the following model (7) :

y = 0.5z1 + 0.5z2 + ϵ (7)

where z1 is a continuous covariate generated from a standard normal distribution, z2 is a 

binary covariate taking values 0 and 1 with a probability of 0.5, and ϵ is the error term 

following a standard normal distribution.

To evaluate power, we randomly choose one common variant and 20% or 40% rare variants 

(nc) as causal variants where the common variant and half of rare causal variants (nr = nc/2) 

are risk variants and the other half of the rare causal variants (np = nc/2) are protective 

variants. Denote xi
r, x j

p, and xc as genotypes of the ith risk rare variant, the jth protective rare 

variant, and the common variant, respectively. Then, we generate a quantitative trait using 

the following model (8):

y = 0.5z1 + 0.5z2 + βcxc + ∑
i = 1

nr
βi

rxi
r − ∑

j = 1

np
β j

px j
p + ϵ (8)

where z1, z2 and ϵ are the same as those in equation (7). In model (8), βc, βi
r and β j

p are 

coefficients. The values of these three coefficients depend on the total heritability (htotal) and 

the ratio (R0) of heritability of the rare causal variant to heritability of the common causal 

variant. Given htotal and R0, we can calculate the heritability of the rare casual variants and 

the common causal variants, respectively. We assume that all the rare causal variants have 

the same heritability such that rarer variants have larger effects. When we consider common 

variant and rare variants simultaneously, the values of βc, βi
r, and β j

p can be determined by:
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βi
r =

htotalR
0

 var  xi
r nc 1 − htotal 1 + R0

β j
p =

htotalR
0

 var  x j
p nc 1 − htotal 1 + R0

βc =
htotal

 var  xk 1 − htotal 1 + R0

(9)

When we only consider rare variants, the values of βi
r and β j

p are given as:

βi
r =

htotal

 var  xi
r nc 1 − htotal

β j
p =

htotal

 var  x j
p nc 1 − htotal

To generate a qualitative trait, we use a liability threshold model based on the quantitative 

trait (continuous phenotype) described above. An individual is defined to be affected (case) 

if the individual’s phenotype is at least one standard deviation larger than the phenotypic 

mean, which yields a approximate prevalence of 16% for the simulated disease in a general 

population.

Simulation results

For type I error evaluation, we consider different disease models for different types of traits 

(qualitative trait or quantitative trait). The type I error rates are evaluated using 100,000 

replicated samples and the P-values are estimated using 100,000 permutations for G-TOW, 

TOW and SKAT test methods. We use asymptotic distribution to evaluate the type I error 

rates for WSS test method. For the 100,000 replicated samples, the 95% confidence intervals 

(CIs) for the estimated type I error rates at nominal levels 0.05, 0.01, 0.001, and 0.0001 are 

(0.0486, 0.0514), (0.0094, 0.0106), (0.00080, 0.00120), and (0.000038, 0.000162), 

respectively. The estimated type I error rates of these four tests (G-TOW, TOW, WSS and 

SKAT) are summarized in Table 3. From this table, we can see that all of the estimated type 

I error rates are either within 95% CIs or close to the boundary of the corresponding 95% 

CIs, which indicate that the existing methods and our proposed method are all valid.

In power comparisons, the P-values of G-TOW, TOW and SKAT are estimated using 1,000 

permutations, while the P-values of WSS are estimated by asymptotic distributions. The 

power of each of the four tests is evaluated using 1,000 replicated samples at the significance 

level of 0.05 (Figure 1–4). For power comparisons, we consider two different cases: (1) rare 

causal variants in which all causal variants are rare (MAF<RVT) and (2) both rare and 

common causal variants in which there is one common variant and the heritability of the 

common variant is twice as big as the heritability of all the rare causal variants.

Power comparisons of the four tests (G-TOW, TOW, WSS and SKAT) as a function of 

heritability for a quantitative trait are given in Figure 1 (20% causal rare variants) and Figure 

3 (40% causal rare variants). As shown in Figure 1 or Figure 3, G-TOW and TOW are 
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consistently more powerful than WSS and SKAT. We can also see that G-TOW is the most 

powerful test when the causal variants contain both common and rare variants. Additionally, 

G-TOW is the most powerful test when the heritability is less than 0.05 and the casual 

variants are all rare variants. The power of both G-TOW and TOW is close to 1 when the 

heritability is greater than 0.05. The method SKAT performs worse than G-TOW and TOW 

under all of cases in Figure 1 and Figure 3, because the MAFs of a large portion of rare 

causal variants are under 0.01 and SKAT will lose power when the MAFs of causal variants 

are not in the range (0.01,0.035) (Yang et al. 2017). G-TOW is more powerful than TOW, 

especially when the causal variants contain both common and rare variants because TOW 

does not consider the correlation between variants. The method WSS is the least powerful 

test, because WSS will suffer substantial losses of power when both risk and protective 

variants are present.

Power comparisons of the four tests for different values of heritability based on a qualitative 

trait are given in Figure 2 (20% causal rare variants) and Figure 4 (40% causal rare variants). 

Comparing Figure 1 with Figure 2 (or Figure 3 with Figure 4), we can see that the patterns 

of power comparisons based on a qualitative trait are very similar to those based on a 

quantitative trait. However, it seems that the power of all four tests in most cases is smaller 

based on a qualitative trait than based on a quantitative trait. This may be because that 

converting to qualitative variables from quantitative variables results in some information 

loss. Comparing the case of 20% causal rare variants in Figure 1–2 with that of 40% causal 

rare variants in Figure 3–4, we can see that patterns of power comparisons based on 20% 

causal rare variants are very similar to those based on 40% causal rare variants. The power 

of G-TOW, TOW and SKAT is relatively robust to the increase of neutral variants while the 

power of WSS still suffers a substantial loss of power in the presence of both risk and 

protective variants.

Because the method TOW can be viewed as a special case of G-TOW, G-TOW is 

consistently more powerful than TOW when correlation between variants exist and has 

similar power when the variants are all independent. In summary, G-TOW is consistently 

more powerful or has similar power to the method TOW, and G-TOW is more powerful than 

WSS and SKAT. The power of G-TOW is also relatively robust to an increase in the 

percentage of rare variants.

Analysis of the GAW17 dataset

The GAW17 dataset consists of real genotypes and 200 replicates of the simulated 

phenotypes for a collection of 697 unrelated individuals, which is provided by the 1000 

Genomes Project for their pilot3 study. A total of three quantitative traits (Q1, Q2, and Q4) 

are simulated and covariates include age, sex, and smoking status. Because the quantitative 

trait Q4 is not influenced by any of the genotyped exonic SNPs, we did not consider Q4 for 

the purpose of power comparisons. The P-values of G-TOW, TOW, and SKAT are evaluated 

by 10,000 permutations and the P-values of WSS are evaluated by asymptotic distributions. 

For a better comparison of these four test methods, we merge two replicates into one 

replicate to increase the sample size and all powers are estimated at a significance level of 

0.001. In all of the cases, all causal variants are risk variants. There are nine causal genes for 
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Q1 and thirteen causal genes for Q2. We omit causal genes that have one variant, causal 

genes in which there is only one copy of haplotype among the individuals for each causal 

variant, causal genes in which all of the four tests have 100% power, and causal genes in 

which all of the four tests have a power less than 10%. There are four genes associated with 

Q1 and seven causal genes with Q2. The powers of WSS, TOW and SKAT are not consistent 

with those in Table 2 of Sha et al., (2012), where they did not adjust trait values and 

genotypes for covariates.

The powers of the four tests to detect association between each of the 11 causal genes and 

Q1 or Q2 are given in Table 4. As shown in Table 2, G-TOW is the most powerful test in 

four out of 11 genes, WSS is the most powerful test in three out of 11 genes, TOW is the 

most powerful test in one out of 11 genes and SKAT is the most powerful test in three out of 

11 genes. Comparing G-TOW to TOW, G-TOW is either most powerful test or has similar 

power to the TOW method in ten of 11 casual genes.

Analysis of the Schizophrenia dataset

Schizophrenia is a severe and disabling mental illness with onset typically in early adult life. 

It is associated with low fecundity but nevertheless remains fairly common with a lifetime 

prevalence of around 1% (Power et al., 2013). Many genes including common and rare 

variants have been reported association with schizophrenia (Curtis et al. 2017, Genovese et 

al. 2016, Purcell et al. 2014, Fromer et al. 2014, Takata et al. 2014, Rujescu et al. 2009, Xu 

et al. 2012, Millar et al. 2000). In this study, we seek to verify the 14 associated genes (see 

Table 5) for schizophrenia by analyzing exome-sequencing of 2,536 schizophrenia cases and 

2,543 controls (total 5079 individuals) of a Swedish sample. SNPs on the 14 genes with 

MAF that equals to zero and missing rate greater than 20% are excluded in the analysis.

The P-values of these four methods to test the association between each of the 14 genes and 

the case-control trait of schizophrenia are given in Table 5. As shown in Table 5, the number 

of genes verified by these four methods G-TOW, TOW, WSS and SKAT are 3,3,2, and 1, 

respectively, when we use the significant level as 0.05. When we consider multiple testing 

issue by using a significance level as 0.0036, among these four methods, only gene FYN is 

identified by the G-TOW (P-value = 0.0037). At this gene, the P-value of G-TOW is one 

order of magnitude smaller than the P-value of TOW method. The FMR1 gene can be 

verified by the other three tests other than TOW. Compared to the other three methods, we 

can see that our method G-TOW performs best overall from Table 5.

For the three verified genes by G-TOW (using significance level as 0.05), gene FYN, VPS39 

and FMR1 have been reported significantly associated with schizophrenia by Tsavou et al. 

(2019), Curtis et al. (2017), Curtis et al. (2018), Xu et al. (2012) and Purcell et al. (2014), 

respectively. Gene FYN was identified as a ‘prioritized candidate gene’, and an intronic 

marker, rs7757969, on this gene was significant at p = 4.8 × 10−8 (Li et al., 2017). Gene 

FYN is involved in neuronal apoptosis, brain development and synaptic transmission, and 

lower expression has been observed in the platelets of schizophrenic patients compared with 

controls. Xu et al. (2012) showed that gene VPS39 was affected by recurrent novo events in 

a sequenced 795 exomes from 231 parent-proband trios enriched for sporadic schizophrenia 
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cases, as well as 34 unaffected trios. Purcell et al. (2014) proposed that targets of the fragile 

× mental retardation protein (FMRP, product of FMR1) were enriched in cases with 

schizophrenia.

Discussion

Most of the recently developed methods for rare variants association studies essentially 

assume that rare variants are independent. The two popular LD measures D′ and R2 are not 

capable of correctly measuring the correlation involving rare variants. Ignoring such 

correlation between variants will reduce the power of rare variants association tests. 

Motivated by TOW method, we analytically derived the optimal weights where we fully 

considered the correlations between variants whether they are common or rare. Based on the 

optimal weights, we proposed G-TOW to test the effect of the optimally weighted 

combination of variants. We used extensive simulation studies and application to the 

GAW17 dataset and the real schizophrenia data to compare the performance of our G-TOW 

method with existing methods (TOW, WSS and SKAT). The results show that our method is 

consistently more powerful than the other methods we compared with.

When we use burden tests to test rare variants, most of them put subjective weights on 

variants (usually put large weights on rare variants and small weights on common variants). 

By putting incorrect weights on variants, these methods lose power when testing the effects 

of both rare and common variants. To test the effects of both rare and common variants, 

WSS puts weights as the inverse square root of the expected variance based on allele 

frequencies on rare and common variants. By putting positive weights on variants, WSS 

loses power when causal variants contain both risk and protective variants. The SKAT 

method puts the beta distribution density function with pre-specified parameters determined 

by MAFs of variants in the data. However, SKAT has better performance only for those 

variants with MAF in a certain range (Sha et al., 2012). Our proposed method G-TOW 

which chooses weights adaptively by combining correlation between variants under a certain 

criterion, has relatively better performance than TOW in testing the effects of both rare and 

common variants or rare variants only, since TOW ignores the correlation between variants.
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Figure 1. 
Power comparisons of the four tests (G-TOW, TOW, WSS and SKAT) for the power as a 

function of heritability for a quantitative trait. Rare means that all causal variants are rare. 

Both means that causal variants contain both rare and common (one common variant) and 

the heritability of the common variant is as twice as the heritability of all the rare causal 

variants. The x-axis represents the total heritability of all causal variants. Sample size is 

1,000 and 20% of rare variants are causal, half of rare causal variants are risk and the other 

half of causal variants are positive. The powers (y-axis) are evaluated at a significance level 

of 0.05.
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Figure 2. 
Power comparisons of the four tests (G-TOW, TOW, WSS and SKAT) for the power as a 

function of heritability for a qualitative trait. Rare means that all causal variants are rare. 

Both means that causal variants contain both rare and common (one common variant) and 

the heritability of the common variant is as twice as the heritability of all the rare causal 

variants. The x-axis represents the total heritability of all causal variants. Sample size is 

1,000 and 20% of rare variants are causal, half of rare causal variants are risk and the other 

half of causal variants are positive. The powers (y-axis) are evaluated at a significance level 

of 0.05.
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Figure 3. 
Power comparisons of the four tests (G-TOW, TOW, WSS and SKAT) for the power as a 

function of heritability for a quantitative trait. Rare means that all causal variants are rare. 

Both means that causal variants contain both rare and common (one common variant) and 

the heritability of the common variant is as twice as the heritability of all the rare causal 

variants. The x-axis represents the total heritability of all causal variants. Sample size is 

1,000 and 40% of rare variants are causal, half of rare causal variants are risk and the other 

half of causal variants are positive. The powers (y-axis) are evaluated at a significance level 

of 0.05.
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Figure 4. 
Power comparisons of the four tests (G-TOW, TOW, WSS and SKAT) for the power as a 

function of heritability for a qualitative trait. Rare means that all causal variants are rare. 

Both means that causal variants contain both rare and common (one common variant) 

variants. The heritability of the common variant is as twice as the heritability of all the rare 

causal variants. The x-axis represents the total heritability of all causal variants. Sample size 

is 1,000 and 40% of rare variants are causal, half of rare causal variants are risk and the 

other half of causal variants are positive. The powers (y-axis) are evaluated at a significance 

level of 0.05.
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Table 1:

Index Definitions for TP53 Data based on MAF Cutoffs

Group MAF Range #SNPs

Index 1 MAF≥ 0.05 27

Index 2 0.03≤MAF<0.05 8

Index 3 0.02≤ MAF<0.03 4

Index 4 0.01≤MAF<0.02 6

Index 5 MAF<0.01 29
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Table 2:

R2, D′, R, D* and PCor values for the Selected SNP-Pairs on TP53 Data

Index MAF1 MAF2 R2 D′ R D* PCor

1 1 0.297 0.290 0.844 0.936 0.919 0.936 0.993

1 2 0.297 0.040 0.099 1.000 0.313 1.000 0.989

1 3 0.297 0.025 0.060 1.000 0.246 1.000 0.983

1 4 0.297 0.019 0.008 1.000 −0.089 −1.000 −0.951

1 5 0.297 0.003 0.001 1.000 −0.034 −1.000 −0.942

2 2 0.040 0.042 0.950 1.000 0.974 1.000 0.999

2 3 0.040 0.025 0.001 1.000 −0.032 −1.000 −0.990

2 4 0.040 0.019 0.001 1.000 −0.028 −1.000 −0.898

2 5 0.040 0.003 0.000 1.000 −0.010 −1.000 −0.894

3 3 0.025 0.028 0.907 1.000 0.952 1.000 0.999

3 4 0.025 0.019 0.001 1.000 −0.021 −1.000 −0.991

3 5 0.025 0.003 0.000 1.000 −0.008 −1.000 −0.890

4 4 0.019 0.015 0.000 1.000 −0.017 −1.000 −0.899

4 5 0.019 0.003 0.000 1.000 −0.007 −1.000 −0.821

5 5 0.003 0.001 0.000 1.000 −0.001 −1.000 −0.820
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Table 3:

The estimated type I error rates of the four test methods

Quantitative trait

α-level G-TOW TOW WSS SKAT

n = 1000 0.05 0.0497 0.0502 0.0500 0.0497

0.01 0.0097 0.0104 0.0100 0.0099

0.001 0.00093 0.00110 0.00100 0.00105

0.0001 0.00013 0.00010 0.00012 0.00008

Qualitative trait

n = 1000 0.05 0.0496 0.0498 0.0500 0.0497

0.01 0.0102 0.0098 0.0100 0.0096

0.001 0.00104 0.00097 0.00100 0.00087

0.0001 0.00011 0.00009 0.00008 0.00011
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Table 4:

Power of the four methods to test the association between each of the four causal genes and quantitative trait 

Q1 and between each of the seven causal genes and quantitative trait Q2

Traits Gene name No. of variants, no. of causal variants Min, max, mean MAF G-TOW TOW WSS SKAT

Q1 ARNT 18,5 0.07,1.15,0.33 0.58 0.59 0.08 0.94

FLT4 10,2 0.07,0.14,0.11 0.66 0.69 0.85 0.66

HIF1A 8,4 0.07,1.22,0.39 0.57 0.59 0.62 0.90

VEGFA 6,1 0.22,0.22,0.22 0.17 0.16 0.35 0.11

Q2 BCHE 29,13 0.07,0.29,0.10 0.38 0.37 0.17 0.13

LPL 20,3 0.07,1.58,0.60 0.25 0.23 0.00 0.36

PDGFD 11,4 0.07,0.86,0.29 0.18 0.15 0.01 0.14

SIRT1 23,9 0.07,0.22,0.12 0.31 0.61 0.34 0.56

SREBF1 24,10 0.07,0.43,0.22 0.22 0.17 0.24 0.04

VNN1 7,2 0.57,17.1,8.82 0.83 0.71 0.08 0.03

VNN3 15,7 0.07,9.83,2.06 0.72 0.53 0.31 0.37

Note: Min, max, mean MAF: the minimum, maximum, and mean MAF (in percentage) at causal variants. In each row, the boldfaced number 
represents the highest power in the row
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Table 5:

P-values of these four methods to test association between genes and case-control trait

Gene name Min, max, mean MAF G-TOW TOW WSS SKAT

ARC 0.0001, 0.4618, 0.0339 0.2583 0.2817 0.4645 0.7751

DISCI 0.0001, 0.3111, 0.0135 0.7645 0.6939 0.7736 0.4124

DISC2 0.0001, 0.1579, 0.0309 0.5306 0.5056 0.6880 0.5407

DPYD 0.0001, 0.2481, 0.0102 0.1475 0.1959 0.4782 0.1119

FMR1 0.0001, 0.0847, 0.0078 0.0339 0.0598 0.0313 0.0252

FYN 0.0001, 0.1377, 0.0064 0.0037 0.0143 0.9254 0.1628

KL 0.0001, 0.4038, 0.0213 0.5505 0.5829 0.6533 0.8737

LAMA2 0.0001, 0.4669, 0.0183 0.1154 0.0138 0.5967 0.1166

NMDAR 0.0001, 0.4118, 0.0192 0.3431 0.3272 0.3804 0.4312

NRXN1 0.0001, 0.0090, 0.0009 0.5764 0.4227 0.0303 0.4997

SETD1A 0.0001, 0.3788, 0.0037 0.6878 0.5235 0.6386 0.7821

TAF13 0.0001, 0.1276, 0.0109 0.7455 0.7414 0.3661 0.7041

TRRAP 0.0001, 0.2383, 0.0034 0.1046 0.4087 0.1040 0.6638

VPS39 0.001, 0.1830, 0.0115 0.0442 0.0245 0.4767 0.0752

Note: Min, max, mean MAF: the minimum, maximum, and mean MAF (in percentage) at causal variants. In each row, the boldfaced number 
represents the significant P-value in the row (significant level = 0.05); the italic number in each row represents the nearly significant P-value after 
correcting for multiple testing issue (significant level = 0.0036).
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